文档库 最新最全的文档下载
当前位置:文档库 › GY401锁尾陀螺仪中文使用说明书

GY401锁尾陀螺仪中文使用说明书

GY401锁尾陀螺仪中文使用说明书
GY401锁尾陀螺仪中文使用说明书

GY401锁尾陀螺仪中文使用说明书

前言

GY401 采用 AVCS ( Angular Vector Control System ) 角度向量控制系统,具有高性能、体积小及重量轻的特点,专为直升机所设计。感测器与控制器结合为一体,安装容易。陀螺仪的性能表现与舵机息息相关,舵机的反应速度愈快,则陀螺仪的灵敏度及性能会愈佳。GY401 搭配数字舵机将可获致极佳的性能,S9253 高速型数字舵机是专为陀螺仪所设计,建议使用。

一、功能介绍

AVCS 系统

可自动消除因风力或其它天候因素,以及直升机的各种姿态所引起之尾舵偏移,使得尾舵操控容易,适合 3D 花式飞行。

SMM 陀螺仪传感器

采用最新型超低偏移 SMM ( Silicon Micro Machine ) 传感器,能有效减少飞行中尾舵偏移的机会。

相容数字舵机 ( DS 模式)

使用 DS 模式时可相容Futaba 数字舵机,能完全配合数字舵机的高速反应性能。

可由遥控器切换陀螺仪的灵敏度及操作模式

由遥控器可调整陀螺仪的灵敏度,以及切换陀螺仪的操作模式 ( 锁定模式或一般模式 )。

一体式、体积小、重量轻

采用高密度黏着技术,体积只有27×27×20mm,重量仅为 27g。

导电树脂外壳

采用导电树脂外壳,增强抗电磁干扰 ( EMC ) 的能力。

二、套件内的组件

打开 GY401 包装盒后,请先检查是否包括下列组件∶

GY401 规格资料

控制系统:数字式 PI ( proportional integration ) 比例式积分控制。

陀螺仪传感器:SMM 系统振动式陀螺仪。

操作电压:4~6V ( 直流电 )

操作温度:-10 ~ +45°C

外型尺寸:27 × 27 × 20 mm

重量:27g

功能∶具备正逆转开关、DS 模式开关、控制延迟调整旋纽、舵机最大行程量调整旋纽。可由遥控器调整陀螺仪的灵敏度及切换锁定 ( AVCS ) 模式与一般模式。

AVCS 陀螺仪介绍

传统型的陀螺仪只有当直升机的尾舵移动时,才会送出控制讯号至舵机,当尾舵停止移动时,控制讯号也随之归零。相反地,即使直升机的尾舵停止移动时,AVCS 陀螺仪也会持续送出控制讯号。

三、传统型陀螺仪的运作

当直升机在停悬状态受到侧风的吹袭时,尾舵会产生偏移的现象,此时传统型陀螺仪会送出控制讯号至尾舵舵机,以相反的方向抵制尾舵的偏移,当尾舵停止偏移时,陀螺仪的控制讯号也随之消失。若侧风持续地吹袭直升机时,会造成尾舵不断地偏移,此时陀螺仪会一直抵制尾舵的偏移,直到尾舵移动至下风处,这就是风标效应。

AVCS 陀螺仪的运作

当尾舵受到侧风吹袭而产生偏移的现象时,陀螺仪会抵制尾舵的偏移,同时陀螺仪会计算出偏移的角度,并持续送出控制讯号以抵抗侧风,因此即使侧风不停地吹袭直升机时,尾舵依然不会产生偏移。换言之,陀螺仪会自动修正因侧风所引起的尾舵偏移。当直升机执行自转的动作时,尾舵舵机会依据机体旋转的角速度而摆动,当直升机停止自转时,尾舵舵机会判断应停止的位置,这就是自动偏移功能。

四 GY401 的功能

各部名称及功能说明

名 功能说明

反转开关:切换陀螺仪的控制方向。请依据直升机的主旋翼旋转方向及尾舵连杆的方向做正确的切换。

DS 模式开关:数字舵机模式开关。使用数字舵机时,请将 DS 模式开关切到 ON的位置;使用一般舵机时,请切到 OFF 的位置,若切到 ON 的位置时,将会导致舵机烧毁。

控制延迟调整旋纽:调整尾舵控制讯号的运作速度。若使用速度较慢的舵机,却发现直升机的尾舵会产生追踪现象时,可顺时针转动旋纽,增加延迟的时间,即可消除追踪现象。若尾舵使用高速舵机时,例如数字舵机,请将旋纽调整至 0 的位置。

舵机最大行程量调整旋纽:设定尾舵舵机的最大行程量。将尾舵摇杆向左及向右打满舵,调整旋纽使尾舵舵机的行程量不会超出尾螺距滑套的最大活动范围。顺时针转动旋纽为增加行程量。

灵敏度频道接头:接至接收机的灵敏度频道 ( 一般是 CH5 ),可同时做为切换陀螺仪的灵敏度及模式 ( 锁定模式或一般模式 ) 之用。因接头仅有单蕊的讯号线,请勿用力拉扯以免断线。

尾舵频道接头:接至接收机的尾舵频道 ( CH4 )。

尾舵舵机接头:接至尾舵舵机。

五、状态指示灯的显示

灯号显示陀螺仪状态

快速闪烁表示开启电源后,陀螺仪正在进行资料初始化的程序。

恒亮表示陀螺仪位于锁定 ( AVCS ) 模式。

熄灭表示电源已关闭或陀螺仪位于一般模式。

慢速闪烁表示陀螺仪没有接收到由遥控器所送出的尾舵控制讯号,此时尾舵舵机无法操作。

间歇闪烁表示在一般模式下开启电源,此时陀螺仪无法正确地执行资料初始化的程序。请将遥控器的陀螺仪灵敏度开关切至锁定模式,关

闭接收机的电源再重新开启。

闪烁二次表示在锁定模式时,目前接收到的尾舵控制讯号与储存在陀螺仪的中立点讯号不同。下列二种情况皆会出现此灯号∶

·正在拨动尾舵摇杆。

·尾舵的中立点已经偏移,必须重新设定中立点。

闪烁一次表示重新设定尾舵的中立点。将遥控器的灵敏度开关在一般模式与锁定模式间快速切换至少3 次,最后须停于锁定模式。当灯号

熄灭后,尾舵的中立点已经重新设定完成。

使用遥控器设定陀螺仪的灵敏度

遥控器灵敏度设定值与陀螺仪灵敏度的关系

若灵敏度频道送出中立点的讯号时,陀螺仪的灵敏度将为 0;若送出中立点以上的讯号时,陀螺仪为锁定模式;若送出中立点以下的讯号时,陀螺仪为一般模式。若遥控器具备设定陀螺仪灵敏度的功能 ( 例如 T9ZH WC 系列、FF9、FF8 ),则可由 GYRO功能项设定陀螺仪的灵敏度值。设定值若为 50%,则陀螺仪的灵敏度为 0。若设定值为 0 ~50%,则陀螺仪的灵敏度为 100 ~ 0% ( 一般模式 );若设定值为 50 ~ 100%,则陀螺仪的灵敏度为 0 ~ 100% ( 锁定模式 )。由遥控器的灵敏度开关可同时控制陀螺仪的灵敏度及操作模式,灵敏度开关的 ATV 设定值亦可控制陀螺仪的灵敏度,例如 ATV 为 90% 时,陀螺仪的灵敏度为100%。

使用灵敏度开关设定陀螺仪的灵敏度

本范例使用 Futaba FF8 遥控器,进入陀螺仪混控 ( GYRO ) 的功能项,分别设定一般飞行模式 ( 锁定模式,灵敏度 80% ) 、Idle-up 1 飞行模式 ( 锁定模式,灵敏度 80% ) 及Idle-up 2 飞行模式 ( 一般模式,灵敏度 60% ),使用 SW-E 开关切换陀螺仪的灵敏度。

六、设定步骤∶

1.使用遥控器的进阶功能选单进入 GYRO 功能项。

2.按压游标键 ( CURSOR ) 显示选择切换开开的画面,按压资料键 ( DATA ) 选择SW-E。

3.按压游标键 ( CURSOR ) 显示一般飞行模式 ( NORM ) 灵敏度的画面,调整设定值为 90%。

4.按压游标键 ( CURSOR ) 显示 Idle-up 1 飞行模式 ( IDL1 ) 灵敏度的画面,调整设定值为 80%。

5.按压游标键 ( CURSOR ) 显示 Idle-up 2 飞行模式 ( IDL2 ) 灵敏度的画面,调整设定值为 20%。

注∶舵机逆转 ( REVERS ) 的功能项内,灵敏度频道 ( CH5 ) 须设为 NORM。

使用 ATV 设定陀螺仪的灵敏度

若遥控器没有设定陀螺仪灵敏度的功能时,则可选择一个具有切换开关的动作频道,利用调整行程量 ( ATV ) 的方式也可以控制陀螺仪的灵敏度。本范例使用 Futaba FF6 遥控器,进入行程量 ( ATV ) 的功能项,分别设定 CH5 的 ATV 为一般飞行模式 ( 锁定模式,灵敏度 80%,CH5 开关扳向前 ) 及 Idle-up 飞行模式 ( 一般模式,灵敏度 60%,CH5 开关扳向后 ),使用 CH5 开关切换陀螺仪的灵敏度。

七、设定步骤∶

1.按压模式键 ( MODE ) 进入设定 CH5 ATV 的画面。

2.将 CH5 开关扳向前,设定 ATV 为 72%。

3.将 CH5 开关扳向后,设定 ATV 为 54%。

4.简单的计算公式∶ATV = 90 ×灵敏度 / 100。

注∶使用 CH5 开关切换陀螺仪的灵敏度时,将无法设定一般飞行模式与Idle-up 飞行模式皆为锁定模式,CH5 开关必定一侧为锁定模式,另一侧为一般模式。舵机逆转 ( REVERS ) 的功能项内,CH5 须设为 NORM。

使用方法

将陀螺仪安装至直升机上

操作 GY401 的切换开关及旋纽时,因开关及旋纽皆非常细小,请使用套件内附之小型螺丝起子以利操作。

安装陀螺仪

安装 GY401 时,请使用套件内附之双面胶,陀螺仪的底部平面必须与直升机的主轴成 90°角,否则会影响左右侧滚及前后滚翻的方向。将 GY401 安装在电动直升机上时,必须距离马达至少 10cm 以上,以免有干扰的现象产生。

八、接线图

选择舵机

若使用数字舵机 ( 例如 S9253、S9250、s9450 ) 做为尾舵舵机时,请将DS 模式开关切至 ON 的位置。若使用一般的舵机,则将 DS 模式开关切至 OFF 的位置。

注意∶若使用一般的舵机,却将 DS 模式开关切至 ON 的位置时,将会导致舵机烧毁。

检查尾舵连杆

将遥控器的灵敏度开关切至锁定模式,先开启遥控器的电源,再开启接收机的电源。此时请勿拨动尾舵摇杆或移动直升机,需等 3 秒钟后陀螺仪才会完成资料初始化的程序。请注意,资料初始化的程序必须在锁定模式下进行,如果状态指示灯的灯号恒亮,表示目前陀螺仪正位于锁定模式。如果在一般模式下开启接收机的电源时,状态指示灯的灯号会出现间歇性的闪烁,必须将遥控器的灵敏度开关切至锁定模式,然后重新开启接收机的电源。将遥控器的灵敏度开关切至一般模式,当尾舵舵机在中立点时,选择适合的舵片,使尾舵连杆与舵机摆臂尽可能成90°角。请依据直升机的组装说明书,决定尾舵舵机的摆臂长度。左右移动尾舵摇杆,检查尾舵舵机的转动方向是否正确,若转动方向错误,则由遥控器的舵机逆转功能项目更改尾舵舵机的方向。

调整陀螺仪的灵敏度

陀螺仪的灵敏度大小会因尾舵舵机与直升机的不同而有所差异。一般而言,尾舵舵机的速度愈快,则陀螺仪的灵敏度可相对提升。直升机主旋翼的转速愈快,则尾舵的灵敏度会增加,因此必须降低陀螺仪的灵敏度,例如特技飞行模式( Idle-up ) 的灵敏度必须比停悬时的灵敏度小。先将停悬时的灵敏度设为70 ~ 80%,上空飞行 ( Idle-up ) 时的灵敏度设为 60 ~70%,然后再依据实际的飞行状态调整灵敏度的大小。

九、检查陀螺仪的动作方向

提起直升机,将直升机的机头朝左侧摆动,若尾舵舵机的摆动方向与遥控器的尾舵摇杆打右舵同方向时,表示陀螺仪的动作方向设定正确。若陀螺仪的动作方向不正确时,请切换陀螺仪的正逆转开关。陀螺仪的动作方向若设定错误,将使直升机在起飞时会产生高速自转的危险现象,请再三确认陀螺仪的动作方向是否正确。

调整尾舵舵机最大行程量

将尾舵摇杆向左及向右打满舵,调整旋纽使尾舵舵机的行程量不会超出尾螺距滑套的最大活动范围。在飞行时,尾舵舵机的活动范围不会超出行程量的限制,可保护舵机与连杆。请勿将行程量调整得太小,以免降低陀螺仪的性能。

飞行时的调整

在锁定模式时,陀螺仪会自动修正尾舵,使直升机的尾舵不会产生任何偏移,因此将无法查觉尾舵连杆的长度是否正确。所以,首次飞行或重新安装尾舵连杆时,请先以一般模式进行测试,以调整尾舵连杆长度的方式,使直升机在停悬时尾舵不会产生任何偏移。

调整尾舵的中立点

1.将遥控器的尾舵补偿混控 ( Revolution Mixing ) 功能关闭,或将设定值归零。

2.将遥控器的灵敏度开关切至锁定模式,先开启遥控器的电源,再开启接收机的电源。请勿拨动尾舵摇杆或移动直升机,需等 3 秒钟后陀螺仪才会完成资料初始化的程序。

3.将遥控器的灵敏度开关切至一般模式,使直升机起飞并保持在停悬的状态。若直升机的尾舵会产生偏移的现象,则调整尾舵连杆的长度,使尾舵不会偏向任何一侧。若尾舵仅有些微的偏移,则可使用尾舵微调 ( Trim ) 进行调整。

4.逐渐增加陀螺仪的灵敏度,以不使直升机产生追踪现象为原则,尽可能调大陀螺仪的灵敏度。

注意∶每次开启接收机的电源时,务必确认 GY401 是位于锁定模式,否则陀螺仪将无法正确地执行资料初始化的程序。

十、锁定模式的调整

1.尾舵摇杆保持在中立点的位置上,将遥控器的灵敏度开关在 1 秒钟内快速切换 3 次以上,最后须停于锁定模式。此时陀螺仪会自动储存中立点的资料,当状态指示灯闪烁一次后,表示尾舵的中立点已经重新设定完成,请关闭接收机的电源再重新开启。

2.切换飞行模式关关,执行各种飞行模式的动作后,观察状态指示灯的灯号,若灯号恒亮则为正常,若灯号闪烁二次,则表示中立点已经偏移,须重覆执行步骤 1 的程序,重新设定尾舵的中立点。

3.执行停悬及上空飞行的动作,以不使直升机产生追踪现象为原则,尽可能调大陀螺仪的灵敏度。一般而言,锁定模式的陀螺仪灵敏度会比一般模式小。

KK中文说明书_Rev05

KK V5.5 飞控板使用说明书 免责申明: KKmulticopter V5.5飞控是一个免费的开源项目, 任何版权均归属上述网站所有人所有,由此飞控引发的任何事件与本人无关,特此声明 1)Holybro 所售出的成品控板均采用工厂SMD 机器贴片工艺,产品质量可靠 2)飞控板在烧写不同固件时,可获得不同飞行模式(单轴,2轴,4轴,6轴等),见下面示意3)本产品采用原装Atmega168PA-AU 芯片和MURATA ENC-03RC 陀螺芯片,品质有保证 配置说明: 产品特点: 您仅需为KK 控板配备一套4通道比例遥控设备即可,硬件配置成本低廉。 但您在使用前必须对航模知识,尤其是直升机类航模的控制足够熟练和了解才能进行。 连接说明: 电机转向请参照说明书第4页,按照所选择的不同飞行模式进行设定。

通道副翼升降舵油门方向舵JR/SPEKTRUM REVERSE REVERSE NORMAL REVERSE FUTABA NORMAL NORMAL REVERSE NORMAL HITEC NORMAL REVERSE NORMAL NORMAL 调试说明: 以下调试说明均以韩版固件为例,德版固件电位器调节方向和韩版相反,如您使用德版固件,请勿参照如下说明。本产品默认固件是韩版4轴‘十’字模式2.1版,初次飞行前请按如下说明校准1. 设定发射机通道正反向开关 * 注意: 确保关闭发射机上的所有混控功能

7. 使用发射机设定飞行模式 -如果你的飞控不能顺利解锁,请调低几格发射机油门微调试试-普通模式:50%舵量(出厂默认解锁时为普通模式)-运动模式: 更大的舵量发应,70%舵量. -UFO模式: 更快速的方向旋转。方向舵量90%,其他舵面50%。-初学飞行时,建议将副翼和升降舵量设定为50%(D/R 值)

南方全站仪NTS-系列说明书

一、特点 1.功能丰富 南方NTS-310B/R系列全站仪具备丰富的测量程序,同时具有数据存储功能、参数设置功能,功能强大,适用于各种专业测量和工程测量。 2.数字键盘操作快速 南方NTS-310B/R系列全站仪功能丰富,操作却相当简单,操作按键采用了软键和数字键盘结合的方式,按键方便、快速,易学易用。 3.创新的SD卡功能 支持最大2G SD存储卡,可以将SD卡设为当前内存,使存储容量无限扩展,并极大的方便了采集数据的传输。 4.自动化数据采集 野外自动化的数据采集程序,可以自动记录测量数据和坐标数据,可直接与计算机传输数据,实现真正的数字化测量。 5.望远镜镜头更轻巧 新一代全站仪NTS-310B/R在原有的基础上,对外观及内部结构进行了更加科学合理的设计,望远镜镜头更加小巧,测量更为方便,快速。 6.特殊测量程序 在具备常用的基本测量模式(角度测量、距离测量、坐标测量)之外,还具有悬高测量、偏心测量、对边测量、距离放样、坐标放样、道

路测量等特殊的测量程序,功能相当的丰富,可满足各种专业测量的要求。 7. 中文界面和菜单 NTS-310B/R全站仪采用了汉化的中文界面,对于中国用户更直观,更便于操作,显示屏更大,设计更加人性化,字体更清晰,美观。使仪器操作更加得心应手。

二、预备事项 2.1预防事项 7.日光下测量应避免将物镜直接瞄准太阳。若在太阳下作业应安装滤 光镜。 8.避免在高温和低温下存放仪器,亦应避免温度骤变(使用时气温变 化除 外)。 9.仪器不使用时,应将其装入箱内,置于干燥处,注意防震、防尘和 防潮。 10.若仪器工作处的温度与存放处的温度差异太大,应先将仪器留在箱内,直至它适应环境温度后再使用仪器。 11.仪器长期不使用时,应将仪器上的电池卸下分开存放。电池应每月 充电一 次。 12.仪器运输应将仪器装于箱内进行,运输时应小心避免挤压、碰撞和剧烈震动,长途运输最好在箱子周围使用软垫。 13.仪器安装至三脚架或拆卸时,要一只手先握住仪器,以防仪器跌落。 14.外露光学件需要清洁时,应用脱脂棉或镜头纸轻轻擦净,切不可用其它物品擦拭。 15.仪器使用完毕后,用绒布或毛刷清除仪器表面灰尘。仪器被雨水淋湿后,切勿通电开机,应用干净软布擦干并在通风处放一段时间。 16.作业前应仔细全面检查仪器,确信仪器各项指标、功能、电源、初始设置和改正参数均符合要求时再进行作业。 11.即使发现仪器功能异常,非专业维修人员不可擅自拆开仪器,以免 发生不必要的损坏。 12. NTS-310R系列全站仪发射光是激光,使用时不得对准眼睛。

电子陀螺仪工作原理【详述】

电子陀螺仪工作原理 内容来源网络,由“深圳机械展(11万㎡,1100多家展商,超10万观众)”收集整理!更多cnc加工中心、车铣磨钻床、线切割、数控刀具工具、工业机器人、非标自动化、数字化无人工厂、精密测量、3D打印、激光切割、钣金冲压折弯、精密零件加工等展示,就在深圳机械展. 电子陀螺仪其实就是机械式陀螺仪的进化,机械式是利用真实的陀螺等机械制作的,而电子是利用芯片来实现陀螺仪的功能,其工作原理类似(电子只不过是模拟出来的而已)。 所有陀螺仪的工作原理是一样的:广泛应用于航海、航空和航天领域,种类很多,其中陀螺罗盘就是代替罗盘的装置。 陀螺仪的原理就是,一个旋转物体的旋转轴所指的方向在不受外力影响时,是不会改变的。人们根据这个道理,用它来保持方向,制造出来的东西就叫陀螺仪。陀螺仪在工作时要给它一个力,使它快速旋转起来,一般能达到每分钟几十万转,可以工作很长时间。然后用多种方法读取轴所指示的方向,并自动将数据信号传给控制系统。 最基础的陀螺仪的结构:基础的陀螺仪是一种机械装置,其主要部分是一个对旋转轴以极高角速度旋转的转子,转子装在一支架内; 历史: 1850年法国的物理学家莱昂·傅科(J.Foucault)为了研究地球自转,首先发现高速转

动中的转子(rotor),由于惯性作用它的旋转轴永远指向一固定方向,他用希腊字gyro(旋转)和skopein(看)两字合为gyro scopei 一字来命名这种仪表。 陀螺仪是一种既古老而又很有生命力的仪器,从第一台真正实用的陀螺仪器问世以来已有大半个世纪,但直到现也,陀螺仪仍在吸引着人们对它进行研究,这是由于它本身具有的特性所决定的。陀螺仪最主要的基本特性是它的稳定性和进动性。人们从儿童玩的地陀螺中早就发现高速旋转的陀螺可以竖直不倒而保持与地面垂直,这就反映了陀螺的稳定性。研究陀螺仪运动特性的理论是绕定点运动刚体动力学的一个分支,它以物体的惯性为基础,研究旋转物体的动力学特性。 内容来源网络,由“深圳机械展(11万㎡,1100多家展商,超10万观众)”收集整理!更多cnc加工中心、车铣磨钻床、线切割、数控刀具工具、工业机器人、非标自动化、数字化无人工厂、精密测量、3D打印、激光切割、钣金冲压折弯、精密零件加工等展示,就在深圳机械展.

浅谈陀螺仪.

课程:学号:姓名: 浅谈陀螺仪 摘要:首先介绍陀螺仪的发展历史、结构及其工作原理等,然后介绍不同种类的陀螺仪, 最后介绍陀螺仪在各种领域的应用。 关键词:陀螺仪;简介;分类;应用 无论是大至航空器械, 还是小至智能手机, 当利用它们来导航定位时, 都少不了一种器件——陀螺仪。陀螺仪是用高速回转体的动量矩敏感壳体相对惯性空间绕正交于自转轴的一个或二个轴的角运动检测装置。利用其他原理制成的角运动检测装置起同样功能的也称陀螺仪。 1. 陀螺仪简介 绕一个支点高速转动的刚体称为陀螺 (top。通常所说的陀螺是特指对称陀螺,它是一个质量均匀分布的、具有轴对称形状的刚体,其几何对称轴就是它的自转轴。与苍蝇退化的后翅(平衡棒原理类似。在一定的初始条件和一定的外在力矩作用下, 陀螺会在不停自转的同时,环绕着另一个固定的转轴不停地旋转,这就是陀螺的旋进 (precession,又称为回转效应 (gyroscopic effect。陀螺旋进是日常生活中常见的现象,许多人小时候都玩过的陀螺就是一例 [1]。人们利用陀螺的力学性质所制成的各种功能的陀螺装置称为陀螺仪 (gyroscope, 它在科学、技术、军事等各个领域有着广泛的应用。比如:回转罗盘、定向指示仪、炮弹的翻转、陀螺的章动等。 陀螺仪的种类很多, 按用途来分, 它可以分为传感陀螺仪和指示陀螺仪。传感陀螺仪用于飞行体运动的自动控制系统中,作为水平、垂直、俯仰、航向和角速度传感器。指示陀螺仪主要用于飞行状态的指示,作为驾驶和领航仪表使用。 结构 基本上陀螺仪是一种机械装置,其主要部分是一个对旋转轴以极高角速度旋转的转子, 转子装在一支架内;在通过转子中心轴 XX1上加一内环架,那么陀螺仪就可

JY901使用说明V2

高精度惯性导航模块JY-901说明书 1产品概述 模块集成高精度的陀螺仪、加速度计、地磁场传感器,采用高性能的微处理器和先进的动力学解算与卡尔曼动态滤波算法,能够快速求解出模块当前的实时运动姿态。 采用先进的数字滤波技术,能有效降低测量噪声,提高测量精度。 模块内部集成了姿态解算器,配合动态卡尔曼滤波算法,能够在动态环境下准确输出模块的当前姿态,姿态测量精度0.01度,稳定性极高,性能甚至优于某些专业的倾角仪! 模块内部自带电压稳定电路,工作电压3v~6v,引脚电平兼容3.3V/5V的嵌入式系统,连接方便。 支持串口和IIC两种数字接口。方便用户选择最佳的连接方式。串口速率 2400bps~921600bps可调,IIC接口支持全速400K速率。 最高200Hz数据输出速率。输入内容可以任意选择,输出速率可调节。 保留4路扩展端口,可以分别配置为模拟输入,数字输入,数字输出,PWM输出等功能。 具备GPS连接能力。可接受符合NMEA-0183标准的串口GPS数据,形成GPS-IMU组合导航单元。 采用邮票孔镀金工艺,可嵌入用户的PCB板中。 4层PCB板工艺,更薄、更小、更可靠。

2 性能参数 1、电压:3V~6V 2、电流:<40mA 3、体积: 15.24mm X 15.24mm X 2mm 4、焊盘间距:上下100mil(2.54mm),左右600mil(15.24mm) 5、测量维度:加速度:3维,角速度:3维,磁场:3维,角度:3维,气压:1维,GPS :3维 6、量程:加速度:±16g ,角速度:±2000°/s ,角度±180°。 7、分辨率:加速度:6.1e-5g ,角速度:7.6e-3°/s 。 8、稳定性:加速度:0.01g ,角速度0.05°/s 。 9、姿态测量稳定度:0.01°。 10、数据输出内容:时间、加速度、角速度、角度、磁场、端口状态、气压(JY-901B )、高度(JY-901B )、经纬度(需连接GPS )、地速(需连接GPS )。 10、数据输出频率0.1Hz~200Hz 。 11、数据接口:串口(TTL 电平,波特率支持2400、4800、9600、19200、38400、57600、115200、230400、460800、921600),I2C (最大支持高速IIC 速率400K ) 12、扩展口功能:模拟输入(0~VCC )、数字输入、数字输出、PWM 输出(周期1us-65535us ,分辨率1us ) 3 引脚说明 4 轴向说明 如上图所示,模块的轴向在上图的右上角标示出来,向右为X 轴,向上位Y 轴,垂直与纸面向外为Z 轴。旋转的方向按右手法则定义,即右手大拇指指向轴向,四指弯曲的方向即为绕该轴旋转的方向。 名称 功能 VCC 模块电源,3.3V 或5V 输入 RX 串行数据输入,TTL 电平 TX 串行数据输出,TTL 电平 GND 地线 SCL I2C 时钟线 SDA I2C 数据线 D0 扩展端口0 D1 扩展端口1 D2 扩展端口2 D3 扩展端口3

陀螺仪传感器分类及原理

【悠牛仪器仪表网】陀螺仪传感器是一个简单易用的基于自由空间移动和手势的定位和控制系统。用来感测和维持方向的装置,它是航空、航海及太空导航系统中判断方位的主要依据,并且在汽车安全,航模,望远镜等领域广泛应用。 主要检测空间某些相位的倾角变化、位置变化,主要用于空间物理领域,特别在航空、航海方面有较多的用途,如:飞机上的陀螺仪,当飞机在做360°翻转的时候,陀螺仪将会保持原始的基准状态不变,从而让驾驶员找到本飞机在空间状态的相位变化,也就是:当时飞机处在什么相位。 陀螺仪传感器原理 一个旋转物体的旋转轴所指的方向在不受外力影响时,是不会改变的。人们根据这个道理,用它来保持方向,制造出来的东西就叫陀螺仪。我们骑自行车其实也是利用了这个原理。轮子转得越快越不容易倒,因为车轴有一股保持水平的力量。陀螺仪在工作时要给它一个力,使它快速旋转起来,一般能达到每分钟几十万转,可以工作很长时间。 然后用多种方法读取轴所指示的方向,并自动将数据信号传给控制系统。陀螺仪传感器应用领域以及发展方向现代陀螺仪是一种能够精确地确定运动物体的方位的仪器,它是现代航空,航海,航天和国防工业中广泛使用的一种惯性导航仪器,它的发展对一个国家的工业,国防和其它高科技的发展具有十分重要的战略意义。 传统的惯性陀螺仪主要是指机械式的陀螺仪,机械式的陀螺仪对工艺结构的要求很高,结构复杂,它的精度受到了很多方面的制约。自从上个世纪七十年代以来,现代陀螺仪的发展已经进入了一个全新的阶段。1976年等提出了现代光纤陀螺仪的基本设想,到八十年代以后,现代光纤陀螺仪就得到了非常迅速的发展,与此同时激光谐振陀螺仪也有了很大的发展。 由于光纤陀螺仪具有结构紧凑,灵敏度高,工作可靠等等优点,所以目前光纤陀螺仪在很多的领域已经完全取代了机械式的传统的陀螺仪,成为现代导航仪器中的关键部件。 和光纤陀螺仪同时发展的除了环式激光陀螺仪外,还有现代集成式的振动陀螺仪,集成式的振动陀螺仪具有更高的集成度,体积更小,也是现代陀螺仪的一个重要的发展方向。 陀螺仪传感器分类 根据框架的数目和支承的形式以及附件的性质决定陀螺仪的类型有: 二自由度陀螺仪(只有一个框架,使转子自转轴具有一个转动自由度)。 根据二自由度陀螺仪中所使用的反作用力矩的性质,可以把这种陀螺仪分成三种类型: 积分陀螺仪(它使用的反作用力矩是阻尼力矩);速率陀螺仪(它使用的反作力矩是弹性力矩); 无约束陀螺(它仅有惯性反作用力矩); 现在,除了机、电框架式陀螺仪以外,还出现了某些新型陀螺仪,如静电式自由转子陀螺仪,挠性陀螺仪,激光陀螺仪等。 三自由度陀螺仪(具有内、外两个框架,使转子自转轴具有两个转动自由度。在没有任何力矩装置时,它就是一个自由陀螺仪)。 直流电流传感器 https://www.wendangku.net/doc/9a7853011.html,/subject/zhiliudianliuchuanganqi.html

浅谈在航拍过程中飞手与云台手的配合

112无人直升机和多旋翼航拍是需要配合完成的 团队工作,随着航拍领域的不断拓展,对航 拍操作流程的系统化和航拍镜头的高质量提出了更严 格的要求,只有具备完善的航拍组织团队,才能够最大 限度节约人力、物力,保障拍摄的专业性和艺术性。 专业化的航拍摄像师 多旋翼航拍特殊的工作环境,需要有专业航拍摄 像师拍摄,才能够保证镜头的高质量。首先在审美方面,地面上看起来高大雄伟的建筑物在空中成了点、线、 面的重新组合,用日常拍摄的方法,难以捕捉画面的美, 这就需要航拍摄像师从专业的角度观察,运用独特的构图方式,来展示空中俯瞰的壮阔景色;其次多旋翼航拍配备的陀螺仪和机械减震设备操作方式复杂,摄像师在空中操作难度很大,只有具备相关的操作经验,长时间的练习,才能在航拍中运用自如,实现稳定流畅的镜头效果;第三,航拍 中,气候和各种突发情况千变万化,与地面拍摄 相比,航拍摄像师必须具备丰富的实践经验和知识储备,才能适应复杂的空中环境,从容解决突发问题,拍摄到优美的镜头影像。 专业化的航拍飞行员 航拍飞行和日常飞行的区别在于:航拍中更 多运用特技飞行、超低空飞行等超常规模式,因 此专业的航拍飞行员,首先必须具备丰富的实际 操作经验,能够在各种条件下,尽可能配合航拍 镜头设计,完成各种高难度的飞行动作,并保障 航拍工作的安全性;其次根据航拍镜头的设计, 很大程度需要飞行员来配合把握镜头的运动轨 迹,航拍飞行员应当对电视及电影摄像的特点和 规律有相当的了解,才能创造性地配合航拍进 行;第三,在飞行过程中,飞行员需要有较好的沟 通能力,与摄像师形成默契,在航拍过程中实时 相互交流,达到飞行员、摄影师两位一体的最佳 状态,才能取得完美的拍摄效果。 责编/王晶 浅谈在航拍过程中飞手与云台手的配合 漫话 航拍 HELICOPTER SHOOT

南方全站仪NTS使用说明书

南方全站仪NTS使 用说明书 南方全站仪NTS-312B 312L、312R说明书,广州汇测 发布时间:-2-26 19:20:59浏览量:17861【字体:大中小】一、特点 1.功能丰富 南方NTS-310B/R系列全站仪具备丰富的测量程序,同时具有数据存储功能、参数设置功能,功能强大,适用于各种专业测量和工程测量。 2.数字键盘操作快速 南方NTS-310B/R系列全站仪功能丰富,操作却相当简单,操作按键

采用了软键和数字键盘结合的方式,按键方便、快速,易学易用。 3.创新的SD卡功能 支持最大2G SD存储卡,能够将SD卡设为当前内存,使存储容量无限扩展,并极大的方便了采集数据的传输。 4.自动化数据采集 野外自动化的数据采集程序,能够自动记录测量数据和坐标数据,可直接与计算机传输数据,实现真正的数字化测量。 5.望远镜镜头更轻巧 新一代全站仪NTS-310B/R在原有的基础上,对外观及内部结构进行了更加科学合理的设计,望远镜镜头更加小巧,测量更为方便,快速。 6.特殊测量程序 在具备常见的基本测量模式(角度测量、距离测量、坐标测量)之外,还具有悬高测量、偏心测量、对边测量、距离放样、坐标放样、道路测量等特殊的测量程序,功能相当的丰富,可满足各种专业测量的要求。 7.中文界面和菜单 NTS-310B/R全站仪采用了汉化的中文界面,对于中国用户更直

观,更便于操作,显示屏更大,设计更加人性化,字体更清晰,美观。使仪器操作更加得心应手。 二、预备事项 2.1预防事项 7.日光下测量应避免将物镜直接瞄准太阳。若在太阳下作业应安装滤光镜。 8.避免在高温和低温下存放仪器,亦应避免温度骤变(使用时气温变化除 夕卜)。 9.仪器不使用时,应将其装入箱内,置于干燥处,注意防震、防尘和防潮。 10.若仪器工作处的温度与存放处的温度差异太大,应先将仪器留在箱内,直至它适应环境温度后再使用仪器。 11.仪器长期不使用时,应将仪器上的电池卸下分开存放。电池应每月充电一 次。 12.仪器运输应将仪器装于箱内进行,运输时应小心避免挤压、碰撞和剧烈震动,长途运输最好在箱子周围使用软垫。 13.仪器安装至三脚架或拆卸时,要一只手先握住仪器,以防仪器跌落。

MEMS陀螺仪工作原理

陀螺仪是用来测量角速率的器件,在加速度功能基础上,可以进一步发展,构建陀螺仪。 陀螺仪的内部原理是这样的:对固定指施加电压,并交替改变电压,让一个质量块做振荡式来回运动,当旋转时,会产生科里奥利加速度,此时就可以对其进行测量;这有点类似于加速度计,解码方法大致相同,都会用到放大器。 角速率由科氏加速度测量结果决定 - 科氏加速度 = 2 × (w ×质量块速度) - w是施加的角速率(w = 2 πf) 通过14 kHz共振结构施加的速度(周期性运动)快速耦合到加速度计框架 - 科氏加速度与谐振器具有相同的频率和相位,因此可以抵消低速外部振动 该机械系统的结构与加速度计相似(微加工多晶硅) 信号调理(电压转换偏移)采用与加速度计类似的技术 施加变化的电压来回移动器件,此时器件只有水平运动没有垂直运动。如果施加旋转,可以看到器件会上下移动,外部指将感知该运动,从而就能拾取到与旋转相关的信号。

上面的动画,只是抽象展示了陀螺仪的工作原理,而真实的陀螺仪内部构造是下面这个样子。

PS:陀螺仪可以三个一起设计,分别对应于所谓滚动、俯仰和偏航。 任何了解航空器的人都知道,俯仰是指航空器的上下方向,偏航是指左右方向,滚动是指向左或向右翻滚。要正确控制任何类型的航空器或导弹,都需要知道这三个参数,这就会用到陀螺仪。它们还常常用于汽车导航,当汽车进入隧道而失去GPS信号时,这些器件会记录您的行踪。 无人机在飞行作业时,获取的无人机影像通常会携带配套的POS数据。从而在处理中可以更加方便的处理影像。而POS数据主要包括GPS数据和

IMU数据,即倾斜摄影测量中的外方位元素:(纬度、经度、高程、航向角(Phi)、俯仰角(Omega)及翻滚角(Kappa))。 GPS数据一般用X、Y、Z表示,代表了飞机在飞行中曝光点时刻的地理位置。 飞控是由主控MCU和惯性测量模块(IMU,Inertial Measurement Unit)组成。IMU提供飞行器在空间姿态的传感器原始数据,一般由陀螺仪传感器/加速度传感器/电子罗盘提供飞行器9DOF数据。 IMU中的传感器用来感知飞行器在空中的姿态和运动状态,这有个专有名词叫做运动感测追踪,英文Motion Tracking。运动感测技术主要有四种基础运动传感器,下面分别说明其进行运动感测追踪的原理。 微机电系统(MEMS) IMU中使用的传感器基本上都是微机电系统(MEMS),是半导体工业中非常重要的一个分支。 微机电系统(MEMS, Micro-Electro-Mechanical System)是一种先进的制造技术平台。微机电系统是微米大小的机械系统,是以半导体制造技术为基础发展起来的。 我们的四轴飞行器上用到的加速度陀螺仪MPU6050,电子罗盘 HMC5883L都是微机电系统,属于传感MEMS分支。传感MEMS技术是指用微电子微机械加工出来的、用敏感元件如电容、压电、压阻、热电耦、谐振、隧道电流等来感受转换电信号的器件和系统。 加速器(G-sensors) 加速器可用来感测线性加速度与倾斜角度,单一或多轴加速器可感应结合线性与重力加速度的幅度与方向。含加速器的产品,可提供有限的运动感测功能。 加速度计的低频特性好,可以测量低速的静态加速度。在我们的飞行器上,就是对重力加速度g(也就是前面说的静态加速度)的测量和分析,其它瞬间加速度可以忽略。记住这一点对姿态解算融合理解非常重要。 当我们把加速度计拿在手上随意转动时,我们看的是重力加速度在三个轴上的分量值。加速度计在自由落体时,其输出为0。为什么会这样呢?这里涉及到加速度计的设计原理:加速度计测量加速度是通过比力来测量,而不是通过加速度。

浅谈测绘新技术运用

浅谈测绘新技术运用 当今时代,我国的各项科学技术迅猛地发展,而测绘工程技术实现产业化的发展已逐步突破传统测绘技术的瓶颈,成为高新技术产业之重要的组成部分。测绘新技术的广泛应用较大地促进我国测绘事业的快速发展,特别很多新测绘技术的已取得重大突破,笔者结合自己的长期的实践,粗浅讨论我国测绘工程技术之发展前景。 标签:测绘工程;新技术;运用 一、测绘新技术概况。 传统测绘工程主要依靠水准仪、经纬仪与平板仪等进行测试工作,随着现代科技不断发展,测绘技术的发展也有了巨大改变,我们告别传统测绘技术迎接新技术的时刻已然来临。卫星定位导航技术、遥感技术、地理信息技术是现代测绘技术的关键核心。现代测绘技术中,卫星导航定位的技术与遥感技术则是航天技术与卫星技术及传感技术、通信技术、计算机科技等综合集成的产物,“地理信息系统”是计算机与数据库技术及空间分析、模拟技术等综合集成的产物。所以,现代的测绘技术是空间与信息技术等高新技术的集大成者,是我国高新技术重要分支。 二、现代测绘技术的新发展。 1.现代测绘仪器的新发展。 现代的测量仪器发展特征主要是“数字化、自动化、网络化、智能化”,传统以“光学”为主的测量仪器正逐渐退出测量技术发展的历史舞台。“全站仪”已成为工程测量最有代表性的仪器,它由“电子经纬仪”与“测距仪”集合而成。“全站仪”具备“电子测角”与“电子测距”功能,能够实现自动记录与存储、自动计算能力,具有较高的工作效率。近期所出现的“自动目标识别全站仪”,能够自动地跟踪反射器数据实时获得三维坐标,通过软件支持与设计值进行对比,以实现良好地控制施工过程。高精度定向陀螺经纬仪也已转向激光陀螺定向的发展趋势。此外,组合“陀螺仪”与“全站仪”使之变成“陀螺全站仪”。GPS全球定位系统已经大面积应用于“首级控制测量”中。专门用于控制测量的“静态GPS接收机”实现了天线与接收机与电源的集成一体化,测量过程实现了高度的自动化。专用于图根的控制测量及数据采集的“实时动态RTK GPS接收机”,能够瞬时获取地面点的坐标值。另外,它还能够实现在30km到50km的范围内按坐标数据施工放样。全站仪与GPS的集成组合,出现了“超站仪”,超站仪改变了“工程测量外业”作业的模式,能实现控制测量与碎部测量及施工放样一体化无缝衔接作业。而“三维激光影像扫描仪”能快速且精确可靠地捕获被识别物体的三维空间数据,将其用在水坝监测及建模、桥梁变形、开挖容量测量、土石滑坡监控、城市数字化测量等方面被广泛使用。虽然高精度高程测量的方法目前仍然采用几何水准测量办法,但水准测量仪器也已经实现了数字化、自动化。“数字水准仪”不仅实现了“自动

南方陀螺仪使用说明书

ASG-15 陀螺全站仪使用说明书

目次1概述 1.1功能和用途 1.2主要性能参数 2仪器组成 3工作原理 4使用方法 4.1三脚架架设 4.2陀螺全站仪主机架设 4.3纬度输入 4.4测量程序 4.5数据处理 4.6仪器撤收 5仪器常数标定 5.1仪器常数标定方法 5.2仪器常数修正方法 6电源使用说明 7典型故障及故障排除方法 8使用注意事项 9维护保养 10仪器故障及解决方法

1概述 1.1功能和用途 陀螺全站仪是全自动陀螺仪,其主要功能是提供北向方位基准,可为火炮、雷达提供初始方位基准,并可应用于大地测量、工程测量和矿山贯通测量等领域。 1.2主要性能参数 仪器主要技术指标见表1。 表1 陀螺全站仪主要技术指标表 2仪器组成 产品配套情况见表2。

表2 陀螺全站仪产品配套表 3工作原理 陀螺全站仪的工作原理是用吊丝悬挂重心下移的陀螺灵敏部敏感地球自转角速度的水平分量,在重力作用下,产生一个北向进动的力矩,使陀螺敏感部主轴(即H向量)围绕子午面往复摆动,通过光电传感器将陀螺灵敏部往复摆动的光信号,转换为电信号,传送给控制系统,控制系统自动跟踪陀螺灵敏部的方位摆动,并对灵敏部进行加矩控制,解算出被测目标的北向方位角。

4使用方法 陀螺全站仪主机的使用包括全站仪的使用,全站仪的详细使用方法参见相关全站仪的使用说明书。 4.1三脚架架设 在测站架设三脚架,架设时应使三脚架的三个脚尖大致与测点标志中心基本等距,并注意脚架的张角和高度,伸缩脚架腿使圆水准器概略居中。 4.2陀螺全站仪主机架设 陀螺全站仪主机架设按以下步骤进行操作。 a.取出陀螺仪主机。三脚架架设完毕后,从包装箱中取出主机(切勿大角度倾斜或倒置),然后将其平稳置于三脚架上。 b.取出全站仪主机。将全站仪对照定位孔放置于陀螺仪主机上并锁紧。 c.陀螺全站仪粗对北。取出包装箱内的磁罗盘,按照其使用说明书规定的方法,确定当地大致北向;将陀螺寻北仪主机粗对北标记置于大致北向(北向可以借助磁罗盘确定,其使用方法见磁罗盘使用说明书);然后顺时针方向旋转锁紧三脚架上的三个对心手轮。 d.取出锂离子电池,放置在三脚架的固定位置上,然后将2芯电源电缆两端分别与主机和电池连接。 e.陀螺全站仪主机调平。打开全站仪电源开关,通过按键进入电子水泡界面,通过主机的三个角螺旋将水泡调平。 g.对心操作。将垂球悬于仪器下面的挂钩上,移动三脚架,使垂

陀螺仪工作原理与应用

陀螺仪工作原理与应用(陀螺经纬仪Jyro Station) 来源:译自日本《测量》06年8月号作者:日本测量仪器工业会更新日期:2006-9-22 阅读次数:3235 为了求得测量的基准方位和日照时间的方位,必须使用磁针罗盘仪进行天体观测。然而,磁针罗盘仪的精度有限,在天体观测中还要受到确保通视、天气、场所和时间等观测条件的影响。为了解决这些问题,可采用利用了力学原理求得真北的陀螺经纬仪。陀螺经纬仪在隧道测量以及由于不能和已知点通视而无法确定方位、方向角的情况下都能发挥很大的作用。 (图1:陀螺工作站) 1、陀螺工作站的原理 高速旋转的物体的旋转轴,对于改变其方向的外力作用有趋向于铅直方向的倾向。而且,旋转物体在横向倾斜时,重力会向增加倾斜的方向作用,而轴则向垂直方向运动,就产生了摇头的

运动(岁差运动)。当陀螺经纬仪的陀螺旋转轴以水平轴旋转时,由于地球的旋转而受到铅直方向旋转力,陀螺的旋转体向水平面内的子午线方向产生岁差运动。当轴平行于子午线而静止 时可加以应用。 2、陀螺工作站的构造 (图4:陀螺经纬仪的构造 0点调整螺丝,吊线,照明灯,陀螺转子、指针、供电用馈线、反 射镜、陀螺马达、刻度线、目镜)。

陀螺经纬仪的陀螺装置由陀螺部分和电源部分组成。此陀螺装置与全站仪结合而成。陀螺本体在装置内用丝线吊起使旋转轴处于水平。当陀螺旋转时,由于地球的自转,旋转轴在水平面内以真北为中心产生缓慢的岁差运动。旋转轴的方向由装置外的目镜可以进行观测,陀螺指针的振动中心方向指向真北。利用陀螺经纬仪的真北测定方法有“追尾测定”和“时间测定”等。 追尾测定[反转法] 利用全站仪的水平微动螺丝对陀螺经纬仪显示岁差运动的刻度盘进行追尾。在震动方向反转的点上(此时运动停止)读取水平角。如此继续测定之,求得其平均震动的中心角。用此方法进行20分钟的观测可以求得+/-0。5分的真北方向。 时间测定[通过法] 用追尾测定观测真北方向后,陀螺经纬仪指向了真北方向,其指针由于岁差运动而左右摆动。用全站仪的水平微动螺丝对指针的摆动进行追尾,当指针通过0点时反复记录水平角,可以提高时间测定的精度,并以+/-20秒的精度求得真北方向。 (图2:摇头运动) (图3:向子午线的岁差运动)

飞行安全的最后防线——浅谈弹射逃生

飞行安全的最后防线——浅谈弹射逃生 战斗机性能日新月异,除战斗机日益提升外,也对飞行员弹射逃生的安全构成威胁,随着战斗机包线的扩展,弹射座椅的包线也应随之扩大以确保飞行员的安全,将火箭推进、推力矢量控制、陀螺仪与大气传感器等新技术纳入弹射座椅设计中,利用计算机控制包括座舱盖抛离、弹射火箭点火与开伞时机等相关弹射程序的进行,确保飞行员安全从失控战斗机中逃生。 2010年加拿大CF-18在航展表演中坠毁,飞行员在不利姿态下弹射,安全逃生 前言 弹射系统是飞行安全的最后一道防线,如何使飞行员从一架已陷入危险状态的飞机安全逃生是一种专门的艺术,现代战斗机的攻击性与破坏力都相当惊人,从军备角度分析战斗机性能一般着重于性能或动力参数。虽然随着科技的进步,特别是包线日益扩展,战斗机能够做出种种匪夷所思的机动,但进一步对弹射逃生造成挑战,这不仅牵涉到精密机械设计,还要考虑如何使飞行员安全脱离已失控飞机而不遭受伤害。

飞行员启动弹射系统时飞机姿态多已无法保持稳定,理想情况是在平稳姿态下以合适的速度和高度弹射,但在多数情况下飞机已经脱离控制,其姿态、速度与高度都不利于弹射跳伞程序的进行,甚至飞行员已经受伤。因此如何在飞行员下达弹射决心后简单、迅速、安全地逃生成为弹射系统设计的主要理念。 弹射逃生的历史可以追溯到最初的跳伞表演,当时空中马戏团的演员从气球跃下,打开降落伞缓缓着地来取悦观众。但发展从战损或失控战斗机上逃生的技术却被认为是懦夫行径,甚至还有人认为逃生设计会使飞行员变得贪生怕死。然而随着一战飞机大量运用于战场上,空勤人员大量折损后,如何增加空勤人员的存活率开始被人所重视。 早期的气球跳伞表演

陀螺全站仪使用说明书

陀螺全站仪使用说明书

目次1概述 功能和用途 主要性能参数 2仪器组成 3工作原理 4使用方法 三脚架架设 陀螺全站仪主机架设 维度输入 测量程序 数据处理 仪器撤收 5仪器常数标定 仪器常数标定方法 仪器常数修正方法 6电源使用说明 7典型故障及故障排除方法 8使用注意事项 9维护保养 10仪器故障及解决方法

1概述 功能和用途 陀螺全站仪是全自动陀螺仪,其主要功能是提供北向方位基准,可为火炮、雷达提供初始方位基准,并可应用于大地测量、工程测量和矿山贯通测量等领域。 主要性能参数 仪器主要技术指标见表1。 表1 陀螺全站仪主要技术指标表 ≤15 (1) 055 -20 C +50C -40 C +50C 2仪器组成 产品配套情况见表2。

表2 陀螺全站仪产品配套表 3工作原理 陀螺全站仪的工作原理是用吊丝悬挂重心下移的陀螺灵敏部敏感地球自转角速度的水平分量,在重力作用下,产生一个北向进动的力矩,使陀螺敏感部主轴(即H向量)围绕子午面往复摆动,通过光电传感器将陀螺灵敏部往复摆动的光信号,转换为电信号,传送给控制系统,控制系统自动跟踪陀螺灵敏部的方位摆动,并对灵敏部进行加矩控制,解算出被测目标的北向方位角。

4使用方法 陀螺全站仪主机的使用包括全站仪的使用,全站仪的详细使用方法参见相关全站仪的使用说明书。 三脚架架设 在测站架设三脚架,架设时应使三脚架的三个脚尖大致与测点标志中心基本等距,并注意脚架的张角和高度,伸缩脚架腿使圆水准器概略居中。 陀螺全站仪主机架设 陀螺全站仪主机架设按以下步骤进行操作。 a.取出陀螺全站仪主机。三脚架架设完毕后,从包装箱中取出主机(切勿大角度倾斜或倒置),然后将其平稳置于三脚架上。 b.陀螺全站仪主机粗对北。取出包装箱内的磁罗盘,按照其使用说明书规定的方法,确定当地大致北向;将陀螺寻北仪主机粗对北标记置于大致北向(北向可以借助磁罗盘确定,其使用方法见磁罗盘使用说明书);然后顺时针方向旋转锁紧三脚架上的三个对心手轮。 c.取出锂离子电池,放置在三脚架的固定位置上,然后将2芯电源电缆两端分别与主机和电池连接。 d.取出通讯电缆,将通讯电缆两端分别接主机和全站仪。 e.陀螺全站仪主机调平。打开全站仪电源开关,通过按键进入电子水泡界面,通过主机的三个角螺旋将水泡调平。 f.对心操作。将垂球悬于仪器下面的挂钩上,移动三脚架,使垂球顶点位于测点标志中心附近(仪器自身所在的点位),利用三脚架

陀螺仪基本原理

陀螺仪介绍2013-1-28

?陀螺仪发展及应用情况 ?MEMS陀螺仪基本原理 ?陀螺仪与加速度传感器、电子罗盘的 对比以及九轴概念 ?测试讨论 2013-1-28

?陀螺仪发展及应用情况 ?MEMS陀螺仪基本原理 ?陀螺仪与加速度传感器、电子罗盘的 对比以及九轴概念 ?测试讨论 2013-1-28

2013-1-28 1850年法国的物理学家莱昂·傅科(J.Foucault )为了研究地球自转,首先发现高速转动中的转子 (rotor ),由于惯性作用它的旋转轴永远指向一固定方向,他用希腊字 gyro (旋转)和skopein (看)两字合为gyro scopei 一字来命名这种仪表。

?最初的陀螺仪主要用于航海,起稳定船体的作用,此时主要是二维陀螺仪; ?后在航空、航天领域开始广泛的应用。用于飞行体运动的自动控制系统中,作为水平、垂直、俯仰、航向和角速度传感器。指示 陀螺仪主要用于飞行状态的指示,作为驾驶和领航仪表使用。在这些应用中都是三维陀螺仪; ?另外,在军事领域,陀螺仪也发挥着重要作用,例如炮弹的旋转、导弹的惯性导航系统,以提高击中-杀伤比 ?最开始用于航海、航空、航天的陀螺仪都是机械式的,到了现代,主要可以分为压电陀螺仪、微机械陀螺仪、光纤陀螺仪、激 光陀螺仪,现代陀螺仪在结构上已不具备“陀螺”,只是在功能上 与传统的机械陀螺仪同样罢了 2013-1-28

2013-1-28 现在广泛使用的MEMS (微机械)陀螺可应用于航空、航天、航海、兵器、汽车、生物医学、环境监控等领域。并且MEMS 陀螺相比传统的陀螺有明显的优势: 1、体积小、重量轻,适合于对安装空间和重量要求苛刻的场合,例如弹载测量等; 2、低成本; 3、更高可靠性,内部无转动部件,全固

浅谈全向轮机器人三位一体定位方法

浅谈全向轮机器人三位一体定位方法 摘要:在亚太机器人国内选拔赛中,各大高校制作的机器人都是全向轮机器人,基于全向轮定位使用最多的是码盘定位。但码盘行走存在误差,适合于短距离的移动。对于长距离的行走,误差比较大。因此,文章提供一种新式的定位方法,即码盘-陀螺仪-激光雷达三位一体定位方法。码盘计算机器人行走距离,陀螺仪给出机器人当前姿态角,激光雷达用于辅助定位。 关键词:全向轮;码盘;陀螺仪;激光雷达 中图分类号:TP242 文献标识码:A 文章编号:1009-2374(2014)16-0078-02 在各大比赛中,轮式机器人车轮一般都选用全向轮。基于全向轮的底盘定位大多是码盘定位。机器人在行走的过程中有平动,也有转动,仅靠码盘来定位存在很大的误差,定位和姿态角计算也比较困难。因此,本文提供一种新式的定位方法。 1 码盘-编码器 码盘其实是一种全向轮,可以实现任意方向上的行走。编码器主要用于测量机器人走过的路程和当前的速度。综合考虑,我们选增量式编码器。增量式编码器每转一圈会输出

固定的脉冲,脉冲数由光栅的分辨率和倍频决定,可以实现多圈无限累加计数。 2 陀螺仪 用高速回转体的动量矩敏感壳体相对惯性空间绕正交 于自转轴的一个或两个轴的角运动检测装置称为陀螺仪。主要用于检测角位移和角速度,具有很高的灵敏度。陀螺仪存在误差,所以使用前需要校正。陀螺仪的线性误差可以通过实验测量测出。即把陀螺仪放在旋转平台上一定角度,观测其返回的值,判断是否有误差。若有误差,则可以多次测量进行线性补偿。 3 激光雷达 激光雷达是以发射激光束探测目标的位置、速度等特征量的雷达系统。工作原理:向目标发射探测信号(激光束),然后将接收到的从目标反射回来的信号(目标回波)与发射信号进行比较,作适当处理后,就可获得目标的有关信息,如目标距离、方位、高度、速度、姿态、甚至形状等参数,目标进行探测、识别。利用激光雷达的这个原理,可以用它发出激光束扫射场地上固定位置的物体,通过返回来的激光束来测量机器人到固定位置物体距离,从而得出机器人在场地上的坐标。 4 定位算法 本定位方案采用双码盘-陀螺仪-激光雷达三位一体定位

陀螺仪的工作原理

陀螺仪的工作原理 陀螺仪的原理 一个旋转物体的旋转轴所指的方向在不受外力影响时,是不会改变的。人们根据这个道理,用它来保持方向,制造出来的东西就叫陀螺仪。我们骑自行车其实也是利用了这个原理。轮子转得越快越不容易倒,因为车轴有一股保持水平的力量。陀螺仪在工作时要给它一个力,使它快速旋转起来,一般能达到每分钟几十万转,可以工作很长时间。然后用多种方法读取轴所指示的方向,并自动将数据信号传给控制系统。 现代陀螺仪 一种能够精确地确定运动物体的方位的仪器,它是现代航空,航海,航天和国防工业中广泛使用的一种惯性导航仪器,它的发展对一个国家的工业,国防和其它高科技的发展具有十分重要的战略意义。传统的惯性陀螺仪主要是指机械式的陀螺仪,机械式的陀螺仪对工艺结构的要求很高,结构复杂,它的精度受到了很多方面的制约。自从上个世纪七十年代以来,现代陀螺仪的发展已经进入了一个全新的阶段。1976年等提出了现代光纤陀螺仪的基本设想,到八十年代以后,现代光纤陀螺仪就得到了非常迅速的发展,与此同时激光谐振陀螺仪也有了很大的发展。由于光纤陀螺仪具有结构紧凑,灵敏度高,工作可靠等等优点,所以目前光纤陀螺仪在很多的领域已经完全取代了机械式的传统的陀螺仪,成为现代导航仪器中的关键部件。和光纤陀螺仪同时发展的除了环式激光陀螺仪外,还有现代集成式的振动陀螺仪,集成式的振动陀螺仪具有更高的集成度,体积更小,也是现代陀螺仪的一个重要的发展方向。 现代光纤陀螺仪 包括干涉式陀螺仪和谐振式陀螺仪两种,它们都是根据塞格尼克的理论发展起来的。塞格尼克理论的要点是这样的:当光束在一个环形的通道中前进时,如果环形通道本身具有一个转动速度,那么光线沿着通道转动的方向前进所需要的时间要比沿着这个通道转动相反的方向前进所需要的时间要多。也就是说当光学环路转动时,在不同的前进方向上,光学环路的光程相对于环路在静止时的光程都会产生变化。利用这种光程的变化,如果使不同方向上前进的光之间产生干涉来测量环路的转动速度,这样就可以制造出干涉式光纤陀螺仪,如果利用这种环路光程的变化来实现在环路中不断循环的光之间的干涉,也就是通过调整光纤环路的光的谐振频率进而测量环路的转动速度,就可以制造出谐振式的光纤陀螺仪。从这个简单的介绍可以看出,干涉式陀螺仪在实现干涉时的光程差小,所以它所要求的光源可以有较大的频谱宽度,而谐振式的陀螺仪在实现干涉时,它的光程差较大,所以它所要求的光源必须有很好的单色性。 陀螺仪工作原理与应用(陀螺经纬仪Jyro Station) 来源:译自日本《测量》06年8月号作者:日本测量仪器工业会更新日期:2006-9-22 阅读次数:6183

一文读懂三轴陀螺仪工作原理和应用

一文读懂三轴陀螺仪工作原理和应用 Iphone 4手机采用了意法半导体的MEMS(微电机系统)陀螺仪芯片,芯片内部包含有一块微型磁性体,可以在手机进行旋转运动时产生的科里奥力作用下向X,Y,Z三个方向发生位移,利用这个原理便可以测出手机的运动方向。而芯片核心中的另外一部分则可以将有关的传感 一、三轴陀螺仪工作原理三轴陀螺仪:同时测定6个方向的位置,移动轨迹,加速。单轴的只能测量一个方向的量,也就是一个系统需要三个陀螺仪,而3轴的一个就能替代三个单轴的。3轴的体积小、重量轻、结构简单、可靠性好,是激光陀螺的发展趋势。 在最新款的iPhone 4手机中内置三轴陀螺仪,它可以与加速器和指南针一起工作,可以实现6轴方向感应,三轴陀螺仪更多的用途会体现在GPS和游戏效果上。一般来说,使用三轴陀螺仪后,导航软件就可以加入精准的速度显示,对于现有的GPS导航来说是个强大的冲击,同时游戏方面的重力感应特性更加强悍和直观,游戏效果将大大提升。这个功能可以让手机在进入隧道丢失GPS信号的时候,凭借陀螺仪感知的加速度方向和大小继续为用户导航。而三轴陀螺仪将会与iPhone原有的距离感应器、光线感应器、方向感应器结合起来让iPhone 4的人机交互功能达到了一个新的高度。 二、三轴陀螺仪的应用在工程上,陀螺仪是一种能够精确地确定运动物体的方位的仪器,它是现代航空,航海,航天和国防工业中广泛使用的一种惯性导航仪器,它的发展对一个国家的工业,国防和其它高科技的发展具有十分重要的战略意义。传统的惯性陀螺仪主要是指机械式的陀螺仪,机械式的陀螺仪对工艺结构的要求很高,结构复杂,它的精度受到了很多方面的制约。自从上个世纪七十年代以来,现代陀螺仪的发展已经进入了一个全新的阶段。1976年美国Utah大学的Vali和Shorthill提出了现代光纤陀螺仪的基本设想,到八十年代以后,现代光纤陀螺仪就得到了非常迅速的发展,与此同时激光谐振陀螺仪也有了很大的发展。由于光纤陀螺仪具有结构紧凑,灵敏度高,工作可靠等等优点,所以目前光纤陀螺仪在很多的领域已经完全取代了机械式的传统的陀螺仪,成为现代导航仪器中的

南方陀螺仪使用说明书

南方陀螺仪使用说明书

ASG-15 陀螺全站仪使用说明书

目次1概述 1.1功能和用途 1.2主要性能参数 2仪器组成 3工作原理 4使用方法 4.1三脚架架设 4.2陀螺全站仪主机架设 4.3纬度输入 4.4测量程序 4.5数据处理 4.6仪器撤收 5仪器常数标定 5.1仪器常数标定方法 5.2仪器常数修正方法 6电源使用说明 7典型故障及故障排除方法 8使用注意事项 9维护保养 10仪器故障及解决方法

1概述 1.1功能和用途 陀螺全站仪是全自动陀螺仪,其主要功能是提供北向方位基准,可为火炮、雷达提供初始方位基准,并可应用于大地测量、工程测量和矿山贯通测量等领域。 1.2主要性能参数 仪器主要技术指标见表1。 表1 陀螺全站仪主要技术指标表 寻北精度≤15" (1σ) 寻北时间≤10min 工作方式全自动 工作电源24V DC 重量小于15Kg 工作维度0~75? 工作温度-20?C ~+50?C 储存温度-40?C ~+50?C 架设初始偏北角度≤10° 2仪器组成 产品配套情况见表2。

表2 陀螺全站仪产品配套表 序号名称数量 1 陀螺仪主机1台 2 全站仪主机1台 3 三脚架1个 4 外接电源电缆1根 5 电池盒1个 6 电池盒充电器1个 7 包装箱1个 8 五一式磁罗盘1个 9 垂球1个 10 干燥剂2袋 11 陀螺全站仪使用说明书1本 3工作原理 陀螺全站仪的工作原理是用吊丝悬挂重心下移的陀螺灵敏部敏感地球自转角速度的水平分量,在重力作用下,产生一个北向进动的力矩,使陀螺敏感部主轴(即H向量)围绕子午面往复摆动,通过光电传感器将陀螺灵敏部往复摆动的光信号,转换为电信号,传送给控制系统,控制系统自动跟踪陀螺灵敏部的方位摆动,并对灵敏部进行加矩控制,解算出被测目标的北向方位角。

相关文档