文档库 最新最全的文档下载
当前位置:文档库 › 固体物理(黄昆)第一章总结

固体物理(黄昆)第一章总结

固体物理(黄昆)第一章总结
固体物理(黄昆)第一章总结

第一章晶体结构

1.晶格实例

1.1面心立方(fcc)配位数12格点等价格点数4致密度0.74

原胞基矢:

()

()

()

1

2

3

2

2

2

a

a j k

a

a k i

a

a i j

=+

=+

=+

原胞体积3

123

()/4

Ωa a a a

=??=

NaCl: 两组面心立方格子平行穿套而成的复式格子基元= Na+ + Cl-

具有面心立方:简单格子(Al、Cu、Ag; Ar Kr Xe Ne)、复式格子(Cao MgS 碱卤族等)

1.2简单立方(SC)配位数6格点等价格点数1致密度0.52

CsCl两组简单立方格子穿套而成的复式结构基元= Cs+ + Cl-

钙钛矿结构:CaTiO3五个简单立方穿套而成基元:Ca、Ti、OI、OII、OIII (OI、OII、OIII 的化学环境各不相同,氧八面体) 典型晶体:BaTiO3、PbZrO3、LiNbO3、LiTaO3

氯化铯型结构: CsCl, CsBr, CsI, TlCl, TlBr, TlI 等

1.3体心立方(bcc)配位数8格点等价格点数2致密度0.68

原胞基矢:

1

2

3

()

2

()

2

()

2

a

a i j k

a

a i j k

a

a i j k

=-++

=-+

=+-

原胞体积:3

123

()/2

Ωa a a a

=??=

体心立方晶体: 碱金属、W、Mo、Nb、V、Fe等

1.4六角密堆(hcp)配位数12两种格点原子数6基元数3致密度0.74

典型晶体举例:He, Be, Mg, Ti, Zn, Cd, Co, Y, Lu 等

1.5金刚石结构最近邻原子数4次近邻原子数12致密度0.34

晶体结构=布拉维格子(面心立方)+ 基元(A+B)

*将金刚石结构中的基元置换成一对硫离子和锌离子,则为两个面心立方复合而成的复式结构,典型晶体:SiC, ZnSe, AlAs, GaP, GaAs 等

2.晶体的周期性结构

2.1基本概念

晶体:1. 化学性质相同 2. 几何环境相同

基元:晶体结构中最小的重复单元

布拉维点阵(布拉维格子):112233R n a n a n a =++

晶体结构 = 布拉维格子+基元

原胞:由基矢1a 、2a 、3a

确定的平行六面体,是体积最小的周期性结构单元,原胞只包含一个格点

晶胞:同时计及周期性及对称性的尽可能小的重复单元,原胞实际上是体积最小的晶胞 2.2维格纳-赛茨原胞(WS 原胞)

1. 作某个格点与其它格点的连接矢量

2. 作所有这些连接矢量的垂直平分面

3. 这些垂直平分面围起的凸多面体就是维格纳-赛茨原胞

3. 晶向、晶面及其标志

晶列(向)指数:[l m n] 晶面指数(米勒指数):( h k l )

米勒指数是以晶胞基矢为基准,而面指数则以原胞基矢为基准标定

4. 布里渊区

倒格子空间中的维格纳-赛茨(WS )原胞,即所谓的第一布里渊区,布里渊区包含了所有能在晶体上发生布拉格反射的波的波矢2

2h h k G G ?=

4.1简单立方的倒格矢(简单立方——简单立方)

基矢123a ai

a aj a ak ?=?=??=?

倒格矢123

(2π/a)(2π/a)(2π/a)b i b j b k ?=?=??=?

4.2体心立方晶格的倒格子(体心立方——面心立方)

基矢1231

()2

1()21()2a a i j k a a i j k a a i j k ?=-++???=-+???=+-?? 倒格矢1232π()2π()2π()b j k a b k i a b i j a ?=+???=

+???=+??

倒格矢可以表示为:

112233

2331122π

[()()()]h G h b h b h b h h i h h j h h k a

=++=+++++

其中(h1 h2 h3)是米勒指数,h G

垂直于米勒指数,其第一布里渊区是一个正十二面体

4.3面心立方晶格的倒格子(面心立方——体心立方)

基矢1231()

21()21()2a a j k a a k i a a i j ?=+??

?=+???=+??

倒格矢1232π()2π()2π()b i j k a b i j k a b i j k a ?=-++???=

-+??

?=+-??

第一布里渊区为截角八面体即

5. 晶体的宏观对称性

xx xy xz x x y yx yy yz y z zx zy zz z D E D E D E εεεεεεεεε??????

? ? ?= ? ? ? ? ? ?????

??

5.1对于所有立方对称的晶体中,介电常数是一个对角张量:

0 (,,,)x y z αβαβεεδαβ==该结论适用于一切具有二阶张量形式的宏观性质 (如电导

率、热导率)

5.2六角对称的晶体中,若坐标轴选取在六角轴的方向和与它垂直的平面内,则介电常数有如下形式

// 0 00 00 0 εεε⊥⊥?? ? ? ?

?

?,//////D E ε=,D E ε⊥⊥⊥=,六角对称的晶体有双折射现象

5.3对称操作(正交变换:旋转、中心反演、镜面反映) 1.旋转

绕 z 轴旋转 q 角的正交矩阵cos sin 0sin cos 0 0 0 1θθθθ-?? ? ? ???,中心反演的正交矩阵 1 0 0 0 1 0 0 0 1-?? ?

- ? ?-??

由于cost = (1 - m)/2 所以 m = -1 0 1 2 3,所以t = 0 2π/62π/42π/32π/2,没有

所谓的5度轴和7度轴。 2.反演(符号 i ) 3.旋转反演

旋转与反演的结合的对称操作,称为 n 度旋转反演对称。 5.4实例 立方体

正四面体

正六角柱

5.5对称操作的标记方法

1、2、3、4、6 度轴可用数字1、2、3、4、6 表示;1、2、3、4、6 度旋转反演轴,可用 123456表示;镜面反映用m 表示。1i =(反演)、2m = 群:

1.具有封闭性, 若A,B ∈G,则 AB=C ∈G

2.单位元存在,设为 E ,有 AE=EA=A ,A∈G

3.逆元存在,BA=AB=E, 记 B=A-1, A,B∈G

4.满足结合律 (AB)C=A(BC), A,B,C∈G

6. 杂项

32个点群 (熊夫利符号记法):P32

三维系统下七大晶系和十四种布拉维格子

73 种不同的点空间群,不同的空间群共有230个

晶体的平移周期性和准晶体的旋转周期性,取向有序、无周期平移序 晶体只能有 2、3、4、6 度螺旋轴,金刚石有 4 度螺旋轴

二维晶格的晶系和布拉维格子 如果辐射波的波长 ~ 晶格常量,就会产生衍射现象,可以用仪器探测到。可见光在晶体中传播时不会产生衍射现象。X 射线波长 ~ 100-1 ? 布拉格公式:2sin d k θλ=(干涉增强)

黄昆版固体物理学课后答案解析答案

《固体物理学》习题解答 黄昆 原著 韩汝琦改编 (陈志远解答,仅供参考) 第一章 晶体结构 1.1、 解:实验表明,很多元素的原子或离子都具有或接近于球形对称结构。因此,可以把这些原子或离子构成的晶体看作是很多刚性球紧密堆积而成。这样,一个单原子的晶体原胞就可以看作是相同的小球按点阵排列堆积起来的。它的空间利用率就是这个晶体原胞所包含的点的数目n 和小球体积V 所得到的小球总体积nV 与晶体原胞体积Vc 之比,即:晶体原胞的空间利用率, Vc nV x = (1)对于简立方结构:(见教材P2图1-1) a=2r , V= 3r 3 4π,Vc=a 3 ,n=1 ∴52.06r 8r 34a r 34x 3 333=π=π=π= (2)对于体心立方:晶胞的体对角线BG=x 3 3 4a r 4a 3=?= n=2, Vc=a 3 ∴68.083)r 3 34(r 342a r 342x 3 3 33≈π=π?=π?= (3)对于面心立方:晶胞面对角线BC=r 22a ,r 4a 2=?= n=4,Vc=a 3 74.062) r 22(r 344a r 344x 3 3 33≈π=π?=π?= (4)对于六角密排:a=2r 晶胞面积:S=62 60sin a a 6S ABO ??=??=2 a 233 晶胞的体积:V=332r 224a 23a 3 8 a 233C S ==?= ? n=1232 1 26112+?+? =6个 74.062r 224r 346x 3 3 ≈π=π?= (5)对于金刚石结构,晶胞的体对角线BG=3 r 8a r 24a 3= ??= n=8, Vc=a 3

232425(黄昆固体物理)教案

§ 2.3 金属性结合;§ 2.4 范德瓦耳斯结合; §2.5 元素和化合物晶体结合的规律性 1. 教学目的和要求: 通过讲解使学生理解并掌握金属性结合和范德 瓦耳斯结合;理解元素和化合物晶体结合的规律性 2.教学重点:金属性结合和范德瓦耳斯结合。 3.教学难点:范德瓦耳斯结合。 4.讲授时间:45分钟。 5.讲授方式:PPT文档。 6.作业:学生课后复习。 一.金属性结合 (1)金属性结合的概念 第I族、第II族元素及过渡 元素都是典型的金属晶体,它们 的最外层电子一般为1~2个。组 成晶体时每个原子的最外层电 子为所有原子所共有,因此在结 合成金属晶体时,失去了最外层 (价)电子的原子实“沉浸”在 由价电子组成的“电子云”中。 如图XCH002_004所示。 这种情况下,电子云和原子实之 间存在库仑作用,体积 越小电子云密度越高,库仑相互 作用的能愈低,表现为 原子聚合起来的作用。 (2)金属晶体结合力 金属晶体结合力:主要是原子实和电子云之间的静电库仑力,对晶体结构没有特殊的要求,只要求排列最紧密,这样势能最低,结合最稳定。因此大多数金属具有面心立方结构,即立方密积或六角密积,配位数均为12。 立方密积(Cu、Ag、Au、Al)(面心立方结构)(配位数12) 六角密积(Be、Mg、Zn、Cd)

体心立方结构(Li、Na、K、Rb、Cs、Mo、W)(配位数8) 良好的导电本领,结合能比前面两种晶体要低一些,过渡金属的结合能较大。 晶体的平衡是依靠库仑作用力和一定的排斥力而维持的。 排斥来自两个方面 (a) 但体积减小,电子云的密度增大,电子的动能将增加 (b) 当原子实相互接近到一定的距离时,它们的电子云发生显著的重叠,将产生强烈的排斥 作用。 金属性结合对原子的排列没有特殊的要求,这使得容易造成原子排列的不规范性,使其具有很大的范性。 二.范德瓦耳斯结合 (1)范德瓦耳斯结合的概念 元素周期表中第VIII族(惰性)元素在低温下所结合成的晶体,是典型的非极性分子晶体。为明确起见,我们只介绍这种分子晶体。 惰性元素最外层的电子为8个,具 有球对称的稳定封闭结构。但在某 一瞬时由于正、负电中心不重合 而使原子呈现出瞬时偶极矩,这就 会使其它原子产生感应极矩。非极 性分子晶体就是依靠这瞬时偶极 矩的互作用而结合的,这种结合力 是很微弱的。1873年范德瓦耳斯 (Van der Waals)提出在实际气体 分子中,两个中性分子间存在着 “分子力”。当时他并没有指出这 力的物理本质,现在知道瞬时偶极 矩引起的力是分子力的一种。如图 XCH002_005所示。 (2)范德瓦耳斯结合的特征 惰性元素因具有球对称,结合时排列最紧密以使势能最低,所以Ne、Ar、Kr、Xe的晶体都是面心立方结构。它们是透明的绝缘体,熔点特低,分别为24K、84K、117K和161K。

固体物理_复习重点

晶体:是由离子,原子或分子(统称为粒子)有规律的排列而成的,具有周期性和对称性 非晶体:有序度仅限于几个原子,不具有长程有序性和对称性 点阵:格点的总体称为点阵 晶格:晶体中微粒重心,周期性的排列所组成的骨架,称为晶格 格点:微粒重心所处的位置称为晶格的格点(或结点) 晶体的周期性和对称性:晶体中微粒的排列按照一定的方式不断的做周期性重复,这样的性质称为晶体结构的周期性。晶体的对称性指晶体经过某些对称操作后,仍能恢复原状的特性。(有轴对称,面对称,体心对称即点对称) 密勒指数:某一晶面分别在三个晶轴上的截距的倒数的互质整数比称为此晶面的密勒指数 配位数:可用一个微粒周围最近邻的微粒数来表示晶体中粒子排列的紧密程度,称为配位数 致密度:晶胞内原子所占体积与晶胞总体积之比称为点阵内原子的致密度 固体物理学元胞:选取体积最小的晶胞,称为元胞:格点只在顶角,内部和面上都不包含其他格点,整个元胞只含有一个格点:元胞的三边的平移矢量称为基本平移矢量(或者基矢);突出反映晶体结构的周期性 晶胞:体积通常较固体物理学元胞大;格点不仅在顶角上,同时可以在体心或面心上;晶胞的棱也称为晶轴,其边长称为晶格常数,点阵常数或晶胞常数;突出反映晶体的周期性和对称性。 布拉菲格子:晶体由完全相同的原子组成,原子与晶格的格点相重合而且每个格点周围的情况都一样 复式格子:晶体由两种或者两种以上的原子构成,而且每种原子都各自构成一种相同的布拉菲格子,这些布拉菲格子相互错开一段距离,相互套购而形成的格子称为复式格子,复式格子是由若干相同的布拉菲格子相互位移套购而成的 声子:晶格简谐振动的能量化,以hv l来增减其能量,hv l就称为晶格振动能量的量子叫声子 非简谐效应:在晶格振动势能中考虑了δ2以上δ高次项的影响,此时势能曲线能是非对称的,因此原子振动时会产生热膨胀与热传导 点缺陷的分类:晶体点缺陷:①本征热缺陷:弗伦克尔缺陷,肖脱基缺陷②杂质缺陷:置换型,填隙型③色心④极化子 布里渊区:在空间中倒格矢的中垂线把空间分成许多不同的区域,在同一区域中能量是连续的,在区域的边界上能量是不连续的,把这样的区域称为布里渊区 固体物理复习要点 第一章 1、晶体有哪些宏观特性? 答:自限性、晶面角守恒、解理性、晶体的各向异性、晶体的均匀性、晶体的对称性、固定的熔点这是由构成晶体的原子和晶体内部结构的周期性决定的。说明晶体宏观特性是微观特性的反映 2、什么是空间点阵? 答:晶体可以看成由相同的格点在三维空间作周期性无限分布所构成的系统,这些格点的总和称为点阵。 3、什么是简单晶格和复式晶格? 答:简单晶格:如果晶体由完全相同的一种原子组成,且每个原子周围的情况完全相同,则这种原子所组成的网格称为简单晶格。 复式晶格:如果晶体的基元由两个或两个以上原子组成,相应原子分别构成和格点相同的网格,称为子晶格,它们相对位移而形成复式晶格。 4、试述固体物理学原胞和结晶学原胞的相似点和区别。 答:(1)固体物理学原胞(简称原胞) 构造:取一格点为顶点,由此点向近邻的三个格点作三个不共面的矢量,以此三个矢量为边作平行六面体即为固体物理学原胞。

固体物理课后答案

1.1 如果将等体积球分别排列成下列结构,设x 表示钢球所占体积与总体积之比,证明结构x简单立方π/ 6 ≈0.52 体心立方3π/ 8 ≈0.68 面心立方2π/ 6 ≈0.74六方密排2π/ 6 ≈0.74 金刚石3π/16 ≈0.34 解:设钢球半径为r ,根据不同晶体结构原子球的排列,晶格常数a 与r 的关系不同,分别为:简单立方:a = 2r 金刚石:根据金刚石结构的特点,因为体对角线四分之一处的原子与角上的原子紧贴,因此有

1.3 证明:体心立方晶格的倒格子是面心立方;面心立方晶格的倒格子是体心立方。 证明:体心立方格子的基矢可以写为 面心立方格子的基矢可以写为 根据定义,体心立方晶格的倒格子基矢为 同理 与面心立方晶格基矢对比,正是晶格常数为4π/ a的面心立方的基矢,说明体心立方晶格的倒格子确实是面心立方。注意,倒格子不是真实空间的几何分布,因此该面心立方只是形式上的,或者说是倒格子空间中的布拉菲格子。根据定义,面心立方的倒格子基矢为 同理 而把以上结果与体心立方基矢比较,这正是晶格常数为4πa的体心立方晶格的基矢。 证明:根据定义,密勒指数为的晶面系中距离原点最近的平面ABC 交于基矢的截距分别为 即为平面的法线

根据定义,倒格子基矢为 则倒格子原胞的体积为 1.6 对于简单立方晶格,证明密勒指数为(h, k,l)的晶面系,面间距d 满足 其中a 为立方边长。 解:根据倒格子的特点,倒格子 与晶面族(h, k,l)的面间距有如下关系 因此只要先求出倒格,求出其大小即可。 因为倒格子基矢互相正交,因此其大小为 则带入前边的关系式,即得晶面族的面间距。

固体物理知识点总结

一、考试重点 晶体结构、晶体结合、晶格振动、能带论的基本概念和基本理论和知识 二、复习内容 第一章晶体结构 基本概念 1、晶体分类及其特点: 单晶粒子在整个固体中周期性排列 非晶粒子在几个原子范围排列有序(短程有序) 多晶粒子在微米尺度内有序排列形成晶粒,晶粒随机堆积 准晶体粒子有序排列介于晶体和非晶体之间 2、晶体的共性: 解理性沿某些晶面方位容易劈裂的性质 各向异性晶体的性质与方向有关 旋转对称性 平移对称性 3、晶体平移对称性描述: 基元构成实际晶体的一个最小重复结构单元 格点用几何点代表基元,该几何点称为格点 晶格、 平移矢量基矢确定后,一个点阵可以用一个矢量表示,称为晶格平移矢量 基矢 元胞以一个格点为顶点,以某一方向上相邻格点的距离为该方向的周期,以三个不同方向的周期为边长,构成的最小体积平行六面体。原胞是晶体结构的最小体积重复单元,可以平行、无交叠、无空隙地堆积构成整个晶体。每个原胞含1个格点,原胞选择不是唯一的 晶胞以一格点为原点,以晶体三个不共面对称轴(晶轴)为坐标轴,坐标轴上原点到相邻格点距离为边长,构成的平行六面体称为晶胞。 晶格常数

WS元胞以一格点为中心,作该点与最邻近格点连线的中垂面,中垂面围成的多面体称为WS原胞。WS原胞含一个格点 复式格子不同原子构成的若干相同结构的简单晶格相互套构形成的晶格 简单格子 点阵格点的集合称为点阵 布拉菲格子全同原子构成的晶体结构称为布拉菲晶格子。 4、常见晶体结构:简单立方、体心立方、面心立方、 金刚石 闪锌矿 铅锌矿

氯化铯 氯化钠 钙钛矿结构 5、密排面将原子看成同种等大刚球,在同一平面上,一个球最多与六个球相切,形成密排面 密堆积密排面按最紧密方式叠起来形成的三维结构称为密堆积。 六脚密堆积密排面按AB\AB\AB…堆积

黄昆固体物理课后习题答案5

第五章 第五章 晶体中电子能带理论 思考题 1. 1. 将布洛赫函数中的调制因子)(r k u 展成付里叶级数, 对于近自由电子, 当电子波矢远离和在布里渊区边界上两种情况下, 此级数有何特点? 在紧束缚模型下, 此级数又有什么特点? [解答] 由布洛赫定理可知, 晶体中电子的波函数 )()(r r k.r k i k u e =ψ, 对比本教科书(5.1)和(5.39)式可得 )(r k u = r K K .)(1 m i m m e a N ∑Ω . 对于近自由电子, 当电子波矢远离布里渊区边界时, 它的行为与自由电子近似, )(r k u 近似一常数. 因此, )(r k u 的展开式中, 除了)0(a 外, 其它项可忽略. 当电子波矢落在与倒格矢K n 正交的布里渊区边界时, 与布里渊区边界平行的晶面族对布洛赫波产生了强烈的反射, )(r k u 展开式中, 除了)0(a 和)(n a K 两项外, 其它项可忽略. 在紧束缚模型下, 电子在格点R n 附近的几率)(r k ψ2大, 偏离格点R n 的几率)(r k ψ2小. 对于这样的波函数, 其付里叶级数的展式包含若干项. 也就是说, 紧束缚模型下的布洛赫波函数要由若干个平面波来构造.. 2. 2. 布洛赫函数满足 )(n R r +ψ=)(r n k.R ψi e , 何以见得上式中k 具有波矢的意义? [解答] 人们总可以把布洛赫函数)(r ψ展成付里叶级数 r K k'h K k r ).()'()(h i h e a +∑+=ψ, 其中k ’是电子的波矢. 将)(r ψ代入 )(n R r +ψ=)(r n k.R ψi e , 得到 n k'.R i e =n k.R i e . 其中利用了πp n h 2.=R K (p 是整数), 由上式可知, k =k ’, 即k 具有波矢的意义. 3. 3. 波矢空间与倒格空间有何关系? 为什么说波矢空间内的状态点是准连续的? [解答] 波矢空间与倒格空间处于统一空间, 倒格空间的基矢分别为321 b b b 、、 , 而波矢空间的基矢分别为32N N / / /321b b b 、、 1N , N 1、N 2、N 3分别是沿正格子基矢321 a a a 、、方向晶体的原胞数目. 倒格空间中一个倒格点对应的体积为 *321) (Ω=??b b b ,

固体物理答案第章定稿版

固体物理答案第章 HUA system office room 【HUA16H-TTMS2A-HUAS8Q8-HUAH1688】

2.1证明两种一价离子组成的一维晶格的马德隆常数为2ln 2α=。 证:考虑到由两种一价离子组成的一维晶格的内能(相互作用能)仅与库仑势有关,可写作: 注:234111ln(1)234x x x x x +=-+-+。2是考虑左右离子对称。 2.2讨论使离子电荷加倍所引起的对NaCl 晶格常数及结合能的影响(排斥势看作不变)。 解:(1)晶格常数 电荷加倍前: 206()()4n n e b A B U N N r r r r απε=-+=-+ 由平衡条件:0 ()0r r U r r =?=?,可得 110()n nB r A -= 。 电荷加倍后: 2' 0464()()4n n e b A B U N N r r r r απε=-+=-+ 同样由平衡条件:'0 '()0r r U r r =?=?,可得 1'10()4n nB r A -= 所以 0011'04 r r r n ≈=--,即1>>n 时,晶格常数可认为不变。 (2)结合能 电荷加倍前: 20001()(1)4N e W U r r n απε=-=- 电荷加倍后: 22 ''' 1 01 '00100414()(1)4444n n n N e N e W U r W r n r ααπεπε---=-=-== 当1>>n 时,有W 'W 4=,结合能增加为原来的4倍。 2.3若一晶体两个离子间的相互作用能可表示为 ,晶体体积为3NAr V =(A 为常数,N 为原胞数目),试求:(1)平衡间距;(2)结合能W (单个离子的);(3)体弹性模量的表达式;(4)若取02,10,3m n r ===?,4W =eV,求,αβ值。

固体物理知识点总结

晶格(定义):理想晶体具有长程有序性,在理想情况下,晶体是由全同的原子团在空间无限重复排列而构成的。晶体中原子排列的具体形式称之为晶格,原子、原子间距不同,但有相同排列规则,这些原子构成的晶体具有相同的晶格;由等同点系所抽象出来的一系列在空间中周期排列的几何点的集合体空间点阵;晶格是属于排列方式范畴,而空间点阵是属于晶格周期性几何抽象出来的东西。 晶面指数:晶格所有的格点应该在一簇相互平行等距的平面,这些平面称之为晶面。将一晶面族中不经过原点的任一晶面在基矢轴上的截距分别是u、v、w,其倒数比的互质的整数比就是表示晶面方向的晶面指数,一般说来,晶面指数简单的晶面,面间距大,容易解理。Miller 指数标定方法:1)找出晶面系中任一晶面在轴矢上的截距;2)截距取倒数;3)化为互质整数,表示为(h,k,l)。注意:化互质整数时,所乘的因子的正、负并未限制,故[100]和[100]应视为同一晶向。 晶向指数:从该晶列通过轴矢坐标系原点的直线上任取一格点,把该格点指数化为互质整数,称为晶向指数,表示为[h,k,l]。要弄清几种典型晶体结构中(体心、面心和简单立方)特殊的晶向。 配位数: 在晶体学中,晶体原子配位数就是一个原子周围最近邻原子的数目,是用以描写晶体中粒子排列的紧密程度物理量。将组成晶体的原子看成钢球,原子之间通过一定的结构结合在一起,形成晶格;所谓堆积比就是组成晶体的原子所占体积与整个晶体结构的体积之比,也是表征晶体排列紧密程度的物理量。密堆积结构的堆积比最大。 布拉格定律: 假设:入射波从晶体中平行平面作镜面反射,每一各平面反射很少一部分辐射,就像一个轻微镀银的镜子,反射角等于入射角,来自平行平面的反射发生干涉形成衍射束。(公式)。其中:n为整数,称为反射级数;θ为入射线或反射线与反射面的夹角,称为掠射角,由于它等于入射线与衍射线夹角的一半,故又称为半衍射角,把2θ称为衍射角。当间距为d的平行晶面,入射线在相邻平行晶面反射的射线行程差为2dsinθ,当行程差等于波长的整数倍时,来自相继平行平面的辐射就发生相长干涉,根据图示,干涉加强的条件是:,这就是所谓布拉格定律,布拉格定律成立的条件是波长λ≤2d。 布拉格定律和X射线衍射产生条件之间的等价性证明 假设:若X射线光子弹性散射,光子能量守恒,出射束频率:入射束频率: 2dSinθ= nλ Hω ω'= ck' ω= ck因此,有散射前后波矢大小相等k’=k 和k’2=k2根据X射线衍射产生条件得到(k’-k)=G 及k+G=k’两个等式;第二个式子两边平方并化简得到:2k.G+G2=0;将G用-G替换得到2k.G=G2也成立;因此得到了四个等价式子:;k+G=k’;2k.G+G2=0;以及2k.G=G2上面说明了X衍射产生条件的四个表达式等价性;下面就进一步证明布拉格定律与X射线衍射产生条件等价:证明:由 可以推出: 即可以得到即: 即:,命题得证 布里渊区定义 为维格纳-赛茨原胞(Wigner-Seitz Cell)。任选一倒格点为原点,从原点向它的第一、第二、第三……近邻倒格点画出倒格矢,并作这些倒格矢的中垂面,这些中垂面绕原点所围成的多面体称第一B.Z,它即为倒易间的Wigner-Seitz元胞,其“体积”为Ω※=b1·(b2×b3)布里渊区边界上波矢应该满足的方程形式为(公式) 因此,布里渊区实际上包括了所有能在晶体上发生布拉格反射的波的波矢k。 范德华耳斯-伦敦相互作用 答:对于组成晶体的原子,尤其是惰性气体原子,由于原子电子云是瞬间变化的,因此各个原子电子云间存在互感偶极矩,这种互感偶极矩将原子之间联系在一起形成晶体。也就是通过互感偶极矩作用即耦合作用后比没有耦合作用时要来得低,这种由于原子之间互感偶极矩所产生的相互吸引作用称之为范德华耳斯-伦敦相互作用 离子晶体中存在的相互作用: ? 异号离子间的静电吸引相互作用(主要组成部分)? 同号离子间的静电排斥相互作用(主要组成部分)? 对于具有惰性气体电子组态的离子,他们之间排斥作用有类似于惰性气体原子间的排斥相互作用? 存在很小部分的吸引性相互作用的范德华耳斯作用(大约占1%~2%)离子晶体中,吸引性相互作用的范德华耳斯部分对于晶体内聚能贡献比较小,大约1%~2%范德华耳斯相互作用是一种互感偶极相互作用,只要存在正负中心不重合的偶极子,就会存在这种相互作用,只是在离子晶体中,这种相互作用较小。

固体物理学答案详细版

《固体物理学》部分习题参考解答 第一章 1.1 有许多金属即可形成体心立方结构,也可以形成面心立方结构。从一种结构转变为另一种结构时体积变化很小.设体积的变化可以忽略,并以R f 和R b 代表面心立方和体心立方结构中最近邻原子间的距离,试问R f /R b 等于多少? 答:由题意已知,面心、体心立方结构同一棱边相邻原子的距离相等,都设为a : 对于面心立方,处于面心的原子与顶角原子的距离为:R f = 2 a 对于体心立方,处于体心的原子与顶角原子的距离为:R b a 那么, Rf Rb 31.2 晶面指数为(123)的晶面ABC 是离原点O 最近的晶面,OA 、OB 和OC 分别与基失a 1, a 2和a 3重合,除O 点外,OA ,OB 和OC 上是否有格点?若ABC 面的指数为(234),情况又如何? 答:根据题意,由于OA 、OB 和OC 分别与基失a 1,a 2和a 3重合,那么 1.3 二维布拉维点阵只有5种,试列举并画图表示之。 答:二维布拉维点阵只有五种类型:正方、矩形、六角、有心矩形和斜方。分别如图所示: 1.4 在六方晶系中,晶面常用4个指数(hkil )来表示,如图所示,前3个指数表示晶面族中最靠近原点的晶面在互成120°的共平面轴a 1,a 2,a 3上的截距a 1/h ,a 2/k ,a 3/i ,第四个指数表示该晶面的六重轴c 上的截距c/l.证明:i=-(h+k ) 并将下列用(hkl )表示的晶面改用(hkil )表示:(001)(133)(110)(323)(100) (010)(213) 答:证明 设晶面族(hkil )的晶面间距为d ,晶面法线方向的单位矢量为n °。因为晶面族(hkil )中最靠近原点的晶面ABC 在a 1、a 2、a 3轴上的截距分别为a 1/h ,a 2/k ,a 3/i ,因此 123o o o a n hd a n kd a n id === ……… (1) 正方 a=b a ^b=90° 六方 a=b a ^b=120° 矩形 a ≠b a ^b=90° 带心矩形 a=b a ^b=90° 平行四边形 a ≠b a ^b ≠90°

黄昆版固体物理学课后问题详解解析汇报问题详解

《固体物理学》习题解答 黄昆 原著 汝琦改编 (志远解答,仅供参考) 第一章 晶体结构 1.1、 解:实验表明,很多元素的原子或离子都具有或接近于球形对称结构。因此,可以把这些原子或离子构成的晶体看作是很多刚性球紧密堆积而成。这样,一个单原子的晶体原胞就可以看作是相同的小球按点阵排列堆积起来的。它的空间利用率就是这个晶体原胞所包含的点的数目n 和小球体积V 所得到的小球总体积nV 与晶体原胞体积Vc 之比,即:晶体原胞的空间利用率, Vc nV x = (1)对于简立方结构:(见教材P2图1-1) a=2r , V= 3 r 3 4π,Vc=a 3,n=1 ∴52.06r 8r 34a r 34x 3 333=π=π=π= (2)对于体心立方:晶胞的体对角线BG=x 3 3 4a r 4a 3=?= n=2, Vc=a 3 ∴68.083)r 3 34(r 342a r 342x 3 3 33≈π=π?=π?= (3)对于面心立方:晶胞面对角线BC=r 22a ,r 4a 2=?= n=4,Vc=a 3 74.062) r 22(r 344a r 344x 3 3 33≈π=π?=π?= (4)对于六角密排:a=2r 晶胞面积:S=62 60sin a a 6S ABO ??=??=2 a 233 晶胞的体积:V=332r 224a 23a 3 8 a 233C S ==?= ? n=1232 1 26112+?+? =6个 74.062r 224r 346x 3 3 ≈π=π?= (5)对于金刚石结构,晶胞的体对角线BG=3 r 8a r 24a 3= ??= n=8, Vc=a 3

黄昆 固体物理 讲义 第二章

第二章 固体的结合 晶体结合的类型 晶体结合的物理本质 固体结合的基本形式与固体材料的结构、物理和化学性质有密切联系 § 2.1 离子性结合 元素周期表中第I 族碱金属元素(Li 、Na 、K 、Rb 、Cs )与第VII 族的卤素元素(F 、Cl 、Br 、I )化合物(如 NaCl , CsCl ,晶体结构如图XCH001_009_01和XCH001_010所示)所组成的晶体是典型的离子晶体,半导体材料如CdS 、ZnS 等亦可以看成是离子晶体。 1. 离子晶体结合的特点 以CsCl 为例,在凝聚成固体时,Cs 原子失去价电子,Cl 获得了电子,形成离子键。以离子为结合单元,正负离子的电子分布高度局域在离子实的附近,形成稳定的球对称性的电子壳层结构; , , , Na K Rb Cs Ne Ar Kr Xe F Cl Br I ++++? ? ? ? ? ? ?? 离子晶体的模型:可以把正、负离子作为一个刚球来处理; 离子晶体的结合力:正、负离子之间靠库仑吸引力作用而相互靠近,当靠近到一定程度时,由于泡利不相容原理,两个离子的闭合壳层的电子云的交迭会产生强大的排斥力。当排斥力和吸引力相互平衡时,形成稳定的离子晶体; 一种离子的最近邻离子为异性离子; 离子晶体的配位数最多只能是8(例如CsCl 晶体); 由于离子晶体结合的稳定性导致了它的导电性能差、熔点高、硬度高和膨胀系数小;

大多数离子晶体对可见光是透明的,在远红外区有一特征吸收峰。 氯化钠型(NaCl 、KCl 、AgBr 、PbS 、MgO)(配位数6) 氯化铯型(CsCl 、 TlBr 、 TlI)(配位数8) 离子结合成分较大的半导体材料ZnS 等(配位数4) 2. 离子晶体结合的性质 1)系统内能的计算 晶体内能为所有离子之间的相互吸引库仑能和重叠排斥能之和。以NaCl 晶体为例,r 为相邻正负离 子的距离,一个正离子的平均库仑能:∑++?++3213 21,,2 /122322222102) (4)1('21n n n n n n r n r n r n q πε ——遍及所有正负离子,因子1/2—库仑作用为两个离子所共有,一个离子的库伦能为相互作用能的一半。 321,,n n n 一个负离子的平均库仑能:∑++??++3213 21,,2 /122322222102) (4)1()('21n n n n n n r n r n r n q πε ——遍及所有正负离子,因子1/2—库仑作用为两个离子所共有,一个离子的库伦能为相互作用能的一半。 321,,n n n 一个原胞有两个离子,其原胞的能量:∑++?++3213 21,,2 /122322222102)(4)1('n n n n n n r n r n r n q πε 即r q n n n r q n n n n n n 02 ,,2 /123 222102 4)()1('4321321πεαπε?=++?∑++ ∑++?=?++321321,,2 /123 2221)()1('n n n n n n n n n α——α:马德隆常数,完全取决于晶体的结构。 几种常见的晶体晶格的马德隆常数 离子晶体 NaCl CsCl ZnS 马德隆常数 1.748 1.763 1.638 相邻两个离子因电子云有显著重叠时的排斥能:或者 /r r be ?n r b

固体物理答案

(1) 共价键结合的特点?共价结合为什么有“饱和性”和“方向性”? 饱和性和方向性 饱和性:由于共价键只能由为配对的电子形成,故一个原子能与其他原子形成共价键的数目是有限制的。N<4,有n 个共价键;n>=4,有(8-n )个共价键。其中n 为电子数目。方向性:一个院子与其他原子形成的各个共价键之间有确定的相对取向。 (2) 如何理解电负性可用电离能加亲和能来表征? 电离能:使原子失去一个电子所必须的能量其中A 为第一电离能,电离能可表征原子对价电子束缚的强弱;亲和势能:中性原子获得电子成为-1价离子时放出的能量,其中B 为释放的能量,也可以表明原子束缚价电子的能力,而电负性是用来表示原子得失电子能力的物理量。故电负性可用电离能加亲和势能来表征。 (3) 引入玻恩-卡门条件的理由是什么? 在求解原子运动方程是,将一维单原子晶格看做无限长来处理的。这样所有的原子的位置都是等价的,每个原子的振动形式都是一样的。而实际的晶体都是有限的,形成的键不是无穷长的,这样的链两头原子就不能用中间的原子的运动方程来描述。波恩—卡门条件解决上述困难。 (4) 温度一定,一个光学波的声子数目多呢,还是一个声学波的声子数目多? 对同一振动模式,温度高时的声子数目多呢,还是温度低的声子数目多? 温度一定,一个声学波的声子数目多。 对于同一个振动模式,温度高的声子数目多。 (5) 长声学格波能否导致离子晶体的宏观极化? 不能。长声学波代表的是原胞的运动,正负离子相对位移为零。 (6)晶格比热理论中德拜(Debye )模型在低温下与实验符合的很好,物理原因 是什么?爱因斯坦模型在低温下与实验存在偏差的根源是什么? 在甚低温下,不仅光学波得不到激发,而且声子能量较大的短声学波也未被激发,得到激发的只是声子能量较小的长声学格波。长声学格波即弹性波。德拜模型只考虑弹性波对热容德贡献。因此,在甚低温下,德拜模型与事实相符,自然与实验相符。 爱因斯坦模型过于简单,假设晶体中各原子都以相同的频率做振动,忽略了各格波对热容贡献的差异,按照爱因斯坦温度的定义可估计出爱因斯坦频率为光学支格波。在低温主要对热容贡献的是长声学支格波。 (7)试解释在晶体中的电子等效为经典粒子时,它的有效质量为什么有正、有负、无穷大值?带顶和带底的电子与晶格的作用各有什么特点? m F m m l +=* m F m v F m v F l ?+?=??* ])()[(1])()[(1电子给予晶格德外力给予电子德晶格给予电子德外力给予电子德-=+p p m p p m m p ????=?*当电子从外场获得的动量大于电子传递给晶格的动量时,有效质量为正; 当电子从外场获得的动量小于电子传递给晶格的动量时,有效质量为负; 当电子从外场获得的动量等于电子传递给晶格的动量时,有效质量为无穷。 (8)为什么温度升高,费米能级反而降低?体积膨胀时,费米能级的变化? 在温度升高时,费米面以内能量离约范围的能级上的电子被激发到之上约范围的能级。故费米球体积V 增大,又电子总数N 不变,则电子浓度减小,又,则费米半径变小,费米能级也减小。当体积膨胀时,V 增大,同理费米能级减小。 (9)什么是p 型、N 型半导体?试用能带结构解释。

固体物理知识点

1. 稻草、石墨烯和金刚石是一种元素组成的吗?为何存在外型和性能方面存在很 大差 异? 同为碳元素,从微观角度来说碳元素的排列不同决定了宏观上性质及外型不同 2. 固体分为 晶体、非晶体和准晶体,它们在微观上分别觉有什么特点? 晶体的 宏观特性有哪些?晶体有哪些分类? 晶体长程有序, 非晶体短程有序, 准晶体具有长程取向性, 没有长程的平移对 称性;晶体宏观特性:自限性,解理性,晶面角守恒,晶体各向异性,均匀性, 对称性,以及固定的熔点;晶体主要可以按晶胞、对称性、功能以及结合方式进 行分类。 原胞是一个晶格中最小的重复单元, 体积最小,格点只在顶角上, 面上和内部 不含格点。晶胞体积不一定最小,格点不仅在顶角上,还可以在内部或面心上。 3. 简单晶格与复式晶格的区别? 简单晶格的晶体由完全相同的一种原子组成,且每个原子周围的情况完全相 同; 复式晶格的晶体由两种或两种以上原子组成,同种原子各构成和格点相同 的网格,这些网格的相对位移形成复式晶格 2 4 3a 3 = V 1 3 4 3 a 5. 晶面的密勒指数为什么可用晶面的截距的倒数值的比值来表征 (把基矢看做单 位矢 量),提示:晶面一般用面的法线来表示,法线又可以用法线与轴的夹角的 余弦来表示。 晶面的法线方向与三个坐标轴的夹角的余弦之比, 等于晶面在三个轴上的截距 的倒数之比。 晶面的法线与三个基矢的夹角余弦之比等于三个整数之比。 6. 简立方 [110]等效晶向有几个 ,表示成什么? 110随机排列,任意取负,共 12种,表示为 <110>。 7. 倒格子矢量 Kh=h1b1+h2b2+h3b3 的大小,方向和意义 (矢量 Kh 这里 h 为下标, h1, b1, h2, b2, h3, b3里的数字均为下标, b1, b2, b3 为倒格子原胞基矢 ),提 示: 从倒格子性质中找答案。 大小为 2π/晶面间距 方向为晶面法线方向 意义是与真实空间相联系的傅立 叶空间的周期性排列 8. 倒格子和正格子之间的关系有哪些? 1. 正格子基矢与倒格子基矢点乘 2.正格矢与倒格矢的点乘为定值 3.倒格子 原胞体积反比于正格子原胞体积 4.倒格矢与正格中晶面族正交 5.正格子与 倒格子互为对方的倒格子 9. 证明面心立方晶体的倒格子是体心立方晶体 面心立方正格基矢 4.假设体心立方边长是 a,格点上的小球半径为 N=1 8 8 4R 3a 1=2 单胞中原子所占体积为 V 1=N 体心立方体体积为 V 2 R , 4 求体心立方致密度。 8 R 3 R 3 致密度为 V 2

固体物理答案 第2章

2.1证明两种一价离子组成的一维晶格的马德隆常数为2ln 2α=。 证:考虑到由两种一价离子组成的一维晶格的内能(相互作用能)仅与库仑势有关,可写作: 2 20 000 (1)44(1)1112(1)2ln 2234n n n n q q U nr r n α πεπεα≠≠-= =--∴=-=-?-+-+-=∑∑ 注:234 111ln(1)234 x x x x x +=- +-+。2是考虑左右离子对称。 2.2讨论使离子电荷加倍所引起的对NaCl 晶格常数及结合能的影响(排斥势看作不变)。 解:(1)晶格常数 电荷加倍前: 206()()4n n e b A B U N N r r r r απε=-+=-+ 由平衡条件:0 () 0r r U r r =?=?,可得 110()n nB r A -= 。 电荷加倍后: 2' 0464()()4n n e b A B U N N r r r r απε=-+=-+ 同样由平衡条件: ' '()0r r U r r =?=?,可得 1' 10()4n nB r A -= 所以 001 1 '04r r r n ≈=-- ,即1>>n 时,晶格常数可认为不变。 (2)结合能 电荷加倍前: 20001 ()(1)4N e W U r r n απε=-=- 电荷加倍后: 22' '' 1 1' 001 0041 4()(1)4444 n n n N e N e W U r W r n r ααπεπε---=-=-== 当1>>n 时,有W 'W 4=,结合能增加为原来的4倍。 2.3若一晶体两个离子间的相互作用能可表示为 ,晶体体积为3NAr V =(A 为常数,N 为原胞数目),试求:(1)平衡间距;(2)结合能W (单个离子的);(3)体弹性模量的表达式;(4)若取02,10,3m n r ===?,4W =eV,求,αβ值。 解: (1)平衡间距 ()=-+m n αβ U r r r

黄昆固体物理课后习题答案6

第六章 自由电子论和电子的输运性质 思 考 题 1.如何理解电子分布函数)(E f 的物理意义是: 能量为E 的一个量子态被电子所占据的平均几率 [解答] 金属中的价电子遵从费密-狄拉克统计分布, 温度为T 时, 分布在能级E 上的电子数目 1/)(+=-T k E E B F e g n , g 为简并度, 即能级E 包含的量子态数目. 显然, 电子分布函数 11 )(/)(+=-T k E E B F e E f 是温度T 时, 能级E 的一个量子态上平均分布的电子数. 因为一个量子态最多由一个电子所占据, 所以)(E f 的物理意义又可表述为: 能量为E 的一个量子态被电子所占据的平均几率. 2.绝对零度时, 价电子与晶格是否交换能量 [解答] 晶格的振动形成格波,价电子与晶格交换能量,实际是价电子与格波交换能量. 格波的能量子称为声子, 价电子与格波交换能量可视为价电子与声子交换能量. 频率为i ω的格波的声子数 11 /-=T k i B i e n ωη. 从上式可以看出, 绝对零度时, 任何频率的格波的声子全都消失. 因此, 绝对零度时, 价电子与晶格不再交换能量. 3.你是如何理解绝对零度时和常温下电子的平均动能十分相近这一点的 [解答] 自由电子论只考虑电子的动能. 在绝对零度时, 金属中的自由(价)电子, 分布在费密能级及其以下的能级上, 即分布在一个费密球内. 在常温下, 费密球内部离费密面远的状态全被电子占据, 这些电子从格波获取的能量不足以使其跃迁到费密面附近或以外的空状态上, 能够发生能态跃迁的仅是费密面附近的少数电子, 而绝大多数电子的能态不会改变. 也就是说, 常温下电子的平均动能与绝对零度时的平均动能一定十分相近. 4.晶体膨胀时, 费密能级如何变化 [解答] 费密能级 3/2220)3(2πn m E F η=, 其中n 是单位体积内的价电子数目. 晶体膨胀时, 体积变大, 电子数目不变, n 变小, 费密能级降低. 5.为什么温度升高, 费密能反而降低 [解答]

固体物理知识点

1.稻草、石墨烯和金刚石是一种元素组成的吗?为何存在外型和性能方面存在很大差异? 同为碳元素,从微观角度来说碳元素的排列不同决定了宏观上性质及外型不同 2.固体分为晶体、非晶体和准晶体,它们在微观上分别觉有什么特点? 晶体的宏观特性有哪些?晶体有哪些分类? 晶体长程有序,非晶体短程有序,准晶体具有长程取向性,没有长程的平移对称性;晶体宏观特性:自限性,解理性,晶面角守恒,晶体各向异性,均匀性,对称性,以及固定的熔点;晶体主要可以按晶胞、对称性、功能以及结合方式进行分类。 原胞是一个晶格中最小的重复单元,体积最小,格点只在顶角上,面上和内部不含格点。晶胞体积不一定最小,格点不仅在顶角上,还可以在内部或面心上。 3.简单晶格与复式晶格的区别? 简单晶格的晶体由完全相同的一种原子组成,且每个原子周围的情况完全相同; 复式晶格的晶体由两种或两种以上原子组成,同种原子各构成和格点相同的网格,这些网格的相对位移形成复式晶格。 4.假设体心立方边长是a,格点上的小球半径为R ,求体心立方致密度。 1=81=28N ?+ 单胞中原子所占体积为33148=33 V N R R ππ?= 4R = 体心立方体体积为32V a = 致密度为33 12423=8V V a πρ?????== 5.晶面的密勒指数为什么可用晶面的截距的倒数值的比值来表征(把基矢看做单位矢量),提示:晶面一般用面的法线来表示,法线又可以用法线与轴的夹角的余弦来表示。 晶面的法线方向与三个坐标轴的夹角的余弦之比,等于晶面在三个轴上的截距的倒数之比。 晶面的法线与三个基矢的夹角余弦之比等于三个整数之比。 6.简立方[110]等效晶向有几个,表示成什么? 110随机排列,任意取负,共12种,表示为<110>。 7.倒格子矢量Kh=h1b1+h2b2+h3b3 的大小,方向和意义(矢量Kh 这里h 为下标,h1, b1, h2, b2, h3, b3里的数字均为下标,b1, b2, b3 为倒格子原胞基矢),提示:从倒格子性质中找答案。 大小为2π/晶面间距 方向为晶面法线方向 意义是与真实空间相联系的傅立叶空间的周期性排列 8.倒格子和正格子之间的关系有哪些? 1.正格子基矢与倒格子基矢点乘 2.正格矢与倒格矢的点乘为定值 3.倒格子原胞体积反比于正格子原胞体积 4.倒格矢与正格中晶面族正交 5.正格子与倒格子互为对方的倒格子 9.证明面心立方晶体的倒格子是体心立方晶体 面心立方正格基矢

黄昆固体物理试题及答案

山东大学试题专用纸 物理系-----年级----班 课程名称: 固体物理 共1页 学号: 姓名: 一. 填空(20分, 每题2分) 1.对晶格常数为a 的SC 晶体,与正格矢R =a i +2a j +2a k 正交的倒格子晶面族的面指数为( ), 其面间距为( ). 2.典型离子晶体的体积为V , 最近邻两离子的距离为R , 晶体的格波数目为( ), 长光学波的( )波会引起离子晶体宏观上的极化. 3. 金刚石晶体的结合类型是典型的( )晶体, 它有( )支格波. 4. 当电子遭受到某一晶面族的强烈反射时, 电子平行于晶面族的平均速度( )零, 电子波矢的末端处在( )边界上. 5. 两种不同金属接触后, 费米能级高的带( )电. 对导电有贡献的是 ( )的电子. 二. (25分) 1. 证明立方晶系的晶列[hkl ]与晶面族(hkl )正交. 2. 设晶格常数为a , 求立方晶系密勒指数为(hkl )的晶面族的面间距. 三. (25分) 设质量为m 的同种原子组成的一维双原子分子链, 分子内部的力系数为β1, 分子间相邻原子的力系数为β2, 分子的两原子的间距为d , 晶格常数为a , 1. 列出原子运动方程. 2. 求出格波的振动谱ω(q ). 四. (30分) 对于晶格常数为a 的SC 晶体 1. 以紧束缚近似求非简并s 态电子的能带. 2. 画出第一布里渊区[110]方向的能带曲线, 求出带宽. 3.当电子的波矢k =a πi +a π j 时,求导致电子产生布拉格反射的晶面族的面指数. (试题随答卷上交)

答案: 一. 填空(20分, 每题2分) 1.对晶格常数为a 的SC 晶体,与正格矢R =a i +2a j +2a k 正交的倒格子晶面族 的面指数为( 122 ), 其面间距为( a 32π ). 2.典型离子晶体的体积为V , 最近邻两离子的距离为R , 晶体的格波数 目为( 3 3R V ), 长光学波的( 纵 )波会引起离子晶体宏观上的极化. 3. 金刚石晶体的结合类型是典型的(共价结合)晶体, 它有( 6 )支格波. 4. 当电子遭受到某一晶面族的强烈反射时, 电子平行于晶面族的平均速度(不为 )零, 电子波矢的末端处在(布里渊区)边界上. 5. 两种不同金属接触后, 费米能级高的带(正)电.对导电有贡献的是 (费米面附近)的电子. 二. (25分) 1.设d 为晶面族()hkl 的面间距为, n 为单位法矢量, 根据晶面族的定义, 晶面族()hkl 将c b a 、、分别截为l k h 、、 等份, 即 a =?n a cos (a ,n )==a cos (a ,n )=hd , b =?n b cos (b ,n )= a cos (b ,n ) =kd , c =?n c cos (c ,n )= a cos (c ,n ) =ld . 于是有 n =a d h i +a d k j +a d l k =a d (h i +k j +l k ). (1) 其中, i 、j 、k 分别为平行于c b a 、、三个坐标轴的单位矢量. 而晶列 []hkl 的方向矢量为 =R ha i +ka j +la k =a (h i +k j +l k ). (2) 由(1)、(2)两式得 n =2a d R , 即n 与R 平行. 因此晶列[]hkl 与晶面()hkl 正交. 2. 立方晶系密勒指数为(hkl )的晶面族的面间距 22222222l k h a a l a k a h d hkl hkl ++= ++==k j i K πππππ 三. (25分) 1.

相关文档