文档库 最新最全的文档下载
当前位置:文档库 › 空间曲线的曲率计算方法

空间曲线的曲率计算方法

空间曲线的曲率计算方法

 文章编号:1009-0568(2002)02-0037-01

空间曲线的曲率计算方法

张学东

(塔里木农垦大学农业工程学院,新疆阿拉尔 843300)

通常我们知道如何求一个平面曲线的曲率,而空间曲线要较平面曲线复杂,没有现成的公式可以应用。本文给出空间曲线曲率的简单计算方法。

考虑空间曲线S ,不失一般性,假定曲线S 为平滑曲线,其方程由参数方程给出:

x =x (t ),y =y (t ),z =z (t )

θΦt Φ<(1)对(1)中的函数要求具有二阶导数。讨论其在M 点(t =t 0)的曲率。

可以把本曲线看作是质点在空间中的运动轨迹,则质点的速度向量及加速度向量可以由(1)中函数的一阶及二阶导数给出:

速度向量v ={x ′

(t 0),y ′(t 0),z ′(t 0)}(2)加速度向量a ={x ″(t 0),y ″(t 0),z ″(t 0)}(3)

其加速度可以分解为两部分:一个是与速度方向平行的切向加速度,另一个是与速度方向垂直的法向加速度。由圆周运动中速度与加速度的关系就可以确定圆周运动的半径,也就是曲率半径,从而求出曲率。圆周运动关系式为:

|a|=|v|2/r

(4)其中是圆周运动的半径。切向加速度大小就是加速度向量在速度向量上的投影值,由向量的运算

规则及(2)、

(3)可以求出切向加速度大小为:(v ?a )/|v| 则法向加速度大小为:|a|2-(v ?a )2/|v|2(5)由(4)、

(5)计算出曲率半径:r =|v|2/|a|2-(v ?a )2/|v|2 化简为:r =|v|3/|a|2|v|2-(v ?a )2(6)

曲率为曲率半径的倒数:曲率k =

|a|2|v|2-(v ?a )2/|v|3(7)其中:

|v|=x ′(t 0)2+y ′(t 0)2+z ′(t 0)2 |a|=x ″

(t 0)2+y ″(t 0)2+z ″(t 0)2v ?a =x ′(t 0)x ″(t 0)+y ′(t 0)y ″(t 0)+z ′(t 0)z ″(t 0)(8)

代入具体数值就可以求出给定曲线S 的曲率。这个公式也可以用于平面曲线的曲率计算,只需稍作变换即可得到验证。本文不再赘述。

收稿日期:2002-03-08

第14卷 第2期2002年6月 塔里木农

垦大学学报Journal of T arim University of Agricultural Reclamation V ol.14N o.2Jun.2002? 1994-2008 China Academic Journal Electronic Publishing House. All rights reserved. https://www.wendangku.net/doc/928979416.html,

曲面曲率计算方法的比较与分析

研究生专业课程报告 题目:曲面曲率直接计算方法的比较 学院:信息学院 课程名称:三维可视化技术 任课教师:刘晓宁 姓名:朱丽品 学号:201520973 西北大学研究生处制

曲面曲率直接计算方法的比较 1、摘要 曲面曲率的计算是图形学的一个重要内容,一般来说,曲面的一阶微分量是指曲面的切平面方向和法向量,二阶微分量是指曲面的曲率等有关量.它们作为重要的曲面信息度量指标, 在计算机图形学, 机器人视觉和计算机辅助设计等领域发挥了重要的作用.此文对曲面上主曲率的2种直接估算方法(网格直接计算法和点云直接计算法)进行了论述, 并进行了系统的总结与实验, 并给出了其在颅像重合方面的应用。 关键词曲面曲率、主曲率、点云、三角网格 2、引言 传统的曲面是连续形式的参数曲面和隐式曲面, 其微分量的计算已经有了较完备的方法.随着激光测距扫描等三维数据采样技术和硬件设备的长足进步, 以及图形工业对任意拓扑结构光滑曲面造型的需求日益迫切, 离散形式的曲面———细分曲面、网格曲面和点云曲面正在逐渐成为计算机图形学和几何设计领域的新宠.于是, 对这种离散形式的曲面如何估算微分量, 就成为一个紧迫的课题。 CT扫描技术获得的原始点云和网格数据通常只包含物体表面的空 间三维坐标信息及其三维网格信息,没有明确的几何信息,而在点云和网格的简化、建模、去噪、特征提取等数据处理和模式识别中,常需要提前获知各点的几何信息,如点的曲率、法向量等,也正基于此,点云和网格的几何信息提取算法一直是研究的热点。点的法向量和曲

率通常采用离散曲面的微分几何理论来计算,由于离散曲面分为网格和点集两种形式,其法向量和曲率计算也分为两类: 一类是基于网格的法向量和曲率计算,另一类是基于散点的法向量和曲率计算。由于基于三角网的点云几何信息计算精度一般比较低,通常采用直接计算法。在点云几何信息提取中,常采用基于散乱点的点云几何信息计算方法,该类方法主要是通过直接计算法和最小二乘拟合算法获取点云的局部n 次曲面,然后根据曲面的第一基本形式和第二基本形式求解高斯曲率和平均曲率,而点云的局部曲面表示有两种: 一是基于法向距离的局部曲面表示,二是基于欧几里德距离的局部曲面表示。本节中针对近几年来国际上提出的对三角网格曲面估算离散曲率的直接估算法,从数学思想与表达形式等方面进行系统的归纳与总结. 3、三角网格曲面的曲率的计算及代码实现 为了叙述清楚起见, 引入统一的记号.k 1和k 2表示主曲率,曲面的主曲率即过曲面上某个点具有无穷个曲线,也就存在无穷个曲率(法曲率),其中存在一条曲线使得该曲线的曲率为极大,这个曲率为极大值k 1,垂直于极大曲率面的曲率为极小值k 2。这两个曲率的属性为主曲率。它们代表着法曲率的极值。主曲率是法曲率的最大值和最小值。 H 表示平均曲率,是空间上曲面上某一点任意两个相互垂直的正交曲率的平均值。如果一组相互垂直的正交曲率可表示为K1、K2,那么平均曲率则为:H= (K1 +K 2 ) / 2。 K 表示曲面的高斯曲率, 两个主曲率的乘积即为高斯曲率,又称

空间曲线的主法线曲面的几何性质

空间曲线的主法线曲面的几何性质 目录 第一章绪论 (1) 第二章空间曲线的主法线曲面的曲率 (1) 2.1 第一基本形式 (1) 2.2 第二基本形式 (2) 2.3 法曲率 (2) 2.4 主曲率 (2) 2.5 高斯曲率 (3) 2.6 平均曲率 (3) 第三章空间曲线的主法线曲面上的特殊曲线族 (3) 3.1 渐近线 (3) 3.1.1 空间曲线的主法线曲面的渐近线方程 (3) 3.1.2 空间曲线的主法线曲面的曲纹坐标网是渐近网的充要条件 (4) 3.2 曲率线 (5) 3.2.1空间曲线的主法线曲面的曲率线方程 (5) 3.2.2空间曲线的主法线曲面的曲纹坐标网是曲率线网的充要条件 (5) 3.3 测地线 (6) 3.3.1空间曲线的主法线曲面的测地线方程 (6) 3.3.2空间曲线的主法线曲面的曲纹坐标网是半测地网的充要条件 (7) 3.3.3空间曲线的主法线曲面的曲纹坐标网是测地网的充要条件 (7) 第四章主法线曲面是常曲率或极小曲面的充要条件 (8) 4.1 空间曲线的主法线曲面是常曲率曲面的充要条件 (8) 4.2 空间曲线的主法线曲面是极小曲面的充要条件 (8) 第五章特殊曲线的主法线曲面的性质 (9) 5.1 曲率和挠率均为常数的特殊曲线的主法线曲面的几何性质 (9) 5.2正螺面的几何性质 (10) 致谢: (11) 参考文献: (12)

附录:.......................................................................................... 错误!未定义书签。

公路竖曲线计算

竖曲线及平纵线形组合设计 (纵断面上相邻两条纵坡线相交的转折处,为了行车平顺用一段曲线来缓和,这条连接两纵坡线的曲线叫竖曲线。) 竖曲线的形状,通常采用平曲线或二次抛物线两种。在设计和计算上为方便一般采用二次抛物线形式。 纵断面上相邻两条纵坡线相交形成转坡点,其相交角用转坡角表示。当竖曲线转坡点在曲线上方时为凸形竖曲线,反之为凹形竖曲线。 一、竖曲线 如图所示,设相邻两纵坡坡度分别为i 1 和i 2,则相邻两坡度的代数差即转坡角为ω= i 1-i 2 ,其中i 1、i 2为本身之值,当上坡时取正值,下坡时取负值。 当 i 1- i 2为正值时,则为凸形竖曲线。当 i 1 - i 2 为负值时,则为凹形竖曲线。 (一)竖曲线基本方程式 我国采用的是二次抛物线形作为竖曲线的常用形式。其基本方程为: Py x 22= 若取抛物线参数P 为竖曲线的半径 R ,则有: Ry x 22 = R x y 22= (二)竖曲线要素计算公式

竖曲线计算图示 1、切线上任意点与竖曲线间的竖距h 通过推导可得: ==PQ h )()(2112li y l x R y y A A q p ---=-R l 22= 2、竖曲线曲线长: L = R ω 3、竖曲线切线长: T= T A =T B ≈ L/2 =2 ωR 4、竖曲线的外距: E =R T 22 ⑤竖曲线上任意点至相应切线的距离:R x y 22= 式中:x —为竖曲任意点至竖曲线起点(终点)的距离, m ; R —为竖曲线的半径,m 。 二、竖曲线的最小半径 (一)竖曲线最小半径的确定 1.凸形竖曲线极限最小半径确定考虑因素 (1)缓和冲击 汽车行驶在竖曲线上时,产生径向离心力,使汽车在凸形竖曲线上重量减小,所以确定竖曲线半径时,对离心力要加以控制。 (2)经行时间不宜过短

竖曲线计算方法

竖曲线计算书 一、 变坡点桩号为220k28+,变坡点标高为m 135.873,两相邻路段的纵坡为 %303.0%0.39921-=+=i i 和,m R 15000=凸。 1. 计算竖曲线的基本要素 竖曲线长度 )(105.3)00303.000399.0(15000m R L =+?==ω 切线长度 )(7.522 3.1052m L T === 外距 )(09.015000 27 .52*7..5222m R T E =?== 2. 求竖曲线的起点和终点桩号 (1) 竖曲线起点桩号:3.167287.522202822028+=-+=-+K K T K 竖曲线起点高程:135.873-52.7 ?0.00399=135.663 (2) 竖曲线终点桩号:7.272287.522202822028+=++=++K K T K 竖曲线终点高程:135.873-52.7?0.00303=135.713 3. 求各桩号标高和竖曲线高程

二、 变坡点桩号为23029+K ,变坡点标高为m 809.132,两相邻路段的纵坡为 %401.0%303.021+=-=i i 和,m R 9000=凹。 1. 计算竖曲线的基本要素 竖曲线长度 )(36.63)]00303.0(00401.0[9000m R L =--?==ω 切线长度 )(68.312 36.632m L T === 外距 )(06.09000 268 .31*68.3122m R T E =?== 2. 求竖曲线的起点和终点桩号 (1) 竖曲线起点桩号:32.1982968.312302923029+=-+=-+K K T K 竖曲线起点高程:132.809+31.68?0.00303=132.905 (2) 竖曲线终点桩号:68.2612968.312302923029+=++=++K K T K 竖曲线终点高程:132.809+31.68?0.00401=132.936 3. 求各桩号标高和竖曲线高程

竖曲线自动计算表格

竖曲线自动计算表格 篇一:Excel竖曲线计算 利用Excel表格进行全线线路竖曲线的统一计算 高速公路纵断面线型比较复杂,竖曲线数量比较多。由于相当多的竖曲线分段造成了设计高程计算的相对困难,为了方便直接根据里程桩号计算设计高程,遂编制此计算程序。程序原理: 1、根据设计图建立竖曲线参数库; 2、根据输入里程智能判断该里程位于何段竖曲线上; 3、根据得到的竖曲线分段标志调取该分段的曲线参数到计算表格中; 4、把各曲线参数带入公式进行竖曲线高程的计算; 5、对程序进<0 = J=0; M-P=0 = J=1 B: K<=D =B=-M ; KD = B=P 程序特色: 1、可以无限添加竖曲线,竖曲线数据库不限制竖曲线条数; 2、直接输入里程就可以计算设计高程,不需考虑该里程所处的竖曲线分段;

3、对计算公式进行保护,表格中不显示公式,不会导致公式被错误修改或恶意编辑。 程序的具体编制步骤: 1、新建Excel工作薄,对第一第二工作表重新命名为“参数库”和“计算程序”,根据设计图建立本标段线路竖曲线的参数库,需要以下条目: (1)、竖曲线编号; (2)、竖曲线的前后坡度(I1、I2)不需要把坡度转换为小数; (3)、竖曲线半径、切线长(不需要考虑是凸型或凹型);(4)、竖曲线交点里程、交点高程; (5)、竖曲线起点里程、终点里程(终点里程不是必要参数,只作为复核检测用);如图1所示: 图1 2、进行计算准备: (1)、根据输入里程判断该里程所处的曲线编号: 需要使用lookup函数,函数公式为“LOOKUP(A2,参数库!H3:H25,参数库!A3:A25)”。如图2所示: 里程为K15+631的桩号位于第11个编号的竖曲线处,可以参照图1 进行对照 (2)、在工作表“程序计算”中对应“参数库”相应的格式建立表格

空间曲线的曲率、挠率和Frenet公式

空间曲线的曲率、挠率和Frenet公式摘要:本文研究了刻画空间曲线在某点邻近的弯曲程度和离开平面程度的量—曲率和挠率以及空间曲线论的基本公式--Frenet公式,并且举例有关曲率、挠率的计算和证明. 关键词:空间曲线;曲率;挠率;Frenet公式 Spatial curvature,torsion and Frenet formulas Abstract:This paper studies space curves depict a point near the bend in the degree and extend of the amount of leave plane-the curvature and torsion and the basic formula of space curves-Frenet formulas,and for example the curvature and torsion of the calculation and proof. Key Words: space curves; curvature; torsion; Frenet formulas 前言 空间曲线的曲率、挠率和Frenet公式是空间曲线基本理论的一部分,它是以空间曲线的密切平面和基本三棱形的知识作为基础的.空间曲线的曲率、挠率和Frenet公式在空间曲线的基本理论中占有重要位置,是空间曲线的一些基本性质和基本公式.曲线的曲率和挠率完全决定了曲线的形状.当曲线的曲率和挠率之间满足多种不同的关系时,就会得到不同类型的曲线.例如:0 k>时为直线,0 τ=时为平面曲线. 本文将从定义、公式推导和具体举例三方面逐步解析空间曲线的曲率、挠率和Frenet公式.本文第一部分讲述曲率和挠率的定义,第二部分讲述Frenet公式和曲率、挠率的一般参数表示的推导,第三部分具体举例有关曲率、挠率的计算和证明. 1.空间曲线的曲率和挠率的定义 1.1准备知识—空间曲线的伏雷内标架 给出2c类空间曲线()c和()c上一点p.设曲线()c的自然参数表示是

高等级道路竖曲线的计算方法

高速公路竖曲线计算方法 【摘要】本文从竖曲线的严密计算公式入手,推导竖曲线上点的设计高程和里程的精确计算方法。分析和比较了近似公式和严密公式的差别及对设计高 程和里程的影响。在道路勘测设计中用本方法可取得精确、方便、迅速的效果, 建议取代传统的近似方法。 一、引言 在传统的道路纵断面设计中,竖曲线元素及对应桩号里程和设计高程均采用 近似公式计算,在低等级道路及计算工具很落后的时代曾起到过很大的作用。 但是随着高级道路的快速发展,道路竖曲线半径的不断加大,设计和施工的精度要求越来越高,因此,对勘测设计工作提出了很高的要求。采用近似的方法进 行勘测设计已难以满足高精度、高效灵活的要求。为此本文给出了实用、精确的竖曲线计算公式,以解决实际工作中存在的问题。 二、计算原理 1. 近似计算公式 如图1所示,设道路纵坡的变坡点为I,其设计高程为H I,里程为D I,两侧的纵坡度分别为i1、i2,竖曲线设计半径为R,竖曲线各元素的近似计算公式如下:

图 1 2. 精确计算公式 如图2所示,在图中建立以水平距离为横坐标轴d,铅垂线为纵坐标轴H′的dOH′直角坐标系,A点的坐标为(d A,0),Z点的坐标为(0,H Z′),竖曲线各元素的精确计算公式如下: α1=arctani 1 (1) α2=arctani 2 (2) ω=α1-α2(3) T=Rtan(4) E=R(sec-1) (5) d I=Tcosα1 (6) d A=Rsinα1 (7) H Z′=Rcosα1 (8) 竖曲线在直角坐标系中的方程为: (d-d A)2+H′2=R2 (9)

由式(9)可推算出竖曲线上任一与Z点的里程差为d的点的纵坐标值H′,则 0≤d≤dY (10) 并可立即推算点的设计高程和里程: H=H′-ΔH (11) D=D Z+d (D Z=D I-d I) (12) 式中,α1,α2分别为纵坡线与水平线的夹角;ω为变坡角;Τ为切线长;Ε为外矢距;d I为纵坡变坡点I与Z点的里程差;d A为竖圆曲线圆心A与Z点的里程差;H′为竖圆曲线上任一点的纵坐标值;d为竖圆曲线上任一点与Z点的里程差;H为竖圆曲线上任一点的设计高程;ΔH=H′Z-H Z为Z点纵坐标值与Z 点设计高程之差(H Z=H I-d I.i1);D为竖曲线上任一点的里程。 由式(10)可知,当d=d A时,则里程D N=D Z+d A的N点为竖圆曲线的变坡点, 其高程H N=H N′-ΔH=R-ΔH=max,N点在现场施工中具有很重要的指导意义。 三、计算实例 某山岭重丘的二级公路的纵坡变坡点I,其设计高程H I=68.410 m,里程D I

缓和曲线曲率半径 的计算

所谓完整缓和曲线就是某段缓和曲线的一端与直线连接点的曲率半径必须是无穷大(可用10的45次方代替,有时也可用“0”表示,具体情况具体分析),而缓和曲线两端无论在什么情况下与圆曲线相接时,其两端的曲率半径必须与对应连接圆曲线的半径相等。 现在我们来谈谈非完整缓和曲线,从上面的话知道,如果某段缓和曲线的一端与直线连接点曲率半径不是无穷大,而是一个实数,那么这段缓和曲线就是非完整缓和曲线。 设计图中遇到这种情况,一般会告诉这段缓和曲线的长度(我们把这段缓和曲线的长度记作L2,缺少的一段缓和曲线长度记作L1,L1+L2=完整缓和曲线长度L),如果没告诉这段缓和曲线的长度,也可以通过两端的桩号计算出来、设计参数A及缓和曲线另一端的曲率半径R2(应该是与一个圆曲线相接,也就是说R2等于这个圆曲线的半径)。 我们在输入匝道程序时必须要知道R1(起点曲率半径),怎么办呢?那就通过计算把R1计算出来不就行了,下面就是计算过程: 由公式:R=A2÷L 推出 R1= A2÷L1 => A2=R1*L1 ……………………………………………………① R2= A2÷(L1+L2) => A2=R2*(L1+L2) ……………………………………………………② R2= A2÷(L1+L2) => R2= A2÷L => L=A2÷ R2 …………………………………………③ 由公式①②推出 R1*L1=R2*(L1+L2) => R1=R2*(L1+L2)÷ L1 …………………………………………④ L=L1+L2 => L1=L-L2 ……………………………………………⑤ 由公式③④⑤推出 R1=R2*L÷(L-L2) => R1= A2÷(A2÷ R2-L2) …………………………………………⑥ 公式⑥就是我们要找的曲率半径公式,计算得到结果计算完毕。 现在我们在编制非完整缓和曲线程序时就清楚的知道起点和终点的曲率半径了。还要说明一点就是,计算出来的曲率半径既是起点也是终点,既是终点也是起点,关键是看线路前进方向了,只要大家细心,分清起点终点输入程序,计算出来的准没错。

公路竖曲线计算

公路竖曲线计算

————————————————————————————————作者:————————————————————————————————日期:

课 题:第三节 竖曲线 第四节 公路平、纵线形组合设计 教学内容:理解竖曲线最小半径的确定;能正确设置竖曲线;掌握竖曲线的要素计算、竖曲线与路基设计标高的计算;能正确进行平、纵线形的组合设计。 重 点:1、竖曲线最小半径与最小长度的确定;2、竖曲线的设置; 3、平、纵线形的组合设计。 难 点:竖曲线与路基设计标高的计算;平、纵线形的组合设计。 第三节 竖曲线设计 纵断面上相邻两条纵坡线相交的转折处,为了行车平顺用一段曲线来缓和,这条连接两纵坡线的曲线叫竖曲线。 竖曲线的形状,通常采用平曲线或二次抛物线两种。在设计和计算上为方便一般采用二次抛物线形式。 纵断面上相邻两条纵坡线相交形成转坡点,其相交角用转坡角表示。当竖曲线转坡点在曲线上方时为凸形竖曲线,反之为凹形竖曲线。 一、竖曲线 如图所示,设相邻两纵坡坡度分别为i 1 和i 2,则相邻两坡度的代数差即转坡角为ω= i 1-i 2 ,其中i 1、i 2为本身之值,当上坡时取正值,下坡时取负值。 当 i 1- i 2为正值时,则为凸形竖曲线。当 i 1 - i 2 为负值时,则为凹形竖曲线。 (一)竖曲线基本方程式 我国采用的是二次抛物线形作为竖曲线的常用形式。其基本方程为: Py x 22= 若取抛物线参数P 为竖曲线的半径 R ,则有: Ry x 22 = R x y 22 = (二)竖曲线要素计算公式 竖曲线计算图示 1、切线上任意点与竖曲线间的竖距h 通过推导可得: ==PQ h )()(2112 li y l x R y y A A q p ---=-R l 22= 2、竖曲线曲线长: L = R ω 3、竖曲线切线长: T= T A =T B ≈ L/2 = 2 ω R 4、竖曲线的外距: E =R T 22 ⑤竖曲线上任意点至相应切线的距离:R x y 22 = 式中:x —为竖曲任意点至竖曲线起点(终点)的距离, m; R —为竖曲线的半径,m 。

关于不同类型缓和曲线的判断及起点、终点曲率半径的计算方法

目前在匝道或线路施工坐标计算中经常遇到缓和曲线,实际中相信有很多测友选择用积木法或叫线元法正反算程序进行线路坐标计算,这就牵涉到线元的起点终点曲率半径判断的问题,一般的直线元,圆曲线元的起点终点半径判断,比较容易,可能令大家感觉麻烦的就是缓和曲线起点终点半径判断问题,缓和曲线有时候判断算对了,有时候却坐标算不对,究其原因,其实问题出于该缓和曲线是否是完整缓和曲线引起的。关于这点,相关的课本教材上没有明确的讲述,网上对此问题的解释也是散见于不同的论文著作中,对于测量新手来说,线元法程序是非常适用上手的,但却往往因为遇到不完整缓和曲线的起点或终点的半径判断计算不出来导致坐标计算错误,的确是件令人恼火的事情,在此我就把自己的判断经验做一论述,给用线元法程序的测友们一同分享,当然高手们请一笑而过,也可留下你的经验与大家一起分享交流学习。 第一:先说说完整缓和曲线和不完整缓和曲线以及不对称缓和曲线与对称缓和曲线的概念问题,以免混为一谈. 1.当对于单独一段缓和曲线从其完整与否来讲是分为完整与不完整两类;当对于一个单交点内的两段缓和曲线(即常说的第一缓和曲线和第二缓和曲线而言)又有对称缓和曲线与不对称缓和曲线之分。由此看来,完整与对称与否是针对缓和曲线两个方面来看待区分的。 2.缓和曲线我们的测量教材上讲述的其实就是完整缓和曲线,也可以知道缓和曲线上:各个点的半径是不同的,起点到终点的半径值过度是从正无穷大到所接圆曲线半径之过度如从ZH向HY方向;或者是从所接圆曲线半径值向正无穷大过度的,如从YH向HZ方向。那么由此可以不难判断出来,完整缓和曲线就是符合上述特征的,那么不完整的缓和曲线就是不符合上述特征的,但是线路上的平曲线设计时候一般缓和曲线不单独存在的,整体上缓和曲线前或后一般都是要连接一个圆曲线的,那么不完整缓和曲线其实就是在完整缓和曲线上截取的一段,一般就是去掉了半径无穷大的那端而是从某个点开始的半径值向所接圆曲线半径值过度的。 3.对称与不对称缓和曲线是相对于一个单交点内的两段缓和曲线(即常说的第一

曲率和挠率对空间曲线形状的影响要点

曲率和挠率对空间曲线形状的影响 摘 要:曲率和挠率是空间曲线的特性,不同的曲率和挠率函数决定不同形状的曲线,研究常曲率和挠率的空间曲线有特别重要的意义。本文对曲率和挠率的形成及意义进行了探讨,并对常曲率和挠率的空间曲线进行了一定的研究.给出了常曲率和挠率的空间曲线特性. 关键词:曲率 挠率 空间曲线形状 我们知道,空间曲线的形状完全由曲率和挠率决定.而当一个空间曲线的曲率或挠率为常数时,这种曲线具有很强的特性,对这种曲线的特性的研究有利于对空间曲线这部分内容的掌握和理解. 一 曲率的概念和几何意义 1曲率的概念 我们首先研究空间曲线的曲率的概念。在不同的曲线或者同一条曲线的不同点处,曲线弯曲的程度可能不同。例如半径较大的圆弯曲程度较小,而半径较小的圆弯曲程度较大(图1-1)又如图1-2中所示,当沿着曲线从左向右移动时,曲线弯曲的程度变大。为了准确地刻画曲线的弯曲程度,我们引进曲率的概念。 图1-1 图1-2 要从直观的基础上引出曲率的确切的定义,我们首先注意到,曲线弯曲的程度越大,则从点到点变动时,其切向量的方向改变得越快。所以作为曲线在已知线段PQ 的平均弯曲程度可取为曲线在P,Q 间切向量关于弧长的平均旋转角。

设空间中c 3 类曲线(c )的方程为 ()s γγ= 曲线(C )上一点P ,其自然参数为S,另一 邻近点p 1 ,其自然参数为s s ?+。 在p, p 1 两点各作曲线(c )的单位切向量()s α和()s s ?+α。两个切向量间的夹 角是??(图1-3),也就是把点p 1 的切向量()s s ?+α平移到点P 后,两个向量() s α和()s s ?+α的夹角为??。 图1-3 定义 空间曲线(C )在P 点的 曲率为 ()s s s ??=→?? κ0lim , 其中s ?为P 点及其邻近点p 1 间的弧长, ??为曲线在点P 和p 1 的的切向量 的夹角。 2曲率的几何意义 利用“一个单位变向量()t γ(即()t γ1=)的微商的模)(' t γ的几何意义是()t γ对于t 的旋转速度”。把这个结果应用到空间曲线(C )的切向量α上去,则有 ()? =ακs 。 由于? α=? ?γ,所以曲率也可表示为

竖曲线计算

竖曲线计算 Document serial number【KK89K-LLS98YT-SS8CB-SSUT-SST108】

竖曲线计算竖曲线定义:纵断面上两个坡段的转折处,为了便于行车用一段曲线缓和,这条连接两个纵坡线的曲线称为竖曲线。 竖曲线作用: 1)以平缓曲线取代折线可消除汽车在变坡点处冲击, 2)确保道路纵向行车视距; 3)将竖曲线与平曲线恰当地组合,有利于路面排水和改善行车的视线诱导以及 舒适感。 变坡点:在道路纵断面上两个相邻纵坡线的交点。 竖曲线分类:竖曲线常采用圆曲线,可以分为凸形和凹形两种。 凹凸竖曲线判断:如上图,当前坡段坡度大于后坡段坡度时为凸型曲线;当前坡段坡度小于后坡段坡度时为凹曲线;坡度:通常把坡面的垂直高度h和水平宽度l的比叫做坡度。(注:判断是凹凸竖曲线时,坡度含正负号,例如,前坡段坡度为-%,后坡段坡度为-%,因为-%<-%,故此竖曲线为凹形竖曲线,我们习惯把上坡段用“+”表示,下坡段用“-”表示) 道路纵断面线形常采用直线、竖曲线两种线形,二者是纵断面线形的基本要素。竖曲线技术指标主要有竖曲线半径和竖曲线长度。凸形的竖曲线的视距条件较差,应选择适当的半径以保证安全行车的需要。凹形的竖曲线,视距一般能得到保证,但由于在离心力作用下汽车

要产生增重,因此应选择适当的半径来控制离心力不要过大,以保证行车的平顺和舒适。 竖曲线基本要素: 竖曲线长:L 切线长:T 外距:E 半径:R 竖曲线起终点桩号计算: 竖曲线起点桩号:变坡点桩号-T 竖曲线终点桩号:变坡点桩号+T 如右图所示,两个相邻的纵坡为i1和i2,竖曲线半径为R,则测设元素为: 曲线长L=R ×α 由于竖曲线的转角α很小,故可以认为: α=i1-i2;所以L=R (i1-i2) 切线长T=Rtan 2 α 因为α很小,tan 2α=2α;所以可以推出: T=R ·2α=2L =2 1R (i1-i2) 又因为α很小,可以认为:DF=E;AF=T 根据三角形ACO与三角形ACF相似,根据相似三角形“边角边”定理得出: R:T=T:2E; 于是如上图外距E=R T 22 , 同理可导出竖曲线上任意一点P距切线纵距的计算公式:y =R x 22 式中:x —竖曲线上任意一点P 到竖曲线起点或终点的水平距离

空间曲线的曲率、挠率和Frenet公式

空间曲线的曲率、挠率和Frenet 公式 前言 空间曲线的曲率、挠率和Frenet 公式是空间曲线基本理论的一部分,它是以空间曲线的密切平面和基本三棱形的知识作为基础的.空间曲线的曲率、挠率和Frenet 公式在空间曲线的基本理论中占有重要位置,是空间曲线的一些基本性质和基本公式.曲线的曲率和挠率完全决定了曲线的形状.当曲线的曲率和挠率之间满足多种不同的关系时,就会得到不同类型的曲线.例如:0k >时为直线,0τ=时为平面曲线. 本文将从定义、公式推导和具体举例三方面逐步解析空间曲线的曲率、挠率和Frenet 公式.本文第一部分讲述曲率和挠率的定义,第二部分讲述Frenet 公式和曲率、挠率的一般参数表示的推导,第三部分具体举例有关曲率、挠率的计算和证明. 1. 空间曲线的曲率和挠率的定义 1.1准备知识—空间曲线的伏雷内标架 给出2c 类空间曲线()c 和()c 上一点p .设曲线()c 的自然参数表示是 (),r r s = 其中s 是自然参数,得 dr ds r == α 是一单位向量.α 称为曲线()c 上p 点的单位切向量. 由于1=α,则 ⊥αα , 即 r r ⊥ . 在α 上取单位向量

= = αr βα r , (1) β称为曲线()c 上p 点的主法向量. 再作单位向量 =?γαβ, γ称为曲线()c 上p 点的副法向量. 我们把两两正交的单位向量,,αβγ称为曲线上p 点的伏雷内(Frenet)标架. 1.2 空间曲线的曲率 我们首先研究空间曲线的曲率的概念.在不同的曲线或者同一条曲线的不同 点处,曲线弯曲的程度可能不同.例如半径较大的圆弯曲程度较小,而半径较小的圆弯曲程度较大.为了准确的刻画曲线的弯曲程度,我们引进曲率的概念. 要从直观的基础上引出曲率的确切定义,我们首先注意到,曲线弯曲的程度越大,则从点到点变动时,其切向量的方向改变的越快.所以作为曲线在已知一曲线段PQ 的平均弯曲程度可取为曲线在P 、Q 间切向量关于弧长的平均旋转角. 设空间中3c 类曲线()c 的方程为 ().r r s = 曲线()c 上一点p ,其自然参数为s ,另一邻近点1p ,其自然参数为s s +?.在p 、 1p 两点各作曲线()c 的单位切向量()s α和()s s +?α.两个切向量的夹角是??,也 就是把点1p 的切向量()s s +?α平移到点p 后,两个向量()s α和()s s +?α的夹角为??. 我们把空间曲线在p 处的切向量对弧长的旋转速度来定义曲线在点p 的曲率. 定义[]1 空间曲线()c 在p 点的曲率为 ()lim s k s s ? ?→?=?, 其中s ?为p 点及其邻近点1p 间的弧长,??为曲线在点p 和1p 的切向量的夹角. 再利用命题“一个单位变向量()t r (即()1t =r )的微商的模,()r t 的几何意

高斯曲率的计算公式汇总

第二章 曲面论 高斯曲率的计算公式 高斯曲率绝妙定理 2 122LN M K k k EG F -==- 。 注意 (,,) uu r r r L n r =?= , (,,)uv r r r M n r =?= , (,,) vv r r r N n r =?= 。 所以 2 2LN M K EG F -= - 222 1 [(,,)(,,)(,,)]() u v uu u v vv u v uv r r r r r r r r r EG F = -- ,

利用行列式的转置性质和矩阵乘法性质,得 2(,,)(,,)(,,)u v uu u v vv u v uv r r r r r r r r r - (,,)(,,) u u v u v vv v u v uv uu uv r r r r r r r r r r r r ???? ? ?=- ? ? ? ????? u u u v u vv u u u v u uv v u v v v vv v u v v v uv uu u uu v uu vv uv u uv v uv uv r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r ??????=???-????????? u vv u uv v vv v uv uu u uu v uu vv uv u uv v uv uv E F r r E F r r F G r r F G r r r r r r r r r r r r r r ??=?-??????? u vv u uv v vv v uv uu u uu v uu vv uv uv uv u uv v E F r r E F r r F G r r F G r r r r r r r r r r r r r r ??=?-????-??? , (其中用到行列式按第三行展开计 算的性质。)

道路竖曲线计算知识分享

道路竖曲线计算

第二节 竖曲线设计 纵断面上相邻两条纵坡线相交的转折处,为了行车平顺用一段曲线来缓 和,这条连接两纵坡线的曲线叫竖曲线。 竖曲线的形状,通常采用平曲线或二次抛物线两种。在设计和计算上为方 便一般采用二次抛物线形式。 纵断面上相邻两条纵坡线相交形成转坡点,其相交角用转坡角表示。当竖 曲线转坡点在曲线上方时为凸形竖曲线,反之为凹形竖曲线。 一、竖曲线 如图所示,设相邻两纵坡坡度分别为i l 和i 2,贝U 相邻两坡度的代数差即转 坡角为3= i i -i 2 ,其中「、i 2为本身之值,当上坡时取正值,下坡时取负值。 当i 1-i 2为正值时,则为凸形竖曲线。当i 1 - i 2为负值时,则为凹形竖 曲线。 (一)竖曲线基本方程式 我国采用的是二次抛物线形作为竖曲线的常用形式。其基本方程为: 2 x 2Py 若取抛物线参数P 为竖曲线的半径 R ,则有: 2 x 2R x 2 2Ry y

2、竖曲线曲线长: L = R 3 3、 竖曲线切线长: R T= T A =T B ?L/2 = R 2 4 、 竖曲线的外距: E = T 2 2R 2 ⑤竖曲线上任意点至相应切线的距离: x y 2R 式中:x —为竖曲任意点至竖曲线起点(终点)的距离,m ; R —为竖曲线的半径,m 、竖曲线的最小半径 (一)竖曲线最小半径的确定 1. 凸形竖曲线极限最小半径确定考虑因素 (1) 缓和冲击 汽车行驶在竖曲线上时,产生径向离心力,使汽车在凸形竖曲线上重量减 小,所以确定竖曲线半径时,对离心力要加以控制。 (2) 经行时间不宜过短 当竖曲线两端直线坡段的坡度差很小时,即使竖曲线半径较大,竖曲线长 度也有可能较短,此时汽车在竖曲线段倏忽而过,冲击增大,乘客不适;从视 觉上考虑也会感到线形突然转折。因此,汽车在凸形竖曲线上行驶的时间不能 太短,通常控制汽车在凸形竖曲线上行驶时间不得小于 3秒钟。 (3) 满足视距的要求 汽车行驶在凸形竖曲线上,如果竖曲线半径太小,会阻挡司机的视线。为 了行车安全,对凸形竖曲线的最小半径和最小长度应加以限制。 2. 凹形竖曲线极限最小半径确定考虑因素 (1) 缓和冲击: 在凹形竖曲线上行驶重量增大;半径越小,离心力越大;当重量变化程度 达到一定时,就会影响到旅客的舒适性,同时也会影响到汽车的悬挂系统。 (2) 前灯照射距离要求 对地形起伏较大地区的路段,在夜间行车时,若半径过小,前灯照射距离过短, h PQ y p y q 2-(X A i)2 2R W A li i ) 2R

曲面曲率计算方法的比较与分析

. 研究生专业课程报告 题目:曲面曲率直接计算方法的比较 学院:信息学院 课程名称:三维可视化技术 任课教师:刘晓宁 姓名:朱丽品 学号: 201520973 西北大学研究生处制

曲面曲率直接计算方法的比较 1、摘要 曲面曲率的计算是图形学的一个重要内容,一般来说,曲面的一阶微分量是指曲面的切平面方向和法向量,二阶微分量是指曲面的曲率等有关量.它们作为重要的曲面信息度量指标, 在计算机图形学, 机器人视觉和计算机辅助设计等领域发挥了重要的作用.此文对曲面上主曲率的2种直接估算方法(网格直接计算法和点云直接计算法)进行了论述, 并进行了系统的总结与实验, 并给出了其在颅像重合方面的应用。 关键词曲面曲率、主曲率、点云、三角网格 2、引言 传统的曲面是连续形式的参数曲面和隐式曲面, 其微分量的计算已经有了较完备的方法.随着激光测距扫描等三维数据采样技术和硬件设备的长足进步, 以及图形工业对任意拓扑结构光滑曲面造型的需求日益迫切, 离散形式的曲面———细分曲面、网格曲面和点云曲面正在逐渐成为计算机图形学和几何设计领域的新宠.于是, 对这种离散形式的曲面如何估算微分量, 就成为一个紧迫的课题。 CT扫描技术获得的原始点云和网格数据通常只包含物体表面的空间三维坐标信息及其三维网格信息,没有明确的几何信息,而在点云和网格的简化、建模、去噪、特征提取等数据处理和模式识别中,常需要提前获知各点的几何信息,如点的曲率、法向量等,也正基于此,点云和网格的几何信息提取算法一直是研究的热点。点的法向量

和曲率通常采用离散曲面的微分几何理论来计算,由于离散曲面分为网格和点集两种形式,其法向量和曲率计算也分为两类: 一类是基于网格的法向量和曲率计算,另一类是基于散点的法向量和曲率计算。由于基于三角网的点云几何信息计算精度一般比较低,通常采用直接计算法。在点云几何信息提取中,常采用基于散乱点的点云几何信息计算方法,该类方法主要是通过直接计算法和最小二乘拟合算法获取点云的局部n 次曲面,然后根据曲面的第一基本形式和第二基本形式求解高斯曲率和平均曲率,而点云的局部曲面表示有两种: 一是基于法向距离的局部曲面表示,二是基于欧几里德距离的局部曲面表示。 本节中针对近几年来国际上提出的对三角网格曲面估算离散曲率的直接估算法,从数学思想与表达形式等方面进行系统的归纳与总结. 3、三角网格曲面的曲率的计算及代码实现 为了叙述清楚起见, 引入统一的记号.k 1和k 2表示主曲率,曲面的主曲率即过曲面上某个点具有无穷个曲线,也就存在无穷个曲率(法曲率),其中存在一条曲线使得该曲线的曲率为极大,这个曲率为极大值k 1,垂直于极大曲率面的曲率为极小值k 2。这两个曲率的属性为主曲率。它们代表着法曲率的极值。主曲率是法曲率的最大值和最小值。 H 表示平均曲率,是空间上曲面上某一点任意两个相互垂直的正交曲率的平均值。如果一组相互垂直的正交曲率可表示为K 1、K 2,

竖曲线的计算方法

竖曲线 铁路线路的纵断面最理想的当然是平道,然而事实上是不可能的,为了适应地形的起伏,以减少工程量,纵断面必须用各种不同的坡面连接而成。两相邻坡段的连续点谓之变坡点。相邻坡段的坡度差是两相邻坡段的坡度代数差。当相邻坡段的坡度差超过允许值时,为了保证行车平顺和安全,应在变坡点处用竖曲线连接起来。允许不设竖曲线的坡度差允许值是根据车轮不脱轨、车钩不脱钩、列车不撞车和行车平稳等要求进行分析确定的。一般情况下,竖曲线采用圆曲线,也可以采用抛物线,个别情况下,还可以采用连续短坡曲线。 竖曲线的计算 一、圆曲线形竖曲线 圆曲线形竖曲线的几何要素和各点设计标高,可按下列公式计算,如图。 R α  x T T y R C α/2  B A i1 i2 1、竖曲线的切线长度T T=R·tan(α/2)=R/2·tanα=R/2·△i‰ =R/2000·△i(m) (5-1) 式中 R-竖曲线半径(m); α-竖曲线转角(度); △i-相邻坡段的坡度代数差(‰)。 R=5000m时, T=2.5△i(m)

R=10000m时,T=5.0△i(m) R=15000m时,T=7.5△i(m) R=20000m时,T=10.0△i(m) R=25000m时,T=12.5△i(m) 2、竖曲线长度C C≈2T=R/1000·△i(m) (5-2) 3、竖曲线纵距y y=x2/2R (m) (5-3) 式中 x-竖曲线上计算点至竖曲线起(终)点的横距(m)。 当x=T时,变坡点的纵距Y即为竖曲线的外矢距E。 Y=E=T2/2R=1/2R(C/2)2=C2/8R (5-3.1) 4、竖曲线上各点的设计标高H 设h为计算点的坡度标高,则 H=h±y (5-4) 式中的y值,凹形取“+”,凸形取“-”。 【算例一】一凹形竖曲线i1=-4‰,i2=+2‰,△i=6‰,变坡点的里程为K235+165,标高为54.60m,R=15000m,计算竖曲线上各20m点的设计标高。 由(5-1)式 T=7.5△i=45m 由(5-2)式 C=2T=90m 竖曲线起点里程A=K235+165-45=K235+120 竖曲线终点里程B=K235+165+45=K235+210 各20m点坡度标高的计算: 起点A K235+120 h=54.60+45×4‰=54.78m +140 h=54.60+25×4‰=54.70m

空间曲线曲率计算公式及推导

1.4 空间曲线的曲率定义及 计算公式 引理 设)(s a → 是单位圆周上的向量,即1||)(||=→ s a , 设)(s s a ?+→ 与)(s a → 之间的夹角记 为θ?,则有 ||lim ||)(||0s s a s ??='→? → θ 。 证明 因为 s s a s s a s a s ?-?+='→ → →?→ ) ()(lim )(0, 所以| ||| )()(||lim ||)(||0s s a s s a s a s ?-?+='→ →→?→ |||2 2sin 2|lim |2sin 2|lim 00s s s s ?????=??=→?→?θθθ θ | |lim 0s s ??=→?θ 。 (用解等腰三角形或用余弦定理,得 θ ????-+=-?+→ → cos 11211||)()(||22s a s s a

|2 sin |2)2sin 21(222 θ θ?=?--=。) 定理1.2 设曲线Γ:)(s r r → →=(s 是弧长参数)上的每一点有一个单位向量)(s a →,)(s s a ?+→ 与)(s a → 之间的夹角记为θ?,那么 || lim ||)(||0 s s a s ??='→?→ θ 。 设曲线Γ:)(s r r → → =,这里参数s 是曲线自身的弧长,我们知道,)(s r '是曲线的切向量, 1||)(||='→ s r ,即)(s r → '是单位向量。 记)(s r T →→'=,)()(s r s T → →''=', )(s T → 与)(s s T ?+→ 的夹角 θ?, ||lim 0s s ??→?θ度量了曲线的弯曲程度。 || lim ||)(||||)(||0 s s r s T s ??=''='→?→ →θ ,我们称之为曲线)(s r → 的 曲率,用)(s k 来表

一种竖曲线上高程的计算方法_secret

一种竖曲线上高程的计算方法 在道路工程建设中,由于地势起伏、高差不均,并且考虑到工程的造价,就需要根据地势的实际情况和工程要求在不同的线段上设计不同的坡度,在不同的坡度连接处要使其合理平稳的连接起来,就需要加设竖曲线。如图1,i1为线路BA部分的坡度,i2为线路CA部分的坡度,线路由坡度i1变化到坡度i2,中间加设了竖曲线,竖曲线半径根据BA和CA的坡度可以求出,竖曲线上的高程就是对变坡点1到变坡点2这一段圆曲线上的高程进行计算。 变坡点1 变坡点2 图1 竖曲线

方法理论 根据竖曲线的定义,竖曲线的高程计算是要求B点到C之间的圆弧长度。而B和C点的高程都可以根据比较简单的计算公式计算得到。已知B和C的高程为HB、HC,竖曲线半径R,前后坡度i1、i2。根据第一坡度i1,可以在如上图的直角坐标系中的直线斜率K就等于i1,由于直线与以R为半径的圆相切,则可以求出其切点坐标(XB,YB),XB对应的是B点的里程(不相等),YB对应的是B点的高程(不相等)。同理可以求出后一坡度线与圆的切点坐标为(XC,YC),XC对应的是C点的里程(不相等),YC对应的是C点的高程(不相等)。而需要求的是BC圆弧上任一点j的坐标值(Xj,Yj),而j点高程则等于B点的高程与j点与B点Y轴方向上的增值。 具体计算方法 由上述可知,以知前后坡度i1、i2,竖曲线半径为R,变坡点桩号为L。 建立直角坐标系XOY,以R为半径作圆,以i1为斜率作与圆相切的直线AB,B为切点,其坐标为(XB,YB)。 切点坐标的计算(XB,YB) 直线AB的方程为 Y=kX+b (k=i1) (1) 根据直线到坐标原点的距离等于半径R: 1 +2 k R b=

相关文档
相关文档 最新文档