文档库 最新最全的文档下载
当前位置:文档库 › 水冷散热器结构设计模块.pdf

水冷散热器结构设计模块.pdf

水冷散热器结构设计模块.pdf
水冷散热器结构设计模块.pdf

大功率LED灯散热器结构设计

龙源期刊网 https://www.wendangku.net/doc/971548645.html, 大功率LED灯散热器结构设计 作者:潘裕向文江 来源:《山东工业技术》2018年第05期 摘要:针对大功率LED灯工作时散热性差、灯具光功率减小、灯芯片易老化等问题,对大功率LED灯的散热器结构进行研究。详细介绍了LED灯散热技术、灯具的热分析及散热片的优化设计,并就LED灯散热问题在ANSYS软件中搭建模型进行散热器结构参数设计与热分析。仿真结果表明,通过热分析实现对LED灯散热结构参数设计,理论上在大功率LED灯中安装优化设计后的散热片可以很好的解决灯具工作时的散热问题。 关键词:大功率LED灯;热分析;ANSYS软件 DOI:10.16640/https://www.wendangku.net/doc/971548645.html,ki.37-1222/t.2018.05.005 0 引言 发光二极管(Light Emitting Diode,LED)属于21世纪具有好的发展前景的新型冷光源[1]。LED灯的发光原理理就是靠是靠发光二极管内部的PN结里的电子在能带间跃迁进而产生光能,但芯片会出现发热的现象,尤其是大功率型LED。若将多个LED串并联组装成一个模组,其散发出的热量会大大增加。目前,LED整体工作效能不是很好,只有15%-20%的电能量成功转化为光能,而剩余的80%-85%的电能量则通过其它形式转化为热能,致使芯片功率 密度变得很大。在行业内LED器件的散热性整体而言较差,首先,因为发白光的LED灯其发光的光谱中并不包含红外部分,即其工作时产生的热量不能依靠红外辐射进行释放;其次,LED灯具本身的扩散热阻与解除热阻很大,工作时产生热量较多。在LED灯工作时,若散热性不好将会产生十分严重的后果[2],如缩减LED灯的光能量输出,减少器件的使用寿命,会造成LED发射光的主波长产生偏移等。 近年来,如何使LED灯工作时产生的热能以最快的方式散发出去这一关键问题被国内外学术界关注,进而相对应地进行各种研究。由于LED灯具多采用经验化设计进行散热,散热装置过于传统且专业性不高,导致当前LED灯具的散热问题仍未得到解决。因而,通过对大功率LED灯具的热分析与热设计后进行散热器的结构设计具有及其重要的现实意义。 论文详细介绍了LED灯的散热技术并建立相应散热器模型,然后选取了一款大功率的LED灯作为论文的研究模型,利用ANSYS有限元分析软件[3]对该款LED灯模型进行热分析,得到灯具各点的温度分布与芯片工作时产生的最高温度,在上述测量数据的基础上对该灯的散热结构进行优化设计,最终得到十分满意的散热效果。 1 LED灯散热技术及模型建立 1.1 LED灯散热技术

模块化雷达天线座结构设计

DOI:10.3969/j.issn.2095-509X.2015.08.013 模块化雷达天线座结构设计 孟 鹏 (中国电子科技集团公司第二十研究所,陕西西安 710068) 摘要:基于模块化、系列化的方法,研究确定方位-俯仰型雷达天线座的模块化结构形式。针对不同功能需求与工作环境,选配相应的功能模块。在满足基本功能要求的前提下,实现天线座结构模块化、系列化。 关键词:天线座;模块化设计;方位;俯仰 中图分类号:TH122 文献标志码:A 文章编号:2095-509X(2015)08-0062-03 天线座是支撑天线探测目标的装置,它通过天 线控制系统,使天线能够按照预定的规律运动,准 确指向目标,并精确测出目标的方位[1-2]。 模块化设计是在一定范围内的不同功能或相 同功能、不同性能和不同规格的产品进行功能分析 的基础上,划分并设计出一系列功能模块,通过模 块的选择和组合可以构成不同的产品,以满足市场 不同需求的设计方法[3-5]。 1 天线座模块化设计方案 天线座模块化设计时需综合考虑结构隐身性、 通用性和整体造型,在满足雷达功能要求的前提 下,对方位传动模块与俯仰传动模块进行设计改 进。 图1所示为经典的方位-俯仰型天线座三维 模型,图2、图3所示分别为俯仰传动模块与方位 传动模块三维模型。图1 方位 -俯仰型天线座图 2 方位传动 图3 俯仰传动 方位传动模块及俯仰传动模块设计涉及2个方面的内容:1)功能技术设计。模块设计在适应环境条件的前提下,要保证满足天线的转动范围、天线转动的角速度和角加速度、伺服系统的精度、天线座的刚度和强度、系统要求的外形尺寸和质量等要求,在本着经济性、通用性原则的基础上,最终实现设 备使用方便、维修容易、可靠性高、寿命长等目的。 收稿日期:2015-05-15 作者简介:孟鹏(1986—),男,陕西蒲城人,中国电子科技集团公司第二十研究所助理工程师,硕士,主要研究方向为电子结构设计。?26?2015年8月 机械设计与制造工程 Aug.2015第44卷第8期 MachineDesignandManufacturingEngineering Vol.44No.8

散热器设计的基本计算(最新整理)

散热器设计的基本计算 一、概念 1、热路:由热源出发,向外传播热量的路径。在每个路径上,必定经过一些不同的介质, 热路中任何两点之间的温度差,都等于器件的功率乘以这两点之间的热阻,就像电路中的欧姆定律,与电路等效关系如下。 热路电路 热耗P (W)电流V ab I (A) 温差△T=T1-T2 (℃)电压V ab=V a-V b(V) 热阻R th=△T/P (℃/ W)电阻R=V ab/I (Ω) 热阻串联R th=R th1+R th2+…电阻串联R=R1+R2+… 热阻并联1/R th=1/R th1+1/R th2+…电阻并联1/R=1/R1+1/R2+… 2、热阻:在热路中,各种介质及接触状态,对热量的传递表现出的不同阻碍作用—— 在热路中产生温度差,形成对热路中两点间指标性的评价。 符号——Rth 单位——℃/W。 ?稳态热传递的热阻计算: R th= (T1-T2)/P T1——热源温度(无其他热源)(℃) T2——导热系统端点温度(℃) ?热路中材料热阻的计算: R th=L/(K·S) L——材料厚度(m) S——传热接触面积(m2) 3、导热率:是指当温度垂直向下梯度为1℃/m时,单位时间内通过单位水平截面积所 传递的热量。 符号——K or λ单位——W/m-K,

铝合金10702261900平面 铝合金1050209硅胶垫佳日丰泰 5.0铝合金6063201矽胶套帽佳日丰泰 1.0铝合金6061160相变基膜佳日丰泰 1.4铝合金7075 130矽硅膜鑫鑫顺源0.9铁80导热膏KDS-2 0.84不锈钢17 空气 0.04 二、热设计的目标 1、确保任何元器件不超过其最大工作结温(T jmax ) ?推荐:器件选型时应达到如下标准 民用等级:T jmax ≤150℃ 工业等级:T jmax ≤135℃军品等级:T jmax ≤125℃ 航天等级:T jmax ≤105℃ ?以电路设计提供的,来自于器件手册的参数为设计目标2、温升限值 器件、内部环境、外壳: △T ≤60℃ 器件每升高2℃,可靠性下降10%;器件温升为50℃时,寿命只有温升25℃的1/6,电解电容温升超过10℃,寿命下降1/2。三、计算 1、TO220封装+散热器 1)结温计算?热路分析 热传递通道:管芯j →功率外壳c →散热器 s →环境空气a

抽水蓄能发电电动机冷却方式研究

抽水蓄能发电电动机冷却方式研究 发表时间:2017-11-16T20:13:11.903Z 来源:《电力设备》2017年第20期作者:钱敏[导读] 摘要:随着电网容量的不断增大和用电需求的多样化,电网对安全性、稳定性、经济性和调节能力有了更高的要求,从电力系统的电力电量平衡和提高电网稳定性考虑,抽水蓄能发电电动机在现代电力系统中占有相当重要的位置。 (江苏国信溧阳抽水蓄能发电有限公司江苏 213300)摘要:随着电网容量的不断增大和用电需求的多样化,电网对安全性、稳定性、经济性和调节能力有了更高的要求,从电力系统的电力电量平衡和提高电网稳定性考虑,抽水蓄能发电电动机在现代电力系统中占有相当重要的位置。我国抽水蓄能发电电动机已逐渐从依赖进口,走上自主研发的道路,关键技术的创新正是大批将要兴建的抽水蓄能电站所用机组开发的基础。 关键词:发电电动机;通风系统;冷却方式引言 抽水蓄能发电电动机的每极容量、转速等参数一般高于常规电机,相对地,通风系统的设计难度也很大。冷却方式是决定发电电动机参数及结构的重要因素,采用模拟试验与计算分析相结合的方法研究不同的冷却方式能够达到的冷却效果,不仅可以掌握电机内流场现象的特点,而且能够预期电机各发热部件的温度分布。 1模拟试验方法 在通风冷却系统内具有流体流动相似特点的通风模拟试验能够反映电机整体流场现象的特点,本文分别对旋转挡风板结构、固定挡风板结构及带风扇的固定挡风板结构进行了通风模拟试验研究。掌握了不同冷却方式下的风量及上、下风道风量分配,检验是否存在空气流动漩涡和死区等流场现象,从而论证了三种冷却方式的优缺点。 试验的理论依据是相似法则,利用量纲分析的方法决定相似准则并正确处理试验数据。量纲分析的目的之一就是找出影响过程的各独立物理量正确地组合成无量纲数的方法。 电机通风系统包括旋转的压力元件和各种形状的风阻元件,但它有以下几个方面的流动特性:(1)风路全是由短的风道组成,截面多变化,因此局部阻力为主,沿程阻力很小只占10%左右; (2)全部压头由转子产生,压头正比于转子周速平方; (3)电机中转动部件中的气流产生很大的搅动作用,在风道中造成很高紊流度,深圳发电电动机的雷诺数约为4.29×107,处于充分紊流状态; (4)由于封闭循环系统中空气周而复始,没有外来气流影响,边界条件可以自动建立。 根据相似法则,深圳发电电动机通风模型以几何相似为基础,尺寸比例选用1∶2.5,使得模型具有适中的尺寸,安装方便,满足试验测量要求。 2冷却方式研究 通风系统的设计不仅要冷却各发热部件,使其温升低于要求的温升限值,更要控制温度的不均匀度,以避免定子铁心的翘曲、绝缘脱壳等问题。在通风系统的设计中,由通风系统各部分尺寸的选择来决定风量的大小,通过结构的优化来改善流道的条件以降低流道的压力损失,对于通风系统局部挡板、密封结构的设计可以避免流体产生风堵、死区、涡流等现象,因此,通风系统的设计是提供高效冷却条件,较小通风损耗的基础。本文涉及的深圳抽水蓄能发电电动机应用通风模型试验对固定挡风板和旋转挡风板的结构进行了试验论证,为深圳发电电动机通风冷却系统的选择提供了依据。另外,还进行了带离心式风扇的固定挡风板结构的试验,考核风量的增加及在阳江、敦化等发电电动机上应用的可能性。固定挡风板结构的通风模型示意见图1;旋转挡风板结构的通风模型示意见图2;带风扇固定挡风板结构的通风模型示意见图3。

CPU散热器结构与性能

夏天到来,专注DIY的我们开始对CPU散热器“关怀备至”。其实,这个能让CPU“变废为宝”的小小玩意,始终都是众多DIYer们关心的热门话题,尤其是那些超频发烧友。近期AMD X2处理器不断降价,Intel新双核奔腾、单核酷睿赛扬各显神通,这些低端单/双核超频悍将给主流DIY市场留下了太多的想象空间。跃跃欲试的主流玩家希望购买到最匹配的散热器“压榨”CPU性能。 纵观市场上的CPU散热器,从低端的纯铝鳍片,到中端的纯铜、铝鳍塞铜式、铝鳍压铸铜式、热管式,再到高端的水冷、油冷、半导体制冷、压缩机制冷、干冰制冷、液氮制冷、液氦制冷等等一应俱全。散热方式从被动散热到主动散热,再到主动制冷,品种五花八门,种类极其繁多。 在如此琳琅满目的散热器产品中,如何才能挑选到适合自己的CPU散热器呢?下面我们就从“理论”入手,详细介绍一下各种材质、结构散热器的性能分析。 风冷散热器 作为中低端散热器市场的首要选择,风冷散热器在性价比上获得了很好的平衡。材质普通、结构简单的产品几十元即可买到,应付入门级处理器超频没有问题。而要想获得更高性能,风冷散热器一样可以提供材质高档、结构先进的“前卫”型产品。一套完整的风冷散热器应该是由散热片、风扇和扣具三部分组成,下面我们分别进行介绍。 散热片 1.纯铝散热片 纯铝散热片 这种散热片是目前使用率最高的散热片之一,整体采用纯铝制造。铝是地球上含量最高的金属,成本低和热容低是其主要特点。虽然吸慢,但放热快,散热效果跟其结构和做工成

正比。散热片数越多、底部抛光越好,散热效果越好。其散热原理非常简单:利用散热器上的散热片来增大与空气的接触面积,再利用风扇来加速空气流动从而带走散热片上的热量。采用纯铝材质的散热片价格低廉,搭配低端CPU使用性价比合理。 2.纯铜散热片 纯铜散热片 顾名思义,纯铜散热片的材质为纯铜。因为铜跟铝相比有个先天的优点:热传导效能为412w/mk,比铝的226w/mk提高了将近1倍,但铜也有个先天的缺点:热容太高了。也就是说这种散热片吸热快但放热慢,热量在铜片中大量聚集,需要配合高转速大尺寸风扇才能满足散热需求。 由于铜具有良好的韧性,因此制造上要比铝容易得多。散热片的密度也可以比铝做得更高,散热面积也相应更大,这些都可以弥补其热容高所导致散热慢的不足。但纯铜的成本要比铝高很多,还要搭配更高档次的风扇才能满足散热需求,直接导致纯铜散热器的价格居高不下,目前已经慢慢退出独立散热器的历史舞台。 3.铝鳍塞铜式散热片 铝鳍塞铜式散热片

电动机水冷却结构设计

煤矿井下用隔爆型三相异步电动机水冷却结构设计 姜瑞杰 2008级机电一体化专业 摘要对煤矿井下用隔爆型三相异步电动机水冷却系统及结构的设计进行探讨。围绕电动机温度场分析、热平衡计算、冷却系统水流参数计算、冷却水箱结构设计几个方面,并结合实践阐述了相关设计理论和设计方法。 关键词煤矿井下用隔爆型三相异步电动机:水冷却系统;水冷式结构 0 引言 煤矿井下设备采用的隔爆型三相异步电动机其冷却系统常采用水冷式结构(通常为ICW37)。这是基于煤矿井下特殊的环境条件和煤矿设备特殊的运行状况决定的。煤矿井下水冷式电动机具有以下特点: (1)煤矿井下作业场狭窄,设备留给时机的安装空间较小,环境空气流动性差。电动机采用风(空气)冷却结构,效果受到很大影响。尤其是在采掘面,当煤块、粉尘等堆积物阻塞电动机外部的通风散热通道时,电动机通风散热状况将更加恶劣。而采用水冷静却结构,则避免了这个缺点。煤矿井下一般不缺压力源,水的导热系数远远大于空气。只要时机的水冷静系统流道结构设计合理,其冷却效果和可靠性优于风冷静式电动机。

(2)煤矿井用电动机因受设备安装要求限制,往往要求有较小的外形体积和简单的外形结构。水冷式电动机结构上没有风扇、风罩、散热片等零件,并且水道布置在封闭的壳体之内,因此其外形简约,体积小于相同功率的风冷式电动机。 (3)煤矿井下采掘、运输等设备,因其特殊的工作条件,往往负荷波动很大,所用电动机超负荷运行状况进有发生,造成电动机温升增高。另外在设计这些设备使用的电动机时,考虑到其外形体积和功率大小两方面要求,往往采用减小电动机定、转子铁心外径,加长定、转子铁心长度的设计方案。由典型的时机温升设计理论可知,铁心较长的时机其热负荷往往偏高,温升计算误差也较大,这两方面的原因致使电动机的温升处于不可靠状态。尽管采用提高电动机绝缘等级的方法进行弥补,但电动机使用寿命也将大打折扣。而水冷式结构的电动机具有较好的冷却效果,可弥补电动机温升设计误差及超负荷运行带来的缺点。 (4)水冷式电动机无风扇、风罩等零件,因此不会产生风摩损耗和噪声,并且冷却水箱还具有吸振减振效果,这些又形成了电动机效率较高、噪声低、振动小的优点。 从以上分析可以看出水冷却系统在煤矿井下用电动机上的重要作用,因此对其系统和结构的设计研究必要。目前国内许多电机厂家都积累了各自在此方面的宝贵经验,亟待进行理论性的整理和提高。本文试对此问题展开初步探讨。

散热器的选型与计算..

散热器的选型与计算 以7805 为例说明问题. 设I=350mA,Vin=12V, 则耗散功率Pd=(12V-5V)*0.35A=2.45W 按照TO-220封装的热阻θ JA=54℃/W,温升是132℃, 设室温25℃,那么将会达到7805的热保护点150℃,7805 会断开输出. 正确的设计方法是: 首先确定最高的环境温度, 比如60℃, 查出7805 的最高结温TJMAX=125℃ , 那么允许的温升是65℃. 要求的热阻是65℃ /2.45W=26℃/W.再查7805 的热阻,TO-220 封装的热阻θ JA=54℃/W, 均高于要求值,都不能使用,所以都必须加散热片,资料里讲到加散热片的时候, 应该加上4℃/W 的壳到散热片的热阻. 计算散热片应该具有的热阻也很简单, 与电阻的并联一样, 即 54//x=26,x=50 ℃/W.其实这个值非常大, 只要是个散热片即可满足. 散热器的计算: 总热阻RQj-a=(Tjmax-Ta)/Pd Tjmax : 芯组最大结温150℃ Ta : 环境温度85℃ Pd : 芯组最大功耗 Pd=输入功率- 输出功率 ={24×0.75+(-24) ×(-0.25)}-9.8 ×0.25 ×2

=5.5 ℃ /W 总热阻由两部分构成,其一是管芯到环境的热阻RQj-a, 其中包括结壳热阻RQj-C 和管壳到环境的热阻RQC-a.其二是散热器热阻RQd-a,两者并联构成总热阻. 管芯到环境的热阻经查手册知RQj-C=1.0 RQC-a=36 那么散热器热阻RQd-a 应<6.4. 散热器热阻RQd-a=[(10/kd)1/2+650/A]C 其中k:导热率铝为2.08 d: 散热器厚度cm A: 散热器面积cm2 C: 修正因子取1 按现有散热器考虑,d=1.0 A=17.6×7+17.6 ×1×13 算得散热器热阻RQd-a=4.1℃ /W, 散热器选择及散热计算目前的电子产品主要采用贴片式封装器件,但大功率器件及一些功率模块仍然有不少用穿孔式封装,这主要是可方便地安装在散热器上,便于散热。进行大功率器件及功率模块的散热计算,其目的是在确定的散热条件下选择合适的散热器,以保证器件或模块安全、可靠地工作。 散热计算 任何器件在工作时都有一定的损耗,大部分的损耗变成热量。小功率器件损耗小,无需散热装置。而大功率器件损耗大,若不采取散热措施,则管芯的温度可达到或超过允许的结温,器件将受到损坏。因此必须加散热装置,最常用的就是将功率器件安装在散热器上,利

散热在结构设计中的应用

散热在结构设计中的应用___专栏! 包括,散热方式的选择,结构的设计,材料选用等 我先根据个人的一点经验,总结出来随便谈谈。 根据热传导的途径来说,散热相应有以下三种主要方式: 一、散热片导热式散热 1、良好接触面:要求发热件与散热片要有良好接触,尽可能降低接触热阻,所以最好有大的接触面,接触面还需要有较高的光洁度,为了弥补因接触面的粗糙而导致的贴合不良,可以在中间涂抹导热脂,可以有效降低接触热阻; 2、良好的导热材料:铜、铝都有较好的导热性能,铜的导热系数虽然优于铝,但铜有密度太高、价格贵的缺点,所以实际应用中铝材是应用最多; 3、散热片固定方式:这个也是比较重要的一环,如果不能把发热件与散热片良好接触,也是无法有效把热量传导到散热器上的,应用中有直接用螺丝钉紧固的,也有用弹簧片压固的,可以根据需要选择设计,需要说明的是,有些功率器件和散热片之间有绝缘要求,中间选用的绝缘材料就一定要选用低热阻的材料,比如:聚脂薄膜、云母片等,实际安装中还要注意固定位置应使用受力均匀分布; 4、散热片的形状:包括页片与基材的形状尺寸,要有尽可能加大散热表面积,这样散热片的热量才能快速与周围空气对流,比如说增加页片数目、在页片上做波浪纹都是好办法;基材要厚一些比较好,长而薄的散热片效率很差,在远端基本上是不起作用的了; 二、对流散热 1、自然对流:发热器件或者散热片的热量可以是依靠自然对流散热,这样的话,发热件或者散热片最好以长边取为垂直方向为佳,而且要尽量使散热片的横断面与水平面方向平行,因为热空气是上升的,这样才比较有利于空气流通,象单面页片式的散热器就比较适合安装在机体背板以自然对流方式散热; 2、强制对流:采用风扇强制吸、排的方式拉动一个风场来加强空气对流,是比较有效的散热方式,可以根据需要选择合适的风扇规格与数目,在设计上要注意的有这么几点: A、各风扇风场方向要一致,不要互相打架,否则效率肯定大打折扣,对机箱内部来说最好有相应的进风口与出风口,可以参考一下下面的附图,是一块显卡的散热设计; B、采用强制风冷时,对于页片式散热片来说,要使页片方向与风道气流方向一致 c、机箱上要根据风场的需要留出相应的散热孔,散热孔并非越多、越大就越好,首先散热孔的大小根据不同的安规等级有相应限制,还要考虑EMI的要求(可以参考一下附图);另外,重为重要的是:散热孔的分布要与风道气流的流向吻合, 三、辐射散热 这种散热方式给设计者留出的空间相对较少,对于发热器件与散热片来说,表面光洁度越高,辐射效率越差,所以比较廉价而且较有效的一个手段是把铝型材散热器表面做氧化处理,这层氧化层可以大大改善辐射效率(比如,一个表面研磨光洁的散热片,表面辐射率可能在0.1左右,做过氧化处理后,辐射率的值可以升高到1)

天线设计毕业论文

第一章绪论 一、绪论 1.1 课题的研究背景及意义 自古至今,通信无时无刻不在影响着人们的生活,小到一次社会交际中的简单对话;大到进行太空探索时,人造探测器与地球间的信息交换。可以毫不保留地说,离开了通信技术,我们的 生活将会黯然失色。近年来,随着光纤技术越来越成熟,应用范围越来越广。在广播电视领域, 光纤作为广播电视信号传输的媒体,以光纤网络为基础的网络建设的格局已经形成。光纤传输系统 具有的传输频带宽,容量大,损耗低,串扰小,抗干扰能力强等特点,已成为 城市最可靠的数字电视和数据传输的链路,也是实现直播或两地传送最经常使用的电视传送 方式。随着全球通信业务的迅速发展,作为未来个人通信主要手段的现代通信技 术引起了人们的极大关注,我国在移动通信技术方面投入了巨大的人力物力,我国很多地区的电力通信专用网也基本完成了从主干线向光纤过度的过程。目前,电力系统光纤通信网已成为我国规模较大,发展较为完善的专用通信网,其数据、语音,宽带等业务及电力生产专业业务都是由光纤通信承载,电力系统的生产生活,显然,已离不开光纤通信网。 无线通信现状另一非常活跃的通信技术当属,无线通信技术了。无线通信技术包括了移动通信技术和无线局域网( WLAN )技术等两大主要方面。移动通信就目前来讲是 3G时代,数字化和网络化已成为不可逆转的趋势。目前,移动通信已从模拟通信发展到了数字移动通 信阶段。无线局域网可以弥补以光纤通信为主的有线网络的不足,适用于无固定场所,或有线局域网架设受限制的场合,当然,同样也可以作为有线局域网的备用网络系统。WLAN ,目前广泛应用 IEEE802.11 系列标准。其中,工作于 2.4GHZ频段的 820.11可支持 11Mbps 的共享接入速率;而802.11a 采用 5GHZ 频段,速率高达 54Mbps ,它比802.11b 快上五倍,并和 820.11b兼容。给人们的生活工作带来了很大的方便与快捷。 在整个无线通信系统中,用来辐射或接收无线电波的装置成为天线,而通信、雷达、导航、广播、电视等无线电技术设备都是通过无线电波来传递信息的,均 需要有无线电波的辐射和接收,因此,同发射机和接收机一样,天线也是无线电技术设备的一个重要组成部分,其性能的优良对无线通信工程的成败起到重要作用。天线的作用首先在于辐射和接收无线电波,但是能辐射或接收电磁波的东西不一定都能作为天线。任何高频电路,只要不被完全屏蔽,都可以向周围空间或多或少地辐射电磁波,或从周围空间或多或少地接收电磁波,但是任意一个高频电路并不一定能用作天线,因为它的辐射或接收效率可能很低,要能够有效地辐射或接收电磁波,天线在结构和形式上必须满足一定的要求。快速发展的移动通信系统需要的是小型化、宽频带、多功能 (多频段、多极化 )、高性能的天线。微带天线作为天线 家祖的重要一员,经过近几十年的发展,已经取得了可喜的进步,在移动终端中采用内置微带天线,不但可以减小天线对于人体的辐射,还可使手机的外形设计多样化,因此内置微带天线将是未来天线技术的发展方向之一,设计出具有小型化的微带天线不但具有一定的理论价值而且具有重要的应用价值,这也成为当前国际天线界研究的热点之一。

散热器设计

散热器设计 型材散热器的几何结构由肋片和基座构成,主要几何参数包括肋片长、肋片厚,肋片数、基座厚、基座宽等,研究了型材散热器几何因素对其热性能的影响,通过改变散热器的几何参数,可以有效的降低散热器的热阻,获得好的散热效果。本文的研究为型材散热器的的选择及优化设计提供了依据。 关键词:功率器件;热设计;散热器;热阻 功率器件是多数电子设备中的关键器件,其工作状态的好坏直接影响整机可靠性。功率器件尤其是大功率器件发热量大,仅靠封装外壳散热无法满足散热要求,需要配置合理散热器有效散热,而散热器的选择是否合理又直接影响功率器件的可靠性,因此分析影响散热器散热性能的因素,有利于合理选取散热器,提高功率器件的可靠性。 1 散热器的选择 在电子设备热设计中,型材散热器由于结构简单,加工方便、散热效果好而得到了广泛的应用,其物理模型示意图如图1所示。 它由肋片和基座构成,主要的几何参数包括肋片长、肋片厚,肋片数、基座厚、基座宽等。在选择散热器时一般需要依据散热器热阻来合理选择,同时还需要考虑以下几点:安装散热器允许的空间、气流流量和散热器的成本等。散热器散热的效果与散热器热阻的大小密切相关,而散热器的热阻除了与散热器材料有关之外,还与散热器的形状、尺寸大小以及安装方式和环境通风条件等有关,目前没有精确的数学表达式能够用来计算散热器的热阻,通常是通过实际测量得到。而散热器的有效面积与散热器几何参数密切相关。 2 影响散热器散热性能的几何因素分析 通过实验发现,散热器的几何因素对散热器的散热性能有很大的影响,现以一典型型材散热器为例,分析散热器各几何参数对散热器散热性能的影响。 选定某一功率器件(LM317)为热源,其工作电路原理图如图2所示。工作在自然冷却条件下,环境温度为30℃,功耗为3.2 W,选取的散热器为型材散热器SYX-YDE(物理模型如图3所示),散热器各个几何参数如表1所示。 热源与散热器表面为金属与金属的干接触,无绝缘片也未涂硅脂或导热胶,查有关手册取热 源与散热器之间的接触热阻为0.9℃/W。通过散热器设计分析软件进行初步分析,散热器优化设计分析软件采用的是美国Flunt公司的Qfin软件,它采用计算流体动力学求解器,有限体积法,非结构化网格可以逼近复杂的几何形状,同时能实现散热器肋片高度、长度等几何参数的优化。中国可靠性网https://www.wendangku.net/doc/971548645.html, 通过散热器优化设计分析软件得到的散热器和热源相关热参数见表2。

喇叭天线设计

1 课题背景 喇叭天线是一种应用广泛的微波天线,其优点是结构简单,频带宽,功率容量大,调整与使用方便。合理地选择喇叭天线尺寸,可以获得很好的辐射特性、相当尖锐的主瓣、较小副瓣和较高的增益。因此,喇叭天线应用非常广泛,它是一种常见的天线增益测试用标准天线。 喇叭天线就其结构来讲可以看成由两大部分构成:一是波导管部分,横截面有矩形,也有圆形;二是真正的喇叭天线部分。 波导部分相当于线天线中的馈线,是供给喇叭天线信号和能量的部分。对工作于厘米波或毫米波段内的面天线,如采用线状馈线,将因馈线自身的辐射损耗太大不能把能量传送到面天线上,所以,必须采用自身屏蔽效果很好的波导管作馈线。普通喇叭天线结构原理图如1.1所示。 图1.1 普通喇叭天线结构原理图 HFSS全称为High Frequency Structure Simulator,是美国Ansoft公司(注:Ansoft公司于2008年被Ansys公司收购)开发的全波三维电磁仿真软件,也是世界上第一个商业化的三维结构电磁仿真软件。该软件采用有限元法,计算结果

精准可靠,是业界公认的三维电磁场设计和分析的工业标准。 HFSS采用标准的Windows图形用户界面,简洁直观;拥有精确自适应的场解器和空前电性能分析能力的功能强大后处理器;能计算任意形状三维无源结构的S参数和全波电磁场;自动化的设计流程,易学易用;稳定成熟的自适应网格剖分技术,结果准确。使用HFSS,用户只需要创建或导入设计模型,指定模型材料属性,正确分配模型的边界条件和激励,准确定义求解设置,软件便可以计算并输出用户需要的设计结果。 HFSS软件拥有强大的天线设计功能,可以提供全面的天线设计解决方案,是当今天线设计最为流行的软件。使用HFSS可以仿真分析和优化设计各类天线,能够精确计算天线的各种性能,包括二维、三维远场和近场辐射方向图、天线的方向性系数、S参数、增益、轴比、输入阻抗、电压驻波比、半功率波瓣宽度以及电流分布特性等。

油浸式变压器结构图解

结构图解 1-铭牌;2-信号式温度计;3-吸湿器;4-油标;5-储油柜;6-安全气道 7-气体继电器;8-高压套管;9-低压套管;10-分接开关;11-油箱; 12-放油阀门;13-器身;14-接地板;15-小车 电力变压器概述电力变压器是一种静止的电气设备,是用来将某一数值的交流电压(电流)变成频率相同的另一种或几种数值不同的电压(电流)的设备。当一次绕组通以交流电时,就产生交变的磁通,交变的磁通通过铁芯导磁作用,就在二次绕组中感应出交流电动势。二次感应电动势的高低与一二次绕组匝数的多少有关,即电压大小与匝数成正比。主要作用是传输电能,因此,额定容量是它的主要参数。额定容量是一个表现功率的惯用值,它是表征传输电能的大小,以kVA或MVA表示,当对变压器施加额定电压时,根据它来确定在规定条件下不超过温升限值的额定电流。现在较为节能的电力变压器是非晶合金铁心配电变压器,其最大优点是,空载损耗值特低。最终能否确保空载损耗值,是整个设计过程中所要考虑的核心问题。当在产品结构布置时,除要考虑非晶合金铁心本身不受外[3]力的作用外,同时在计算时还须精确合理选取非晶合金的特性参数。国内生产电力变压器较大的厂家有特变电工等。

供配电方式: 10KV高压电网采用三相三线中性点不接地系统运行方式。 用户变压器供电大都选用Y/Yno结线方式的中性点直接接地系统运行方式,可实现三相四线制或五线制供电,如TN-S系统。 电力变压器主要部件及作用①、普通变压器的原、副边线圈是同心地套在一个铁芯柱上,内为低压绕组,外为高压绕组。(电焊机变压器原、副边线圈分别装在两个铁芯柱上) 变压器在带负载运行时,当副边电流增大时,变压器要维持铁芯中的主磁通不变,原边电流也必须相应增大来达到平衡副边电流。 变压器二次有功功率一般=变压器额定容量(KVA)×0.8(变压器功率因数)=KW。

散热器简化设计计算方法

壁挂散热器价格简化设计计算方法 一. 金旗舰散热量Q的计算 1.基本计算公式: Q=S×W×K×4.1868÷3600 (Kw) 式中: ①.Q —散热器散热量(KW)=发动机水套发热量×(1.1~1.3) ②.S —散热器散热面积(㎡)=散热器冷却管的表面积+2×散热带 的表面积。 ③.W —散热器进出水、进出风的算术或对数平均液气温差(℃), 设计标准工况分为:60℃、55℃、45℃、35℃、25℃。它们分别对应散热器允许适用的不同环境大气压和自然温度工况条件。④.K —散热系数(Kcal/m.h.℃)。它对应关联为:散热器冷却管、散热带、钎焊材料选用的热传导性能质量的优劣;冷却管与散热带钎焊接合率的质量水平的优劣;产品内外表面焊接氧化质量水平的优劣;冷却管内水阻值(通水断面积与水流量的对应关联—水与金属的摩擦流体力学),散热带风阻值(散热带波数、波距、百叶窗开窗的翼宽、角度的对应关联—空气与金属的摩擦流体阻力学)质量水平的优劣。总体讲:K值是代表散热器综合质量水平的关键参数,它包容了散热器从经营管理理念、设计、工装设备、物料的选用、采购供应、制造管理控制全过程的综合质量水平。根据多年的经验以及

数据收集,铜软钎焊散热器的K值为:65~95 Kcal/m2.h.℃;改良的簿型双波浪带铜软钎焊散热器的K值为:85~105 Kcal/m2.h.℃;铝硬钎焊带电子风扇系统的散热器的K值为:120~150 Kcal/m2.h.℃。充分认识了解掌握利用K值的内涵,可科学合理的控制降低散热器的设计和制造成本。准确的K值需作散热器风洞试验来获取。 ⑤.4.1868和3600 —均为热能系数单位与热功率单位系数换算值⑥.发动机水套散热量=发动机台架性能检测获取或根据发动机升功 率、气门结构×经验单位系数值来获取。 二、计算程序及方法 1. 散热面积S(㎡) S=冷却管表面积F1+2×散热带表面积F2 F1={ [2×(冷却管宽-冷却管两端园孤半径)]+2π冷却管两端园孤半径}×冷却管有效长度×冷却管根数×10 F2=散热带一个波峰的展开长度×一根散热带的波峰数×散热带的 宽度×散热带的根数×2×10 2. 算术平均液气温差W(℃) W=[(进水温度+出水温度)÷2]-[(进风温度+出风温度)÷2] 常用标准工况散热器W值取60℃,55℃,增强型取45℃,35℃。这要根据散热器在什么工况环境使用条件下来选取。 3. 散热系数K

电机水冷系统设计与散热计算

螺旋形电机水冷系统设计与散热计算 孙利云 四川建筑职业技术学院四川德阳 618000 摘要:本文从传热基本理论出发,针对表面冷却中小型电机体积小,功率大,能量密度高的特点,给出了电机水冷螺旋型结构的详细计算过程,为电机冷却设计提供参考方案。 关键词:水冷,散热,螺旋型 1.引言 现代工业的发展对电机性能要求越来越高。电机热损耗问题制约着大容量电机设计发展。 根据冷却介质是否通过电机内部,电机冷却方式分为内部冷却和表面冷却[1]。中小型电机由于体积的限制,常采用表面冷却的方式。按冷却介质的不同,可以把电机分为分为空气冷却和液体(水或油)冷却。空气冷却,运行成本低,摩擦损耗大,散热效率低,常用在能量密度低,发热较低的电机结构中。水冷电机,运行成本高,摩擦损耗小,散热效率高,常用在能量密度高,发热量大的电机结构中。 水冷技术应用于电机散热具有很好的冷却效果。电机水冷结构设计的核心任务是电机散热计算,使得电机损耗生热与冷却介质带走的热量达到平衡,从而控制电机温升再允许范围内。此外,冷却介质流速是散热能力重要影响因素之一。冷却介质的流速与压头及流经管道阻力有关。压头由水循环系统的泵产生。流经管道阻力取决于冷却结构的具体形式。螺旋型结构是指水槽在壳体中成螺旋型分布以往的设计过程[2]是首先设计好水槽的机构尺寸,设定入水口温度、水槽温度、水流速度等参数,计算出水口温度,进而校核冷却系统的散热情况。这种方法,把设计的散热方案的散热功率作为计算结果,与实际需求的散热功率对比。设计方案的散热能力高于实际需要的散热能力,则视为方案可行;反之,方案失败。修改预先设计的水槽尺寸并重新计算直到满足散热条件。散热能力在设计之初是未知的,计算之后才能知道其散热能力。本文采用另一种方法,对散热结构进行设计。 2.水冷计算 2.1结构设计 电机的基本结构尺寸如图1所示,水套外径200mm,水套截面尺寸为宽24mm,高4mm , 图1 1.转子 2.定子 3.外壳 4.水套 电机的功率为7.5KW。经过电磁计算,电机总的损耗为 KW P137 .1 = 损 (1)设所有损耗都转化为热能,在电机稳定运行过程中,热能被水带走。因此实际需要的散热功率为 KW P P137 .1 = = 损 散 (2)冷却水相关参数见表1, 表1 水的相关物理参数 名称单位符号数值 流量 min L Q10

超宽带天线设计与研究详解

超宽带天线的研究与设计 中文摘要 近几年来,超宽带天线的研究已经成为热潮。本文的思想也是研究小型化超宽带平板天线,让其在生活中的硬件设计产品中满足超宽带天线的技术需要。因为超宽带天线在WiMAX和WLAN的窄带系统和装载切口天线设计结构上产生的影响。实现WiMAX和WLAN频带的双凹槽在超宽带天线结构设计。在设计过程中主要是使用HFSS软件进行天线结构的仿真优化。主要利用了HFSS软件仿真和天线结构的优化设计过程。我们针对其超宽带天线的性能参数,相应的提升平面单极子天线的基础研究。传统平面单极子天线与狭槽,狭槽装载方法的横截面,提出了几种平面单极子天线从频域和时域研究,从而从单极子天线的相关性能参数出发,研究平面单极子天线在频率范围为3.1GHZ-11GHZ,使超宽带天线能够达到市场对硬件方面的应用需求。 关键词:平面单极子天线;超宽带;HFSS仿真 I

Research and design of ultra-wideband antenna Abstract In recent years, the research of ultra-wideband antenna has become a boom. Thought of this paper is to study ultra-wideband planar antenna miniaturization, let the life in the hardware design of the product satisfy the need of ultra-wideband antenna. Because of ultra-wideband antenna in WLAN and WiMAX narrowband systems and the impact loading of incision on the antenna design. Both WiMAX and WLAN band grooves in the ultra-wideband antenna structure design. In the design process is mainly using HFSS software for simulation of antenna structure optimization. Mainly using HFSS software simulation and optimization of the antenna structure design process. We according to the performance of ultra-wideband antenna parameters, the corresponding increase of planar monopole antenna of basic research. Traditional planar monopole antenna and the slot, slot loading method of cross section, and puts forward several planar monopole antenna from frequency domain and time domain research, thus starting from the related performance parameters of monopole antenna, the planar monopole antenna in the frequency range of 3.1 GHZ - 11 GHZ, the ultra-wideband antenna can meet the market demand for hardware applications. Key words: Planar monopole antenna; Ultra-Wideband; HFSS simulation 目录 I

线艺开关变压器结构设计指南

Transformer Design Procedure Structured Design of Switching Power Transformers Design of switching power transformers can be accom-plished in a relatively simple manner by limiting magnetic configurations to a few core and coilform structures. These structures have been chosen both for their versatil-ity and their low cost. Dimensional information as well as design information in the form of design curves for the chosen structures may be found at the end of this docu-ment. By using these curves, the complete transformer can be designed. Step 1. Structure size The first step in the design is choosing a minimum struc-ture size consistent with the output power required. The approximate power capabilities of each structure are provided in Table 1. If five or six outputs are required, a larger structure may be required to allow the copper along with insulation and winding crossovers to fit in the available winding area. Step 2. Primary turn count For a given core size, the ability of an inductor to oper-ate without saturating is directly proportional to its turn count N P . The normal saturation specification is E?T or volt-time rating. The E?T rating is the maximum voltage, E , which can be applied over a time of T seconds. (The E?T rating is identical to the product of inductance L and peak current I .) Equation 1 defines a minimum value of N P for a volt-time product of E?T : Where: E?T = the minimum volt-time rating in volt-seconds B = the maximum allowable flux density A E = the effective cross sectional core Equation 1 is plotted for the specific chosen core struc-tures shown in Figure 1. These plots are for B = 3000 Gauss, which will prevent the core from saturation and typically will provide low core loss suitable for operation in the range of 200 kHz to 400 kHz. For higher frequencies, a higher primary turn count should be used to ensure low core loss. T o use this chart, locate the required E?T rating on the vertical axis. Move horizontally to the curve. From this point drop vertically to the horizontal axis and deter- mine N P . This value for N P should allow non-saturating operation to 100°C with reasonable core loss. Step 3. Secondary turn count Secondary turn count is a function of duty cycle and primary turn count. For a flyback system: For a forward converter: Where: N P = the primary turn count. N S = the secondary turn count. V S = the secondary output voltage. V D = the voltage drop across the rectifier and choke in the secondary. D = the duty cycle. V P = the voltage across the primary. For the flyback system, D is seldom greater than 0.5. For the forward converter, D is the duty cycle of the rectified output, and can approach 0.9 for a wave rectified output. Known conditions should be used to calculate N S . For example, at minimum input voltage and maximum output power, the supply will operate at maximum duty cycle. This is a good point to use to determine N S . Step 4. Wire size Once all the turn counts have been determined, wire size must be chosen for each winding. Power losses in the transformer windings cause a tem-perature rise, ?T, in the transformer. The amount of loss depends on how much current is being drawn from the winding, the length of wire and what wire size is used. The power loss is a function of the amount of resistance in the wire. This resistance is composed of a DC resistance (R DC ) and an AC resistance (R AC ). At low frequencies and small wire sizes, for example #30 AWG at 250 kHz, R DC >> R AC , and R AC can effectively be ignored. For larger wire sizes and high frequencies, >500 kHz, it may be necessary to use stranded wire or foil. Let’s assume R AC

相关文档