文档库 最新最全的文档下载
当前位置:文档库 › profibus协议报文格式

profibus协议报文格式

竭诚为您提供优质文档/双击可除profibus协议报文格式

篇一:profibus协议报文说明

1、通信端口参数

支持的波特率:

2、报文格式

3)sd3:固定8字节数字域

篇二:profibus协议

pRoFibus协议

20xx-01-2118:03

Rs485接口

(1)pRoFibus是一种国际化.开放式.不依赖于设备生产商的现场总线标准。广泛适用于制造业自动化.流程工业自动化和楼宇.交通电力等其他领域自动化。

(2)pRoFibus由三个兼容部分组成,即pRoFibus-dp (decentralizedperiphery).pRoFibus-pa (processautomation).pRoFibus-Fms(Fieldbus messagespecification)。

(3)pRoFibus–dp:是一种高速低成本通信,用于设备

级控制系统与分散式i/o的通信。使用pRoFibus-dp可取代办24Vdc或4-20ma信号传输。

(4)poRFibus-pa:专为过程自动化设计,可使传感器和执行机构联在一根总线上,并有本征安全规范。

(5)pRoFibus-Fms:用于车间级监控网络,是一个令牌结构.实时多主网络。

(6)pRoFibus是一种用于工厂自动化车间级监控和现场设备层数据通信与控制的现场总线技术。可实现现场设备层到车间级监控的分散式数字控制和现场通信网

络,从而为实现工厂综合自动化和现场设备智能化提供了可行的解决方案。

(7)与其它现场总线系统相比,pRoFibus的最大优点在于具有稳定的国际标准en50170作保证,并经实际应用验证具有普遍性。目前已应用的领域包括加工制造.过程控制和自动化等。pRoFibus开放性和不依赖于厂商的通信的设想,已在10多万成功应用中得以实现。市场调查确认,在德国和欧洲市场中pRoFibus占开放性工业现场总线系统的市场超过40%。pRoFibus有国际著名自动化技术装备的生产厂商支持,它们都具有各自的技术优势并能提供广泛的优质新产品和技术服务。

《pRoFibus协议结构》

pRoFibus协议结构是根据iso7498国际标准,以开放式

系统互联网络(opensysteminterconnection-sio)作为参考模型的。该模型共有七层。

(1)pRoFibus-dp:定义了第一.二层和用户接口。第三到七层未加描述。用户接口规定了用户及系统以及不同设备可调用的应用功能,并详细说明了各种不同pRoFibus -dp设备的设备行为。

(2)pRoFibus-Fms:定义了第一.二.七层,应用层包括现场总线信息规范

(Fieldbusmessagespecification-Fms)和低层接口(lowerlayerinterface-llⅠ)。Fms包括了应用协议并向用户提供了可广泛选用的强有力的通信服务。llⅠ协调不同的通信关系并提供不依赖设备的第二层访问接口。

(3)pRoFibus-pa:pa的数据传输采用扩展的pRoFibus -dp协议。另外,pa还描述了现场设备行为的pa行规。根据iec1158-2标准,pa的传输技术可确保其本征安全性,而且可通过总线给现场设备供电。使用连接器可在dp上扩展pa网络。

注:第一层为物理层,第二层为数据链路层,第三-六层末使用,第七层为应用层。《pRoFibus传输技术》pRoFibus提供了三种数据传输类型:

(1)用于dp和Fms的Rs485传输。

(2)用于pa的iec1158-2传输。

(3)光纤

1.用于dp/Fms的Rs485传输技术

由于dp与Fms系统使用了同样的传输技术和统一的总线访问协议,因而,这两套系统可在同一根电缆上同时操作。

Rs-485传输是pRoFibus最常用的的一种传输技术。这种技术通常称之为h2。采用的电缆是屏蔽双绞铜线。

Rs-485传输技术基本特征:

(1)网络拓扑:线性总线,两端有有源的总线终端电阻。

(2)传输速率:9.6kbit/s12mbit/s

(3)介质:屏蔽双绞电缆,也可取消屏蔽,取决于环境条件(emc)。

(4)站点数:每分段32个站(不带中继),可多到127个站(带中继)。

(5)插头连接:最好使用9针d型插头。

2.Rs-485传输设备安装要点

(1)全部设备均与决线连接。

(2)每个分段上最多可接32个站(主站或站)。

(3)每段的头和尾各有一个总线终端电阻,确保操作运行不发生误差。两个总线终端电阻必须永远有电源。

(4)当分段站超过32个时,必须使用中继器用以连接各总线段。串联的中继器一般不超过3个。

(注:中继器没有站地址,但被计算机在每段的最多站数中)

(5)电缆最大长度取决于传输速率。如使用a型电缆,则传输速率与长度如下:波特率:(kbit/s)

9.619.293.75187.550015001200

距离/段(m)120xx20xx20xx00040020xx00

(6)a型电缆参数:

阻抗:135-165Ω电容:<30pf/m回路电阻:110Ω

线规:0.64mm导线面积:>0.34mmΩ

(7)Rs-485的传输技术的pRoFibus网络最好使用9针d型插头。

(8)当连接各站时,应确保数据线不要拧绞,系统在高电磁发射环境(如汽车制造业)下运行应使用带屏蔽的电缆,屏蔽可提高电磁兼容性(emc)。

(9)如用屏蔽编织线和屏蔽箔,应在两端与保护接地连接,并通过尽可能的大面积屏蔽接线来复盖,以保持良好的传导性。另外建议数据线必须与高压线隔离。

(10)超过500kbit/s的数据传输速率时应避免使用短截线段,应使用市场上现有的插头可使数据输入和输出电缆直接与插头连接,而且总线插头连接可在任何时候接通或断开而并不中断其它站的数据通信。

3用于pa的iec1158-2传输技术

网络协议报文格式大集合

可编辑 目录 1 序、 (2) 1.1 协议的概念 (2) 1.2 TCP/IP体系结构 (2) 2 链路层协议报文格式 (2) 2.1 Ethernet报文格式 (2) 2.2 802.1q VLAN数据帧(4字节) (3) 2.3 QinQ帧格式 (4) 2.4 PPP帧格式 (4) 2.5 STP协议格式 (5) 2.5.1 语法 (5) 2.5.2 语义 (6) 2.5.3 时序 (8) 2.6 RSTP消息格式 (9) 2.6.1 语法 (9) 2.6.2 语义 (11) 2.6.3 时序 (13) 3 网络层协议报文 (14) 3.1 IP报文头 (14) 3.2 ARP协议报文 (16) 3.2.1 语法 (16) 3.2.2 语义 (17) 3.2.3 时序 (17) 3.3 VRRP协议报文 (18) 3.3.1 语法 (18) 3.4 BGP协议报文 (19) 3.4.1 语法 (19) 3.4.2 语义 (25)

1 序、 1.1 协议的概念 协议由语法、语义和时序三部分组成: 语法:规定传输数据的格式; 语义:规定所要完成的功能; 时序:规定执行各种操作的条件、顺序关系; 1.2 TCP/IP体系结构 TCP/IP协议分为四层结构,每一层完成特定的功能,包括多个协议。本课程实验中相关协议的层次分布如附图3-1所示。 图1-1TCP/IP协议层次 这些协议之间的PDU封装并不是严格按照低层PDU封装高层PDU的方式进行的,附图3-2显示了Ethernet帧、ARP分组、IP分组、ICMP报文、TCP报文段、UDP数据报、RIP报文、OSPF报文和FTP报文之间的封装关系。 图1-2各协议PDU间的封装关系 2 链路层协议报文格式 2.1 Ethernet报文格式 最新的IEEE 802.3标准(2002年)中定义Ethernet帧格式如下:

计算机网络使用网络协议分析器捕捉和分析协议数据包样本

计算机网络使用网络协议分析器捕捉和分析协议数据包样 本 计算机网络使用网络协议分析器捕捉和分析协议数据包广州大学学生实验报告开课学院及实验室:计算机科学与工程实验室11月月28日学院计算机科学与教育软件学院年级//专业//班姓名学号实验课程名称计算机网络实验成绩实验项目名称使用网络协议分析器捕捉和分析协议数据包指导老师熊伟 一、实验目的 (1)熟悉ethereal的使用 (2)验证各种协议数据包格式 (3)学会捕捉并分析各种数据包。 本文档所提供的信息仅供参考之用,不能作为科学依据,请勿模仿。 文档如有不当之处,请联系本人或网站删除。 二、实验环境1.MacBook Pro2.Mac OS3..Wireshark 三、实验内容,验证数据帧、IP数据报、TCP数据段的报文格式。 ,,分析结果各参数的意义。 器,分析跟踪的路由器IP是哪个接口的。 对协议包进行分析说明,依据不同阶段的协议出分析,画出FTP 工作过程的示意图a..地址解析ARP协议执行过程b.FTP控制连接建立过程c.FTP用户登录身份验证过程本文档所提供的信息仅供参考之用,不能作为科学依据,请勿模仿。

文档如有不当之处,请联系本人或网站删除。 d.FTP数据连接建立过程 e.FTP数据传输过程 f.FTP连接释放过程(包括数据连接和控制连接),回答以下问题:a..当访问某个主页时,从应用层到网络层,用到了哪些协议?b.对于用户请求的百度主页(),客户端将接收到几个应答报文??具体是哪几个??假设从是本地主机到该页面的往返时间是RTT,那么从请求该主页开始到浏览器上出现完整页面,一共经过多长时间??c.两个存放在同一个服务器中的截然不同的b Web页(例如,,和d.假定一个超链接从一个万维网文档链接到另一个万维网文档,由于万维网文档上出现了差错而使超链接指向一个无效的计算机名,这时浏览器将向用户报告什么?e.当点击一个万维网文档时,若该文档除了次有文本外,,那么需要建立几次TCP连接和个有几个UDP过程?本文档所提供的信息仅供参考之用,不能作为科学依据,请勿模仿。 文档如有不当之处,请联系本人或网站删除。 析,分析ARP攻击机制。 (选做),事实上,TCP开始发送数据时,使用了慢启动。 利察用网络监视器观察TCP的传输和确认。 在每一确认到达之后,慢启动过程中发生了什么?(选做),,TCP 必须准备重发初始段(用于打开一个连接的一个段)。 TCP应等多久才重发这一段?TCP应重发多少次才能宣布它不能打开一个连接?为找到结果尝试向一个不存在的地址打开一个连接,并使用网络监视器观察TCP的通信量。

TCPIP等协议报文格式

TCP/IP等协议报文格式 应用层(Application) HTTP、Telnet、FTP、SNMP、SMTP 传输层(transport) TCP、UDP 网间层(Internet) IP-ARP、RARP、ICMP 网络接口层(NETwork)Ethernet、X.25、SLIP、PPP 以太网数据报文封装格式 TCP报文 TCP数据区 TCP IP报文 IP数据区 IP 帧头 帧数据区

ETH 前导 目的地址 源地址 帧类型 数据 CRC 长度 8 6 6 2 46~1500 4 用户填充数据60~1514 8字节前导用于帧同步,CRC用于帧校验,此2类数据可由网卡芯片自动添加。目的地址和源地址是指网卡的物理地址,即MAC地址,多数情况下具有唯一性。帧类型或协议类型——0X0806为ARP协议,0X0800为IP协议。 ARP/RARP (地址解析/反向地址解析)报文格式 0~7

8~15 16~23 24~31 硬件协议 协议类型 硬件地址长度 协议地址长度 操作 发送者硬件地址(字节0~3) 发送者硬件地址(字节4~5) 发送者IP地址(字节0~1) 发送者IP地址(字节2~3) 目的硬件地址(字节0~1) 目的硬件地址(字节2~5) 目的IP地址(字节0~3) 硬件类型——发送者本机网络接口类型(以太网=1) 协议类型——发送者所提供/请求的高级协议地址类型(IP协议=0x0800)操作——ARP请求=1,ARP响应=2,RARP请求=3,RARP响应=4

IP数据报头格式如下表0~3 4~7 8~11 12~15 16~18 19~31 4位 版本 4位 包头长度 8位 服务类型(TOS) 16位 总长度 16位 标识号(ID号) 3位 Flag 13位 片偏移 8位 生存时间 8位 协议类型 16位

常见网络协议报文格式汇总

附件:报文格式 1.1Ethernet数据包格式(RFC894) 1、DstMac的最高字节的最低BIT位如果为1,表明此包是以太网组播/广播包, 送给CPU处理。 2、将DstMac和本端口的MAC进行比较,如果不一致就丢弃。 3、获取以太网类型字段Type/Length。 0x0800→IP 继续进行3层的IP包处理。 0x0806→ARP 送给CPU处理。 0x8035→RARP 送给CPU处理。 0x8863→PPPoE discovery stage 送给CPU处理。 0x8864→PPPoE session stage 继续进行PPP的2层包处理。 0x8100→VLAN 其它值当作未识别包类型而丢弃。 1.2PPP数据包格式 1、获取PPP包类型字段。 0x0021→IP 继续进行3层的IP包处理。 0x8021→IPCP 送给CPU处理。 0xC021→LCP 送给CPU处理。 0xc023→PAP 送给CPU处理。 0xc025→LQR 送给CPU处理。 0xc223→CHAP 送给CPU处理。 0x8023→OSICP 送给CPU处理。 0x0023→OSI 送给CPU处理。 其它值当作未识别包类型而丢弃。

1.3 ARP 报文格式(RFC826) |←----以太网首部---->|←---------28字节ARP 请求/应答 ------ 1.4 IP 报文格式(RFC791)(20bytes) TOS 1.5 PING 报文格式(需IP 封装)(8bytes) 1.6 TCP 报文格式(需IP 封装)(20bytes)

紧急指针有效 ACK 确认序号有效 PSH 接收方应该尽快将这个报文交给应用层 RST 重建连接 SYN 同步序号用来发起一个连接 FIN 发端完成发送认务 1.7 UDP 报文格式(需IP 封装)(8bytes) 1.8 MPLS 报文格式 MPLS 报文类型: 以太网中 0x8847(单播) 0x8848(组播) PPP 类型上 0x8281(MPLSCP)

网络协议:传输层协议报文信息分析

网络协议实验报告 实验名称:传输层协议报文承载信息分析 实验目的:进一步熟悉协议分析工具软件使用,分析传输层报文承载的信息,掌握传输层协议工作的基本原理。 实验内容: 1、熟练应用与传输层有关的程序命令netstat、telnet; 2、截取浏览网页时和即时通讯时的数据报文,分析是基于UDP还是基于TCP(即时通讯程序可选择QQ、MSN),并分析每种应用各自的端口号(分客户端和服务端); 3、通过协议分析软件分析TCP和UDP的报文格式;分析MSS和MTU 的关系,认识TCP报文中携带MSS的时机。 4、截取有关数据报文,分析TCP建立连接时“三次握手”的过程。可通过telnet应用程序帮助建立的TCP连接,也可对基于TCP的应用程序工作时的TCP连接进行截取数据报。 5、截取有关数据报文,分析TCP断开连接时“四次握手”的过程。 6、在进行大量的数据上传或下载时(比如基于HTTP或FTP的较大文件的上传),通过协议分析观察是否有流量和拥塞控制的表征。 实验日期:2010-12-09 实验步骤: (1)学习使用netstat 和telnet 命令 在命令窗口中输入 netstat /?即可得到所有命令(如图下)

当前网络的TCP、UDP连接状态(如图)

(2)telnet 命令(如图) 使用telnet https://www.wendangku.net/doc/983782073.html, 80 远程登录中国矿业大学服务器,使用三次TCP连接(如图) (3)截取浏览网页时和即时通讯时的数据报文,分析是基于UDP还是基于TCP (即时通讯程序可选择QQ、MSN),并分析每种应用各自的端口号(分客户端和服务端); A、捕获浏览器浏览网页时的数据报文是基于TCP 其对应的源端口号:客户端是:3575 服务端是:80 (如图)

http协议数据包格式

竭诚为您提供优质文档/双击可除http协议数据包格式 篇一:数据包格式 tcp/ip协议族包括诸如internet协议(ip)、地址解析协议(aRp)、互联网控制信息协议(icmp)、用户数据报协议(udp)、传输控制协议(tcp)、路由信息协议(Rip)、telnet、简单邮件传输协议(smtp)、域名系统(dns)等协议。tcp/ip 协议的层次结构如图3所示。 图3tcp/ip协议层次结构 (1)应用层应用层包含一切与应用相关的功能,相当于osi的上面三层。我们经常使用的http、Ftp、telnet、smtp 等协议都在这一层实现。 (2)传输层传输层负责提供可靠的传输服务。该层相当于osi模型中的第4层。在该层中,典型的协议是 tcp(transmissioncontrolprotocol)和 udp(userdatagramprotocol)。其中,tcp提供可靠、有序的,面向连接的通信服务;而udp则提供无连接的、不可靠用户数据报服务。 (3)网际层网际层负责网络间的寻址和数据传输,其功

能大致相当于osi模型中的第3层。在该层中,典型的协议是ip(internetprotocol)。 (4)网络接口层最下面一层是网络接口层,负责数据的实际传输,相当于osi模型中的第1、第2层。在tcp/ip协议族中,对该层很少具体定义。大多数情况下,它依赖现有的协议传输数据。 tcp/ip与osi最大的不同在于osi是一个理论上的网络通信模型,而tcp/ip则是实际运行的网络协议。tcp/ip实际上是由许多协议组成的协议簇。图4示出tcp/ip的主要协议分类情况。 整个过程: 1.dhcp请求ip地址的过程 l发现阶段,即dhcp客户端寻找dhcp服务器的阶段。客户端以广播方式发送dhcpdiscoVeR包,只有dhcp服务器才会响应。 l提供阶段,即dhcp服务器提供ip地址的阶段。dhcp 服务器 接收到客户端的dhcpdiscoVeR报文后,从ip地址池中选择一个尚未分配的ip地址分配给客户端,向该客户端发送包含租借的ip地址和其他配置信息的dhcpoFFeR包。 l选择阶段,即dhcp客户端选择ip地址的阶段。如果有多台dhcp服务器向该客户端发送

Wireshark的数据包截获及协议分析

Wireshark的数据包截获与协议分析 1 引言 在数据包的截获方面,Winpcap 是一个可在 Windows 环境下运行的包俘获结构,它由三部分组成:一个数据包截获驱动程序、一个底层动态链接库(Packet.dll)和一个高层静态链接库(wpcap.lib)。它的核心部分是数据包俘获驱动程序,在 Windows NT/2000 系统中,它实现为一个内核驱动程序(packet.sys),在 Windows 95/98 系统中是一个虚拟设备驱动程序 (packet.vxd), 包俘获驱动程序通过NDIS(Network Driver Interface Specification)同网络适配器的驱动程序进行通信,NDIS 是网络代码的一部分,它负责管理各种网络适配器以及在适配器和网络协议软件之间的通信。在库的高层是一个动态链接库(packet.dll)和一个静态链接库 (wpcap.lib),这两个库的作用是将俘获应用程序同包俘获驱动程序相隔离,屏蔽低层的实现细节,避免在程序中直接使用系统调用或 IOCTL 命令,为应用程序提供系统独立的高层接口(API 函数),从而在 Windows9x、Windows2000/XP 系统下,对驱动程序的系统调用都是相同的。 使用 Winpcap,我们可以编写出用于网络协议实验分析、故障诊断、网络安全和监视等各种应用程序,这方面的一个典型例子就是可在 Windows 系统下运行的 Wireshark,Wireshark 和 Winpcap 都可从网上下载,通过 Wireshark 我们可以从网上拦截数据包并对

数据包进行网络协议分析,下面介绍一个分析实例。

网络协议报文格式大集合

目录 1序、 (2) 1.1 协议的概念 (2) 1.2 TCP/IP体系结构 (2) 2链路层协议报文格式 (2) 2.1 Ethernet报文格式 (2) 2.2 802.1q VLAN数据帧(4字节) (3) 2.3 QinQ帧格式 (4) 2.4 PPP帧格式 (4) 2.5 STP协议格式 (5) 2.5.1 语法 (5) 2.5.2 语义 (6) 2.5.3 时序 (8) 2.6 RSTP消息格式 (9) 2.6.1 语法 (9) 2.6.2 语义 (11) 2.6.3 时序 (13) 3网络层协议报文 (14) 3.1 IP报文头 (14) 3.2 ARP协议报文 (16) 3.2.1 语法 (16) 3.2.2 语义 (17) 3.2.3 时序 (17) 3.3 VRRP协议报文 (18) 3.3.1 语法 (18) 3.4 BGP协议报文 (19) 3.4.1 语法 (19) 3.4.2 语义 (25)

1 序、 1.1 协议的概念 协议由语法、语义和时序三部分组成: 语法:规定传输数据的格式; 语义:规定所要完成的功能; 时序:规定执行各种操作的条件、顺序关系; 1.2 TCP/IP体系结构 TCP/IP协议分为四层结构,每一层完成特定的功能,包括多个协议。本课程实验中相关协议的层次分布如附图3-1所示。 图1-1TCP/IP协议层次 这些协议之间的PDU封装并不是严格按照低层PDU封装高层PDU的方式进行的,附图3-2显示了Ethernet帧、ARP分组、IP分组、ICMP报文、TCP报文段、UDP数据报、RIP报文、OSPF报文和FTP报文之间的封装关系。 图1-2各协议PDU间的封装关系 2 链路层协议报文格式 2.1 Ethernet报文格式 最新的IEEE 802.3标准(2002年)中定义Ethernet帧格式如下:

(完整版)协议分析--数据报格式

两种不同的MAC帧格式 常用的以太网MAC帧格式有两种标准,一种是DIX Ethernet V2标准,另一种是IEEE的802.3标准。如下图所示,为便于理解,图中假定网络层使用的是IP协议。实际上使用其他的协议也是可以的。 现在MAC帧最常用的是以太网V2的格式,它较为简单,由5个字段组成。前两个字段分别为6字节长的目的地址和源地址字段。第三个字段是2字节的类型宇段,用来标志上一层使用的是什么协议,以便把收到的MAC 帧的数据上交给上一层的这个协议。施乐公司负责管理这个类型字段的代码分配。例如,当类型字段的值是0x0800时,就表示上层使用的是IP数据报。 若类型字段的值为0x8137,则表示该帧是由Novell IPX发过来的。第四个字段是数据字段,但它的正式名称是MAC客户数据宇段,其长度在46到1500字节之间。最后一个字段是4字节的帧检验序列FCS。 当数据字段的长度小于46字节时,MAC子层就会在数据字段的后面加入一个整数字节的填充字段,以保证以太网的MAC帧长不小于64字节。我们应当注意到,MAC帧的首部并没有指出数据字段的长度是多少。在有填充字段的情况下,接收端的MAC子层在剥去首部和尾部后就将数据字段和填充字段一起交给上层协议。 然而IEEE 802.3标准规定的MAC帧则较为复杂。它和以太网V2的MAC

帧的区别是: (1)第三个字段是长度/类型字段。根据长度/类型字段的数值大小,这个字段可以表示MAC帧的数据字段长度(请注意:不是整个MAC帧的长度),也可以等同于以太网V2的类型字段。具体地讲: 若长度/类型字段的数值小于MAC帧的数据字段的最大值1500(字节),这个字段就表示MAC帧的数据字段长度。 若长度/类型字段的数值大于0x0600(相当于十进制的1536),那么这个数值就不可能表示以太网有效的数据字段长度,因而这个字段就表示类型。 当长度/类型字段表示类型时,802.3的MAC帧和以太网V2的MAC帧一样。当长度/类型字段表示长度时,MAC帧就必须装入802.2标准定义的LLC子层的LLC帧。 从图中可看出,在传输媒体上实际传送的要比MAC帧还多8个字节。这是因为当一个站在刚开始接收MAC帧时,由于尚未与到达的比特流达成同步,因此MAC帧的最前面的若干个比特就无法接收,结果使整个的MAC 成为无用的帧。为了达到比特同步,从MAC子层向下传到物理层时还要在帧的前面插入8字节(由硬件生成),它由两个字段构成。第一个字段共7个字节,称为前同步码(1和0交替的码)。前同步码的作用是使接收端在接收MAC帧时能够迅速实现比特同步。第二个字段是帧开始定界符,定义为10101011,表示在这后面的信息就是MAC帧了。在MAC子层的FCS的检验范围不包括前同步码和帧开始定界符。顺便指出,在广域网点对点通讯中使用同步传输的HDLC规程时则不需要用前同步码,因为在同步传输时收发双方的比特同步总是一直保持着的。 802.3标准规定凡出现下列情况之一的即为无效的MAC帧: (1)MAC客户数据字段的长度与长度字段的值不一致; (2)帧的长度不是整数个字节; (3)用收到的帧检验序列FCS查出有差错; (4)收到的帧的MAC客户数据字段的长度不在46—1500字节之间。考虑到MAC帧首部的长度是18字节,可以得出有效的MAC帧长度为64~1518字节之间。 对于检查出的无效MAC帧就简单地丢弃。以太网不负责重传丢弃的帧。 当MAC客户数据字段的长度小于46字节时,则应加以填充(内容不限)。这样,整个MAC帧(包含14字节首部和4字节尾部)的最小长度是64字节,或512bit。 MAC子层的标准还规定了帧间最小间隔为9.6us,相当于96bit的发送时间。这就是说,一个站在检测到总线开始空闲后,还要等待9.6us才能发送

以太网协议报文格式

T C P/I P协议族

IP/TCP Telnet和R login、FTP以及SMTP IP/UDP DNS 、TFTP、BOOTP、SNMP ICMP是IP协议的附属协议、IGMP是Internet组管理协议 ARP(地址解析协议)和RARP(逆地址解析协议)是某些网络接口(如以太网和令牌环网)使用的特殊协议,用来转换I P层和网络接口层使用的地址。 1、以太帧类型 以太帧有很多种类型。不同类型的帧具有不同的格式和MTU值。但在同种物理媒体上都可同时存在。

?标签协议识别符(Tag Protocal Identifier, TPID): 一组16位元的域其数值被设定在0x8100以用来辨别某个IEEE 802.1Q的帧为已被标签的,而这个域所被标定位置与乙太形式/长度在未标签帧的域相同,这是为了用来区别未标签的帧。 ?优先权代码点(Priority Code Point, PCP): 以一组3位元的域当作IEEE 802.1p 优先权的参考,从0(最低)到7(最高),用来对资料流(音讯、影像、档案等等)作传输的优先级。 ?标准格式指示(Canonical Format Indicator, CFI): 1位元的域。若是这个域的值为1,则MAC地指则为非标准格式;若为0,则为标准格式;在乙太交换器中他通常默认为0。在乙太和令牌环中,CFI用来做为两者的相容。若帧在乙太端中接收资料则CFI的值须设为1,且这个端口不能与未标签的其他端口桥接。?虚拟局域网识别符(VLAN Identifier, VID): 12位元的域,用来具体指出帧是属于哪个特定VLAN。值为0时,表示帧不属于任何一个VLAN;此时,802.1Q标签代表优先权。16位元的值0x000和0xFFF为保留值,其他的值都可用来做为共4094个VLAN的识别符。在桥接器上,VLAN1在管理上做为保留值。这个12位元的域可分为两个6位元的域以延伸目的(Destination)与源(Source)之48位元地址,18位元的三重标记(Triple-Tagging)可和原本的48位元相加成为66位元的地址。 0、以太网的封装格式(RFC 894) IEEE 802.2/802.3(RFC 1042)

网络协议数据报文格式

协议数据报文格式 1、TCP/IP 协议层次 TCP/IP 协议分为四层结构,每一层完成特定的功能,包括多个协议。本课程实验中相关协议的层次分布如附图3-1所示。 附图3-1 TCP/IP 协议层次 这些协议之间的PDU 封装并不是严格按照低层PDU 封装高层PDU 的方式进行的,附图3-2显示了Ethernet 帧、ARP 分组、IP 分组、ICMP 报文、TCP 报文段、UDP 数据报、RIP 报文、OSPF 报文和FTP 报文之间的封装关系。 附图3-2 各协议PDU 间的封装关系 2、Ethernet 帧格式 最新的IEEE 802.3标准(2002 年)中定义Ethernet 帧格式如下: 其中,类型/长度值小于1536(0x0600)时表示数据字段的长度,大于等于1536 (0x0600)时表示数据字段的协议类型。类型/长度值0x0800表示帧中封装的数据为IP 分组,类型值0x0806表示帧中封装的数据为ARP 分组。 3、IP 分组格式(RFC 791) 4、ARP 分组格式(RFC 826) 操作代码值1表示ARP 请求分组,操作代码值2表示ARP 响应分组。 Ethernet 帧 标志(3 bits ): 不分片(D ): 0=可以分片 1=不能分片 还有分片(M ): 0=最后的分片 1=还有更多分片 协议:1=ICMP 89=OSPF 6=TCP 17=UDP 底层协议(Ethernet ) IP 、ARP 、ICMP TCP 、UDP RIP 、OSPF 、FTP

5、ICMP 报文格式(RFC 792) ICMP 回送请求和回送应答报文: ICMP 目的不可达报文: ICMP 超时报文: 6、TCP 报文段格式(RFC 793) 7、RIP 报文格式(版本1-RFC 1058,版本2-RFC2453) RIP 请求报文在某些RIP 路由表项超时或路由器刚接入互联网时发送,请求报文可 以询问特定路由或所有路由。路由器在回应请求报文时发送携带被询问路由信息的RIP 响应报文,也可以定期(30秒)发送携带整个路由表信息的RIP 响应报文。 控制比特: ACK 确认字段有效 PSH 请求推操作 RST 连接复位 SYN 同步序号 FIN 终止连接 代码: 0 TTL 超时 1 分片重组超时 31 bits 8 16 代码: 0 网络不可达 4 需分片但被禁止 1 主机不可达 5 源路由失败 2 协议不可达 6 目的网络未知 3 端口不可达 7 目的主机未知 类型: 0 回送应答 8 回送请求 31 bits 硬件类型: 0x0001=以太网 0x0800=IP 协议

分析IP协议数据包格式

实验名称: 分析IP协议数据包格式 实验目的: 掌握IP协议的作用和格式; 理解IP数据包首部各字段的含义; 掌握IP数据包首部校验和的计算方法。 实验器材: 计算机及以太网环境。 实验内容(步骤): 1.打开Wireshark软件,选择菜单命令“Capture” “Interfaces…”子菜单项。弹 出“Wireshark: Capture Interfaces”对话框。单击“Options”按钮,弹出“Wireshark: Capture Options”对话框。单击“Start”按钮开始网络数据包捕获。 2.浏览外部网站,确保协议分析软件能够捕获足够的网络数据包,单击“Stop”按 钮,中断网络协议分析软件的捕获进程,主界面显示捕获到的数据包。 几乎所有的高层协议都使用IP协议进行网络传输,只有ARP和RARP报文不被封装在IP数据报中。 3.观察协议树区中IP数据包各个字段的长度与值,是否符合IP报文格式。

对帧61的IP数据包进行分析 Internet Protocol互联网协议( IP )源:61.135.163.233,目标:192.168.1.2 Version(版本):一个4字节的字段。表示当前正运行的IP版本信息。上图中版本的信息是IPv4。 Header length IP(报头长度):一个4字节的字段,表示以32比特为单位的信息中数据包报头的长度。这是所有报头信息的总长度。上图为20字节 Differentiated services Filed(服务的类别):一个8字节的字段,表示一个特定的上层协议所分配的重要级别。 Differentiated Services Codepoint(差分服务代码点6位):默认的DSCP值是0,相当于尽力传送。 two-bit Explicit Congestion Notification field(2位明确的拥塞通知字段) ECN-Capable Transport:(ECN Explicit Cogestion Notification -Capable Transport):显式拥塞指示能力传输字段,该ECN-Capable Transport (ECT) bit将被数据发送者设置,以表明传输协议的末端节点有ECN的能力。 ECT bit设置为“ 0 ”表明该传输协议将忽略ignore CE bit。这是ECT bit的默认值。 ECT bit设置为“ 1 ”表示该传输协议愿意willing并and能够参与在ECN。

网络协议报文格式汇总

S .. . .. 目录 1 序、 (2) 1.1 协议的概念 (2) 1.2 TCP/IP体系结构 (2) 2 链路层协议报文格式 (2) 2.1 Ethernet报文格式 (2) 2.2 802.1q VLAN数据帧(4字节) (2) 2.3 QinQ帧格式 (2) 2.4 PPP帧格式 (2) 2.5 STP协议格式 (2) 2.5.1 语法 (2) 2.5.2 语义 (2) 2.5.3 时序 (2) 2.6 RSTP消息格式 (2) 2.6.1 语法 (2) 2.6.2 语义 (2) 2.6.3 时序 (2) 3 网络层协议报文 (2) 3.1 IP报文头 (2) 3.2 ARP协议报文 (2) 3.2.1 语法 (2) 3.2.2 语义 (2) 3.2.3 时序 (2) 3.3 VRRP协议报文 (2) 3.3.1 语法 (2) 3.4 BGP协议报文 (2) 3.4.1 语法 (2) 3.4.2 语义 (2)

1 序、 1.1 协议的概念 协议由语法、语义和时序三部分组成: 语法:规定传输数据的格式; 语义:规定所要完成的功能; 时序:规定执行各种操作的条件、顺序关系; 1.2 TCP/IP体系结构 TCP/IP协议分为四层结构,每一层完成特定的功能,包括多个协议。本课程实验中相关协议的层次分布如附图3-1所示。 图1-1TCP/IP协议层次 这些协议之间的PDU封装并不是严格按照低层PDU封装高层PDU的方式进行的,附图3-2显示了Ethernet帧、ARP分组、IP分组、ICMP报文、TCP报文段、UDP数据报、RIP报文、OSPF报文和FTP报文之间的封装关系。 图1-2各协议PDU间的封装关系 2 链路层协议报文格式 2.1 Ethernet报文格式 最新的IEEE 802.3标准(2002年)中定义Ethernet帧格式如下:

tcpip协议报文格式

1、IP报文格式 IP协议是TCP/IP协议族中最为核心的协议。它提供不可靠、无连接的服务,也即依赖其他层的协议进行差错控制。在局域网环境,IP协议往往被封装在以太网帧(见本章1.3节)中传送。而所有的TCP、UDP、ICMP、IGMP数据都被封装在IP数据报中传送。如图2-3所示: 图2-3TCP/IP报文封装 图2-4是IP头部(报头)格式:(RFC 791)。 图2-4IP头部格式 其中: ●版本(Version)字段:占4比特。用来表明IP协议实现的版本号,当前一般为IPv4,即0100。 ●报头长度(Internet Header Length,IHL)字段:占4比特。是头部占32比特的数字,包括可选项。普通IP数据报(没有任何选项),该字段的值是5,即160比特=20字节。此字段最大值为60字节。 ●服务类型(Type of Service ,TOS)字段:占8比特。其中前3比特为优先权子字段(Precedence,现已被忽略)。第8比特保留未用。第4至第7比特分别代表延迟、吞吐量、可靠性和花费。当它们取值为1时分别代表要求最小时延、最大吞吐量、最高可靠性和最小费用。这4比特的服务类型中只能置其中1比特为1。可以全为0,若全为0则表示一般服务。服务类型字段声明了数据报被网络系统传输时可以被怎样处理。例如:TELNET 协议可能要求有最小的延迟,FTP协议(数据)可能要求有最大吞吐量,SNMP协议可能要求有最高可靠性,NNTP(Network News Transfer Protocol,网络新闻传输协议)可能要求最小费用,而ICMP协议可能无特殊要求(4比特全为0)。实际上,大部分主机会忽略这个字段,但一些动态路由协议如OSPF(Open Shortest Path First Protocol)、IS-IS (Intermediate System to Intermediate System Protocol)可以根据这些字段的值进行路由决策。 ●总长度字段:占16比特。指明整个数据报的长度(以字节为单位)。最大长度为65535字节。

#网络协议:传输层协议报文信息分析

网络协议实验报告 实验人:马国礼班级:网络08—(1)班学号:08083726 实验名称:传输层协议报文承载信息分析 实验目的:进一步熟悉协议分析工具软件使用,分析传输层报文承 载的信息,掌握传输层协议工作的基本原理。 实验内容: 1、熟练使用和传输层有关的程序命令netstat、telnet; 2、截取浏览网页时和即时通讯时的数据报文,分析是基于UDP还是基于TCP(即时通讯程序可选择QQ、MSN),并分析每种使用各自的端口号(分客户端和服务端); 3、通过协议分析软件分析TCP和UDP的报文格式;分析MSS和MTU 的关系,认识TCP报文中携带MSS的时机。 4、截取有关数据报文,分析TCP建立连接时“三次握手”的过程。可通过telnet使用程序帮助建立的TCP连接,也可对基于TCP的使用程序工作时的TCP连接进行截取数据报。 5、截取有关数据报文,分析TCP断开连接时“四次握手”的过程。 6、在进行大量的数据上传或下载时(比如基于HTTP或FTP的较大文件的上传),通过协议分析观察是否有流量和拥塞控制的表征。 实验日期:2010-12-09 实验步骤: (1)学习使用netstat 和telnet 命令 在命令窗口中输入 netstat /?即可得到所有命令(如图下)

当前网络的TCP、UDP连接状态(如图)

(2)telnet 命令(如图) 使用telnet https://www.wendangku.net/doc/983782073.html, 80 远程登录中国矿业大学服务器,使用三次TCP连接(如图) (3)截取浏览网页时和即时通讯时的数据报文,分析是基于UDP还是基于TCP (即时通讯程序可选择QQ、MSN),并分析每种使用各自的端口号(分客户端和服务端); A、捕获浏览器浏览网页时的数据报文是基于TCP 其对应的源端口号:客户端是:3575 服务端是:80 (如图)

计算机网络协议分析实验指导书V201506

网络协议分析实验指导书

1、网络层协议分析 1.A 数据包捕获分析部分 1.A.1、实验目的 1)、了解ICMP 协议报文类型及作用。 2)、理解IP协议报文类型和格式。 3)、分析ARP 协议的报文格式,理解ARP 协议的解析过程。 1.A.2、实验内容介绍 1)、ICMP协议分析实验 执行ping 和tracert 命令,分别截获报文,分析截获的ICMP 报文类型和ICMP 报文格式,理解ICMP 协议的作用。 2)、IP协议分析实验 使用Ping 命令在两台计算机之间发送数据报,用Wireshark 截获数据报,分析IP 数据报的格式,理解IP V4 地址的编址方法,加深对IP 协议的理解。 3)、IP 数据报分片实验 我们已经从前边的实验中看到,IP 报文要交给数据链路层封装后才能发送。理想情况下,每个IP 报文正好能放在同一个物理帧中发送。但在实际应用中,每种网络技术所支持的最大帧长各不相同。例如:以太网的帧中最多可容纳1500 字节的数据,这个上限被称为物理网络的最大传输单元(MTU,MaxiumTransfer Unit)。 TCP/IP 协议在发送IP 数据报文时,一般选择一个合适的初始长度。当这个报文要从一个MTU 大的子网发送到一个MTU 小的网络时,IP 协议就把这个报文的数据部分分割成能被目的子网所容纳的较小数据分片,组成较小的报文发送。每个较小的报文被称为一个分片(Fragment)。每个分片都有一个IP 报文头,分片后的数据报的IP 报头和原始IP 报头除分片偏移、MF 标志位和校验字段不同外,其他都一样。 重组是分片的逆过程,分片只有到达目的主机时才进行重组。当目的主机收到IP 报文时,根据其片偏移和标志MF 位判断其是否一个分片。若MF 为0,片偏移为0,则表明它是一个完整的报文;否则,则表明它是一个分片。当一个报文的全部分片都到达目的主机时,IP 就根据报头中的标识符和片偏移将它们重新组成一个完整的报文交给上层协议处理。 4)、ARP协议分析实验 本次实验使用的Windows自带的Arp命令,提供了显示和修改地址解析协议所使用的地址映射表的功能。

网络协议实验报告讲解

实验一以太网链路层帧格式分析 一.实验目的 分析MAC层帧结构 二.实验内容及步骤 步骤一:运行ipconfig命令 在Windows的命令提示符界面中输入命令:ipconfig /all,会显示本机的网络信息: 步骤二:编辑LLC信息帧并发送 1、打开协议数据发生器,在工具栏选择“添加”,会弹出“网络包模版”的对话框,在“选择生成的网络包”下拉列表中选择“LLC协议模版”,建立一个LLC帧。

2、在“网络包模版”对话框中点击“确定”按钮后,会出现新建立的数据帧,此时在协议数据发生器的各部分会显示出该帧的信息。 3、编辑LLC帧。 4、点击工具栏或菜单栏中的“发送”,在弹出的“发送数据包”对话框上选中“循环发送”,填入发送次数,选择“开始”按钮,即可按照预定的数目发送该帧。在本例中,选择发送10次。 5、在主机B的网络协议分析仪一端,点击工具栏内的“开始”按钮,对数据帧进行捕获,按“结束”按钮停止捕获。捕获到的数据帧会显示在页面中,可以选择两种视图对捕获到的数据帧进行分析,会话视图和协议视图,可以清楚的看到捕获数据包的分类统计结果。 步骤三:编辑LLC监控帧和无编号帧,并发送和捕获 步骤四:保存捕获的数据帧 步骤五:捕获数据帧并分析 1、启动网络协议分析仪在网络内进行捕获,获得若干以太网帧。 2、对其中的5-10个帧的以太网首部进行观察和分析,分析的内容为:源物理地址、目的物理地址、上层协议类型。 捕获到的数据报报文如下:

对所抓的数据帧进行分析: ①MAC header: 目的物理地址:00:D0:F8:BC:E7:08 源物理地址:00:13:D3:51:44:DD 类型:0800表示IP协议 ②IP header: IP协议报文格式如下: 版本:4表示IPv4 首部长度:5表示5×4=20个字节。 服务类型:00表示正常处理该数据报。 总长度:0028表示此数据报的总长度为40字节。

网络协议报文格式汇总

目录 1 序、 (2) 1.1 协议的概念 (2) 1.2 TCP/IP 体系结构 (2) 2 链路层协议报文格式 (2) 2.1 Ethernet 报文格式 (2) 2.2 802.1q VLAN 数据帧(4 字节) (3) 2.3 QinQ 帧格式 (4) 2.4 PPP 帧格式. (4) 2.5 STP 协议格式 (5) 2.5.1 语法 (5) 2.5.2 语义 (6) 2.5.3 时序 (8) 2.6 RSTP 消息格式 (9) 2.6.1 语法 (9) 2.6.2 语义 (11) 2.6.3 时序 (13) 3 网络层协议报文 (14) 3.1 IP 报文头. (14) 3.2 ARP 协议报文 (16) 3.2.1 语法 (16) 3.2.2 语义 (17) 3.2.3 时序 (17) 3.3 VRRP 协议报文 (18) 3.3.1 语法 (18) 3.4 BGP 协议报文 (19) 3.4.1 语法 (19) 3.4.2 语义 (25)

Ethernet 1序、 1.1协议的概念 协议由语法、语义和时序三部分组成: 语法:规定传输数据的格式; 语义:规定所要完成的功能; 时序:规定执行各种操作的条件、顺序关系; 1.2 TCP/IP体系结构 TCP/IP协议分为四层结构,每一层完成特定的功能,包括多个协议。本课程实验中相关协议的层次分布如附图3-1所示。 图1-1 TCP/IP协议层次 RIP、OSPF. FTP屮 TCP, UDP2 IP, ARP、ICXIP^ 底层协议(Ethernet〉# 这些协议之间的 PDU封装并不是严格按照低层PDU封装高层PDU的方式进行的,附图3-2 显示了 Ethernet帧、ARP分组、IP分组、ICMP报文、TCP报文段、UDP数据报、RIP报文、 OSPF报文和FTP 报文之间的封装关系。 图1-2各协议PDU间的封装关系 2链路层协议报文格式 2.1 Ethernet报文格式 最新的IEEE 802.3 标准(2002年)中定义 Ethernet帧格式如下: TCP首咅典数据:FT?"UDP首咅弘数拚:RIP" IP分组p IP首制#数据:ICMP、TCP. UDP、OSPF^' 帧苜部*数抿:ARJ\ IP屮 丁空报文段a , UDP数將报4

IP协议的报文格式分析

IP协议的报文格式分析 1)分析IP 数据报头的格式,完成表9; 表9 IP 协议报文分析 字段报文信息说明 版本 头长 服务类型 总长度 标识 标志 片偏移 生存周期 协议 校验和 源地址 目的地址 其中主要字段的意义和功能如下: * 版本:指IP协议的版本; * 头长:是指IP数据报的报头长度,它以4 字节为单位。IP报头长度至少为20 字节, 如果选项部分不是4 字节的整数倍时,由填充补齐; * 总长度:为整个IP 数据报的长度; * 服务类型:规定对数据报的处理方式; * 标识:是IP协议赋予数据报的标志,用于目的主机确定数据分片属于哪个报文; * 标志:为三个比特,其中只有低两位有效,这两位分别表示该数据报文能否分段和是否该分段是否为源报文的最后一个分段; * 生存周期:为数据报在网络中的生存时间,报文每经过一个路由器时,其值减1,当生存周期变为0 时,丢弃该报文;从而防止网络中出现循环路由; * 协议:指IP数据部分是由哪一种协议发送的; * 校验和:只对IP 报头的头部进行校验,保证头部的完整性; * 源IP地址和目的IP地址:分别指发送和接收数据报的主机的IP 地址。 IP文件头的详细内容(如图13所示),

图13 IP文件头信息 包括: Version(版本):版本序号为4,代表IPv4。 Header length:Internet文件头长度,为20个字节。 Type of service(服务类型值):该值为00,我们会看到ToS下面一直到总长度部分都是0。这里可以提供服务质量(QoS)信息;每个二进制数位的意义都不同,这取决于最初的设定。例如,正常延迟设定为0,说明没有设定为低延迟,如果是低延迟,设定值应该为1。 Total length(总长度):显示该数据的总长度,为Internet文件头和数据的长度之和。 Identification:该数值是文件头的标识符部分,当数据包被划分成几段传送时,接收数据的主机可以用这个数值来重新组装数据。 Flag(标记):数据包的“标记”功能,例如,数据包分段用0标记,未分段用1标记。 Fragment offset(分段差距):分段差距为0个字节。可以设定0代表最后一段,或者设定1代表更多区段,这里该值为0。分段差距用来说明某个区段属于数据包的哪个部分。 Time to live(保存时间):表示TTL值的大小,说明一个数据包可以保存多久。 Protocol(协议):显示协议值,在Sniffer Pro中代表传输层协议。文件头的协议部分只说明要使用的下一个上层协议是什么,这里为UDP。 Header checksum(校验和):这里显示了校验和(只在这个头文件中使用)的值,并且已经做了标记,表明这个数值是正确的。 Source address(源地址):显示了数据的来源地址。 Destination address(目的地址):显示了数据访问的目的地址。 IP文件头下面为TCP或者UDP文件头,这里为UDP协议(如图14所示)。 UDP协议分析 IP文件头下面为TCP或者UDP文件头,这里为UDP协议(如图14所示)。 图14 UDP文件头信息 UDP协议头包括下列信息: Source port(源端口):显示了所使用的UDP协议的源端口。 Destination port(目的端口):显示了UDP协议的目的端口。 Length(长度):表示IP文件头的长度。 Checksum(校验和):显示了UDP协议的校验和。 Bytes of data:表示有多少字节的数据。 根据协议的不同,在详细资料窗口中有的还会显示ARP、HTTP、WINS等信息。通过这些信息,可以发现正在解析的协议中更多内容。 选择第一个UDP 报文,分析其结构,填写表14。 表14 UDP 报文分析 IP 报文 源IP 地址协议目的IP 地址总长度 UDP 报文 字段名字段长度字段值字段表达信息

相关文档
相关文档 最新文档