文档库 最新最全的文档下载
当前位置:文档库 › 影响普通机床工件裹面粗糙度的因素和减小工件表面粗糙度值的方法

影响普通机床工件裹面粗糙度的因素和减小工件表面粗糙度值的方法

影响普通机床工件裹面粗糙度的因素和减小工件表面粗糙度值的方法
影响普通机床工件裹面粗糙度的因素和减小工件表面粗糙度值的方法

影响普通机床工件裹面粗糙度的因素和减小工件表面粗糙度值的方法

普通机床切削用量的选择

合理选择普通机床切削用量的意义

在相同的加工条件下,选用不同的切削用量,会产生不同的切削效果。切削用量选得过低,降低了生产率,增加了生产成本;切削用量选得过高,刀具磨损加快,降低了加工质量,增加了磨刀时间,消耗材料,也会影响生产率和成本。因此,合理选择切削用量,对提高生产率、保证刀具寿命和加工质量都有重要意义。

合理的切削用量应该能保证工件的质量要求(主要是加工精度和表面粗糙度),在工艺系统强度和刚性许可的条件下充分利用机床功率和发挥刀具切削性能时的最大切削用量。

选择普通机床切削用量的一般原则

(1)切削用量与生产率的关系衡量生产率高低的指标之一是基本时间。车外圆时基本时间£。从式(3 -6)可知,在工件毛坯确定的情况下,提高切削用量”。其中任何一个要素,都可以缩短基本时间,提高生产率。但是提高切削用量时必须考虑机床功率、工艺系统的刚性和刀具寿命等能否承受。

(2)粗车时切削用量的选择粗车的切削用量一般是以提高生产率为主,但也应考虑经济性和加工成本。从式(3 -6)可知,提高切削速度、加大迸给量和背吃刀量都能提高生产率,但对刀具寿命影响最小的是ap,其次是,,最大的是”。。这是因为切削速度对切削温度的影响最大,温度升高,刀具磨损加快,刀具寿命明显下降。所以合理选择粗车切削用量时应该首先选择一个尽量大的背吃刀量凸口,其次选择一个较大的进给量,,最后根据已选定的ap和,并在工艺系统刚性、刀具寿命和机床功率许可的条件下选择一个合理的切削速度虬。

(3)半精车、精车时切削用量的选择半精车、精车时切削用量,应以保证加工质量为主,并兼顾生产率和必要的刀具寿命。半精车、精车的背吃刀量是根据加工精度和表面粗糙度要求,由粗车后留下的余量确定的。原则上取一次切削的余量数。

半精车、精车的背吃刀量较小,产生的切削力不大,所以加大进给量对工艺系统的强度和刚性的影响较小,主要受表面粗糙度的限制。

为了抑制积屑瘤的产生,提高工件表面质量,用硬质合金车刀精车时,一般多采用较高的切削速度(>SOm/min);用高速钢车刀精车时,选用较低的切削速度(<5m/nun)。

减小普通机床工件表面粗糙度位的方法

表面粗糙度对零件的耐磨性、耐腐蚀性、疲劳强度和配合性质都有很大的影响。表粗糙度值大的零件耐磨性差,容易磨损,易被腐蚀,容易造成应力集中,降低疲劳强度零件配合后,还会影响配合性质,以至降低机器的工作精度。所以,如何减小工件表面粗糙度值是切削工作的重要任务之一。

影响工件表面粗糙度的因素

(1)残留面积工件上的已加工表面是由刀具主、副切削刃切削后形成的。两条切削刃在已加工表面上的痕迹,如图3 -75所示。这些在已加工表面上未被切去部分的截面积,称为残留面积。残留面积越大,高度越高,则表面粗糙度值越大。进给量,、刀具主偏角h、副偏角

xj和刀尖圆弧半径r,都影、响残留面积的高度,此外,切削刃的表面粗糙度值大也会反映在工件已加工表面上。而且切削时,切削刃还会将残留面积挤歪。因此,实际的残留面积高度比理论值大些。

(2)积屑瘤用中等速度切削塑性金属产生积屑瘤后,因积屑瘤既不规则又不稳定,一方面其不规则部分代替切削刃切削,留下深浅不一的痕迹;另一方面一部分脱离的积屑瘤嵌入已加工表面,使之形成硬点和毛刺,使表面粗糙度值变大。

(3)振动刀具、工件或机床部件产生周期性的振动会使已加工表面出现周期性的振纹,使表面租糙度值明显变大。

2减小工件表面粗糙度值的责法生产中若发现工件表面达不到技术要求,应首先观察和分析表面粗糙度值大的现象和原因,找出影响表面粗糙度的主要因素,才能提出解央方法。

下面介绍几种常见的表面粗糙度值大的现象及解决方法。

(1)残留面积高度高普通机床车削时,如果工件表面残留面积轮廓清楚,这说明其他切削条件正常,若要减小表面粗糙度值,可从以下几方面着手:

1)减少主偏角和副偏角。一般减少副偏角对减小表面粗糙度值效果较明显。减小主偏角使切削抗力,。增大,若工艺系统剐性差,会引起振动。

2)增大刀尖圆弧半径。但如果机床刚性不足,刀尖圆弧半径k过大,会使切削抗力。增大而产生振动,反而使表面粗糙度值变大。

3)减小进给量。

(2)工件表面产生的毛刺工件表面上产生毛刺一般是由积屑瘤引起的。这时可用改变切削速度的方法来抑制积屑瘤的产生。如果用高速钢车刀时应降低切削速度(< 5m/min),并加注切削液;用硬质合金车刀时应提高切削速度(避开最易产生积屑瘤的中速范围15~ 30m/min)。另外,刀具严重磨损和切削刃表面粗糙度值大都会使工件表面产生毛刺。因此,应尽量减小前、后刀面的表面粗糙度值,经常保持刀具锋利。

(3)磨损亮斑工件表面产生亮斑或亮点,切削时又有噪声,说明刀具严重磨损,磨钝的切削刃将工件表面挤压出发亮的痕迹,使表面粗糙度值变大,这时应及时重磨或换刀。

(4)切屑拉毛被切屑拉毛的工件表面一般是无规则的很浅的划痕。这时应选用正值的刃倾角车刀,使切屑流向工件待加工表面,并采用卷屑或断屑措施。

(5)振纹切削时产生的振动会使工件表面出现周期性的横向或纵向振纹,防止和消除振动可从以下几方面着手:

1)机床方面。调整主轴间隙,提高轴承精度;调整滑板塞铁,使间隙小于0 04mm,并使移动平稳轻便。

2)刀具方面。合理选择刀具几何参数,经常保持切削刃光洁和锋利。增加刀具的装央刚性。

3)工件方面。增加工件的装夹刚性。例如装夹时不宜悬伸太长,细长轴应采用中心架或跟刀架支撑。

4)切削用量方面。选择较小的背吃刀量和进给量,改变或降低。

切削加工时表面粗糙度形成的原因及其影响因

切削加工时表面粗糙度形成的原因及其影响因素 简介:1 表面粗糙度产生的原因几何因素由于刀具切削刃的几何形状、几何参数、进给运动及切削刃本身的粗糙度等原因,未能将被加工表面上的材料层完全干净地去除掉(只有当刀具上带有刀具的副偏角kr=0的修光刃、且进给量小于修光刃宽度时,理论上才不产生残留面积),在已加工表面上遗留下残留面积,残留面积的高度构成了表面粗糙度Rz。当f≤2resinkr,残留面积是由圆弧过渡刃构成。此时关键字:刀具夹具切削铣削车削机床测量 1 表面粗糙度产生的原因 几何因素 由于刀具切削刃的几何形状、几何参数、进给运动及切削刃本身的粗糙度等原因,未能将被加工表面上的材料层完全干净地去除掉(只有当刀具上带有刀具的副偏角k'r=0的修光刃、且进给量小于修光刃宽度时,理论上才不产生残留面积),在已加工表面上遗留下残留面积,残留面积的高度构成了表面粗糙度Rz。 当f≤2resink'r,残留面积是由圆弧过渡刃构成。此时 式中:f——进给量,mm/r; re——刀尖圆弧半径。 当2resink'r≤f≤(re/sink'r)[1-cos(kr+k'r],残留面积是由刀尖圆弧过渡刃和直线副切削刃构成。此时 Rz=re[1-sin(k'r+b)]×1,000 sinb=1-(f/re)sink'r 式中kr,k'r——刀具的主偏角、副偏角。 当f>(re/sink'r)[1-cos(kr+k'r)],残留面积是由刀尖圆弧过渡刃和二直线主、副切削刃构成。此时Rz= 1 f-re(tan kr +tan k'r )]×1000 cotkr+k'r 2 2 当re→0时,残留面积是由主、副2条直线切削刃构成。此时Rz= f ×1000 cotkr+k'r 刀具切削刃的粗糙度由于直接复映在加工表面上,所以刀具切削刃的粗糙度值,应低于加工表面要求的粗糙度值。 实际上加工表面的粗糙度总是大于按以上计算的残留面积的高度,只有切削脆性材料或高速切削塑性材料时,实际加工表面的粗糙度才比较接近残留面积的高度,说明影响表面粗糙度的还有其他原因。 积屑瘤

表面粗糙度及其标注方法

表面粗糙度及其标注方法 零件图除了图形、尺寸这外,还必须有制造零件应达到的一些质量要求,一般称为技术要求。技术要求的内容通常有:表面粗糙度、尺寸公差、形状和位置公差、材料及其热处理、表面处理等。下面先介绍表面粗糙度及其注法。 一、表面粗糙度的概念 无论采用哪种加工方法所获得的零件表面,都不是绝对平整和光滑的,放在显微镜(或放大镜)下观察,都不得可以看到微观的峰谷不平痕迹,如图1所示。表面上这种微观不平滑情况,一般是受刀具与零件间的运动、摩擦,机床的振动及零件的塑性变形等各种因素的影响而形成的。表面上所具有的这种较小间距和峰谷所组成的微观几何形状特征,称为表面粗糙度。 图1 表面粗糙度概念 表面粗糙度是评定零件表面质量的一项技术指标,它对零件的配合性质、耐磨性、抗腐象征性、接触刚度、抗疲劳强度、密封性质和外观等都不得有影响。因此,图样上要根据零件的功能要求,对零件的表面粗糙度做出相应的规定。评定表面粗糙度的主要参数是轮廓算术平均偏差Ra,它是指在取样长度L范围内,补测轮廓线上各点至基准线的距离yi(如图2)的算术平均值,它是指在取样长度L范围内,被测轮廓线上各点至基准线的距离yi (如图12)的算术平均值,可用下表示:-----------或近似表示为:----------- 轮廓算术平均偏差可用电动轮廓仪测量,运算过程由仪器自动完成。根据GB/T1031—1995F规定(另外还有GB/T3525——2000以可同时查阅),Ra数值愈小,零件表面愈趋平整光滑;Ra的数值,零件表面愈粗糙。 图2 轮廓算术平均编差

图3 轮廓算术平均编差值 二、表面粗糙度的选用 表面粗糙度参数值的选用,应该既要满足零件表面的功能要求,又要考虑经济合理性。具体选用时,可参照已有的类似零件图,用类比法确定。在满足零件功能要求前提下,应尽量选用较大的表面粗糙度参数值,以降低加工成本。一般地说,零件的工作表面、配合表面、密封表面、运动速度高和单位压力大的摩擦表面等,对表面平整光滑程度要求高,参数值应取小些。非工作表面、非配合表面、尺寸精度低的表面,参数值应参数Ra值与加工方法的关系及其应用实例,可供选用时参考。 图4 表面粗糙度获得方法 三、表面粗糙度的注法(GB—T131——1993) (一)表面粗糙度代(符)号 表面粗糙度代号由表面粗糙度符号和在其周围标注的表面粗糙度数值及有关规定符号所组成。 (1)表面粗糙度符号及其画法,如图5所示。表面粗糙度符号的尺寸大小,按图6规定对应选取。

各种材料摩擦系数表分析

各种材料摩擦系数表 摩擦系数是指两表面间的摩擦力和作用在其一表面上的垂直力之比值。它是和表面的粗糙度有关,而和接触面积的大小无关。依运动的性质,它可分为动摩擦系数和静摩擦系数。现综合具体各种材料摩擦系数表格如下。

注:表中摩擦系数是试验值,只能作近似参考

固体润滑材料 固体润滑材料是利用固体粉末、薄膜或某些整体材料来减少两承载表面间的摩擦磨损作用的材料。在固体润滑过程中,固体润滑材料和周围介质要与摩擦表面发生物理、化学反应生成固体润滑膜,降低摩擦磨损。 中文名 固体润滑材料 采用材料 固体粉末、薄膜等 作用 减少摩擦磨损 使用物件 齿轮、轴承等 目录 1.1基本性能 2.2使用方法 3.3常用材料 基本性能 1)与摩擦表面能牢固地附着,有保护表面功能固体润滑剂应具有良好的 成膜能力,能与摩擦表面形成牢固的化学吸附膜或物理吸附膜,在表面附着,防止相对运动表面之间产生严重的熔焊或金属的相互转移。 2)抗剪强度较低固体润滑剂具有较低的抗剪强度,这样才能使摩擦副的 摩擦系数小,功率损耗低,温度上升小。而且其抗剪强度应在宽温度范围内不发生变化,使其应用领域较广。 3)稳定性好,包括物理热稳定,化学热稳定和时效稳定,不产生腐蚀及 其他有害的作用物理热稳定是指在没有活性物质参与下,温度改变不会引起相变或晶格的各种变化,因此不致于引起抗剪强度的变化,导致固体的摩擦性能改变。 化学热稳定是指在各种活性介质中温度的变化不会引起强烈的化学反应。要求固体润滑剂物理和化学热稳定,是考虑到高温、超低温以及在化学介质中使用时性能不会发生太大变化,而时效稳定是指要求固体润滑剂长期放置不变质,以便长期使用。此外还要求它对轴承和有关部件无腐蚀性、对人畜无毒害,不污染环境等。 4)要求固体润滑剂有较高的承载能力因为固体润滑剂往往应用于严酷 工况与环境条件如低速高负荷下使用,所以要求它具有较高的承载能力,又要容易剪切。 使用方法 1)作成整体零件使用某些工程塑料如聚四氟乙烯、聚缩醛、聚甲醛、聚 碳酸脂、聚酰胺、聚砜、聚酰亚胺、氯化聚醚、聚苯硫醚和聚对苯二甲酸酯等的摩擦系数较低,成形加工性和化学稳定性好,电绝缘性优良,抗冲击能力强,可以制成整体零部件,若采用环璃纤维、金属纤维、石墨纤维、硼纤维等对这些塑料增强,综合性能更好,使用得较多的有齿轮、轴承、导轨、凸轮、滚动轴承保持架等。

机械加工影响表面粗糙度的因素及改善措施

机械加工影响表面粗糙度的因素及改善措施 摘要:零件表面粗糙度是判断一个制造品是否符合工业标准的重要指标,直接决定其能否在机械中发挥正常功能,因此,研究机械加工影响表面粗糙度的因素十分重要,文中结合实际加工经验,探析了哪些因素对零件表面粗糙度有显著影响,并且根据这些影响因素给出合理的解决方案。 关键词:机械加工;表面粗糙度;改善措施 引言 在机械使用过程中,大多因为零件的破损导致其部分功能无法正常使用,工业产品的使用时间,产品质量和产品性能取决于组成零件的加工质量,而零件本身的质量由可靠性,耐磨性,表面粗糙度等因素决定,而其中的重要因素就是表面粗糙度,表面粗糙度即是零件加工表面较小间距和微小峰谷的不平度的表述,波峰和波谷的距离差距会影响机械零件的性能。因此研究表面粗糙度的影响因素十分重要,能够帮助改善零件的性能和机械设备的整体性能。 1.零件表面粗糙度的影响因素分析 1.1切削加工带来的影响 使用刀具给零件加工时,会在表面存留切削的残留面,这种残留面具有微观几何误差,进给量,主副偏角和刀尖圆弧的半径都会对残留面的大小,调整好加工时的进给量,角度就可以减小零件的变形程度和切割面积,另外,加工零件时应该选择符合材质特性的润滑剂和刀具。材料的选择也是至关重要的,因为材料加工发生切屑分离时,会产生塑性变形,这种塑性变形程度是和材料的弹力极限有关系,如果材料不好,残留塑形面积就会扩大,最终导致零件不符合工业标准。刀具的后刀面和已经加工的工件表面的摩擦也会对表面粗糙度产生影响,外力作用增大也会增加表面粗糙度。 1.2磨削加工带来的影响 磨削加工用于机械精细加工,磨粒的硬度很高,具有白锐性,可以用加工各种材料,在加工过程中,磨削转速一般是30到35m/s,转速非常高。但是磨削加工可以获得很高的加工精度和表面粗糙度值。正是因为磨削加工的优势,在具体加工过程中,温度可达1000摄氏度到1500摄氏度,会加深塑性变形,而且磨粒的负前角磨削比较薄,磨削时大多挤压零件表面,面对塑性变形过程,磨粒侧边会产生塑性热流,进而在零件上划出微小粗糙,高温会更近一步加深表面粗糙度。 一般而言,当磨削转速增大时,工件表面磨削度粗糙值减少,因为没有变形的磨粒的厚度会变小,工件转速增加时,磨削表面粗糙度反而会增大,轴方向的

机械加工常见的表面处理种类和作用

机械加工常见表面处理的种类基本原理和用途 表面处理工艺:静电喷涂、烤漆、镀锌、镀铬、镀镍、镀钛、镀金、镀银、铝阳极、浸渗、喷油、喷砂、DLC处理、铁氟龙处理、染黑、冷电镀 静电喷涂:静电喷涂是利用高压静电电场使带负电的涂料微粒沿着电场相反的方向定向运动,并将涂料微粒吸附在工件表面的一种喷涂方法。静电喷涂设备由喷枪、喷杯以及静电喷涂高压电源等组成。 静电喷涂的作用 1、一次涂装可以得到较厚的涂层,例如涂覆100~300μm的涂层,用一般普通的溶剂涂料,约需涂覆4~6次,而用粉末涂料则一次就可以达到该厚度。涂层的耐腐性能很好。 2、粉末涂料不含溶剂,无三废公害,改善了劳动卫生条件。 3、采用粉末静电喷涂等新工艺,效率高,适用于自动流水线涂装,粉末利用率高,可回收使用。 4、除热固性的环氧、聚酯、丙烯酸外,尚有大量的热塑性耐脂可作为粉末涂料,如聚乙烯、聚丙烯、聚苯乙烯、氟化聚醚、尼龙、聚碳酸脂以及各类含氟树脂等。 粉末涂料开始用于防护和电气缘方面,随着科技的发展,目前已广泛使用于汽车工业、电气绝缘、耐腐蚀化学泵、阀门、汽缸、管道、屋外钢制构件、钢制家具、铸件等表面的涂装。我国自六十年代开始粉末涂装的实验研究,并在生产上得到应用。发展到目前已广泛得到使用。 烤漆:在基材上打上底漆、面漆,每上一遍漆,都送入无尘衡温烤房,烘烤。 镀锌:是指在金属、合金或者其它材料的表面镀一层锌以起美观、防锈等作用的表面处理技术。颜色有很多种,一般常见的有蓝白色、银白色等。 镀铬:在金属制品表面镀上一层致密的氧化铬薄膜,可以使得金属制品更加坚固耐用。镀铬有两种的,一种是装饰铬,一种是硬铬。镀硬铬一般采用比较多的是常在高温条件下使用的机械,如:模具等,镀装饰铬顾名思义,主要目的就是为了表面光亮、外形美观、防锈等等。

各种材料摩擦系数表

各种材料摩擦系数表文件管理序列号:[K8UY-K9IO69-O6M243-OL889-F88688]

各种材料摩擦系数表 摩擦系数是指两表面间的和作用在其一表面上的垂直力之比值。它是和表面的粗糙度有关,而和接触面积的大小无关。依运动的性质,它可分为动摩擦系数和静摩擦系数。现综合具体各种材料摩擦系数表格如下。

注:表中摩擦系数是试验值,只能作近似参考 固体润滑材料 固体润滑材料是利用固体粉末、薄膜或某些整体材料来减少两承载表面间的摩擦磨损作用的材料。在固体润滑过程中,固体润滑材料和周围介质要与摩擦表面发生、反应生成固体润滑膜,降低摩擦磨损。 中文名 固体润滑材料 采用材料 固体粉末、薄膜等 作????用 减少摩擦磨损 使用物件 齿轮、轴承等 目录 1.1?

2.2? 3.3? 基本性能 1)与摩擦表面能牢固地附着,有保护表面功能固体润滑剂应具有良 好的成膜能力,能与摩擦表面形成牢固的化学吸附膜或物理吸附膜,在表面附着,防止相对运动表面之间产生严重的熔焊或金属的相互转移。 2)抗剪强度较低固体润滑剂具有较低的抗剪强度,这样才能使摩擦 副的摩擦系数小,功率损耗低,温度上升小。而且其抗剪强度应在宽温度范围内不发生变化,使其应用领域较广。 3)稳定性好,包括物理热稳定,化学热稳定和时效稳定,不产生腐 蚀及其他有害的作用物理热稳定是指在没有活性物质参与下,温度改变不会引起相变或晶格的各种变化,因此不致于引起抗剪强度的变化,导致固体的摩擦性能改变。 化学热稳定是指在各种活性介质中温度的变化不会引起强烈的化学反应。要求固体润滑剂物理和化学热稳定,是考虑到高温、超低温以及在化学介质中使用时性能不会发生太大变化,而时效稳定是指要求固体润滑剂长期放置不变质,以便长期使用。此外还要求它对轴承和有关部件无腐蚀性、对人畜无毒害,不污染环境等。 4)要求固体润滑剂有较高的承载能力因为固体润滑剂往往应用于严 酷工况与环境条件如低速高负荷下使用,所以要求它具有较高的承载能力,又要容易剪切。

影响机械加工表面粗糙度的几个因素及措施

职教类 影响机械加工表面粗糙度的几个因素及措施 摘要:表面粗糙度是零件表面所具有的微小峰谷的不平程度,它是评价零件的一项重要指标。一般说来,它的波距和波高都比较小,是一种微观的几何形状误差。对机械加工表面,表面粗糙度是由切削时的刀痕,刀具和加工表面之间的摩擦,切削时的塑性变形,以及工艺系统中的高频振动等原因所造成的。表面粗糙度是检验零件质量的主要依据,它的选择直接关系到生产成本、产品的质量、使用寿命。 关键词:机械加工表面粗糙度提高措施 随着工业技术的飞速发展,机器的使用要求越来越高,一些重要零件在高压力、高速、高温等高要求条件下工作,表面层的任何缺陷,不仅直接影响零件的工作性能,而且还可能引起应力集中、应力腐蚀等现象,将进一步加速零件的失效,这一切都与加工表面质量有很大关系。因而表面质量问题越来越受到各方面的重视。 一、机械加工表面粗糙度对零件使用性能的影响 表面粗糙度对零件的配合精度,疲劳强度、抗腐蚀性,摩擦磨损等使用性能都有很大的影响。 1、表面质量对零件配合精度的影响 (1)对间隙配合的影响 由于零件表面的凹凸不平,两接触表面总有一些凸峰相接触。表面粗糙度

过大,则零件相对运动过程中,接触表面会很快磨损,从而使间隙增大,引起配合性质改变,影响配合的稳定性。特别是在零件尺寸和公差小的情况下,此影响更为明显。 (2)对过盈配合的影响 粗糙表面在装配压入过程中,会将相接触的峰顶挤平,减少实际有效过盈量,降低了配合的连接强度。 2、表面质量对疲劳强度的影响 零件表面越粗糙,则表面上的凹痕就越深明,产生的应力集中现象就越严重。当零件受到交变载荷的作用时,疲劳强度会降低,零件疲劳损坏的可能性增大。 3、表面质量对零件抗腐蚀性的影响 零件表面越粗糙,则积聚在零件表面的腐蚀气体或液体也越多,且通过表面的微观凹谷向零件表层渗透,形成表面锈蚀。 4、表面质量对零件摩擦磨损的影响 两接触表面作相对运动时,表面越粗糙,摩擦系数越大,摩擦阻力越大,因摩擦消耗的能量也越大,并且还影响零件相对运动的灵活性。此外,表面越粗糙,两配合表面的实际有效接触面积越小,单位面积压力越大,更易磨损。 此外,表面粗糙度还影响零件的接触刚度、密封性能、产品的美观和表面涂层的质量等。因此,提高产品的质量和寿命应选取合理的表面粗糙度。 二、影响表面粗糙度的因素及措施 1、切削加工影响表面粗糙度的因素 在加工表面留下了切削层残留面积,其形状是刀具几何形状的复映。减小

铸件的表面处理方法

表面处理是在基体材料表面上人工形成一层与基体的机械、物理和化学性能不同的表层的工艺方法。表面处理的目的是满足产品的耐蚀性、耐磨性、装饰或其他特种功能要求。对于金属铸件,我们比较常用的表面处理方法是,机械打磨,化学处理,表面热处理,喷涂表面,表面处理就是对工件表面进行清洁、清扫、去毛刺、去油污、去氧化皮等。 工件在加工、运输、存放等过程中,表面往往带有氧化皮、铁锈制模残留的型砂、焊渣、尘土以及油和其他污物。要合深层能牢固地附着在工件表面上,在涂装前就必须对工件表面进行清理,否则,不仅影响涂层与金属的结合力和抗腐蚀性能,而且还会使基体金属在即使有涂层防护下也能继续腐蚀,使涂层剥落,影响工件的机械性能和使用寿命。因此工件涂漆前的表面处理是获得质量优良的防护层,延长产品使用寿命的重要保证和措施。 表面处理应注意的 为提供良好的工件表面,表面处理有以下几点需注意: 1、无油污及水分 2、无锈迹及氧化物 3、无粘附性杂质 4、无酸碱等残留物 5、工件表面有一定的粗糙度 表面处理方法 手工处理: 如刮刀、钢丝刷或砂轮等。用手工可以除去工件表面的锈迹和氧化皮,但手工处理劳动强度大、生产效率低,质量差,清理不彻底。化学处理: 主要是利用酸碱性或碱性溶液与工件表面的氧化物及油污发生化学反应,使其溶解在酸性或碱性的溶液中,以达到去除工件表面锈迹氧化皮及油污,再利用尼龙制成的毛刷辊或304#不锈钢丝(耐酸碱溶液制成的钢丝刷辊清扫干净便可达到目的。 化学处理 适应于对薄板件清理,但缺点是:若时间控制不当,即使加缓蚀剂,也能使钢材产生过蚀现象,对于较复杂的结构件和有孔的零件,经酸性溶液酸洗后,浸入缝隙或孔穴中的余酸难以彻底清除,若处理不当,将成为工件以后腐蚀的隐患,且化学物易挥发,成本高,处理后的化学排放工作难度大,若处理不当,将对环境造成严重的污染。随着人们环保意识的提高,此种处理方法正被机械处理法取代

机械加工表面粗糙度及其影响因素

题目机械加工表面粗糙度及其影响因素 摘要:在现代工业生产中,许多制件的表面被加工而具有特定的技术性能特征,诸如:制件表面的耐磨性、密封性、配合性质、传热性、导电性以及对光线和声波的反射性,液体和气体在壁面的流动性、腐蚀性,薄膜、集成电路元件以及人造器官的表面性能,测量仪器和机床的精度、可靠性、振动和噪声等等功能,而这些技术性能的评价常常依赖于制件表面特征的状况,也就是与表面的几何结构特征有密切联系。因此,控制加工表面质量的核心问题在于它的使用功能,应该根据各类制件自身的特点规定能满足其使用要求的表面特征参量。不难看出,对特定的加工表面,我们总希望用最(或比较)恰当的表面特征参数去评价它,以期达到预期的功能要求;同时我们希望参数本身应该稳定,能够反映表面本质的特征,不受评定基准及仪器分辨率的影响,减少因对随机过程进行测量而带来参数示值误差。 关键词:机械加工表面粗糙度表面质量物理因素 1. 绪论 1.1机械加工表面粗糙度历史 表面粗糙度标准的提出和发展与工业生产技术的发展密切相关,它经历了由定性评定到定量评定两个阶段。表面粗糙度对机器零件表面性能的影响从1918年开始首先受到注意,在飞机和飞机发动机设计中,由于要求用最少材料达到最大的强度,人们开始对加工表面的刀痕和刮痕对疲劳强度的影响加以研究。但由于测量困难,当时没有定量数值上的评定要求,只是根据目测感觉来确定。在20世纪20~30年代,世界上很多工业国家广泛采用三角符号(▽)的组合来表示不同精度的加工表面。 为研究表面粗糙度对零件性能的影响和度量表面微观不平度的需要,从20年代末到30年代,德国、美国和英国等国的一些专家设计制作了轮廓记录仪、轮廓仪,同时也产生出了光切式显微镜和干涉显微镜等用光学方法来测量表面微观不平度的仪器,给从数值上定量评定表面粗糙度创造了条件。从30年代起,已对表面粗糙度定量评定参数进行了研究,如美国的Abbott就提出了用距表面轮廓峰顶的深度和支承长度率曲线来表征表面粗糙度。1936年出版了Schmaltz论述表面粗糙度的专著,对表面粗糙度的评定参数和数值的标准化提出了建议。但粗糙度评定参数及其数值的使用,真正成为一个被广泛接受的标准还是从40年代各国相应的国家标准发布以后开始的。 1.2表面粗糙度标准中的基本参数定义 随着工业的发展和对外开放与技术合作的需要,我国对表面粗糙度的研究和标准化愈来愈被科技和工业界所重视,为迅速改变国内表面粗糙度方面的术语和概念不统一的局面,并达到与国际统一的作用,我国等效采用国际标准化组织(ISO)有关的国际标准制订了GB3505-1983《表面粗糙度术语表面及其参数》。GB3505专门对有关表面粗糙度的表面及其参数等术语作了规定,其中有三个部分共27个参数术语: 与微观不平度高度特性有关的表面粗糙度参数术语。其中定义的常用术语为:轮廓算术平均偏差Ra、轮廓均方根偏差Rq、轮廓最大高度Ry和微观不平度十点高度Rz等11个参数。 与微观不平度间距特性有关的表面粗糙度参数术语。其中有轮廓微观不平度的平均间距Sm、轮廓峰密度D、轮廓均方根波长 q以及轮廓的单峰平均间距S等共9个参数。 与微观不平度形状特性有关的表面粗糙度参数术语。这其中有轮廓偏斜度Sk、轮廓均方根斜率 q和轮廓支承长度率tp等共5 个参数。 2. 精密加工表面性能 2.1精密加工表面性能评价的内容及其迫切性 表面粗糙度参数这一概念开始提出时就是为了研究零件表面和其性能之间的关系,实现对表

磨削加工时 影响工件表面粗糙度的因素

磨削加工时,影响工件表面粗糙度的因素 1、磨削用量对表面粗糙度的影响 1)砂轮的速度越高,单位时间内通过被磨表面的磨粒数就越多,因而工件表面的粗糙度值就越小。同时,砂轮速度越高,就有可能使表面金属塑性变形的传播速度大于切削速度,工件材料来不及变形,致使表层金属的塑性变形减小,磨削表面粗糙度值也将减小。 2)工件速度对表面粗糙度的影响刚好与砂轮速度的影响相反,增大工件速度时,单位时间内通过被磨表面的磨粒数减少,表面粗糙度值将增加。 3)砂轮的纵向进给减小,工件表面的每个部位被砂轮重复磨削的次数增加,被磨表面的粗糙度值将减小。 4)磨削液厂家“联诺化工”发现随着磨削深度增大,表层塑性变形将随之增大,被磨表面粗糙度值也会增大。 2、磨削液对表面粗糙度的影响 磨削液对磨削力,磨削温度及砂轮磨损等方面的影响,最终会影响工件表面粗糙度。 高效磨削液是一种水基化学合成液,它含有阴离子表面活性剂,磨削加工时,砂轮与工件间的磨削产生阳离子。因此,这种磨削液可使砂轮与工件的接触区不产生高热,减少磨粒磨损。同时它含有润滑性能好,吸附性能强的添加剂,在高温高压下与铁反应形成牢固的润滑膜,减小了磨削阻力。高效磨削液还含有非离子表面活性剂,它可降低水的表面张力,提高磨削液的浸润性和清洗性,有利于降低工件表面粗糙度。磨削液厂家“联诺化工”的SCC750B水性环保磨削液属于高效磨削液。SCC750B选用特制的高性能极压添加剂、防锈剂等其它添加剂复配而成,与水混合时可形成稳定的透明荧光绿色溶液。SCC750B水性环保磨削液具有良好的极压润滑性、防锈性、冷却性、沉降性和清洗性。具有极强的抗微生物分解能力,在不同的水硬度条件下,仍可保持其稳定性,是新一代高性能的多用途的无泡磨削液。 SCC750B水性环保磨削液优点: ●含特种极压润滑添加剂,可显著减少砂轮磨损; ●采用高分子水/油溶性防锈剂,对设备及工件(特别是铸铁)有极好的防锈性; ●无泡沫倾向,清洗性能好,比同类产品有更好的金属屑沉降性;透明度高,有利于监察工件的表面加工状态及切削液消耗量,不会刺激皮肤,保护操作者健康;使用寿命长,一年以上更换期,符合环保要求,减少浪费,提高生产效率; ●对操作工人皮肤无伤害、及机台油漆无影响,且有保护作用。 3、砂轮对表面粗糙度的影响 1)砂轮粒度单纯从几何因素考虑,砂轮粒度越细,磨削的表面粗糙度值越小。但磨削液厂家“联诺化工”发现磨粒太细时,砂轮易被磨屑堵塞,若导热情况不好,反而会在加工表面产生烧伤等现象,使表面粗糙度值增大。因此,砂轮粒度常取为46~60号。 2)砂轮硬度砂轮太硬,磨粒不易脱落,磨钝了的磨粒不能及时被新磨粒替代,使表面粗糙度值增大。磨削液厂家“联诺化工”发现砂轮太软,磨粒易脱落,磨削作用减弱,也会使表面粗糙度值增大。常选用中软砂轮。 3)砂轮组织紧密组织中的磨粒比例大,气孔小,在成形磨削和精密磨削时,能获得较小的表面粗糙度值。疏松组织的砂轮不易堵塞,适于磨削软金属、非金

车床工件表面粗糙度的形成原因及解决措施

车床工件表面粗糙度的形成原因及解决措施 表面粗糙度是机械加工中衡量加工质量的重要因素,表面粗糙度对零件和机器有着重要的意义。但由于工件材料、切削加工方式、表面硬化等原因,造成了表面粗糙度值提高。本文详细分析了车床工件表面粗糙度的形成原因,并提出相应的解决措施。 标签:车床工件:表面:粗糙度:原因:解决措施 1.引言 在实际的机械加工中,工件表面会存在许多高低不平的微小峰谷,这是因为切屑分离时塑性变形、工艺系统的振动以及刀具与已加工表面问的摩擦等因素的影响。这些零件被加工表面上的微观几何形状误差称为表面粗糙度。表面粗糙度对零件的耐磨性、耐腐蚀性、疲劳强度和配合性质都有很大影响。本文详细分析了车床工件表面粗糙度的形成原因,并提出相应的解决措施,具有一定的实际意义。 2.影响工件表面粗糙度的原因 2.1工件材料性能。塑性金属材料在加工的过程中,刀具挤压金属材料,使其产生塑性变形,切屑和工件分离是由于刀具外力的挤压,表面出现撕裂现象,这严重影响表面粗糙度。伴随着工件材料韧性的提高,在切屑过程中材料的塑性变形也就越大,加工表面粗糙度也就越差。脆性材料在加工时,所切削形成的铁屑为颗粒状,在切屑崩碎的过程中,加工表面容易产生细小的坑点,提高表面粗糙度值。 2.2刀具切削加工。在普通刀具在切屑过程中,切削表面势必会产生残留面积,残留面积的高度则是影响加工表面粗糙度的主要因素。在整个加工过程中,刀具的进给量、主偏角、副偏角、圆弧半径则是造成切削残留面积的主要因素。砂轮磨削加工过程中,砂轮上硬质颗粒断裂后形成微刃,其分布情况和外形对表面粗糙度有着直接的影响。因为磨削加工表面是大量微刃在金属表面切削出细小的切削痕迹构成的,所形成的切削痕迹越细小、越密集则表面粗糙度就越好,相反切削痕迹粗大、分布疏散,则表面粗糙度越差。 2.3表面冷作硬化。在普通刀具切削或砂轮磨削过程中,表面层金属由于刀具外在切削力和材料本身的塑性,使其晶格产生剪切、滑移、拉长、扭曲、破碎,宏观的表现特点则是材料表面层变硬,屈服点提高,延生率降低。 2.4机械加工振动。机械加工时产生振象是我们极其不愿意看到的有害现象,它会导致切削刀具与被加工材料之间出现相对位置的移动,而导致表面出现振动的痕迹,这些痕迹将严重的影响工件的表面粗糙度和使用性能。

机械加工影响表面粗糙度的工艺因素

机械加工影响表面粗糙度的工艺因素 从影响表面粗糙度的成因可以看出,影响表面粗糙度的因素可以分为三类:第一类,与切削刀具有关;第二类,与工件材质有关;第三类,与加工条件有关。 1 切削加工影响表面粗糙度的因素 1.1 切削用量切削参数选择的不同对表面粗糙度影响较大,应引起足够的重视。 切削速度在一定速度范围内,塑性材料容易产生积屑瘤或鳞刺,所以应避开这个积屑瘤区,如用中、低速容易形成积屑瘤。 切削深度切削深度对表面粗糙度基本上没有影响,但过小的切削深度将在刀尖圆弧下挤压过去,形成附加的塑性变形,增大表面粗糙度值。 进给量减小进给量可减小残留面积高度,但过小的进给量将使切屑厚度太薄。当厚度小于刃口圆弧半径时,会引起薄层切削打滑,产生附加表面粗糙度。 1.2 刀刃在工件表面留下的残留面积被加工表面上残留的面积愈大,获得表面将愈粗糙。 用单刃刀切削时,残留面积只与进给量f 、刀尖圆弧半径ro及刀具的主偏角kr、副偏角k1r 有关。 减小进给量f,减小主偏角、副偏角,增大刀尖圆角半径,都能减小残留面积的高度H ,也就降低了零件的表面粗糙度值。 进给量f对表面粗糙度影响较大,但f值较低时,虽然有利于表面粗糙度值的降低,但影响生产率。增大刀尖圆角半径ro,有利于表面粗糙度值的降低。但刀尖圆角半径的增加,会引起吃刀抗力的增加,而吃刀抗力过大会造成工艺系统的振动。减小主、副偏角,均有利于表面粗糙度值的降低。但在精加工时, 主、副偏角对表面粗糙度值的影响较小。 1.3 工件材料的性质塑性材料与脆性材料对表面粗糙度都有较大的影响。 积屑瘤的影响(塑性材料) 在一定的切削速度范围内加工塑性材料时,由于前刀面的挤压和摩擦作用,使切屑的底层金属流动缓慢而形成滞留层,此时切屑上的一些小颗粒就会黏附在前刀面的的刀尖处,形成硬度很高的楔状物,称为积屑瘤。积屑瘤的硬度可达工件硬度的2~3.5倍,它可代替切削刃进行切削,由于积屑瘤的存在,使刀具上的几何角度发生了变化,切削厚度也随之增大,因此将会在已加工表面上切出沟槽。积屑瘤生成以后,当切屑与积屑瘤的摩擦力大于积屑瘤与前刀面的冷焊强度或受到振动、冲击时,积屑瘤会脱落,又会逐渐形成新的积屑瘤。由此可见,积屑瘤的生成、长大和脱落,使切削发生波动,并严重影响工件的表面质量。脱落的积屑瘤碎片,还会在工件的已加工表面上形成硬点,因此,积屑瘤是增大表面粗糙度值的不可忽视的因素。

材料表面处理方式

表面处理 科技名词定义 中文名称:表面处理 英文名称:surface treatment 定义:改进构件表面性能的处理工艺。 所属学科:电力(一级学科);热工自动化、电厂化学与金属(二级学科) 本内容由全国科学技术名词审定委员会审定公布

表面处理方法 表面处理技术分类 其他分类法 展开 编辑本段表面处理 工件在加工、运输、存放等过程中,表面往往带有氧化皮、铁锈制模残留的型砂、焊渣、尘土以及油和其他污物。要合深层能牢固地附着在工件表面上,在涂装前就必须对工件表面进行清理,否则,不仅影响涂层与金属的结合力和抗腐蚀性能,而且还会使基体金属在即使有涂层防护下也能继续腐蚀,使涂层剥落,影响工件的机械性能和使用寿命。因此工件涂漆前的表面处理是获得质量优良的防护层,延长产品使用寿命的重要保证和措施。 表面处理在我国属于新兴学科,发展很不成熟,技术空白点很多,相关资料匮乏,受重视程度又不够,这就造成了我国表面处理技术层次低而且发展缓慢,相关人才匮乏。 表面处理应注意的 为提供良好的工件表面,表面处理有以下几点需注意: 1、无油污及水分 2、无锈迹及氧化物 3、无粘附性杂质 4、无酸碱等残留物 5、工件表面有一定的粗糙度 编辑本段表面处理方法 手工处理: 如刮刀、钢丝刷或砂轮等。用手工可以除去工件表面的锈迹和氧化皮,但手工处理劳动强度大、生产效率低,质量差,清理不彻底。 化学处理: 主要是利用酸碱性或碱性溶液与工件表面的氧化物及油污发生化学反应,使其溶解在酸性或碱性的溶液中,以达到去除工件表面锈迹氧化皮及油污,再利用尼龙制成的毛刷辊或304#不锈钢丝(耐酸碱溶液制成的钢丝刷辊清扫干净便可达到目的。化学处理适应于对薄板件清理,但缺点是:若时间控制不当,即使加缓蚀剂,也能使钢材产生过蚀现象,对于较复杂的结构件和有孔的零件,经酸性溶液酸洗后,浸入缝隙或孔穴中的余酸难以彻底清除,若处理不当,将成为工件以后腐蚀的隐患,且化学物易挥发,成本高,处理后的化学排放工作难度大,若处理不当,将对环境造成严重的污染。随着人们环保意识的提高,此种处理方法正被机械处理法取代。

降低零件表面粗糙度方法研究与应用

收稿日期:2011-08-27 作者简介:胡新阳(1962-),男,河南邓州人,实验师,研究方向为机械加工制造。 0 引言 零件表面粗糙度是零件表面质量的重要技术指标,它是指零件表面的微观几何形状误差。它不仅影响美观,而且对零件接触面的摩擦,运动面的磨损,贴合面的密封,配合面的可靠,旋转件的疲劳强度以及抗腐蚀性能等都有影响。设计每一个零件时,都是安照使用要求,规定其表面粗糙度等级的,所以制造零件时也必须予以保证。但是,在零件加工过程中,往往由于机床、刀具、夹具、工艺、润滑、冷却及工件的结构、材料等因素的影响,使零件的表面粗糙度产生这样或那样的缺陷,其中常见的有:刀痕粗糙、鳞刺现象、划伤拉毛、刀花不匀和高频振纹等。这些缺陷的存在往往使零件的表面粗糙度达不到规定的要求,严重时甚至还会导致零件报废,因此必须采取相应措施加以解决。下面就常见的表面粗糙度缺陷产生的原因及消除方法做一研究与探讨。 1 零件表面刀痕造成粗糙度值升高 刀痕较粗的表面粗糙度缺陷常在加大了切削进给量的时候产生。这是由于切削运动与刀具几何形状的关系,使得有一小部分金属未被切除下来而残留在以加工表面上,形成了所谓的“残留面积”。通俗的名称叫刀痕,其高度越大,零件表面的微观几何形状误差就越大,已加工表面的粗糙度就越差。现在,我们以车削外圆为例,分析一下解决刀痕粗糙的方法:图1为进给量等于f ,刀尖圆弧半径r=0时的残留面积及其高度示意图 (kr 为主偏角、kr ’为副偏角)。 设此时残留面积的高度为R1,如果我们把进给量f 减小一半,其他参数不变。图1就变成图2的模式,显然残留面积的高度R2也相应的减小一半,那么已加工表面的粗糙度值也就随之相应降低了。 或者,我们将刀尖圆弧半径由零变为rc ,图1就变成图3,若进给量较小,使残留面积纯粹由两端圆弧构成时(即不含有副切削刃的直线部分),其高度R3也进一步减小了。 由上述分析可知,解决这种表面粗糙度缺陷的方法是: 1)在切削时,尽可能选择较小的进给量(但也要注意,若进给量太小,刀具又钝,切削不能顺利进行,反而会影响表面粗糙度)。 2)在刃磨刀具时,适当增加刀尖圆弧半径。但刀尖圆弧半径也不宜过大,否则将导致机床及工艺系统产生振动,而引发工件表面产生裂纹,反倒会是表面粗糙度增大;若切削刃圆弧半径大于背吃刀量,刀具又钝,切削刃会在工件表面打滑而影响工件表面的粗糙度。 3)适当减小主、副偏角。 2 切削用量选择误差造成零件表面产生鳞刺现象 在较低的切削速度下,用高速钢、硬质合金钢刀具切削塑性金属材料时,在已加工表面上常会出现一种鳞片状的裂口或毛刺,称这种现象为 降低零件表面粗糙度方法研究与应用 Reduce part surface roughness method research and application 胡新阳 HU Xin-yang (沈阳职业技术学院,沈阳 110045) 摘 要: 机械设备在很多情况下都是在高速运转,因而对机械加工零件表面粗糙度有较高的要求,零 件表面粗糙度值的高低直接影响到机械设备的使用寿命及性能。所以,如何降低零件表面粗糙度是机械车削过程中非常重要的加工技术之一。本文从零件表面粗糙度缺陷的产生机理及如何消除表面粗糙度缺陷进行了较透彻的研究,从中找出降低零件表面粗糙度方法,提高零件表面精度及使用寿命。 这一研究对提高零件的车削加工质量具有一定的指导作用。 关键词: 机床;粗糙度;产生机理;消除方法 中图分类号:TH115 文献标识码:A 文章编号:1009-0134(2012)1(下)-0033-03Doi: 10.3969/j.issn.1009-0134.2012.1(下).11

表面粗糙度及其影响因素

表面粗糙度及其影响因素 一、切削加工中影响表面粗糙度的因素 影响表面粗糙度的因素主要有几何因素和物理因素。 1.几何因素: 式中 f ——进给量。 Kr ——主偏角。 Kr’——副偏角 考虑刀尖圆弧角: 式中 f ——进给量。 r ——刀尖圆弧半径。 如图11-8、9所示,用刀尖圆弧半径r=0的车刀纵车外圆时,每完成一单位进给量f后,留在已加工表面上的残留面积,它的高度Rmax即为理论粗糙度的轮廓最大高度Ry。 图11- 8 图11- 9 图11- 10 加工后表面实际轮廓和理论轮廓 切削加工后表面粗糙度的实际轮廓形状,一般都与纯几何因素所形成的理论轮廓有较大的差别,如图11-10。这是由于切削加工中有塑性变形发生的缘故。 生产中,若使用的机床精度高和材料的切削加工性好,选用合理的刀具几何形状、切削用量和在刀具刃磨质量高、工艺系统刚性足够情况下,加工后表面实际粗糙度接近理论粗糙度,这样减小表面粗糙度数值、提高加工表面质量的措施,主要是减小残留面积的高度Ry。 2.物理因素 多数情况下是在已加工表面的残留面积上叠加着一些不规则的金属生成物、粘附物或刻痕。形成它们的原因有积屑瘤、鳞刺、振动、摩擦、切削刃不平整、切屑划伤等。 3.积屑瘤的影响 积屑瘤的生成、长大和脱落将严重影响工件表面粗糙度。 同时,由于部分积屑瘤碎屑嵌在工件表面上,在工件表面上形成硬质点。见图11-11。

图11- 11 图11- 12 鳞刺的影响鳞刺的出现,使已加工表面更为粗糙不平。 鳞刺的形成分为: 抹拭阶段:前一鳞刺已经形成,新鳞刺还未出现;而切屑沿着前刀面流出,切屑以刚切离的新鲜表面抹拭刀——屑摩擦面,将摩擦面上有润滑作用的吸附膜逐渐拭净,以致摩擦系数逐渐增大,并使刀具和切屑实际接触面积增大,为这两相摩擦材料的冷焊创造条件,如图11-12(a)。 导裂阶段:由于在第一阶段里,切屑将前刀面上的摩擦面抹拭干净,而前刀面与切屑之间又有巨大的压力作用着,于是切屑与刀具就发生冷焊现象,切屑便停留在前刀面上,暂时不再沿前刀面流出。这时切屑代替前刀面进行挤压,刀具只起支撑切削的作用。其特点是在切削刃前下方,切屑与加工表面之间出现一裂口。如图11-12(b)。 层积阶段:由于切削运动的连续性,切屑一旦停留在前刀面上,便代替刀具继续挤压切削层,使切削层中受到挤压的金属转变为切屑。而这部分新成为切屑的金属,只好逐层的积聚在起挤压作用的那部分切屑的下方。;这些金属一旦积聚并转化为切屑,便立即参与挤压切削层的工作;同时,随着层积过程的发展,切削厚度将逐渐增大,切削力也随之增大,如图11-12(c)。 刮成阶段:由于切削厚度逐渐增大,切削抗力也随之增大,推动切屑沿前刀面流出的分力Fy也增大。当层积金属达到一定厚度后,Fy力便也随之增大到能够推动切屑重新流出的程度,于是切屑又重新开始沿前刀面流出,同时对切削刃便刮出鳞刺的顶部,如图11-12(d)。至此,一个鳞刺的形成过程便告结束。紧接着,又开始另一个新鳞刺的形成过程。如此周而复始,在工件加工表面上便不断地生成一系列鳞刺。 振动的影响切削加工时,在工件与刀具之间经常发生振动,使工件表面粗糙度值增大。 从物理因素看,要降低表面粗糙度主要应采取措施减少加工时的塑性变形,避免产生积屑瘤和鳞刺。对此起主要作用的影响因素有切削速度、被加工材料的性质及刀具的几何形状、材料和刃磨质量。 ①切削速度的影响: 图11- 13

摩擦系数及其计算

达芬奇1508年提出假设,摩擦系数一般为0.25 阿芒汤1699年,摩擦系数0.3 比尤里芬格1730年,摩擦系数0.3 库伦,十八世纪,确定压力对摩擦系数的影响,并求出几种材料配合的摩擦系数的不同数值。 俄国,科捷利尼科夫、彼得罗夫,十九世纪中叶,摩擦偶件的摩擦系数并非不变摩擦系数影响因素: 1材料本性及摩擦表面是否有膜(润滑油、氧化物、污垢) 2静止接触的延续时间 3施加载荷的速度 4摩擦组合件的刚度及弹性 5滑动速度 6摩擦组合件的温度状态 7压力 8物体的接触特性,表面尺寸,重叠系数 9表面质量及粗糙度 A Static Friction Model for Elastic—Plastic Contacting Rough Surfaces. 形状误差对过盈联接摩擦力的影响分析及其修正 摩擦分类: 1动摩擦力,对应于很大的、不可逆的相对位移,相对位移大小与外施力无关。2非全静摩擦力,对应于很小的、局部可逆的相对位移,位移大小与外施力成正比,称为初位移,微米级。 3全静摩擦力,对应于初位移的极限值,初位移转变成相对位移。 根据运动学特征划分 滑动摩擦、旋转摩擦(变相的滑动摩擦)、滚动摩擦 根据表面状态,是否润滑的特征 1纯净摩擦,无吸附膜、氧化物等 2干摩擦,表面间无润滑油、污垢等 3边界摩擦,表面被一层润滑油分开,润滑油极薄(<0.1微米) 4液体摩擦 5半干摩擦 6半液体摩擦 静摩擦系数,克服两物体的接触耦合、使之摆脱静止状态所耗费的最大切向力对应接触物体所受压力载荷的比率。 滑动摩擦系数,克服两物体相对移动的阻力(超出初位移的范围以外)所耗费的切向力对应接触物体所受压力载荷的比率。 滚动阻力系数,··· 库伦方程,采用的滚动摩擦系数 T——滚动摩擦力,r——圆柱体的半径,P——接触物体所受压力 接触面积、粗糙度、载荷的影响 由于固体表面的粗糙度及波纹度,使得两个固体表面总是在个别的点上发生接触。

切削因素对粗糙度的影响.

“工程材料与成形加工基础实验远程教学系统”用户手册 切削因素对粗糙度的影响 实验目的:1.了解加工表面粗糙度的影响因素. 2.了解降低表面粗糙度的工艺措施. 实验原理: 一、影响表面粗糙度的因素 1、切削时刀刃在已加工表面上遗留下来的刀痕------主要因素; 2、切削时塑性材料前刀面的挤压和摩擦作用,形成积屑瘤或鳞刺; 3、刀具后刀面与已加工表面的摩擦及挤压导致弹性恢复、硬化甚至龟裂; 4、切削脆性材料时切削崩碎形成的麻点痕迹; 5、加工系统的高频震动形成的振纹。 、降低加工表面粗糙度的工艺措施 1、合适的切削条件 (1)切削速度v: 塑性材料,用低速或高速,避免产生切削瘤,降低表面粗糙度. (2)进给量f: 减小进给量,可有效地减小残留面积高度,降低表面粗糙度. (3)背吃刀量: 背吃刀量过小,则刀尖圆弧过度刃口切不下切削层,加工表面引起附加塑性变形,影响表面粗糙度. (4)切削液: 冷却润滑作用,减小摩擦,降低温度,从而减小切削过程的塑性变形,抑制鳞刺和积屑瘤的生成,降低表面粗糙度. 2、合理的刀具几何参数和刀具材料 (1)前角γ o : 增大γ o, 可抑制积屑瘤产生,降低表面粗糙度. (2)副偏角k 'r :减小k 'r,可减小残留面积,高度h.降低表面粗糙度. (3刀尖圆弧过渡半径r Σ : 增大r Σ ,可减小残留高度, 降低表面粗糙度. (4)刀具材料: 刀具材料与工件材料分子亲和力小,前刀面上形成积屑瘤的机率小,则表面粗糙度下降.

3、改善工件材料的力学性能和金相组织 材料硬度越高→切削抗力越大→切削温度越高→刀具磨损越快→表面质量越不稳定. 材料越软(塑性越好) →切削变形越大→切削温度越高→刀具磨损越快→表面质量越低. 处理方法: 低碳钢(塑性大): 正火(提高硬度). 高碳钢(硬度高):球化退火(提高塑性). 中碳钢可调质处理(提高力学性能). 实验设备:

表面粗糙度标注及对应的加工方法

一.表面粗糙度的符号 注意:极限值表示参数的实测值中允许少于总数的16%的实测值超过规定值,高度参数常用Ra,在图中标注时常省略。无max min则表示是上极限或下极限,如果有则表示最大值和最小值,单位为微米 基本符号,表示可使用任何方法获得 基本符号加一短划,表示表面用去除材料的方法获得 表示用不去除材料方法获得(铸锻冲压等) 表示所有表面具有相同的表面粗糙度要求 二.表面粗糙度的代号 1. d' =h/10;H=1.4h;h为字体高度 a1、a2--粗糙度高度参数的允许值(mm); b加工方法、镀涂或其他表面处理; c取样长度(mm); d加工纹理方向符号; e加工余量(mm); f粗糙度间距参数值(mm)或轮廊支承长度率。 2.零件的加工表面的粗糙度要求由指定的加工方法获得,用文字标注在符号上边的横线,加工方法也可在图样的技术要求中说明 3.加工纹理方向: = 纹理平行于标注符号的视图的投影面 ⊥纹理垂直于标注符号的视图的投影面 x 纹理呈两相交的方向 M 纹理呈多方向 c 纹理呈近似同心圆 R 纹理呈近似的放射状 p 纹理无方向或凸起的细粒状 4.加工余量:注在符号的左侧,标注时数值要加上括号,单位为毫米 5.参数S Sm Tp l的标注,应标注在符号长边的横线下面,并且必须在参数值前注写参数的符号 三。表面粗糙度符号、代号在图样上的标注 一般标注在可见轮廓线、尺寸界线、引出线或它们的延长线上,符号的尖端必须从材料外指向表面,代号中数字及符号的注写方向必须与尺寸数字方向一致

标准规定在同一图样上,每一表面一般只标注一次。当零件的大部分表面具有相同的表面粗糙度要求时,对其中使用最多的一种代号可以统一注在图样的右上角,并加注“其余”两字 当零件所有表面具有相同的表面粗糙度要求时,其代号可在图样的右上角统一标注 序号 标注规定及说明 图 例 1 当零件的大部分表面具有相同的表由粗糙度要求时,对其中使用最多的一种代(符)号可统一注在图样的右上角,并加注‘其余”两字,且应是图样上其它代(符)号高度的1.4倍 2 代号中数字注写方向应与尺寸数字方向一致;倾斜表面的代号及数字标控方向应符合图右规定 3 带有横线的表面粗糙度应按右图方式标注

相关文档
相关文档 最新文档