文档库 最新最全的文档下载
当前位置:文档库 › 模糊控制入门仿真

模糊控制入门仿真

模糊控制入门仿真
模糊控制入门仿真

方法二:用MATLAB的模糊逻辑工具箱(Fuzzy toolbox)实现

(陈老师整理)

一、模糊逻辑推理系统的总体特征

模糊控制由于不依赖对象的数学模型而受到广泛的重视,计算机仿真是研究模糊控制系统的重要手段之一。由Math Works公司推出的Matlab软件,为控制系统的计算机仿真提供了强有力的工具,特别是在Matlab4.2以后的版本中推出的模糊工具箱(Fuzzy Toolbox),为仿真模糊控制系统提供了很大的方便。由于这样的模块都是由相关领域的著名学者开发的,所以其可信度都是很高的,仿真结果是可靠的。

在Simulink环境下对PID控制系统进行建模是非常方便的,而模糊控制系统与PID控制系统的结构基本相同,仅仅是控制器不同。所以,对模糊控制系统的建模关键是对模糊控制器的建模。Matlab软件提供了一个模糊推理系统(FIS)编辑器,只要在Matlab命令窗口键入Fuzzy就可进入模糊控制器编辑环境。

二、Matlab模糊逻辑工具箱仿真

1.模糊推理系统编辑器(Fuzzy)

模糊推理系统编辑器用于设计和显示模糊推理系统的一些基本信息,如推理系统的名称,输入、输出变量的个数与名称,模糊推理系统的类型、解模糊方法等。其中模糊推理系统可以采用Mandani或Sugeuo两种类型,解模糊方法有最大隶属度法、重心法、加权平均等。

打开模糊推理系统编辑器,在MATLAB的命令窗(command window)内键入:fuzzy 命令,弹出模糊推理系统编辑器界面,如下图所示。

因为我们用的是两个输入,所以在Edit菜单中,选Add variable… ->input,加入新的输入input,如下图所示。

选择input(选中为红框),在界面右边文字输入处键入相应的输入名称,例如,温度输入用tmp-input, 磁能输入用 mag-input,等。

2.隶属度函数编辑器(Mfedit)

该编辑器提供一个友好的人机图形交互环境,用来设计和修改模糊推理系中各语言变量对应的隶属度函数的相关参数,如隶属度函数的形状、范围、论域大小等,系统提供的隶属度函数有三角、梯形、高斯形、钟形等,也可用户自行定义。

双击所选input,弹出一新界面,在左下Range处和Display Range处,填入取只范围,例如 0至9 (代表0至90)。

在右边文字文字输入Name处,填写隶属函数的名称,例如lt或LT(代表低温)。

在Type处选择trimf(意为:三角形隶属函数曲线,tri angle m ember f unction),当然也可选其它形状。

在Params(参数)处,选择三角形涵盖的区间,填写三个值,分别为三角形底边的左端点、中点和右端点在横坐标上的值。这些值由设计者确定。

见下图。

用类似的方法设置输出output的参数。注意:我们共有9个规则,所以相应地有9个输出隶属函数。默认3个隶属函数,剩下6个由设计者加入。点击Edit菜单,选 Add Custom MS…->继续填入相应参数即可。

见下图。

3用命令行函数实现烘干机模糊逻辑系统

通过隶属度函数编辑器来设计和修改“IF...THEN”形式的模糊控制规则。由该编辑器进行模糊控制规则的设计非常方便,它将输入量各语言变量自动匹配,而设计者只要通过交互式的图形环境选择相应的输出语言变量,这大大简化了规则的设计和修改。另外,还可为每条规则选择权重,以便进行模糊规则的优化。

在上面的界面中,选Edit菜单,选择Rules, 弹出一新界面Rule Editor. 在底部的选择框内,选择相应的 IF…AND…THEN 规则,点击Add rule 键,上部框内将显示相应的规则。本次课题中用到了9条左右的规则,依次加入。如下图所示:

4模糊逻辑工具箱仿真结果

模糊规则浏览器用于显示各条模糊控制规则对应的输入量和输出量的隶属度函数。通过指定输入量,可以直接的显示所采用的控制规则,以及通过模糊推理得到相应输出量的全过程,以便对模糊规则进行修改和优化。

所有规则填入后,选菜单View, 选择Rules,弹出一新界面Rule Viewer,如下图所示。

上图表示当温度为45度、磁能为45瓦时,输出干度为约70个单位。左右拉动界面中的两支红线,拉到欲选的近似值,右边图顶显示相应的干度结果。

上图中选菜单View, 选择Surface,弹出一新界面Surface Viewer,弹出该课题结果的三维图。如下图所示。

注意将鼠标箭头放置图内,移动鼠标可得到不同角度的视图,如下图所示。

三、解题要求:

1.需打印出以上结果图。

2.在每幅图的下方,需对该图进行必要的文字解释。

3.对给定的输入T=25度, M=60瓦, 运行程序算出干度D的结果页。

四、提交要求:

1.学院统一封面,写上学号,姓名

2.有关课题的要求。.

3.上面“三”中的内容。

五、诚信原则:

完成过程中,鼓励相互询问,相互交流,但不可抄袭。发现抄袭者,按不及格处理。根据你采用的解题方法,继续查看相关要求。

基于simulink的模糊控制仿真

已知系统的传递函数为:1/(10s+1)*e(-0.5s)。假设系统给定为阶跃值r=30,系统初始值r0=0.试分别设计 (1)常规的PID控制器; (2)常规的模糊控制器; (3)比较两种控制器的效果; (4)当通过改变模糊控制器的比例因子时,系统响应有什么变化? 一.基于simulink的PID控制器的仿真及其调试: 调节后的Kp,Ki,Kd分别为:10 ,1,0.05。 示波器观察到的波形为: 二.基于simulink的模糊控制器的仿真及其调试: (1)启动matlab后,在主窗口中键入fuzzy回车,屏幕上就会显现出如下图所示的“FIS Editor”界面,即模糊推理系统编辑器。

(2)双击输入量或输出量模框中的任何一个,都会弹出隶属函数编辑器,简称MF编辑器。

(3)在FIS Editor界面顺序单击菜单Editor—Rules出现模糊规则编辑器。 本次设计采用双输入(偏差E和偏差变化量EC)单输出(U)模糊控制器,E的论域是[-6,6],EC的论域是[-6,6],U的论域是[-6,6]。它们的状态分别是负大(NB)、负中(NM)、负小(NS)、零(ZO)、正小(PS)、正中(PM)、正大(PB)。语言值的隶属函数选择三角形的隶属度函数。推理规则选用Mamdani 控制规则。 该控制器的控制规则表如图所示:

Simulink仿真图如下: 在调试过程中发现加入积分调节器有助于消除静差,通过试凑法得出量化因子,比例因子以及积分常数。Ke,Kec,Ku,Ki分别是: 3 ,2.5 ,3.5 ,0.27

三.实验心得: 通过比较PID控制器和模糊控制器,我们可知两个系统观察到的波形并没有太大的区别。相对而言,对于给出精确数学模型的控制对象,PID控制器显得更具有优势,其一是操作简单,其二是调节三个参数可以达到满意的效果;对于给出给出精确数学模型的控制对象,模糊控制器并没有展现出太大的优势,其一是操作繁琐,其二是模糊控制器调节参数的难度并不亚于PID控制器。 在实验中增大模糊控制器的比例因子Ku会加快系统的响应速度,但Ku过大将会导致系统输出上升速率过快,从而使系统产生较大的超调量乃至发生振荡;Ku过小,系统输出上升速率变小,将导致系统稳态精度变差。

模糊控制详细讲解实例

一、速度控制算法: 首先定义速度偏差-50 km/h ≤e (k )≤50km/h ,-20≤ec (i )= e (k )- e (k-1)≤20,阀值e swith =10km/h 设计思想:油门控制采用增量式PID 控制算法,刹车控制采用模糊控制算法,最后通过选择规则进行选择控制量输入。 选择规则: e (k )<0 ① e (k )>- e swith and throttlr_1≠0 选择油门控制 ② 否则:先将油门控制量置0,再选择刹车控制 0

实验一--模糊控制器的MATLAB仿真

实验一 模糊控制器的MATLAB 仿真 一、实验目的 本实验要求利用MATLAB/SIMULINK 与FUZZYTOOLBOX 对给定的二阶动态系统,确定模糊控制器的结构,输入和输出语言变量、语言值及隶属函数,模糊控制规则;比较其与常规控制器的控制效果;研究改变模糊控制器参数时,系统响应的变化情况;掌握用 MATLAB 实现模糊控制系统仿真的方法。 实验时数:3学时。 二、实验设备:计算机系统、Matlab 仿真软件 三、实验原理 模糊控制器它包含有模糊化接口、规则库、模糊推理、清晰化接口等部分,输人变量是过程实测变量与系统设定值之差值。输出变量是系统的实时控制修正变量。模糊控制的核心部分是包含语言规则的规则库和模糊推理。模糊推理就是一种模糊变换,它将输入变量模糊集变换为输出变量的模糊集,实现论域的转换。工程上为了便于微机实现,通常采用“或”运算处理这种较为简单的推理方法。Mamdani 推理方法是一种广泛采用的方法。它包含三个过程:隶属度聚集、规则激活和输出总合。模糊控制器的体系结构如图1所示。 图1 模糊控制器的体系结构 四、实验步骤 (1)对循环流化床锅炉床温,对象模型为 ()()1140130120 ++s s 采用simulink 图库,实现常规PID 和模糊自整定PID 。 (2)确定模糊语言变量及其论域:模糊自整定PID 为2输入3输出的模糊控制器。该模糊控制器是以|e|和|ec|为输入语言变量,Kp 、Ki 、Kd 为输出语言变量,其各语言变量的论域如下:

误差绝对值:e={0,3,6,10}; 误差变化率绝对值:ec={0,2,4,6}; 输出Kp:Up={0,0.5,1.0,1.5}; 输出Ki:Ui={0,0.002,0.004,0.006}; 输出Kd:Ud={0,3,6,9}。 (3)语言变量值域的选取:输入语言变量|e|和|ec|的值域取值“大”(B)、“中”(M)、“小”(s)和“零”(Z) 4种;输出语言变量Kp、Ki、Kd的值域取值为“很大”(VB)、“大”(B)、“中”(M)、“小”(s) 4种。 (4)规则的制定:根据PID参数整定原则及运行经验,可列出输出变量Kp、Ki、Kd 的控制规则表。 (5)推理方法的确定 隐含采用“mamdani”方法:max-min; 推理方法,即“min”方法; 去模糊方法:面积中心法; 选择隶属函数的形式:三角型。

简易模糊控制器设计及MATLAB仿真

简易模糊控制器的设计及仿真 摘要:模糊控制(Fuzzy Control )是以模糊集理论、模糊语言和模糊逻辑推理为基础的一种控制方法,它从行为上模仿人的模糊推理和决策过程。本文利用MATLAB/SIMULINK 与FUZZY TOOLBOX 对给定的二阶动态系统,确定模糊控制器的结构,输入和输出语言变量、语言值及隶属函数,模糊控制规则,比较其与常规控制器的控制效果,用MATLAB 实现模糊控制的仿真。 关键词:模糊控制 参数整定 MATLAB 仿真 二阶动态系统模型: ()()1140130120 ++s s 采用simulink 图库,实现常规PID 和模糊自整定PID 。 一.确定模糊控制器结构 模糊自整定PID 为2输入3输出的模糊控制器。在MATLAB 的命令窗口中键入fuzzy 即可打开FIS 编辑器,其界面如下图所示。此时编辑器里面还没有FIS 系统,其文件名为Untitled ,且被默认为Mandani 型系统。默认的有一个输入,一个输出,还有中间的规则处理器。在FIS 编辑器界面上需要做一下几步工作。 首先,模糊自整定PID 为2输入3输出的模糊控制器,因此需要增加一个输入两个输出,进行的操作为:选择Edit 菜单下的Add Variable/Input 菜单项。

如下图。 其次,给输入输出变量命名。单击各个输入和输出框,在Current Variable 选项区域的Name文本框中修改变量名。如下图 最后,保存系统。单击File菜单,选择Export下的To Disk项。这里将创建的系统命名为PID_auot.fi。 二.定义输入、输出模糊集及隶属函数

基于matlab的模糊控制器的设计与仿真

基于MATLAB的模糊控制器的设计与仿真 摘要:本文对模糊控制器进行了主要介绍。提出了一种模糊控制器的设计与仿真的实现方法,该方法利用MA TLB模糊控制工具箱中模糊控制器的控制规则和隶属度函数,建立模型,并进行模糊控制器设计与仿真。 关键词:模糊控制,隶属度函数,仿真,MA TLAB 1 引言 模糊控制是一种特别适用于模拟专家对数学模型未知的较复杂系统的控制,是一种对模型要求不高但又有良好控制效果的控制新策略。与经典控制和现代控制相比,模糊控制器的主要优点是它不需要建立精确的数学模型。因此,对一些无法建立数学模型或难以建立精确数学模型的被控对象,采用模糊控制方法,往往能获得较满意的控制效果。 模糊控制器的设计比一般的经典控制器如PID控制器要复杂,但如果借助MATLAB则系统动态特性良好并有较高的稳态控制精度,可提高模糊控制器的设计效率。本文在MATLAB环境下针对某个控制环节对模糊控制系统进行了设计与仿真。 2 模糊控制器简介 模糊控制器是一种以模糊集合论,模糊语言变量以及模糊推理为数学基础的新型计算机控制方法。显然,模糊控制的基础是模糊数学,模糊控制的实现手段是计算机。本章着重介绍模糊控制的基本思想,模糊控制的基本原理,模糊控制器的基本设计原理和模糊控制系统的性能分析。 随着科学技术的飞速发展,在那些复杂的,多因素影响的严重非线性、不确定性、多变性的大系统中,传统的控制理论和控制方法越来越显示出局限性。长期以来,人们期望以人类思维的控制方案为基础,创造出一种能反映人类经验的控制过程知识,并可以达到控制目的,能够利用某种形式表现出来。而且这种形式既能够取代那种精密、反复、有错误倾向的模型建造过程,又能避免精密的估计模型方程中各种方程的过程。同时还很容易被实现的,简单而灵活的控制方式。于是模糊控制理论极其技术应运而生。 3 模糊控制的特点 模糊控制是以模仿人类人工控制特点而提出的,虽然带有一定的模糊性和主观性,但往往是简单易行,而且是行之有效的。模糊控制的任务正是要用计算机来模拟这种人的思维和决策方式,对这些复杂的生产过程进行控制和操作。所以,模糊控制有以下特点: 1)模糊控制的计算方法虽然是运用模糊集理论进行的模糊算法,但最后得到的控制规律是确定

选取一个模糊控制的实例讲解

选取一个模糊控制的实例讲解,有文章,有仿真,有详细的推导过程。 一.实验题目:基于模糊控制系统的单级倒立摆 二.实验目的与要求: 倒立摆是联结在小车上的杆,通过小车的运动能保持竖立不倒的一种装置,它是一个典型的非线性、快速、多变量和自然不稳定系统,但是我们可以通过对它施加一定的控制使其稳定。对它的研究在理论上和方法上都有其重要意义。倒立摆的研究不仅要追求增加摆的级数,而且更重要的是如何发展现有的控制方法。同时, 它和火箭的姿态控制以及步行机器 人的稳定控制有很多相似之处,由此研究产生的理论和方法对一般工业过程也有广泛用途。 本文研究了倒立摆的控制机理,用Lagrange 方法推导了一级倒立摆的数学模型,这为研究多级和其它类型的倒立摆甚至更高层次的控制策略奠定了一个良好的基础。对系统进行了稳定性、可控性分析,得出倒立摆系统是一个开环不稳定但可控的系统的结论。 本文主要研究用极点配置、最优控制和模糊控制方法对倒立摆进行稳定控制。最优控制方法是基于状态反馈,但能实现输出指标最优的一种控制方法,方法和参数调节较简单,有着广泛的应用。模糊控制有不依赖于数学模型、适用于非线性系统等优点,所以本文尝试了用模糊控制对倒立摆进行控制,以将先进的控制方法用于实际中。 同时,对倒立摆系统的研究也将遵循从建模到仿真到实控,软硬件结合的系统的控制流程。在这过程中,借助数学工具Matlab7及仿真软件Simulink,作了大量的仿真研究工作,仿真结果表明系统能跟踪输入,并具有较好的抗干扰性。最后对实验室的倒立摆装置进行了软、硬件的调试,获得了较好的控制效果。 三.实验步骤: 1.一级倒立摆系统模型的建立 在忽略了空气阻力、各种摩擦之后(这也是为了保证Lagrange 方程的建立),可 将一级倒立摆系统抽象为由小车和匀质杆组成的系统,本系统设定如下: 小车质量M;摆杆质量m,长为l;小车在x 轴上移动;摆与竖直方向夹角为θ,规定正方向如图所示;加在小车x 轴上的力为F;

模糊控制仿真

智能控制实验报告模糊控制器的仿真

一.实验目的 1.了解模糊控制的原理 2.学习Matlab模糊逻辑工具箱的使用 3.使用工具箱进行模糊控制器的仿真 二.实验设备 1.计算机 2.Matlab软件 3.window 7操作系统 三.实验原理 模糊逻辑控制又称模糊控制,是以模糊集合论,模糊语言变量和模糊逻辑推理为基础的一类计算机控制策略,模糊控制是一种非线性控制。图1-1是模糊控制系统基本结构,由图可知模糊控制器由模糊化,知识库,模糊推理和清晰化(或去模糊化)四个功能模块组成。 针对模糊控制器每个输入,输出,各自定义一个语言变量。因为对控制输出的判断,往往不仅根据误差的变化,而且还根据误差的变化率来进行综合评判。所以在模糊控制器的设计中,通常取系统的误差值e和误差变化率ec为模糊控制器的两个输入,则在e的论域上定义语言变量“误差E”,在ec的论域上定义语言变量“误差变化EC”;在控制量u的论域上定义语言变量“控制量U”。 通过检测获取被控制量的精确值,然后将此量与给定值比较得到误差信号e,对误差取微分得到误差变化率ec,再经过模糊化处理把分明集输入量转换为模糊集输入量,模糊输入变量根据预先设定的模糊规则,通过模糊逻辑推理获得模糊控制输出量,该模糊输出变量再经过去模糊化处理转换为分明集控制输出量。 四.实验步骤 1、在MATLAB主窗口中单击工具栏中的Simulink快捷图标,弹出“Simulink Library Browser”窗口,单击Create a new model快捷图标,弹出模拟编辑窗口,用Matlab中的Simulink 工具箱,组成一个模糊控制系统,如图所示: 2、在MATLAB命令窗口输入fuzzy,并按回车键,弹出如下的FIS Editer界面,即模糊推理系统编辑器。

模糊控制的应用实例与分析

模糊控制的应用 学院实验学院 专业电子信息工程 姓名 指导教师 日期 2011 年 9 月 20 日

在自动控制中,包括经典理论和现代控制理论中有一个共同的特点,即控制器的综合设计都要建立在被控对象准确的数学模型(如微分方程等)的基础上,但是在实际工业生产中,很多系统的影响因素很多,十分复杂。建立精确的数学模型特别困难,甚至是不可能的。这种情况下,模糊控制的诞生就显得意义重大,模糊控制不用建立数学模型,根据实际系统的输入输出的结果数据,参考现场操作人员的运行经验,就可对系统进行实时控制。模糊控制实际上是一种非线性控制,从属于智能控制的范畴。现代控制系统中的的控制能方便地解决工业领域常见的非线性、时变、在滞后、强耦合、变结构、结束条件苛刻等复杂问题。可编程控制器以其高可靠性、编程方便、耐恶劣环境、功能强大等特性很好地解决了工业控制领域普遍关心的可靠、安全、灵活、方便、经济等问题,这两者的结合,可在实际工程中广泛应用。 所谓模糊控制,其定义是是以模糊数学作为理论基础,以人的控制经验作为控制的知识模型,以模糊集合、模糊语言变量以及模糊逻辑推理作为控制算法的一种控制。模糊控制具有以下突出特点: (1)模糊控制是一种基于规则的控制,它直接采用语言型控制规则,出发点是现 场操作人员的控制经验或相关专家的知识,在设计中不需要建立被控对象的精确的数学模型,因而使得控制机理和策略易于接受与理解,设计简单,便于应用 (2)由工业过程的定性认识出发,比较容易建立语言控制规则,因而模糊控制对 那些数学模型难以获取,动态特性不易掌握或变化非常显著的对象非常适用。 (3)基于模型的控制算法及系统设计方法,由于出发点和性能指标的不同,容易 导致较大差异;但一个系统语言控制规则却具有相对的独立性,利用这些控制规律间的模糊连接,容易找到折中的选择,使控制效果优于常规控制器。 (4)模糊控制是基于启发性的知识及语言决策规则设计的,这有利于模拟人工控 制的过程和方法,增强控制系统的适应能力,使之具有一定的智能水平。(5)模糊控制系统的鲁棒性强,干扰和参数变化对控制效果的影响被大大减弱, 尤其适合于非线性、时变及纯滞后系统的控制。 由于有着诸多优点,模糊理论在控制领域得到了广泛应用。下面我们就以下示例介绍模糊控制在实际中的应用: 电机调速控制系统见图1,模糊控制器的输入变量为实际转速与转速给定值 ,输出变量为电机的电压变化量u。图2为电机调试之间的差值e及其变化率e c 输出结果,其横坐标为时间轴,纵坐标为转速。当设定转速为2 000r/s时,电机能很快稳定运行于2 000r/s;当设定转速下降到1 000r/s时,转速又很快下降到1 000r/s稳定运行。 图1

双闭环模糊控制系统的设计与仿真

《运动控制系统》课程设计学院:物联网工程学院 班级: 姓名: 学号: 日期: 成绩:

文章编号: 双闭环模糊控制系统的设计与仿真 (江南大学物联网工程学院,江苏省无锡邮编214122) 摘要:直流电机具有良好的起动、制动性能,因此其在电力拖动自动控制系统中应用广泛。众所周知,直流电机的闭环系统静特性要比开环系统的机械特写硬的多,而转速、电流双闭环控制直流调速系统是性能好、应用最广泛的直流调速系统,但该系统依赖精确的数学模型,在增加解决环节的同时,系统模型趋于复杂,还可能会影响系统的可靠性。因此我们在总结了以前经验的同时,提出了双闭环模糊控制系统的的设计与仿真。 关键词:直流电机;双闭环系统;模糊控制 中图分类号:文献标识码:A Double Closed Loop Fuzzy Control System Design and Simulation Author name (Jiangnan University, Wuxi 214122, China) Abstract:DC motor has good starting, braking performance, therefore in the electric drive automatic control system is widely applied in the field of. As everyone knows, the closed-loop DC motor system static characteristics than the open loop system of mechanical feature of more than hardware, and speed, electric current double closed loop DC motor control system is of good performance, the most widely used DC speed regulating system, but the system depend on the accurate mathematical model, increase solve link at the same time, the system model tends to be complex, also may influence the reliability of the system. Therefore we are summing up the previous experience at the same time, put forward a double closed loop fuzzy control system design and simulation. Key words:DC Motor; Double Closed Loop System; Fuzzy Control 1 引言 2 双闭环直流调速系统的设计 直流电动机具有启动转矩大、调速范围宽等优势,在轧钢机、电力机车等方面仍广泛采用。直流调速系统在理论上和实践上都比较成热,从控制技术的角度来看,它又是交流调速系统的基础;电力电子技术、计算机控制技术、智能控制理论的发展,,更为直流调速系统继续发展和应用提供了契机。进入21世纪后国外一些公司仍在不断推出高性能直 流调速系统。因此,对直流调速系统的研究仍具有重要意义。 直流调速系统中最典型的控制方式就是速度、电流双闭环调速。由于受参数时变和不确定性等因素的影响,传统的控制方法常受到很大的局限。另外,PID 控制方法往往在系统快速性与稳定性之间不能两者兼顾。模糊控制不依赖于被控对象的精确数学模型,既能克服非线性因素的影响,又具有较强的鲁棒性。因此,给直流电动机双闭环调速系统引入模糊控制器,可以改善系统性能。 2.1 双闭环可逆直流调速系统的原理结构 为了实现转速和电流两种负反馈分别起作用, 可在系统中设置两个调节器,分别调节转速和电流,即分别引入转速负反馈和电流负反馈。二者之间实行串级联接。把转速调节器的输出当作电流调节器的输入,再用电流调节器的输出去控制电力电子变 换器UPE。从闭环结构上看,电流环在里面,称作内环;转速环在外面,称作外环。这样就形成了转速、电流双闭环调速系统。如图1所示。 图1直流双闭环调速系统结构 双闭环直流调速系统目前应用广泛、技术成熟,常采用PID控制方式,它具有结构简单、可靠等优点,取得了较好的控制效果。但是,在实际生产现场,由于条件限制,使得PID控制器参数的整定往往难以达到最优状态,另外,PID 控制方法必须在系统快速性与稳定性程度之间做出折衷,往往不能两者兼顾,而模糊控制能利用其非线性特性,突破PID方法的局限,使调速系统既有快速的动态响应,又有较高的稳定程度。除此之外,模糊控制又进一步提高了调速系统的鲁棒性。 调速系统的模糊控制模型在异步电动机闭环调

模糊控制在倒立摆中的MATLAB仿真应用

TAIYUAN UNIVERSITY OF SCIENCE & TECHNOLOGY 题目: 院(系): 专业: 学生姓名: 学号:

模糊控制在倒立摆中的仿真应用 1、倒立摆系统 简介 倒立摆有许多类型,例如图1-1的a和b所示的分别是轮轨式一级倒立摆系统和二级倒立摆系统的模型。倒立摆是一个典型的快速、多变量、非线性、本质不稳定系统,它对倒置系统的研究在理论上和方法论上具有深远的意义。对倒立摆的研究可归结为对非线性多变量本质不稳定系统的研究,其控制方法和思路在处理一般工业过程中也有广泛的用途。近些年来国内外不少专家学者对一级、二级、三级、甚至四级等倒立摆进行了大量的研究,人们试图寻找不同的控制方法实现对倒立摆的控制,以便检查或说明该方法的严重非线性和本质不稳定系统的控制能力。2002年8月11日,我国的李洪兴教授在国际上首次成功实现了四级倒立摆实物控制,也标志着我国学者采用自己提出的控制理论完成的一项具有原创性的世界领先水平的重大科研成果。 图1-1 倒立摆模型 (a)一级倒立摆模型(b)二级倒立摆模型 倒立摆系统可以简单地描述为小车自由地在限定的轨道上左右移动。小车上的倒立摆一端用铰链安装在小车顶部,另一端可以在小车轨道所在的垂直平面内自由转动,通过电机和皮带传动使小车运动,让倒立摆保持平衡并保持小车不和轨道两端相撞。在此基础上在摆杆的另一端铰链其它摆杆,可以组成二级、三级倒立摆系统。该系统是一个多用途的综合性试验装置,它和火箭的飞行及步行机器人的关节运动有许多相似之处,其原理可以用于控制火箭稳定发射、机器人控制等诸多领域。 倒立摆系统控制原理

单级倒立摆系统的硬件包括下面几个部分:计算机、运动控制卡、伺服系统、倒立摆和测量元件,由它们组成的一个闭环系统,如图1-2所示,就是单级倒立摆系统的硬件结构图。 图1-2 单级倒立摆硬件结构图 通过角度传感器可以测量摆杆的角度,通过位移传感器可以得到小车的位置,然后反馈给运动控制卡,运动控制卡与计算机双向通信。计算机获得实时数据,确定控制策略,发送到运动控制卡,运动控制卡执行计算机确定的控制策略,产生相应的控制量,由伺服电机转动来带动小车在水平轨道往复的运动,使摆杆保持倒立。 倒立摆系统状态方程 θ f 图1-3 单级倒立摆模型图 θ为杆与垂线的夹角,f为作用力,杆的质量m=,杆和小车的总重量m=,半杆长l=,重力加速度g=s2,采样周期T=.倒立摆的数学模型为:

模糊控制器的MATLAB仿真

实验一模糊控制器的MATLAB仿真 一、实验目的 本实验要求利用MATLAB/SIMULINK与FUZZYTOOLBOX对给定的二阶动态系统,确定模糊控制器的结构,输入和输出语言变量、语言值及隶属函数,模糊控制规则;比较其与常规控制器的控制效果;研究改变模糊控制器参数时,系统响应的变化情况;掌握用 MATLAB 实现模糊控制系统仿真的方法。 二、实验原理 模糊控制器它包含有模糊化接口、知识库(规则库、数据库)、模糊推理机、解模糊接口等部分。输人变量e(t)是过程实测变量y(t)与系统设定值s(t)之差值。输出变量y(t)是系统的实时控制修正变量。模糊控制的核心部分是包含语言规则的规则库和模糊推理机。而模糊推理就是一种模糊变换,它将输入变量模糊集变换为输出变量的模糊集,实现论域的转换。工程上为了便于微机实现,通常采用“或”运算处理这种较为简单的推理方法。Mamdani推理方法是一种广泛采用的方法。它包含三个过程:隶属度聚集、规则激活和输出总合。模糊控制器的组成框图如图2.1所示。 图2.1 模糊控制器的组成框图 三、模糊推理系统的建立 一个模糊推理系统的建立分为三个步骤:首先,对测量数据进行模糊化;其次,建立规则控制表;最后,输出信息的模糊判决,即对模糊量进行反模糊化,得到精确输出量。 模糊推理系统的建立,往往是设计一个模糊控制系统的基础。建立一个模糊推理系统有两类方法:一种是利用GUI建立模糊推理系统;另一种是利用MATLAB命令建立。下面根据实验内容,利用GUI建立模糊推理系统。 例:对循环流化床锅炉床温,对象模型为

()()1140130120 ++s s 采用simulink 图库,实现常规PID 和模糊自整定PID 。模糊自整定PID 为2输入3输出的模糊控制器。 1、 进入FIS 编辑器 在MATLAB 的命令窗口中键入fuzzy 即可打开FIS 编辑器,其界面如下图所示。此时编辑器里面还没有FIS 系统,其文件名为Untitled ,且被默认为Mandani 型系统。默认的有一个输入,一个输出,还有中间的规则处理器。在FIS 编辑器界面上需要做一下几步工作。 首先,模糊自整定PID 为2输入3输出的模糊控制器,因此需要增加一个输入两个输出,进行的操作为:选择Edit 菜单下的Add Variable/Input 菜单项。如下图。

模糊控制设计例题

3-4 已知某一加炉炉温控制系统,要求温度保持在600℃恒定。目前此系统采用人工控制方式,并有以下控制经验 (1) 若炉温低于600℃,则升压;低得越多升压越高。 (2) 若炉温高于600℃,则降压;高得越多降压越低。 (3) 若炉温等于600℃,则保持电压不变。 设模糊控制器为一维控制器,输入语言变量为误差,输出为控制电压。两个变量的量化等级为七级、取五个语言值。隶属度函数根据确定的原则任意确定。试按常规模糊逻辑控制器的设计方法设计出模糊逻辑控制表。 模糊控制器选用的系统的实际温度T 与温度给定值T d 的误差d e T T =-作为输入语言变量,把控制加热装置的供电电压u 选作输出语言变量。

模糊输出量隶属度函数 控制规则 规则1、如果误差e 是NB ,则控制U 为NB; 规则2、如果误差e 是NS ,则控制U 为NS; 规则3、如果误差e 是ZE ,则控制U 为ZE; 规则4、如果误差e 是PS ,则控制U 为PS; 规则5、如果误差e 是PB ,则控制U 为PB; 由上可得 (3)0.4 PS μ= 10.4U PS = (3)1PB μ= 21 U PB = 120.4 1 U U U PS PB =+=+ 控制输出:00.4500.435150 46.66670.40.41 v ?+?+?==++ 误差(2)1PS μ= 11U PS =(2)0.3PS μ= 20.3 U PB =

120.3 1 U U U PS PB =+=+ 精确化 控制输出:00.340140 400.31 v ?+?==+ (1)0.1ZE μ= 10.1 U ZE = (1)0.4PS μ= 20.4 U PS = 120.1 0.4 U U U ZE PS =+=+ 控制输出:00.4350.4500.1350.125 400.40.40.10.1 v ?+?+?+?==+++ (1)0.4N S μ-= 10.4 U N S = 20.1U ZE = 120.1 0.4 U U U ZE N S =+=+ 00.4100.4250.1250.135 200.40.40.10.1 v ?+?+?+?= =+++ (2)0.3NB μ-= 10.3 U N B = (2)1N S μ-= 21U N S = 120.3 1 U U U N B N S =+=+ 控制输出:00.320120 200.31 v ?+?==+ (3)1N S μ-= 11 U N B =(3)0.4NS μ-= 20.4 U N S = 120.4 1 U U U N B N S =+=+ :00.4250.410110 13.33330.40.41 v ?+?+?==++ 因此模糊逻辑控制表

选取一个模糊控制的实例讲解

一.实验题目:基于模糊控制系统的单级倒立摆 二.实验目的与要求: 倒立摆是联结在小车上的杆,通过小车的运动能保持竖立不倒的一种装置,它是一个典型的非线性、快速、多变量和自然不稳定系统,但是我们可以通过对它施加一定的控制使其稳定。对它的研究在理论上和方法上都有其重要意义。倒立摆的研究不仅要追求增加摆的级数,而且更重要的是如何发展现有的控制方法。同时, 它和火箭的姿态控制以及步行机器人的稳定控制有很多相似之处,由此研究产生的理论和方法对一般工业过程也有广泛用途。 本文研究了倒立摆的控制机理,用Lagrange 方法推导了一级倒立摆的数学模型,这为研究多级和其它类型的倒立摆甚至更高层次的控制策略奠定了一个良好的基础。对系统进行了稳定性、可控性分析,得出倒立摆系统是一个开环不稳定但可控的系统的结论。 本文主要研究用极点配置、最优控制和模糊控制方法对倒立摆进行稳定控制。最优控制方法是基于状态反馈,但能实现输出指标最优的一种控制方法,方法和参数调节较简单,有着广泛的应用。模糊控制有不依赖于数学模型、适用于非线性系统等优点,所以本文尝试了用模糊控制对倒立摆进行控制,以将先进的控制方法用于实际中。 同时,对倒立摆系统的研究也将遵循从建模到仿真到实控,软硬件结合的系统的控制流程。在这过程中,借助数学工具 Matlab7及仿真软件Simulink,作了大量的仿真研究工作,仿真结果表明系统能跟踪输入,并具有较好的抗干扰性。最后对实验室的倒立摆装置进行了软、硬件的调试,获得了较好的控制效果。 三.实验步骤: 1.一级倒立摆系统模型的建立 在忽略了空气阻力、各种摩擦之后(这也是为了保证Lagrange 方程的建立),可 将一级倒立摆系统抽象为由小车和匀质杆组成的系统,本系统设定如下: 小车质量 M;摆杆质量m,长为l;小车在x 轴上移动;摆与竖直方向夹角为θ,规定正方向如图所示;加在小车x 轴上的力为F; 拉格朗日算子 L 是系统动能Ec 和势能Ep 之差,拉格朗日方程由拉格朗日算子L

模糊控制位置跟踪的SIMULINK仿真

智能控制作业二“模糊控制位置跟踪的SIMULINK 仿真 一、题目 设被控对象的传递函数为s s s G 252500)(2+=,输入信号为方波,周期为1秒,幅值为1,(可以用Pulse Generator 模块来产生)。 1)试设计两输入单输出模糊控制器,输入为偏差E 和偏差变化率EC ,输出为控制量U ,使系统输出能实时跟踪输入信号。 2)通过仿真理解并分析E 和EC 的参数选择对系统稳态误差和动态性能的影响,这些参数包括模糊子集的个数,论域的范围等。作业中最好把不同参数下的仿真结果附上。 二、MATLAB 解决方案 1、模糊控制模块的创建 在MA TLAB 命令窗口中输入fuzzy 命令,会弹出模糊控制GUI 界面,打开隶属度函数编辑窗口,输入变量为E 和EC ,输出变量为U ,输入输出论域均设置为[-3 3],每个变量都设置NB ,NM ,NS ,ZO ,PS ,PM ,PB 七个模糊子集,每个变量的隶属度函数均如图1所示,为了使输入误差在零附近反应敏感,这一部分隶属度函数设置得比较尖。 图1 隶属度函数编辑窗口 根据如表1输入控制规则,如图2所示:

编辑完成后可以看到如图3所示的模糊输入与输出的三维示意图: 图2 控制规则输入窗口图3 输出三维示意图 2、simulink的仿真 新建一个model,搭建如图4所示的控制框图,保存为fuc2文件夹中的fuz_ctrl.mdl。 其中增益模块用来控制将输入或输出与模糊控制器的论域相匹配。 3、调试后的仿真结果

经过调试优化,最终得到的仿真波形如图5所示。其中Ke=3,Kec=0.06,Ku=1. 图5 最终运行结果 三、控制参数对控制结果的影响 1、论域对控制结果的影响 这里采用Ke和Kec来起到控制输入变量的论域的作用,当增大量化因子,相当于缩小了输入变量的论域,当减小量化因子时,相当于增大了输入变量的论域。在原来的基础上改变Ke,Kec的值,通过观察跟踪效果来说明论域对控制结果的影响。 首先讨论偏差E的论域对控制结果的影响:保持Kec=0.06,当Ke=4时,运行结果如图6所示: 图6 Ke=4时的运行结果 当Ke=1时的运行结果如图7所示:

洗衣机模糊控制matlab仿真

洗衣机模糊控制仿真 1.模糊控制背景 美国教授查徳(L.A.Zandeh)在1965年首先提出模糊集合的概念,由此打开了模糊数学及其应用的大门。 1974年英国教授马丹尼(E.H.Mamdani)首先将模糊集合理论应用于加热器的控制,创造了模糊控制的基本框架。 1980年,Sugeno开创了日本的首次模糊应用——控制一家富士电子水净化厂。1983年他又开始研究模糊机器人。 随着模糊控制技术的不断发展,模糊控制逐渐被应用到日用家电产品的控制,例如电饭锅﹑照相机﹑吸尘器﹑洗衣机等。 2.仿真目的 本次仿真的主要目的是设计一个比较合理的洗衣机模糊控制器,它能够根据被洗涤衣物的污泥多少和油脂多少,综合得到洗涤时间,从而达到最佳的洗涤效果。 3.仿真方法 本次仿真借助matlab中集成的模糊控制工具箱,使用图形界面进行模糊控制器的设计。最后随意给定几组输入,得到输出并作出简单分析。4.模糊控制器的设计 4.1模糊控制器理论设计方法 ①选择合适的模糊控制器类型; ②确定输入输出变量的实际论域; ③确定e,e?,u ?的模糊集个数及各模糊集的隶属度函数; ④输出隶属度函数选为单点,可使解模糊简单; ⑤设计模糊控制规则集; ⑥选择模糊推理方法; ⑦解模糊方法。

4.2实际设计过程 ①模糊控制器类型:选用两输入单输出模糊控制器,控制器输入为衣物的污泥和油脂,输出为洗涤时间。 ②确定输入输出变量的实际论域:输入为Mud(污泥)和Grease (油脂),设置Range=[0 100](输入变化范围为[0,100]);输出为Time(洗涤时间),Range=[0 60](输出变化范围为[0,60])。 对应matlab 中模糊控制模块: ③确定模糊集个数及各模糊集的隶属度函数:将污泥分为3个模糊集:SD (污泥少)MD (污泥中)LD(污泥多);將油脂分为三个模糊集:NG (油脂少)MG (油脂中)LG (油脂多);将洗涤时间非为5个模糊集:VS (很短)S (短)M (中等)L (长)VL (很长)。 输入﹑输出隶属度函数都定为三角形隶属函数。结合④输出隶属度函数选为单点,可使解模糊简单;定义污泥隶属函数如下 50)50()(x x SD -=μ 0≤x ≤50 50 x 0≤x ≤50 =Mad μ =)(x MD μ 50 ) 100(x - 50<x ≤100 50)50()(-=x x LD μ 50<x ≤100 对应matlab 中隶属度函数仿真图如下:

单级倒立摆的模糊控制及仿真

2004年9月 第19卷第3期 山东师范大学学报(自然科学版) Journal of Shandong Normal University(Natural Science) Sep.2004 Vol.19No.3单级倒立摆的模糊控制及仿真 赵莉 (山东师范大学化工学系,250014,济南M36岁,女,副教授) 摘要采用模糊控制的方法对单级倒立摆进行了控制,并用MA TLAB进行了仿真,仿真结果符合控制要求. 1单级倒立摆系统及其数学模型 倒立摆系统是一个多变量、快速、严重非线性和绝对不稳定系统,必须采用控制的方法使之稳定.其控制方法在军工、航天、机器人领域和一般工业过程中都有广泛用途.倒立摆系统通常用来检验控制策略的效果,是控制理论研究中较为理想的实验装置,其结构如图1所示. 倒立摆装置由沿导轨运动的小车和通过转轴固定在小车上的摆杆组成.导轨一端固定有位置传感器,测量出沿导轨运动的小车位移;小车通过轴承连接摆杆,在小车与摆杆之间的连接处固定有共轴角度传感器,用以测量摆杆的角度信号;导轨的另一端固定有直流永磁力矩电机,通过传送带驱动小车沿导轨运动,在小车沿导轨左右运动的过程中将力传递给摆杆以实现整个系统的平衡. 倒立摆的数学模型许多文献中已有介绍,此处不再做详细讨论, 直接给出其在平衡点附近线性化后的状态方程模型为图1单级倒立摆结构示意图 ?x=A x+Bu,y=Cx,其中,x=[r H?r?H], A=0010 0001 0-1.02303-16.812680.01734 036.2497256.31093-0.61440 ,B= 0.73371 -2.45742 ,C= 1000 0100 . 2单级摆模糊控制的基本思想 理论上模糊控制可以由人的直觉和经验来确定模糊控制规则,但多次仿真证明,倒立摆的模糊控制规则很难确定.原因在于,对倒立摆的任一给定位置,难以确定用多大的力来使它稳定,甚至连力的方向都无法确定,如果控制规则不全,系统极易失控.故模糊控制中,模糊规则的获取是关键问题. 对于单级倒立摆的任意位置,虽无法确定所需控制力的大小和方向,但若把摆杆控制范围限定在一定区域内,则可在这个区域内选定若干参考位置,用极点配置法或最优控制法算出稳定每个参考位置所需的力,当摆处于该控制区域内任一位置时,就可以用这一位置附近的所有参考位置估算出该位置所需的控制力.由于倒立摆的控制目的是保证摆杆垂直,而对小车具体位置要求不高,故选参考位置时,只考虑H和?H,而不考虑r和?r,从而减少了参考位置的数量. 单级倒立摆的控制范围可根据实际需要而定,此处选-10b[H[+10b,-20rad/s[?H[20rad/s,则可以确定参考位置为H=[-10,-5,0,5,10];?H=[-20,-10,0,10,20].由此可见,每个参数在控制范围内选五个参考位置,二个参数H和?H的参考位置的排列组合共有5@5=25个,每个参考位置对应一条模糊规则,就有25条模糊规则.实际控制范围越大,参考位置也越多,模糊规则的数量也越多.其形式为:/IF摆处于参考位置X,T HEN稳定摆所需的状态所馈阵为K.0对每一个位置求出其极点配置或最优控制的状态反馈阵K,这对计算机来说,是一个很大的工作量,这成为该算法是否能应用于实际,满足实时控制的主要问题. 收稿日期:2002-11-16

模糊控制程序实例

5.226模糊控制器设计实例 1、单输入模糊控制器的设计 【例5.12】已知某汽温控制系统结构如图 5.10所示,采用喷水减温进行控制。设计单输入模糊控 制器,观察定值扰动和内部扰动的控制效果。 图5.10单回路模糊控制系统 按表5-2确定模糊变量E U的隶属函数,按表5-3确定模糊控制规则,选择温度偏差e、控制量u 的实际论域:e u [ 1.5,1.5],则可得到该系统的单输入模糊控制的仿真程序如FC_SI_main.m所示,仿真结果如图5.11所示。 设温度偏差e、控制量u的实际论域:e u [ 1.5,1.5],选择e、u的等级量论域为 E U { 3, 2, 1,0, 1, 2, 3} 量化因子K 2 3 1.5 ( 1.5) 选择模糊词集为{NB,NS,ZO,PS,PB},根据人的控制经验,确定等级量E,U的隶属函数曲线如图 5-8所示。根据隶属函数曲线可以得到模糊变量E、U的赋值表如表5-3所示。 图5-8 E, U的隶属函数曲线

依据人手动控制的一般经验,可以总结出一些控制规则,例如: 若误差E为0,说明温度接近希望值,喷水阀保持不动;若误差明温度低于希望值,应该减少喷水; 若误差明温度高于希望值,应该增加喷水。 若采用数学符号描述,可总结如下模糊控制规则: 若E负大,则U正大; 若E负小,贝U U正小; 若E为零,则U为零; 若E正小,则U负小; 若E正大,则U负大。 写成模糊推理句: if E=NB then U=PB if E=NS then U=PS if E=Z0 then U=Z0 if E=PS then U=NS if E=PB then U=NB 由上述的控制规则可得到模糊控制规则表,如表5-4所示。 表模糊控制规则表 模糊控制规则实际上是一组多重条件语句,它可以表示从误差论域旦到控制量论域的模糊关系R。 按着上述控制规则,可以得到该温度偏差与喷水阀门开度之间的模糊关系R: R E U (NB E PB U)U(NS E PS U)U(Z0E Z0U)U(PS E NS U)U(PB E NB U ) 计算模糊关系矩阵R的子程序如F_Relation_1.m 所示。

湘潭大学模糊控制2005秋试题答案

一、(10分)简要解释下列概念 [每小题2分] 1 语言变量 2 模糊逻辑 3 模糊等价关系 4 T-S 模糊模型 5自适应模糊控制 答: 1.语言变量是指用自然语言中的词来表示变量,如正大、正中、正小等,通常可以表示为五元体(X,X (T ),U,G,M ) 2.研究模糊命题的逻辑称为模糊逻辑。 3.把具有自反性、对称性和传递性的模糊关系,称为模糊等价关系。 4.模糊模型是指描述系统特性的一组模糊条件语句,T-S 模糊模型的语句形式为: 1122:,,i i i i i i i m m R ifx A x A x A ===L %%% %% then 01122i i m m y p p x p x p x =++++L 5.自适应模糊控制是在普通模糊控制器加入了一个自适应环节,用以改善和提高其性能,这种控制器具有控制和学习功能,分别是通过两个反馈实现的。 二、(10分)填空 [每空1分] 1. 模糊控制通过引入模糊_逻辑变量__及其它们之间构成的___模糊关系_, 进行_模糊推理_,从而使微机控制进入那些基于_传统控制___无法控制的禁区,以便对复杂非线性对象实现__精确有效__的控制。 2. 二值逻辑的运算法则是_布尔代数_,它可表示为({0,1},∧,∨,C ); 而模糊逻辑的运算法则是模糊代数,它可表示为([0,1],∧,∨,C )。 它们的主要区别在于后者不再满足补余律。 三、(10分)在论域{}123,45,,,U x x x x x =上定义两个模糊集合分别为 123450.2/0.5/1/0.5/0.2/A x x x x x =++++% 23450.3/0.6/0.8/1/B x x x x =+++% 求:0.5,,,c A B A B A B U I %%%%%% 答:

相关文档
相关文档 最新文档