文档库 最新最全的文档下载
当前位置:文档库 › 热力学与制冷基础知识_secret

热力学与制冷基础知识_secret

热力学与制冷基础知识_secret
热力学与制冷基础知识_secret

热力学与制冷基础知识

一、常用物理量及其概念

要理解制冷原理需要一些基础的物理知识。在本节中,我们将讲解一些常用物理量并举一些简单的应用例子。所涉及到的内容不能代替物理课程,但足够我们用了。对于有较好的物理学基础的人来说,这一节可以作为复习,甚至可以省略。

(一)质量、力和重量

物体的质量是它所包含的物质的量。国际单位用千克。 力是一个物体施加于另一个物体的推力或拉力。力的国际单位为牛顿。 物体的重量是地球引力施加在物体上的力。也就是说,重量是一种力而不是质量。 然而,在生活中,重量常用来表示物体的质量,因此质量和重量常发生混淆。但是,当我们用千克力为单位表示重量时,在数值上与质量是相同的,误。在任何情况下,问题的本质通常会显示出究竟我们考虑的是质量还是重量。

(二)密度、比容和比重

密度(d )是某种物质单位体积的质量(m ),比容(v )是密度的倒数。即:

V m

d = m V v =

式中V 为体积。

物质的密度和比容会随着温度和压力的变化而变化,尤其是液体和气体。

液体的比重定义为它的密度与相同体积的4℃的水的密度的比值。

4℃的水的密度为1000kg/m 3,所以比重为

1000d d d

r w ==

式中d :物质的密度,kg/m 3;

d w 是4℃的水的密度,kg/m 3。

质量、密度和比容都是物质的物理特性。对于制冷过程来说还有其它一些重要的物理性质的量,即:压力、温度、焓和比热。

(三)压力、绝对压力、表压、真空压力、液柱压力和水汽分压

压力定义为施加在单位面积上的力。用公式的形式来表达就是:

A F

p ==面积力

如果力的单位为牛顿,面积的单位用平方米,则压力的单位为牛/米2(N/m 2)。在国际单位制中,压力的单位为帕斯卡(Pa ),1帕斯卡(Pa )=1牛/米2(N/m 2)。然而在制冷工作中还经常会用到许多其它的压力单位,如毫米汞柱、巴(bar )和大气压,附录中列出了这些单位之间的相互转化。

绝对压力、表压和真空度

我们定义绝对真空的空间里压力为零,在这个零值之上由流体产生的压力称为绝对压力(P abs )。大气层中的空气由于它们的重量而产生了施加在地球表面上的压力,称为大气压(P atm )。一个标准大气压(1atm )一般用施加在海平面上的大气压力来衡量,经过测量得出这个数值大约等于1.01×105N/m 2。根据天气条件的变化这个数值会略有变化。随着海拔高度的增加,大气压会下降,这是由于它上面的空气的重量减小了。例如在西藏地区的大气压就比北京地区的大气压低。

测量压力的工具通常是用来测量流体的压力与大气压之间的差值,而不是流体的绝对压力。测出的高于大气压的压力称为表压P g 。绝对压力、表压和大气压之间的关系如下:

g atm abs p p p +=

表压使用起来很方便,因为大多数的压力测量仪器是以大气压的读数为零度来进行校准的。

当一种流体产生的压力低于当地大气压时,这个压力与大气压之间的差值就称为真空压力或真空度(P vac )。绝对压力、大气压和真空度之间的关系如下:

vac atm abs p p p -=

有些压力表可以同时读出真空压力和表压,称为复合压力表,复合压力表在制冷工作中特别有用,因为在压缩机的吸收管路中,压力常低于大气压。

mmHg )。

液柱压力

液体由于它本身的重量可以产生压力,而重量又取决于液柱的高度。产生的压力与液柱高度之间的关系如下:

H d p ?=

式中p :液体施加的压力;

d :液体的密度;

H :液柱的高度。

液体柱高度和压力之间的这种关系被用来制造一种用液柱来测量压力的仪器,称为流体(气体)压力计或U 型压力计。如果施加在压力计U 型管两端的压力相同,都是大气压,则液面保持在同一水平;如果一端与容器相连,容器中的压力高于大气压,则与容器相连接的一端液面较低;如果容器中的压力低于大气压(真空压力),则与容器相连接的一端液面较高。

气压计是一种特殊的压力计,用来测量大气压力,所使用的液体是汞。管中抽成真空以使得汞柱一端没有任何空气压力,由于有大气压施加于汞柱的底端,所以汞柱上升的高度就表示了大气压。

液压柱或气压柱

用液压柱或气压柱为单位来表示压力是很方便的,液压柱或气压柱就相当于公式1-7中所示的液柱高度H 。在某些场合中,我们可以用760毫米汞柱来表示大气压,取代

1.03kg/cm.2。也就是说我们可以用公式将其它的压力单位转化为液柱来表示,这种转换关系

也可以从附录中查得。

任何气体在分子运动时都具有一定的压力。湿空气由干空气和水汽组成,它们都具有各自的压力,叫做分压力,二者之和组成空气的总压力。水汽分压力的大小反映了空气中含水汽量的多少,水汽的最大压力称为对应温度下水汽饱和压力。空气温度越高,则空气中水汽的饱和压力越大,空气中水汽达到饱和分压力,则空气不再吸收水分,称为饱和空气。

(四)功、功率和能(量)

功是当移动一个物体时,施加在它上面的力所产生的效果。可以用下面的公式来表示:

距离力功?=

在国际单位制中,功的单位是焦尔(J ),1牛顿的力使物体移动1米所做的功为1焦尔,也就是说:1J=1N.m 。

功率是做功和所用的时间的比,可以用下式表示:

时间功

功率=

在工业应用中,功率常常比功具有更直接的意义,设备的工作能力是以它们的输出功率或能量消耗为基础的。功率的单位常用马力(hp )和千瓦(kW),功率的标准国际单位是千瓦(kW),等于1千焦尔/秒。

能,被定义为做功的能力,尽管它是一个抽象的概念。比如,我们使用贮存在燃料中的化学能,通过在高压下产生燃烧的气体来驱动引擎的活塞做功,所以功是能的一种形式。能有许多种存在形式,可以分为几类,它们被贮存在物体内部,或在各种形式之间转化或从一个物休转移到另一个物体。

能可以以许多不同的形式贮存在物质中,下面我们要把所有的注意力集中到能量转化或转移的其中一种形式,那就是热。其它的一些能量贮存的形式将在以后进行讨论。 (五)热、温度和焓

热可以定义为由于温差的存在而从一个物体向另一个物体转移的能量的一种形式。 我们要注意,热量只能自然地从温度较高的物体向温度较低的物体转移,我们说它是“往下走”的。当然,如果没有温差就没有热量的转移。

制冷是一个特殊的热量传递过程,我们要将热量从物体移走,使它达到我们想要的低温,或保持这种低温。当然,一定具有一种物体比我们要从中移除热量的这个物体的温度还要低。这就是为什么我们要创造机械制冷的方法,也就是本书的主题。

尽管我们常说冷却某个东西,但制冷实际上是要把热量移走。从技术角度而言,冷却这个词是毫无意义的,它只是我们身体对于处于低温状态的物体或正在失去热量的物体的一种感觉。

热量的国际单位是焦尔,我们注意到它也是功的单位,由于功和热是同一个物理性质——能量的两种不同形式,所以可以用同一个单位来表示。实际上我们可以看到许多例子,在其中能量的一种形式——功,通过摩擦转化成另一种形式——热。有一个常见的例子就是汽车的轮胎与路面的摩擦使轮胎变热。

在国际单位中,使用焦尔作为各种形式的能量的唯一的单位,使用千瓦作为功率的唯一单位可以简化计算过程。但是,在一些使用米制的国家,在制冷工作中,人们仍然会使用卡或千卡作为热能的单位。1卡是指将1克15℃的水的温度升高1℃所需要的热量。

温度是物质的一个特性参数,它取决于物体内部分子运动的速度。分子是组成物体结构的粒子。分子运动的速度越快,物体的温度就越高。但是我们不可能通过测量分子运动的速度来确定物体的温度。我们的触觉可以给我们一种对温度的相对的比较,我们会根据自己的反应说某个东西是热的或冷的,但这不足以得出精确的数值。我们通过观察温度的变化所产生的一些物体变化,得到精确测量温度的方法。最常见的温度测量仪器(温度计)利用了液体热胀冷缩的物理现象。水银温度计由一个细长的玻璃管和一个盛装水银的球状物组成,当温度升高时,水银膨胀并沿着管子上升,我们看一下水银柱顶端的位置相应的温度刻度就可以读出温度的数值。在国际单位制中,温度的单位是摄氏度(℃),在大气压下水的沸点是100℃,冰点温度是0℃。

此外还有一个常用的绝对温度的单位,它的零度值是取可能存在的最低温度,称为开尔文(K )温度标度。它与摄氏度的关系如下:

273+=℃K

焓:能量可以分为流动的能量和贮存的能量,一个物体中贮存的总能量包括几种形式,比如我们都注意到了物体中贮存有化学能,因为我们已经认识到物质通过燃烧可以释放出所贮存的化学能。还有两种常见的能量贮存的形式是动能和势能。动能是由于物体的运动或它

的速度而贮存的能量,而势能是由于它的位置,或海拔高度。温度和压力也会使物体具有额外的能量。我们都注意到高压的气体具有能量(如沸腾时产生的蒸汽),高温下的水可以向外释放热能。我们称这种以温度和压力所贮存的能量称为焓(H )。

对于焓还有更为准确的定义,但在我们所讨论的范围内是没有必要的。在制冷工业中常使用一种说法叫热含量,它的含义与焓相同。准确地说,热是一种可以在物体之间流进、流出的能量形式,而焓或热容是物体的贮存能量的形式。作为一种能量的形式,焓的单位是焦尔。比焓是单位质量的物质的焓,它的单位是焦尔/千克。

将温度与焓(热含量)区别开来是很重要的,温度是对一个物体的热的水平的一种衡量,当物体获得热量时,它的温度升高,而物体的焓(热含量)除了温度外,还取决于它的质量。例如,极少量在1,400摄氏度(℃)的温度下熔化了的钢,其温度要比一大池90摄氏度(℃)水高得多,但是这一大池子水的焓却高于这少量熔化的钢。也就是说,这些水中所贮存的内能更多。这是一个很重要的事实,因为在许多实际应用的情况中,我们可以从这一池水中得到更多的热量,尽管它的温度较低。

(六)湿度、湿球温度和露点温度

空气的潮湿程度叫空气的湿度,其大小由空气中水汽含量而定。按用途不同可分为三种表示方法:

绝对湿度:每立方米湿空气中含有的水汽的质量(kg/m 3)。由于在湿空气的状态变化过程中,其体积和质量是变化的,即使湿空气的水汽含量不变,由于温度变化其体积也随着变化,绝对湿度用体积作为参数,所以绝对湿度也随着变化,这样就不能反映空气中的水汽含量的多少。

含湿量:1kg 干空气中带有的水汽量(g/kg)。干空气和水汽在常温下可以看作理想气体,根据湿空气、干空气和水汽三者之间的体积、温度、压力和质量的关系,可以得到:

c

c g c g c

p B p p p G G d -===6226221000

式中Gc 、G g :湿空气中水汽和干空气质量;

Pc 、B :水汽分压力和大气压力。

一般在一个地区大气压力可以看作常数,因此水汽分压越大,含湿量d 也越大。含湿量在空调中用途很大,计算中经常用到它,由含湿量和焓制成的湿焓图是空调计算的基本线图。

相对湿度:在一定温度下,一定的空气中只能容纳一定的水汽量,若空气中水汽量超过这个限度就会凝结成雾。这个限度的水汽量称为饱和湿度。在饱和湿度下相应有饱和水汽分压P cB 、饱和绝对湿度Z B 与饱和含湿量d B 。未饱和空气的绝对湿度Z 与饱和湿度Z B 之比就叫相对湿度?。

%100%100%100%100?≈?

--=?=?=B

B cB c cB c

B d d

d d p B p B p p Z Z ? 湿球温度:温度计的感温球与空气直接接触所测出的空气温度称为空气的干球温度,如果用带有水分的湿纱布包在温度计的感温球上,这样的温度计就叫湿球温度计,所测出的温度就叫湿球温度,是纱布中的水与周围空气进行热、湿交换达到最终稳定状态时的温度。

露点温度:某物体被降温时其表面会出现凝结水,这是因为这些表面的空气含湿量超过了饱和含湿量,空气中的水就凝结出来,所对应的水汽凝结时的饱和含湿量的温度就叫露点温度。仪器、设备的表面温度低于空气的露点温度就会结露而损坏仪器。

二、与制冷有关的热力学状态与关系

(一)液体、蒸汽和状态变化

物质有三种不同的存在形式(也称作相):固态、液态和气态。我们可以做一个实验很好地显示了物质的状态是如何从液态变为气态(沸腾),从气态变为液态(冷凝)的。比如,室温下的一锅水,处于开放状态,所受到的压力为海平面的大气压,即一个大气压(1.013×105N/m2)。这时我们开始把热量加入到水中,我们可以发现,随着热量的加入,水的温度不断升高。但是,在其后的一个时间点,温度会停止在100℃,即使继续加热,温度也不再上升了。但此时我们可以观察到液体变为气体或者说蒸汽状态了。只要还有液体存在,继续加热温度也不会升高。当所有的水都蒸发完了,这时如果继续加热,我们可以看到蒸汽的温度开始上升,超过了100℃。刚才我们描述的这一系列过程也可以反过来进行。将蒸汽中的热量移走(冷却),降低它的温度。继续冷却到温度不再下降时,气体开始冷凝成液体,当所有的气体全部凝结成水时,再继续移走热量会导致水的温度下降。

(二)沸腾温度与压力的关系

我们可以从实验过程中得出一个结论,那就是,当压力为1atm (1.013×105N/m2),温度为100℃时,水的状态在气态和液态之间进行变化。让我们在环境压力较高的情况下做一个同样的实验,比如1.75atm 。这时,当水的温度达到100

是温度继续升高。然而当温度达到116℃时,沸腾过程开始了,温度保持不变直到液体完全蒸发。这表明水沸腾的温度随着压力的不同发生了变化。对于水而言,在1.75atm的压力下其沸点为116℃,也就是说,在低于116℃时,水不会沸腾。

如果我们在压力为0.40atm的条件下做同样的实验,就会发现加热到沸腾的过程将在75℃时发生。这些事实表明,液体的沸腾和冷凝温度与它的压力有关。换言之,液体的沸腾温度随着压力的变化而变化。

所有的液体的沸腾-冷凝温度与它们所承受的压力有关,只是p-t值有所不同而已。比如,在1大气压下,氨的沸点是-33.3℃,酒精的沸点是76. 7℃,铜的沸点是2,340℃。一般地,液体上所承受的压力越大,它的沸点就越高;压力越小,沸点越低。稍后我们要介绍一个表,其中列出了工业标准中使用的制冷剂相应的沸点的p-t值。

沸腾的过程以及沸腾温度受环境压力的影响都可以通过液体和气体的分子运动理论来进行解释。所有的物质都是由分子组成的,而物质中的分子不停地在运动,它们之间相互吸引,分子间的距离越近,吸引力就越大。

当物质处于液体状态,与气体状态相比,分子之间的距离更近,因此,它们之间的吸引力也就更大。气体状态下的分子运动的速度与液体状态要快得多,因此也就具有更多的能量。这也就是为什么要想使液体沸腾需要加热的原因,热能打破了使液体分子之间保持较近的距离的吸引力,所以它们的距离加大,状态改变成为气体。

物质的温度实际上就是它们的分子运动的平均速度。分子运动的平均速度越高,其温度也就越高。但事实上并非所有的分子都以平均速度在运动,而是有的快,有的慢。比如一个盛水的容器,水的温度为21℃,环境压力为1大气压。因此,水处于液体状态,分子运动的速度不足以使其逃逸。但其中有一小部分分子的速度高于平均速度,如果它们处于接近表面的位置,就可以从液体中逃逸。也就是说,液体的表面会有缓慢的蒸发。这会导致剩余的分子运动的更慢,因此温度更低。液体蒸发会产生轻微的冷却效果。当我们的皮肤被擦上酒精时,我们都会注意到这种效果,蒸发使酒精和我们的皮肤变凉。

从液体表面逃逸的分子产生了蒸汽。施加在液体表面的压力称为蒸汽压。如果环境压力高于蒸汽压,那么液体就无法迅速蒸发,但是,如果液体的温度增加,分子的运动速度增大到足以打破那种束缚它们保持液体状态的力时,液体就沸腾了。当然,如果环境压力增大,液体的沸点也随之增加。

液体的沸腾过程也就是施加的热量打破了原有的将分子束缚在一起的力,但并不会使分子的运动速度加快。这也就是为什么在沸腾的过程中温度不升高的原因。

如果气体施加在液体上的压力降低到低于液体的蒸汽压,我们应该注意将会发生的现象。在这种情况下,由于环境压力低于液体的蒸汽压,液体会突然沸腾。分子所具有的能量超过了所受到的阻力,它们就迅速地逃逸了。由于能量的转移,使得剩余的液体冷却了。通过降低压力可以达到使液体沸腾的目的。这一过程对于制冷来说是十分重要的。

(三)饱和、过冷和过热状态

发生沸腾的温度和压力条件称为饱和状态,沸点从技术角度而言指的就是饱和温度和饱和压力。从实验中可以看出,在饱和状态下,物质存在的状态可以是液体、蒸汽或汽液混合物的状态。在饱和状态下的蒸汽称为饱和蒸汽,饱和状态下的液体称为饱和液体。

饱和蒸汽是处于沸腾温度时的蒸汽,饱和液体是处于沸腾温度时的液体。当蒸汽的温度高于饱和温度(沸点)时,就称为过热蒸汽,而当液体低于饱和温度时就称为过冷液体。

对于给定的压力,过热蒸汽和过冷液体可以处于许多不同的温度,但是,饱和蒸汽或液体对于给定的压力只存在一个对应的温度值。

人们已经制作出了许多物质的饱和参数表,表中列出了这些物质的饱和温度、相应的饱和压力以及其它一些饱和状态的参数。水的饱和参数表常被称作饱和蒸汽表。书后附录中可以查到的水的饱和参数表。

(四)显热、潜热和蒸发制冷

当我们对一种物质加热,或将热量从中移出,导致其温度发生变化,但如果物质的状态保持不变,那么在这种情况下该物质的焓的变化就称为显热变化。如果对一种物质加热或将热量移出,所导致的结果是物质的状态发生了变化而温度不变,那么该物质中的焓的变化就称为潜热变化。物质的状态从液体变为气体时的焓值的变化称为汽化潜热;从气体变为液体时焓值的减少量称为凝结潜热,与汽化潜热的值相等。

物质的状态从液态到气态的变化需要获取汽化潜热,而汽化过程的温度和压力保持不变。如果对一个固体状态的物质进行加热,它的温度会升高,达到某一温度后就不再继续上升,这时它的状态开始发生变化,由固体变成液体——它将会熔解。相反,当我们将气体的热量移除时,它的温度会下降,最终冷凝成液体,冷凝过程温度和压力保持不变;当我们将液体的热量移除时,它的温度会下降,最终凝固成固体,凝固过程温度和压力保持不变。

伴随着熔解和凝固过程的热量称为熔解潜热。伴随着汽化和冷凝过程的热量为汽化潜热冰的熔解潜热为335.2kJ/kg;而水的汽化潜热为2257kJ/kg,两者相差6倍多。

当固体有显热变化(即温度变化)时,可以应用显热方程(1-11)。

在极低的温度和压力条件下,某些物质可以直接从固体状态变为气体状态。这一过程称为升华,常用于生产冻干食品,可以保持食品的良好风味和外形。首先将食品冻结,然后在极低的压力下,食品中的冰会直接蒸发成水蒸汽。

环境压力的突然降低会导致液体沸腾,从而产生制冷作用,这种现象我们可以从分子运动的角度进行了解释。

对于一种处于液体状态的物质,如果环境压力突然降低到低于它的饱和压力,液体就会剧烈地沸腾并汽化。在低压下,分子运动的速度已经足够使它们迅速地逃逸,这在原来较高的压力下是不可能的。沸腾会使物质冷却到相应与这个较低的压力的饱和温度。当液体沸腾的时候,必须从环境物体中吸收气化潜热,这样就产生了制冷作用。在第二节中,我们将进一步讨论如何在现实中实现这一过程。

如果压力足够低的话,甚至水的沸腾也可以达到制冷的目的。

对于许多制冷剂都有过热蒸汽的参数表,这些过热和过冷参数还可以用图的形式给出,称作压焓图。由于压焓图可以帮助我们分析和理解制冷过程,我们会经常用到它们。压焓图将在第二节进行详细的介绍。

液体的焓和比容几乎完全取决于温度而不是压力。正因为如此,饱和参数表可以用来查

出过冷液体的参数,例如,从附录中我们可以看出,水在104.4℃时,不论是过冷状态还是饱和状态,它的焓值都是441.2 kJ/kg 。

为了方便起见,许多表中都列出了绝对压力和表压。列出的表压是以假设环境压力是1个大气压的条件为基础的。对于给定情况下的实际压力与此有显著的差异时,比如在高海拔地区,所列出的表压就不准确了。为了避免误差,最好在任何情况下都使用绝对压力。

(五)显热方程

尽管参数表可以用来查找液态制冷剂的焓值的变化,但是,我们还可以使用一种不需要参数表的方法。这种方法还可以使我们加深理解制冷过程,所以我们在此进行讨论。

物质的比热定义为使1kg15℃的该物质的温度变化1℃所需要的热量。

水的比热是4.19kJ/kg.℃。

遵循比热的定义,要将m kg 的物质从一个温度改变为另一个温度所需的热量为:

)(12t t c m T c m Q -??=???= (1-13)

式中Q :热量增加或减少的净速率,kJ/s ;

m :物质的质量流速,kg/s ;

ΔT =t 2-t 1:物质的温度变化, ℃。

这个公式称为显热方程,这是由于它是应用于物质的温度发生变化而状态不变的加热或冷却过程。

第十章_热力学定律 知识点全面

第十章热力学定律 知识网络: 一、 功、热与内能 ●绝热过程:不从外界吸热,也不向外界传热的热力学过程称为绝热过程。 ●内能:内能是物体或若干物体构成的系统内部一切微观粒子的一切运动形式所具有的能量的总和,用字母U 表示。 ●热传递:两个温度不同的物体相互接触时温度高的物体要降温,温度低的物体要升温,这个过程称之为热传递。 ●热传递的方式:热传导、对流热、热辐射。 二、 热力学第一定律、第二定律 第一定律表述:一个热力学系统的内能增量等于外界向它传递的热量与外界对它所作的功的和。表达式u W Q ?=+ 第二定律的表述:一种表述:热量不能自发的从低温物体传到高温物体。另一种表述:(开尔文表述)不可能从单一热库吸收热量,将其全部用来转化成功,而不引起其他的影响。 应用热力学第一定律解题的思路与步骤: 一、明确研究对象是哪个物体或者是哪个热力学系统。 二、别列出物体或系统(吸收或放出的热量)外界对物体或系统。 三、据热力学第一定律列出方程进行求解,应用热力学第一定律计算时,要依照符号法则代入数据,对结果的正负也同样依照规则来解释其意义。 四、几种特殊情况: 若过程是绝热的,即Q=0,则:W=ΔU ,外界对物体做的功等于物体内能的增加。 若过程中不做功,即W=0,则:Q=ΔU ,物体吸收的热量等于物体内能的增加。 若过程的始末状态物体的内能不变,即ΔU=0,则:W+Q=0,外界对物体做的功等于物体放出的热量。

对热力学第一定律的理解: 热力学第一定律不仅反映了做功和热传递这两种改变内能的方式是等效的,而且给出了内能的变化量和做功与热传递之间的定量关系,此定律是标量式,应用时热量的单位应统一为国际单位制中的焦耳。 对热力学第二定律的理解: ①在热力学第二定律的表述中,自发和不产生其他影响的涵义,自发是指热量从高温物体自发地传给低温物体的方向性,在传递过程中不会对其他物体产生影响或需要借助其他物体提供能量等的帮助。不产生其他影响的涵义是使热量从低温物体传递到高温物体或从单一热源吸收热量全部用来做功,必须通过第三者的帮助,这里的帮助是指提供能量等,否则是不可能实现的。 ②热力学第二定律的实质热力学第二定律的每一种表述,揭示了大量分子参与宏观过程的方向性,使人们认识到自然界中进行的涉及热现象的宏观过程都具有方向性。 对能量守恒定律的理解: ③在自然界中不同的能量形式与不同的运动形式相对应,如物体做机械运动具有机械能,分子运动具有内能等。 ④某种形式的能减少,一定有其他形式的能增加,且减少量和增加量一定相等。 ③某个物体的能量减少,一定存在其他物体的能量增加,且减少量和增加量一定相等。 三、能量守恒定律 ●能量既不会凭空产生,也不会凭空消失,它只能从一种形式转化为另一种形式,或者从一个物体转移到另一物体,在转化和转移的过程中其总量不变 ●第一类永动机不可制成是因为其违背了热力学第一定律 ●第二类永动机不可制成是因为其违背热力学第二定律(一切自然过程总是沿着分子热运动的无序性增大的方向进行)●熵:是分子热运动无序程度的定量量度,在绝热过程或孤立系统中,熵是增加的。 ①熵是反映系统无序程度的物理量,正如温度反映物体内分子平均动能大小一样。 ②系统越混乱,无序程度越大,就称这个系统的熵越大。系统自发变化时,总是向着无序程度增加的方向发展,至少无序程度不会减少,也就是说,系统自发变化时,总是由热力学概率小的状态向热力学概率大的状态进行。从熵的意义上说,系统自发变化时总是向着熵增加的方向发展,不会使熵减少。 ③任何宏观物质系统都有一定量的熵,熵也可以在系统的变化过程中产生或传递。 ④一切自然过程的发生和发展中,总熵必定不会减少。 ●能量耗散:系统的内能流散到周围的环境中,没有办法把这些内能收集起来加以利用。 四、能源和可持续发展: ●能源的重要性:能源是社会存在与发展永远不可或缺的必需品,是国民经济运动的物质基础,它与材料、信息构成现代社会的三大支柱。 ●化石能源:人们把煤、石油叫做化石能源。 ●生物质能:生物质能指绿色植物通过光合作用储存在生物体内的太阳能,储存形式是生物分子的化学能。 ●风能:为了增加风力发电的功率,通常把很多风车建在一起,我国新疆、内蒙古等地已经开始大规模利用风力发电。

热力学复习知识点汇总

概 念 部 分 汇 总 复 习 第一章 热力学的基本规律 1、热力学与统计物理学所研究的对象:由大量微观粒子组成的宏观物质系统 其中所要研究的系统可分为三类 孤立系:与其他物体既没有物质交换也没有能量交换的系统; 闭系:与外界有能量交换但没有物质交换的系统; 开系:与外界既有能量交换又有物质交换的系统。 2、热力学系统平衡状态的四种参量:几何参量、力学参量、化学参量和电磁参量。 3、一个物理性质均匀的热力学系统称为一个相;根据相的数量,可以分为单相系和复相系。 4、热平衡定律(热力学第零定律):如果两个物体各自与第三个物体达到热平衡,它们彼此也处在热平衡. 5、符合玻意耳定律、阿氏定律和理想气体温标的气体称为理想气体。 6、范德瓦尔斯方程是考虑了气体分子之间的相互作用力(排斥力和吸引力),对理想气体状态方程作了修正之后的实际气体的物态方程。 7、准静态过程:过程由无限靠近的平衡态组成,过程进行的每一步,系统都处于平衡态。 8、准静态过程外界对气体所作的功:,外界对气体所作的功是个过程量。 9、绝热过程:系统状态的变化完全是机械作用或电磁作用的结果而没有受到其他影响。绝热过程中内能U 是一个态函数: A B U U W -= 10、热力学第一定律(即能量守恒定律)表述:任何形式的能量,既不能消灭也不能创造,只能从一种形 式转换成另一种形式,在转换过程中能量的总量保持恒定;热力学表达式:Q W U U A B +=-;微分 形式:W Q U d d d += 11、态函数焓H :pV U H +=,等压过程:V p U H ?+?=?,与热力学第一定律的公式一比较 即得:等压过程系统从外界吸收的热量等于态函数焓的增加量。 12、焦耳定律:气体的内能只是温度的函数,与体积无关,即)(T U U =。 13.定压热容比:p p T H C ??? ????=;定容热容比:V V T U C ??? ????= 公式:nR C C V p =- 14、绝热过程的状态方程: const =γpV ;const =γ TV ; const 1 =-γ γT p 。 15、卡诺循环过程由两个等温过程和两个绝热过程组成。正循环为卡诺热机,效率2 11T T - =η,逆循环 为卡诺制冷机,效率为2 11T T T -= η (只能用于卡诺热机)。 16、热力学第二定律:克劳修斯表述:不可能把热量从低温物体传到高温物体 而不引起其他变化(表明热传导过程是不可逆的); 开尔文(汤姆孙)表述:不可能从单一热源吸收热量使之完全变成有用的功而不引起其他变化(表明功变热的过程是不可逆的); 另一种开氏表述:第二类永动机不可能造成的。 17、无摩擦的准静态过程是可逆过程。 18、卡诺定理:所有工作于两个一定温度T 1与T 2之间的热机,以可逆机的效率为最高。并且所有的可逆机 的效率η都相等21 1T T - =η ,与工作物质无关,只与热源温度有关。 19、热机的效率:1 21Q Q -=η,Q 1为热机从高温热源吸收的热量,Q 2 为热机在低温热源放出的热量。 20、克劳修斯等式与不等式:02 211≤+T Q T Q 。 21、可逆热力学过程0=?T dQ ,不可逆热力学过程0

热力学作业 答案

第八章 热力学基础 一、选择题 [ A ]1.(基础训练4)一定量理想气体从体 积 V 1,膨胀到体积V 2分别经历的过程是:A →B 等压过程,A → C 等温过程;A → D 绝热过程,其中吸热量最多的过程 (A)是A →B. (B)是A →C. (C)是A →D. (D)既是A →B 也是A →C , 两过程吸热一样多。 【提示】功即过程曲线下的面积,由图可知AD AC AB A A A >>; 根据热力学第一定律:E A Q ?+= AD 绝热过程:0=Q ; AC 等温过程:AC A Q =; AB 等压过程:AB AB E A Q ?+=,且0 >?AB E [ B ]2.(基础训练6)如图所示,一绝热密闭的容器,用隔板分成相等的两部分,左边盛有一定量的理想气体,压强为p 0,右边为真空.今将隔板 抽去,气体自由膨胀,当气体达到平衡时,气体的压强是 (A) p 0. (B) p 0 / 2. (C) 2γp 0. (D) p 0 / 2γ. 【提示】该过程是绝热自由膨胀:Q=0,A=0;根据热力学第一定律Q A E =+?得 0E ?=, ∴0T T =;根据状态方程pV RT ν=得00p V pV =;已知02V V =,∴0/2p p =. [ D ]3.(基础训练10)一定量的气体作绝热自由膨胀,设其热力学能增量为E ?,熵增量为S ?,则应有 (A) 0......0=???=?S E 【提示】由上题分析知:0=?E ;而绝热自由膨胀过程是孤立系统中的不可逆过

热力学的基础知识

热力学的基础知识

热力学的基础知识 1、水和水蒸汽有哪些基本性质? 答:水和水蒸汽的基本物理性质有:比重、比容、汽化潜热、比热、粘度、温度、压力、焓、熵等。水的比重约等于1(t/m3、kg/dm3、g/cm3)蒸汽比容是比重的倒数,由压力与温度所决定。水的汽化潜热是指在一定压力或温度的饱和状态下,水转变成蒸汽所吸收的热量,或者蒸汽转化成水所放出的热量,单位是: KJ/Kg。水的比热是指单位质量的水每升高1℃所吸收的热量,单位是KJ/ Kg·℃,通常取4.18KJ。水蒸汽的比热概念与水相同,但不是常数,与温度、压力有关。 2、热水锅炉的出力如何表达? 答:热水锅炉的出力有三种表达方式,即大卡/小时(Kcal/h)、吨/小时(t/h)、兆瓦(MW)。 (1)大卡/小时是公制单位中的表达方式,它表示热水锅炉每小时供出的热量。 (2)"吨"或"蒸吨"是借用蒸汽锅炉的通

俗说法,它表示热水锅炉每小时供出的热量相当于把一定质量(通常以吨表示)的水从20℃加热并全部汽化成蒸汽所吸收的热量。 (3)兆瓦(MW)是国际单位制中功率的单位,基本单位为W (1MW=106W)。正式文件中应采用这种表达方式。 三种表达方式换算关系如下: 60万大卡/小时(60×104Kcal/h)≈1蒸吨/小时〔1t/h〕≈0.7MW 3、什么是热耗指标?如何规定? 答:一般称单位建筑面积的耗热量为热耗指标,简称热指标,单位w/m2,一般用qn表示,指每平方米供暖面积所需消耗的热量。黄河流域各种建筑物采暖热指标可参照表2-1

上表数据只是近似值,对不同建筑结构,材料、朝向、漏风量和地理位置均有不同,纬度越高的地区,热耗指标越高。 4、如何确定循环水量?如何定蒸汽量、热量和面积的关系? 答:对于热水供热系统,循环水流量由下式计算: G=[Q/c(tg-th)]× 3600=0.86Q/(tg-th)式中:G - 计算水流量,kg/h

知识点热力学与料热力学部分

知识点热力学与料热力学部分

————————————————————————————————作者:————————————————————————————————日期:

热力学与材料热力学部分 热力学:用能量转化和守恒的观点来研究物质热运动的客观规律;以实验事实为基础,总结研究系统状态变化过程中的功能转化和热力学过程的方向性问题。 热力学研究能(energy)和能的转变(transformations)规律 材料研究的每个过程离不开热力学 1、材料服役性能 2、材料制备 3、材料微观组织 材料热力学是热力学基本原理在材料设计、制备与使用过程中的应用。 材料热力学是材料科学的重要基础之一。 材料学的核心问题是求得材料成分-组织结构-各种性能之间的关系。问题的前半部分,即材料成分-组织结构的关系要服从一个基本的科学规则,这个基本规则就是材料热力学。在材料的研究逐渐由“尝试法”走向“定量设计”的今天,材料热力学的学习尤其显得重要。 材料热力学是经典热力学和统计热力学理论在材料研究方面的应用,其目的在与揭示材料中的相和组织的形成规律。固态材料中的熔化与凝固以及各类固态相变、相平衡关系和相平衡成分的确定、结构上的物理和化学有序性以及各类晶体缺陷的形成条件等是其主要研究对象。 现代材料科学发展的主要特征之一是对材料的微观层次认识不断进步。利用场离子显微镜和高分辨电子显微镜把这一认识推进到了纳米和小于纳米的层次,已经可以直接观察到从位错形态直至原子实际排列的微观形态。这些成就可能给人们造成一种误解,以为只有在微观尺度上对材料的直接分析才是深刻把握材料组织结构形成规律的最主要内容和最主要途径;以为对那些熵、焓、自有能、活度等抽象概念不再需要更多的加以注意。其实不然,不仅热力学的主要长处在于它的抽象性和演绎性,而且现代材料科学的每一次进步和发展都一直受到经典热力学和统计热力学的支撑和帮助。材料热力学的形成和发展正是材料科学走向成熟的标志之一。工业技术的进步在拉动材料热力学的发展,而材料热力学的发展又在为下一个技术进步准备基础和条件。 材料热力学是热力学理论在材料研究、材料生产活动中的应用。因此这是一门与实践关系十分密切的科学。学习这门课程,不能满足于理解书中的内容,而应当多进行一些对实际材料问题的分析与计算,开始可以是一些简单的、甚至是别人已经解决的问题,然后由易渐难,循序渐进。通过不断的实际分析与计算,增进对热力学理论的理解,加深对热力学的兴趣,进而有自己的心得和成绩。 热力学最基本概念: 1、焓变 enthalpy

制冷技术的热力学基础

制冷技术的热力学基础 制冷技术的热力学基础 在制冷循环中,工质不断地进行着热力状态变化。描述工质所处热力状态的物理量称为工质的热力状态参数,简称状态参数。一定的状态,其状态参数有确定的数值。工质状态变化时,初、终状态参数之间的差值,仅与初、终状态有关,而与状态变化的过程无关。 制冷技术中常见的状态参数有:温度、压力、比容、内能、焓与熵等。这些参数对于进行制冷循环的分析 和热力计算,都是非常重要的。 一、温度温度是描述热力系统冷热状态的物理量,是标志物体冷热程度的参数。 物体的温度可采用测温仪表来测定。为了使温度的测量准确一致,就要有一个衡量温度的标尺,简称温标, 工程上常用的温标有: 二、摄氏温标又叫国际百度温标,常用符号 t表示,单位为'C。 2.绝对温标常用符号T表示,单位为开尔文(代号为 K)。绝对温标与摄氏温标仅是起点不同而已 (t=0 C时,T=273.16K),它们每度的温度间隔确是一致的。在工程上其关系可表示为: T=273+t ( K) 二、压力压力是单位面积上所承受的垂直作用力,常用符号P表示。 压力可用压力表来测定。在国际单位制中,压力单位为帕斯卡(Pa),实际应用时也可用兆帕斯卡 (MPa或巴(bar)表示,1MPa=106Pa而1bar=105 Pa。压力的标记有绝对压力、表压力和真空度三种情况。绝对压力是指容器中气体的实际压力,用符号P表示;表压力(PB是指压力表(或真空表)所指示 的压力;而当气体的绝对压力比大气压力(B)还低时,容器内的绝对压力比大气压力低的数值,称为真 空度(PK。三者之间的关系是: P=PB表压力+B大气压力或P=B大气压力-PK真空度,作为工质的状态参数应该是绝对压力,而不是表压力或真空度。 三、比容比容是指单位质量工质所占有的容积,用符号u表示。 比容是说明工质分子之间密集程度的一个物理量。比容的倒数为工质的密度,即单位容积工质所具有的质量,用符号p表示。比容和密度之间互为倒数关系。 四、内能内能是工质内部所具有的分子动能和分子位能的总和,用符号u表示。 分子动能包括分子的直线运动动能、旋转运动动能和分子内部振动能三项,其大小 与气体的温度有关。而分子位能的大小与分子间的距离有关,亦即与工质的比容有关。 既然气体的内动能决定于气体的温度、内位能决定于气体的比容,所以气体的内能是其温度和比容的函数< 也就是说内能是一个状态参数。 五、焓焓是一个复合的热力状态参数,表征系统中所有的总能量,它是内能与压力之和。对1 kg工质而言,可表示为: h = u+ P u (kJ/kg )或(kcal/kg ) 式中h—焓或称比焓(kJ/kg或kcal/kg )u —比容(m3/kg) u—内能(kJ/kg 或 kcal/kg )p—绝对压力(N/m2或[wqp1] [wqp2] Pa) 在工程单位制中,压力单位常用工程气压、物理大气压和毫米水柱等单位。由于内能和压力位能都是温 度的参数,所以焓也是状态参数。确切地说,焓是一定质量的流体,从某一初始状态变为任一热力状态所加入的总热量。 六、熵熵是一个导岀的热力状态参数,熵的中文意义是热量被温度除所得的商,熵的外文原名意义是 “转变”,指热量可以转变为功的程度,它表征工质状态变化时,与外界热交换的程度。熵是通过其他可以直接测量的数量间接计算岀来的。 、热力学第二定律

热力学基础作业

大学物理课堂作业 热力学基础 一、填空题 1 在p?V图上 (1) 系统的某一平衡态用_____________来表示; (2) 系统的某一平衡过程用________________来表示; (3) 系统的某一平衡循环过程用__________________来表示; 2.处于平衡态A的一定量的理想气体,若经准静态等体过程变到平衡态B,将从外界吸收热量416 J,若经准静态等压过程变到与平衡态B有相同温度的平衡态C,将从外界吸收热量582 J,所以,从平衡态A变到平衡态C的准静态等压 过程中气体对外界所作的功为____________________. 3.一定量的某种理想气体在等压过程中对外作功为200 J.若此种气体为单 原子分子气体,则该过程中需吸热_____________ J;若为双原子分子气体,则 需吸热______________ J. 4.可逆卡诺热机可以逆向运转.逆向循环时, 从低温热源吸热,向高温热源放热,而且吸的热量和放出的热量等于它正循环时向低温热源放出的热量和从高温热源吸的热量.设高温热源的温度为T1 =450 K , 低温热源的温度为T2 =300 K, 卡诺热机逆向循环时从低温热源吸热Q2 =400 J,则该卡诺热机逆向循环一次外界必须 作功W=_________. 5. 一热机从温度为727℃的高温热源吸热,向温度为527℃的低温热源放热.若 热机在最大效率下工作,且每一循环吸热2000 J ,则此热机每一循环作功_____ ____________ J. 6. 从统计的意义来解释, 不可逆过程实质上是一个________________________ __________________________的转变过程, 一切实际过程都向着_____________ _____________________________的方向进行. γC p/C V为已知)的循环过程如T-V图所示,其中CA为绝热过程,7. 1 mol 理想气体(设= A点状态参量(T1,V1)和B点的状态参量(T2,V2)为已知.试求C点的状态参量:

热力学基础练习题与答案

第一次 热力学基础练习与答案 班 级 ___________________ 姓 名 ___________________ 班内序号 ___________________ 一、选择题 1. 如图所示,一定量理想气体从体积V 1,膨胀到体积V 2分别经历的过程 是:A →B 等压过程,A →C 等温过程;A →D 绝热过程,其中吸热量最 多的过程 [ ] (A) 是A →B. (B) 是A →C. (C) 是A →D. (D) 既是A →B 也是A →C , 两过程吸热一样多。 2. 有两个相同的容器,容积固定不变,一个盛有氨气,另一个盛有氢气(看 成刚性分子的理想气体),它们的压强和温度都相等,现将5J 的热量传给氢 气,使氢气温度升高,如果使氨气也升高同样的温度,则应向氨气传递热量 是: [ ] (A) 6 J. (B) 5 J. (C) 3 J. (D) 2 J. 3.一定量的某种理想气体起始温度为T ,体积为V ,该气体在下面循环过程中经过三个平衡过程:(1) 绝热膨胀到体积为2V ,(2)等体变化使温度恢复为T ,(3) 等温压缩到原来体积V ,则此整个循环过程中 [ ] (A) 气体向外界放热 (B) 气体对外界作正功 (C) 气体内能增加 (D) 气体内能减少 4. 一定量理想气体经历的循环过程用V -T 曲线表示如图.在此循 环过程中,气体从外界吸热的过程是 [ ] (A) A →B . (B) B →C . (C) C →A . (D) B →C 和B →C . 5. 设高温热源的热力学温度是低温热源的热力学温度的n 倍,则理想气体在 一次卡诺循环中,传给低温热源的热量是从高温热源吸取热量的 [ ] (A) n 倍. (B) n -1倍. (C) n 1倍. (D) n n 1 倍. 6.如图,一定量的理想气体,由平衡状态A 变到平衡状态 B (p A = p B ),则无论经过的是什么过程,系统必然 [ ] (A) 对外作正功. (B) 内能增加. V V

制冷循环的热力学原理概要

第一节制冷循环的热力学原理 一、常用术语 1、物质 具有一定质量并占据空间的任何物体称为物质。 物质通常以固、液、气三态存在。 蒸气压缩式制冷机都依靠内部循环流动的工作物质来实现制冷过程。制冷机中的工作物质称为制冷剂。制冷装置中用来传递冷量的工作物质称为载冷剂。 2、温度 温度是物体冷热程度的量度。它是物质分子热运动剧烈程度的标志尺度。 常用的温度度量单位有摄氏温标t和开氏温标T(绝对温标)。

T(k)=t(℃)+273.15 图2-1 两种常用温标的比较 3、热量 物体在热过程中所放出或吸收的能量称为热量。 生产中常用制冷能力来衡量设备产冷量大小。 制冷能力:制冷设备单位时间内从冷库取走的热量。 4、比热(specific heat) 比热是一个物性参数,意为单位度量的物质温度变化1k时所吸进或放出的热量。 体积比热Cv(J/m3.k) 摩尔比热Cp(J/mol.k) 5、显热和潜热 不改变物质的形态而引起其温度变化的热量称为显热。 不改变物质的温度而引起其形态变化的热量称为潜热。 制冷剂的汽化潜热有何要求? 表1-1 几种制冷物质的汽化潜热(kJ/kg) 物质水氨R12 R22 氯甲 烷 二氧 化硫 R114 R502 汽化热2256.8 1369 167.5 234.5 427.1 397.8 137.9 6 150.0 2 6、压力 垂直作用在单位面积上的力称为压力p(压强)。p是确定物质状态的基本参数之一。1bar=105Pa,饱和压力Ps与饱和温度ts 的对应

关系。 7、比容v和密度 比容:每千克物质所占有的容积。v是基本状态参数。v=1 8、导热系数 表示材料传导热量的能力,是一个物性参数。数值上等于:1m 厚的材料两边温差1k时在1小时内通过1m2表面积所传导的热量。单位:w/m.k 9、压-焓图(lgp-h) 物质的热力状态性质可以绘制成曲线图的形式。制冷剂性质曲线图有多种形式。行业中最常用的是lgp-h图。 lgp-h图的构成可以总结为一个临界点、二条饱和线、三个状态区、六组等值线。

热力学统计物理总复习知识点

热力学部分 第一章 热力学的基本规律 1、热力学与统计物理学所研究的对象:由大量微观粒子组成的宏观物质系统 其中所要研究的系统可分为三类 孤立系:与其他物体既没有物质交换也没有能量交换的系统; 闭系:与外界有能量交换但没有物质交换的系统; 开系:与外界既有能量交换又有物质交换的系统。 2、热力学系统平衡状态的四种参量:几何参量、力学参量、化学参量和电磁参量。 3、一个物理性质均匀的热力学系统称为一个相;根据相的数量,可以分为单相系和复相系。 4、热平衡定律(热力学第零定律):如果两个物体各自与第三个物体达到热平衡,它们彼此 也处在热平衡. 5、符合玻意耳定律、阿氏定律和理想气体温标的气体称为理想气体。 6、范德瓦尔斯方程是考虑了气体分子之间的相互作用力(排斥力和吸引力),对理想气体状 态方程作了修正之后的实际气体的物态方程。 7、准静态过程:过程由无限靠近的平衡态组成,过程进行的每一步,系统都处于平衡态。 8、准静态过程外界对气体所作的功:,外界对气体所作的功是个过程量。 9、绝热过程:系统状态的变化完全是机械作用或电磁作用的结果而没有受到其他影响。绝 热过程中内能U 是一个态函数:A B U U W -= 10、热力学第一定律(即能量守恒定律)表述:任何形式的能量,既不能消灭也不能创造, 只能从一种形式转换成另一种形式,在转换过程中能量的总量保持恒定;热力学表达式: Q W U U A B +=-;微分形式:W Q U d d d += 11、态函数焓H :pV U H +=,等压过程:V p U H ?+?=?,与热力学第一定律的公 式一比较即得:等压过程系统从外界吸收的热量等于态函数焓的增加量。 12、焦耳定律:气体的内能只是温度的函数,与体积无关,即)(T U U =。 13.定压热容比:p p T H C ??? ????=;定容热容比:V V T U C ??? ????= 迈耶公式:nR C C V p =- 14、绝热过程的状态方程:const =γpV ;const =γ TV ;const 1 =-γγT p 。 15、卡诺循环过程由两个等温过程和两个绝热过程组成。正循环为卡诺热机,效率 211T T -=η,逆循环为卡诺制冷机,效率为2 11T T T -=η(只能用于卡诺热机)。 16、热力学第二定律:克劳修斯表述:不可能把热量从低温物体传到高温物体 而不引起其他变化(表明热传导过程是不可逆的); 开尔文(汤姆孙)表述:不可能从单一热源吸收热量使之完全变成有用的功而不引起其 他变化(表明功变热的过程是不可逆的); 另一种开氏表述:第二类永动机不可能造成的。 V p W d d -=

第13章-热力学基础习题及答案

第十三章习题 热力学第一定律及其应用1、关于可逆过程和不可逆过程的判断: (1) 可逆热力学过程一定是准静态过程. (2) 准静态过程一定是可逆过程. (3) 不可逆过程就是不能向相反方向进行的过程. (4) 凡有摩擦的过程,一定是不可逆过程. 以上四种判断,其中正确的是。 2、如图所示,一定量理想气体从体积V1,膨胀到体积V2分别经历的过程是:A→B等压过程,A→C等温过程;A→D绝热过程,其中吸热量最多的过程。 3、一定量的理想气体,分别经历如图(1) 所示 的abc过程,(图中虚线ac为等温线),和图(2) 所 示的def过程(图中虚线df为绝热线).判断这两 种过程是吸热还是放热. abc过程 热,def过程热. 4、如图所示,一绝热密闭的容器,用隔板分成相等的两部 分,左边盛有一定量的理想气体,压强为p0,右边为真空.今 将隔板抽去,气体自由膨胀,当气体达到平衡时,气体的压 强是。(= γC p/C V) 5、一定量理想气体,从同一状态开始使其体积由V1膨胀到2V1,分别经历以下三种过程:(1) 等压过程;(2) 等温过程;(3)绝热过程.其中:__________过程气体对外作功最多;____________过程气体内能增加最多;__________过程气体吸收的热量最多.V V

答案 1、(1)(4)是正确的。 2、是A-B 吸热最多。 3、abc 过程吸热,def 过程放热。 4、P 0/2。 5、等压, 等压, 等压 理想气体的功、内能、热量 1、有两个相同的容器,容积固定不变,一个盛有氦气,另一个盛有氢气(看成刚性分子的理想气体),它们的压强和温度都相等,现将5J 的热量传给氢气,使氢气温度升高,如果使氦气也升高同样的温度,则应向氨气传递热量是 。 2、 一定量的理想气体经历acb 过程时吸热500 J .则 经历acbda 过程时,吸热为 。 3、一气缸内贮有10 mol 的单原子分子理想气体,在压 缩过程中外界作功209J , 气体升温1 K ,此过程中气体内能增量为 _____ ,外界传给气体的热量为___________________. (普适气体常量 R = 8.31 J/mol· K) 4、一定量的某种理想气体在等压过程中对外作功为 200 J .若此种气体为单 原子分子气体,则该过程中需吸热_____________ J ;若为双原子分子气体,则 需吸热______________ J. p (×105 Pa) 3 m 3)

工程热力学知识点

工程热力学复习知识点 一、知识点 基本概念的理解和应用(约占40%),基本原理的应用和热力学分析能力的考核(约占60%)。 1. 基本概念 掌握和理解:热力学系统(包括热力系,边界,工质的概念。热力系的分类:开口系,闭口系,孤立系统)。 掌握和理解:状态及平衡状态,实现平衡状态的充要条件。状态参数及其特性。制冷循环和热泵循环的概念区别。 理解并会简单计算:系统的能量,热量和功(与热力学两个定律结合)。 2. 热力学第一定律 掌握和理解:热力学第一定律的实质。 理解并会应用基本公式计算:热力学第一定律的基本表达式。闭口系能量方程。热力学第一定律应用于开口热力系的一般表达式。稳态稳流的能量方程。 理解并掌握:焓、技术功及几种功的关系(包括体积变化功、流动功、轴功、技术功)。 3. 热力学第二定律 掌握和理解:可逆过程与不可逆过程(包括可逆过程的热量和功的计算)。 掌握和理解:热力学第二定律及其表述(克劳修斯表述,开尔文

表述等)。卡诺循环和卡诺定理。 掌握和理解:熵(熵参数的引入,克劳修斯不等式,熵的状态参数特性)。 理解并会分析:熵产原理与孤立系熵增原理,以及它们的数学表达式。热力系的熵方程(闭口系熵方程,开口系熵方程)。温-熵图的分析及应用。 理解并会计算:学会应用热力学第二定律各类数学表达式来判定热力过程的不可逆性。 4. 理想气体的热力性质 熟悉和了解:理想气体模型。 理解并掌握:理想气体状态方程及通用气体常数。理想气体的比热。 理解并会计算:理想气体的内能、焓、熵及其计算。理想气体可逆过程中,定容过程,定压过程,定温过程和定熵过程的过程特点,过程功,技术功和热量计算。 5. 实际气体及蒸气的热力性质及流动问题 理解并掌握:蒸汽的热力性质(包括有关蒸汽的各种术语及其意义。例如:汽化、凝结、饱和状态、饱和蒸汽、饱和温度、饱和压力、三相点、临界点、汽化潜热等)。蒸汽的定压发生过程(包括其在p-v和T-s图上的一点、二线、三区和五态)。 理解并掌握:绝热节流的现象及特点 6. 蒸汽动力循环

第 1章 化学热力学基础习题解答(二)

第 1章 化学热力学基础(二) 一、选择题(均为单选题,将正确选项填在各题后的括号内) 8. 1 mol 理想气体,从同一始态出发经过绝热可逆压缩和绝热不可逆压缩到系统压力相同的终态,终态的熵分别为S 1和S 2,则两者关系为( B ) A. S 1 = S 2 B. S 1 < S 2 C. S 1 >S 2 D. S 1 ≥ S 2 始终态相同时,不可逆过程的熵变大于可逆过程 9. 根据熵增加原理知,若从ΔS >0判定过程一定是自发过程,那么该系统一定是( C ) A. 封闭系统 B. 绝热系统 C. 隔离系统 D. 敞开系统 10. 关于偏摩尔量,下列叙述正确的是( C ) A. 偏摩尔量是状态函数,其值与物质的数量有关 B. 在多组分多相系统中不存在偏摩尔量 C. 系统的强度性质没有偏摩尔量 D. 偏摩尔量的值只能大于或等于零 11. 对封闭的单组分均相系统且' 0W =时,( )T G p ??的量值为( B )。 A. <0 B. >0 C. = 0 D. 前述三种情况无法判断 根据p 69公式(1-128)( ),0,T G V V p ?=>?所以( )0,T G p ?>? 12. 下面哪一个关系式是不正确的?( D ) A. ( )p G S T ?=-? B. ()T G V p ?=? C. 2()V A T U T T ??? =-? ???? D. ()p G T H T T ??? =-????? 正确的应该是2()p G T H T T ??? =-? ???? 二、填空题(在以下各小题中画有” ”处填上答案) 5. 热力学第二定律的经典表述之一为___不可能将热从低温物体转移到高温物体而

第六章 热力学基础作业新答案

第六章热力学基础作业新答案

课件一补充题: (2)先等压压缩,W 2=P(V 2-V 1)=-8.1J 对全过程,有 Q 2=W 2+?E =-8.1J ?E=0 (T 1=T 2) 对全过程 等容升压,W 3=0 (1)等温过程, ?E=0 122 11111 V V ln ln V R P V T V Q W ν===561001020 ln 1.0131016.3J 100-=-??=? [补充题] 把P =1a tm ,V =100cm 3的氮气压缩到20cm 3 ,求若分别经历 的是下列过程所需吸收的热量Q 、对外所做的功W 及内能增量,(1)等温压缩;(2)先等压压缩再等容升压回到初温。

(2)系统由状态b 沿曲线ba 返回状态a 时,系统的内能变化: 204()ba ab E E J =-=- 204(282)486()ba ba Q E W J ∴=?+=-+-=- 即系统放出热量486J 6-22 64g 氧气的温度由0℃升至50℃,〔1〕保 持体积不变;(2)保持压强不变。在这两个过程中氧气各吸收了多少热量?各增加了多少内能?对外各做了多少功? 解:(1)3.6458.31(500) 2.0810()322v m Q vC T J =?=???-=? 32.0810()E J ?=? W =0 (2)3.64528.31(500) 2.9110()322p m Q vC T J +=?=???-=? 32.0810()E J ?=? 32(2.91 2.08)108.310()Q E J W -?=-?==? 6-24 一定量氢气在保持压强为4.00×510Pa 不 变的情况下,温度由0.0 ℃ 升高到50.0℃时,吸收了6.0×104 J 的热量。 (1) 求氢气的量是多少摩尔?

热力学基础知识和物态变化

热力学基础知识和物态变化(2课时) 教学目标: 掌握熔解与凝固,汽化与液化的特点 掌握热力学的两个基本定律 教学重难点: 熔解与凝固,汽化与液化的特点 热力学的两个基本定律 教学方法: 讲授法练习法 一、复习提问 1.标准大气压与真空度和表压力的关系? 2.物质存在的形态有哪几种? 二、讲授内容 基础知识——热力学基础知识(续) 物态变化:当温度变化时,物质状态的变化。 (四)、熔解与凝固 熔解:物质由固态变液态。其过程要不断吸热,而温度保持不变。 凝固:物质由液态变固态。其过程要不断放热,而温度保持不变。 提问:试举出固液态变化过程吸、放热的例子。落雪不冷溶雪冷。 (五)、汽化与液化 汽化:物质由液态变气态的现象。其过程要不断吸热,汽化方式有。

蒸发—液体表面附近的分子飞出液面,形成蒸气。蒸发时要从周围物体吸热,有致冷作用。 沸腾—对液体加热,液体温度升到某一温度时,液体中小气泡吸热,气泡增大上浮,到达液面时破裂,放出气泡中的蒸气。其过程要吸热但温度不变。 提问:蒸发与沸腾的异同 相同处—都是汽化现象,都需要吸热。 不同处—蒸发是液体表面进行的气化,沸腾是液体内部和表面同时进行的汽化;蒸发可在任可温度下进行,沸腾只在一定温度下进行;蒸发是平和的汽化,沸腾是剧烈的汽化。 汽化热:单位质量的某种液体变成同温度的气体时吸收的热量。制冷技术中,是利用制冷剂的汽化热(潜热)来制冷的。 液化:物质由气态变液态,其过程要放出热。液化方式有。 降低温度—降至足够低时,任何气体都会液化。 增大压强—各种气体降至某一温度或以下时,再增大压强才能被液化,该温度称临界温度。液化石油气是在常温下增大压强而液化。 (六)、升华与凝华 升华:物质从固态直接变成气态的现象,其过程吸热,有致冷作用,如固体二氧化碳(干冰)升华来获得低温。 凝华:物质从气态直接变成固态的现象。其过程放热,如霜就是空气中的水蒸气遇冷直接凝华成小滴和小冰晶,大量的小水滴和小冰晶形成了天空中的云。

《热力学第二定律》作业(2)

《热力学第二定律》作业 1.有5mol He(g),可看作理想气体,已知其R C m V 2 3 ,=,从始态273K ,100kPa ,变到终态298K ,1000kPa ,计算该过程的熵变。 解: 1 111 112,2121 67.86273298ln )314.825)(5(10ln )314.8)(5(ln )(ln ln 21---ΘΘ--?-=???+???=++=+=??K J K K mol K J mol p p mol K J mol T T R C n p p nR dT T C p p nR S m V T T p 2.有2mol 理想气体,从始态300K ,20dm 3,经下列不同过程等温膨胀至50dm 3,计算各过程的U ?,H ? ,S ?,W 和Q 的值。 (1) 可逆膨胀; (2) 真空膨胀; (3) 对抗恒外压100kPa 。 解:(1)可逆膨胀0=?U ,0=?H kJ dm dm K mol K J mol V V nRT W Q 57.42050ln )300)(314.8)(2(ln 331112=??===-- 124.1530057.4-?=== ?K J K kJ T Q S (2) 真空膨胀 0=W ,0=?U ,0=?H ,0=Q S ?同(1),124.15-?=?K J S (3) 对抗恒外压100kPa 。由于始态终态同(1)一致,所以U ?,H ? ,S ?同(1)。 0=?U ,0=?H 124.15-?=?K J S kJ dm dm kPa mol V p W Q 6)2050)(100)(2(33=-=?==

热力学基础习题解答

本 章 要 点 1.体积功 2 1 d V V W p V = ? 2.热力学第一定律 21Q E E W E W =-+=?+ d d d Q E W =+ 3. 气体的摩尔热容 定容摩尔热容 2V i C R = 定压摩尔热容 (1)2 P i C R =+ 迈耶公式 C P =R+C V 4.循环过程 热机效率 2111Q W Q Q η= =- 制冷系数 22 12 Q T e W T T = =- 5. 卡诺循环 卡诺热机效率 211 1T W Q T η= =- 卡诺制冷机制冷系数 22 12 Q T e W T T = =- 6. 热力学第二定律定性表述:开尔文表述、克劳修斯表述;热力学第二定律的统计意义; 7. 熵与熵增原理 S=klnW 1 2ln W W k S =?≥0 2 211 d ( )Q S S S T ?=-= ? 可逆 习题10 一、选择题 10. A 二、填空题 1. 15J 2. 2/5 3. 4 1.610J ? 4. ||1W -; ||2W - 5. J ; J 6. 500 ;700 7. W /R ; W 2 7 8. 112 3 V p ;0

9. 22+i ; 2 +i i 10. 8.31 J ; J 三、计算题 1. -700J 2. (1)T C =100 K; T B = 300 K . (2) 400J AB W =; W BC = 200 J; W CA =0 (3)循环中气体总吸热 Q = 200 J . 3. (1) W da =-×103J ; (2) ΔE ab =×104 J ; (3) 净功 W = ×103 J ; (4)η= 13% 4. (1)10%η= ;(2)4 310bc W J =? 习题10 一 选择题 1. 1摩尔氧气和1摩尔水蒸气(均视为刚性分子理想气体),在体积不变的情况下吸收相等的热量,则它们的: (A )温度升高相同,压强增加相同。 (B )温度升高不同,压强增加不同。 (C )温度升高相同,压强增加不同。 (D )温度升高不同,压强增加相同 。 [ ] 2. 一定量理想气体,从状态A 开始,分别经历等压、等温、绝热三种过程(AB 、AC 、AD ), 其容积由V 1都膨胀到2V 1,其中 。 (A) 气体内能增加的是等压过程,气体内能减少的的是等温过程。 (B) 气体内能增加的是绝热过程,气体内能减少的的是等压过程。 (C) 气体内能增加的是等压过程,气体内能减少的的是绝热过程。 (D) 气体内能增加的是绝热过程,气体内能减少的的是等温过程。 [ ] 3. 如图所示,一定量的理想气体,沿着图10-17中直线从状态a ( 压强p 1 = 4 atm ,体积V 1 =2 L )变到状态b ( 压强p 2 =2 atm ,体积V 2 =4 L ).则在此过程中: (A ) 气体对外做正功,向外界放出热量. (B ) 气体对外做正功,从外界吸热. (C ) 气体对外做负功,向外界放出热量. (D ) 气体对外做正功,内能减少. [ ] 图10-17 图10-18 4. 若在某个过程中,一定量的理想气体的内能E 随压强p 的变化关系为一直线(其延长线过 p (atm) p

工程热力学 基本知识点

第一章基本概念 1.基本概念 热力系统:用界面将所要研究的对象与周围环境分隔开来,这种人为分隔的研究对象,称为热力系统,简称系统。 边界:分隔系统与外界的分界面,称为边界。 外界:边界以外与系统相互作用的物体,称为外界或环境。 闭口系统:没有物质穿过边界的系统称为闭口系统,也称控制质量。 开口系统:有物质流穿过边界的系统称为开口系统,又称控制体积,简称控制体,其界面称为控制界面。绝热系统:系统与外界之间没有热量传递,称为绝热系统。 孤立系统:系统与外界之间不发生任何能量传递和物质交换,称为孤立系统。 单相系:系统中工质的物理、化学性质都均匀一致的系统称为单相系。 复相系:由两个相以上组成的系统称为复相系,如固、液、气组成的三相系统。 单元系:由一种化学成分组成的系统称为单元系。多元系:由两种以上不同化学成分组成的系统称为多元系。 均匀系:成分和相在整个系统空间呈均匀分布的为均匀系。 非均匀系:成分和相在整个系统空间呈非均匀分布,称非均匀系。 热力状态:系统中某瞬间表现的工质热力性质的总状况,称为工质的热力状态,简称为状态。 平衡状态:系统在不受外界影响的条件下,如果宏观热力性质不随时间而变化,系统内外同时建立了热的和力的平衡,这时系统的状态称为热力平衡状态,简称为平衡状态。 状态参数:描述工质状态特性的各种物理量称为工质的状态参数。如温度(T)、压力(P)、比容(υ)或密度(ρ)、内能(u)、焓(h)、熵(s)、自由能(f)、自由焓(g)等。 基本状态参数:在工质的状态参数中,其中温度、压力、比容或密度可以直接或间接地用仪表测量出来,称为基本状态参数。 温度:是描述系统热力平衡状况时冷热程度的物理量,其物理实质是物质内部大量微观分子热运动的强弱程度的宏观反映。 热力学第零定律:如两个物体分别和第三个物体处于热平衡,则它们彼此之间也必然处于热平衡。压力:垂直作用于器壁单位面积上的力,称为压力,也称压强。 相对压力:相对于大气环境所测得的压力。如工程上常用测压仪表测定系统中工质的压力即为相 对压力。 比容:单位质量工质所具有的容积,称为工质的比容。 密度:单位容积的工质所具有的质量,称为工质的密度。 强度性参数:系统中单元体的参数值与整个系统的参数值相同,与质量多少无关,没有可加性,如温度、压力等。在热力过程中,强度性参数起着推动力作用,称为广义力或势。 广延性参数:整个系统的某广延性参数值等于系统中各单元体该广延性参数值之和,如系统的容积、内能、焓、熵等。在热力过程中,广延性参数的变化起着类似力学中位移的作用,称为广义位移。 准静态过程:过程进行得非常缓慢,使过程中系统内部被破坏了的平衡有足够的时间恢复到新的 平衡态,从而使过程的每一瞬间系统内部的状态都非常接近平衡状态,整个过程可看作是由一系列非常接近平衡态的状态所组成,并称之为准静态过程。 可逆过程:当系统进行正、反两个过程后,系统与外界均能完全回复到初始状态,这样的过程称为可逆过程。 膨胀功:由于系统容积发生变化(增大或缩小)而通过界面向外界传递的机械功称为膨胀功,也称容积功。 热量:通过热力系边界所传递的除功之外的能量。热力循环:工质从某一初态开始,经历一系列状态变化,最后又回复到初始状态的全部过程称为热力循环,简称循环。 2.常用公式 状态参数:1 2 1 2 x x dx- = ? ?=0 dx 状态参数是状态的函数,对应一定的状态,状态参数都有唯一确定的数值,工质在热力过程中发生状态变化时,由初状态经过不同路径,最后到达

相关文档