文档库 最新最全的文档下载
当前位置:文档库 › 高中数学 函数的性质 单调性 奇偶性 最值

高中数学 函数的性质 单调性 奇偶性 最值

高中数学 函数的性质 单调性 奇偶性 最值
高中数学 函数的性质 单调性 奇偶性 最值

函数的单调性和奇偶性

经典例题透析

类型一、函数的单调性的证明

1.证明函数上的单调性.

证明:在(0,+∞)上任取x1、x2(x1≠x2),令△x=x2-x1>0

∵x1>0,x2>0,∴

∴上式<0,∴△y=f(x2)-f(x1)<0

∴上递减.

总结升华:

[1]证明函数单调性要求使用定义;

[2]如何比较两个量的大小?(作差)

[3]如何判断一个式子的符号?(对差适当变形)

举一反三:

【变式1】用定义证明函数上是减函数.

思路点拨:本题考查对单调性定义的理解,在现阶段,定义是证明单调性的唯一途径.

证明:设x1,x2是区间上的任意实数,且x1<x2,则

∵0<x1<x2≤1 ∴x1-x2<0,0<x1x2<1

∵0<x1x2<1

故,即f(x1)-f(x2)>0

∴x1<x2时有f(x1)>f(x2)

上是减函数.

总结升华:可以用同样的方法证明此函数在上是增函数;在今后的学习中经常会碰到这个函数,在此可以尝试利用函数的单调性大致给出函数的图象.

类型二、求函数的单调区间

2. 判断下列函数的单调区间;

(1)y=x2-3|x|+2;(2)

解:(1)由图象对称性,画出草图

∴f(x)在上递减,在上递减,在上递增.

(2)

∴图象为

∴f(x)在上递增.

举一反三:

【变式1】求下列函数的单调区间:

(1)y=|x+1|;(2)(3).

解:(1)画出函数图象,

∴函数的减区间为,函数的增区间为(-1,+∞);

(2)定义域为,

其中u=2x-1为增函数,在(-∞,0)与(0,+∞)为减函数,

则上为减函数;

(3)定义域为(-∞,0)∪(0,+∞),单调增区间为:(-∞,0),单调减区间为

(0,+∞).

总结升华:

[1]数形结合利用图象判断函数单调区间;

[2]关于二次函数单调区间问题,单调性变化的点与对称轴相关.

[3]复合函数的单调性分析:先求函数的定义域;再将复合函数分解为内、外层函数;利用已知函数的单调性解决.关注:内外层函数同向变化复合函数为增函数;内外层函数反向变化复合函数为减函数.

类型三、单调性的应用(比较函数值的大小,求函数值域,求函数的最大值或最小值)

3. 已知函数f(x)在(0,+∞)上是减函数,比较f(a2-a+1)与的大小.

解:

又f(x)在(0,+∞)上是减函数,则.

4. 求下列函数值域:

(1);1)x∈[5,10];2)x∈(-3,-2)∪(-2,1);

(2)y=x2-2x+3;1)x∈[-1,1];2)x∈[-2,2].

思路点拨:(1)可应用函数的单调性;(2)数形结合.

解:(1)2个单位,再上移2个单位得到,如图

1)f(x)在[5,10]上单增,;

2);

(2)画出草图

1)y∈[f(1),f(-1)]即[2,6];

2).

举一反三:

【变式1】已知函数.

(1)判断函数f(x)的单调区间;

(2)当x∈[1,3]时,求函数f(x)的值域.

思路点拨:这个函数直接观察恐怕不容易看出它的单调区间,但对解析式稍作处理,即

可得到我们相对熟悉的形式.,第二问即是利用单调性求函数值域.

解:(1)

上单调递增,在上单调递增;

(2)故函数f(x)在[1,3]上单调递增

∴x=1时f(x)有最小值,f(1)=-2

x=3时f(x)有最大值

∴x∈[1,3]时f(x)的值域为.

5. 已知二次函数f(x)=x2-(a-1)x+5在区间上是增函数,求:(1)实数a的取值范围;(2)f(2)的取值范围.

解:(1)∵对称轴是决定f(x)单调性的关键,联系图象可知

只需;

(2)∵f(2)=22-2(a-1)+5=-2a+11又∵a≤2,∴-2a≥-4

∴f(2)=-2a+11≥-4+11=7

.

类型四、判断函数的奇偶性

6. 判断下列函数的奇偶性:

(1)(2)

(3)f(x)=x2-4|x|+3 (4)f(x)=|x+3|-|x-3| (5)

(6)(7)

思路点拨:根据函数的奇偶性的定义进行判断.

解:(1)∵f(x)的定义域为,不关于原点对称,因此f(x)为非奇非偶函数;

(2)∵x-1≥0,∴f(x)定义域不关于原点对称,∴f(x)为非奇非偶函数;

(3)对任意x∈R,都有-x∈R,且f(-x)=x2-4|x|+3=f(x),则f(x)=x2-4|x|+3为偶函数;

(4)∵x∈R,f(-x)=|-x+3|-|-x-3|=|x-3|-|x+3|=-f(x),∴f(x)为奇函数;

(5)

,∴f(x)为奇函数;

(6)∵x∈R,f(x)=-x|x|+x ∴f(-x)=-(-x)|-x|+(-x)=x|x|-x=-f(x),∴f(x)为奇函数;

(7),∴f(x)为奇函数.

举一反三:

【变式1】判断下列函数的奇偶性:

(1);(2)f(x)=|x+1|-|x-1|;(3)f(x)=x2+x+1;

(4).

思路点拨:利用函数奇偶性的定义进行判断.

解:(1);

(2)f(-x)=|-x+1|-|-x-1|=-(|x+1|-|x-1|)=-f(x) ∴f(x)为奇函数;

(3)f(-x)=(-x)2+(-x)+1=x2-x+1

∴f(-x)≠-f(x)且f(-x)≠f(x) ∴f(x)为非奇非偶函数;

(4)任取x>0则-x<0,∴f(-x)=(-x)2+2(-x)-1=x2-2x-1=-(-x2+2x+1)=-f(x)

任取x<0,则-x>0 f(-x)=-(-x)2+2(-x)+1=-x2-2x+1=-(x2+2x-1)=-f(x)

x=0时,f(0)=-f(0) ∴x∈R时,f(-x)=-f(x) ∴f(x)为奇函数.

举一反三:

【变式2】已知f(x),g(x)均为奇函数,且定义域相同,求证:f(x)+g(x)为奇函数,f(x)·g(x)为偶函数.

证明:设F(x)=f(x)+g(x),G(x)=f(x)·g(x)则

F(-x)=f(-x)+g(-x)=-f(x)-g(x)=-[f(x)+g(x)]=-F(x)

G(-x)=f(-x)·g(-x)=-f(x)·[-g(x)]=f(x)·g(x)=G(x)

∴f(x)+g(x)为奇函数,f(x)·g(x)为偶函数.

类型五、函数奇偶性的应用(求值,求解析式,与单调性结合)

7.已知f(x)=x5+ax3-bx-8,且f(-2)=10,求f(2).

解:法一:∵f(-2)=(-2)5+(-2)3a-(-2)b-8=-32-8a+2b-8=-40-8a+2b=10

∴8a-2b=-50 ∴f(2)=25+23a-2b-8=8a-2b+24=-50+24=-26

法二:令g(x)=f(x)+8易证g(x)为奇函数

∴g(-2)=-g(2) ∴f(-2)+8=-f(2)-8

∴f(2)=-f(-2)-16=-10-16=-26.

8. f(x)是定义在R上的奇函数,且当x<0时,f(x)=x2-x,求当x≥0时,f(x)的解析式,并画出函数图象.

解:∵奇函数图象关于原点对称,∴x>0时,-y=(-x)2-(-x)

即y=-x2-x又f(0)=0,,如图

9. 设定义在[-3,3]上的偶函数f(x)在[0,3]上是单调递增,当f(a-1)<f(a)时,求a 的取值范围.

解:∵f(a-1)<f(a) ∴f(|a-1|)<f(|a|)

而|a-1|,|a|∈[0,3]

.

类型六、综合问题

10.定义在R上的奇函数f(x)为增函数,偶函数g(x)在区间的图象与f(x)的图象重合,

设a>b>0,给出下列不等式,其中成立的是_________.

①f(b)-f(-a)>g(a)-g(-b);②f(b)-f(-a)<g(a)-g(-b);

③f(a)-f(-b)>g(b)-g(-a);④f(a)-f(-b)<g(b)-g(-a).

答案:①③.

11. 求下列函数的值域:

(1)(2)(3)

思路点拨:(1)中函数为二次函数开方,可先求出二次函数值域;(2)由单调性求值域,此题也可换元解决;(3)单调性无法确定,经换元后将之转化为熟悉二次函数情形,问题得到解决,需注意此时t范围.

解:(1);

(2)经观察知,,

(3)令

.

12. 已知函数f(x)=x2-2ax+a2-1.

(1)若函数f(x)在区间[0,2]上是单调的,求实数a的取值范围;

(2)当x∈[-1,1]时,求函数f(x)的最小值g(a),并画出最小值函数y=g(a)的图象.

解:(1)∵f(x)=(x-a)2-1 ∴a≤0或a≥2

(2)1°当a<-1时,如图1,g(a)=f(-1)=a2+2a

2°当-1≤a≤1时,如图2,g(a)=f(a)=-1

3°当a>1时,如图3,g(a)=f(1)=a2-2a

,如图

13. 已知函数f(x)在定义域(0,+∞)上为增函数,f(2)=1,且定义域上任意x、y都满足f(xy)=f(x)+f(y),解不等式:f(x)+f(x-2)≤3.

解:令x=2,y=2,∴f(2×2)=f(2)+f(2)=2 ∴f(4)=2

再令x=4,y=2,∴f(4×2)=f(4)+f(2)=2+1=3 ∴f(8)=3

∴f(x)+f(x-2)≤3可转化为:f[x(x-2)]≤f(8)

.

14. 判断函数上的单调性,并证明.

证明:任取0<x1<x2,

∵0<x1<x2,∴x1-x2<0,x1·x2>0

(1)当时

0<x1·x2<1,∴x1·x2-1<0

∴f(x1)-f(x2)>0即f(x1)>f(x2)

上是减函数.

(2)当x1,x2∈(1,+∞)时,

上是增函数.

难点:x1·x2-1的符号的确定,如何分段.

15. 设a为实数,函数f(x)=x2+|x-a|+1,x∈R,试讨论f(x)的奇偶性,并求f(x)的最小值.

解:当a=0时,f(x)=x2+|x|+1,此时函数为偶函数;

当a≠0时,f(x)=x2+|x-a|+1,为非奇非偶函数.

(1)当x≥a时,

[1]

[2]上单调递增,

上的最小值为f(a)=a2+1.

(2)当x<a时,

[1]上单调递减,

上的最小值为f(a)=a2+1

[2]上的最小值为

综上:

.

学习成果测评

基础达标

一、选择题

1.下面说法正确的选项( )

A.函数的单调区间就是函数的定义域

B.函数的多个单调增区间的并集也是其单调增区间

C.具有奇偶性的函数的定义域定关于原点对称

D.关于原点对称的图象一定是奇函数的图象

2.在区间上为增函数的是( )

A.B.

C.D.

3.已知函数为偶函数,则的值是( )

A. B. C. D.

4.若偶函数在上是增函数,则下列关系式中成立的是( )

A.B.

C.D.

5.如果奇函数在区间上是增函数且最大值为,那么在区间

上是( )

A.增函数且最小值是B.增函数且最大值是

C.减函数且最大值是D.减函数且最小值是

6.设是定义在上的一个函数,则函数,在上一定是( )

A.奇函数B.偶函数

C.既是奇函数又是偶函数D.非奇非偶函数.

7.下列函数中,在区间上是增函数的是( )

A.B.C.D.

8.函数f(x)是定义在[-6,6]上的偶函数,且在[-6,0]上是减函数,则( )

A. f(3)+f(4)>0

B. f(-3)-f(2)<0

C. f(-2)+f(-5)<0

D. f(4)-f(-1)>0

二、填空题

1.设奇函数的定义域为,若当时,的图象

如右图,则不等式的解是____________.

2.函数的值域是____________.

3.已知,则函数的值域是____________.

4.若函数是偶函数,则的递减区间是____________.

5.函数在R上为奇函数,且,则当,

____________.

三、解答题

1.判断一次函数反比例函数,二次函数的单调性.

2.已知函数的定义域为,且同时满足下列条件:(1)是奇函数;

(2)在定义域上

单调递减;(3)求的取值范围.

3.利用函数的单调性求函数的值域;

4.已知函数.

①当时,求函数的最大值和最小值;

②求实数的取值范围,使在区间上是单调函数.

能力提升

一、选择题

1.下列判断正确的是( )

A.函数是奇函数B.函数是偶函数

C.函数是非奇非偶函数D.函数既是奇函数又是偶函数

2.若函数在上是单调函数,则的取值范围是( )

A.B.

C.D.

3.函数的值域为( )

A.B.

C.D.

4.已知函数在区间上是减函数,则实数的取值范围是( )

A.B.C.D.

5.下列四个命题:(1)函数在时是增函数,也是增函数,所以是增函数;(2)若

函数与轴没有交点,则且;(3)

的递增区间

为;(4) 和表示相等函数.

其中正确命题的个数是( )

A.B.C.D.

6.定义在R上的偶函数,满足,且在区间上为递增,则( )

A.B.

C.D.

二、填空题

1.函数的单调递减区间是____________________.

2.已知定义在上的奇函数,当时,,那么时,

______.

3.若函数在上是奇函数,则的解析式为________.

4.奇函数在区间上是增函数,在区间上的最大值为8,最小值为-1,

则__________.

5.若函数在上是减函数,则的取值范围为__________.

三、解答题

1.判断下列函数的奇偶性

(1)(2)

2.已知函数的定义域为,且对任意,都有,

且当时,恒成立,证明:(1)函数是上的减函数;(2)函数

是奇函数.

3.设函数与的定义域是且,是偶函数,是奇函数,且,求和的解析式.

4.设为实数,函数,.

(1)讨论的奇偶性;(2)求的最小值.

综合探究

1.已知函数,,则

的奇偶性依次

为( )

A.偶函数,奇函数B.奇函数,偶函数

C.偶函数,偶函数D.奇函数,奇函数

2.若是偶函数,其定义域为,且在上是减函数,则

大小关系是( )

A.>B.<

C.D.

3.已知,那么=_____.

4.若在区间上是增函数,则的取值范围是________.

5.已知函数的定义域是,且满足,,如

果对于,都有,(1)求;(2)解不等式.

6.当时,求函数的最小值.

7.已知在区间内有一最大值,求的值.

8.已知函数的最大值不大于,又当,求

的值.

答案与解析

基础达标

一、选择题

1.C.

2.B.

3.B. 奇次项系数为

4.D.

5.A. 奇函数关于原点对称,左右两边有相同的单调性

6.A.

7.A. 在上递减,在上递减,在上递减

8.D.

二、填空题

1.. 奇函数关于原点对称,补足左边的图象

2.. 是的增函数,当时,

3.. 该函数为增函数,自变量最小时,函数值最小;自变量最大时,函数值最大

4..

5..

三、解答题

1.解:当,在是增函数,当,在是减函数;

当,在是减函数,

当,在是增函数;

当,在是减函数,在是增函数,

当,在是增函数,在是减函数.

2.解:,则,

3.解:,显然是的增函数,,

4.解:对称轴

(2)对称轴当或时,在上单调

∴或.

能力提升

一、选择题

1.C. 选项A中的而有意义,非关于原点对称,选项B中的

而有意义,非关于原点对称,选项D中的函数仅为偶函数;

2.C. 对称轴,则,或,得,或

3.B. ,是的减函数,当

4.A. 对称轴

5.A. (1)反例;(2)不一定,开口向下也可;(3)画出图象

可知,递增区间有和;(4)对应法则不同

6.A.

二、填空题

1.. 画出图象

2. . 设,则,,

∵∴,

3. .

∵∴

4. . 在区间上也为递增函数,即

5. . .

三、解答题

1.解:(1)定义域为,则,

∵∴为奇函数.

(2)∵且∴既是奇函数又是偶函数.

2.证明:(1)设,则,而

∴函数是上的减函数;

(2)由得

即,而

∴,即函数是奇函数.

3.解:∵是偶函数,是奇函数,∴,且而,得,

即,

∴,.

4.解:(1)当时,为偶函数,

当时,为非奇非偶函数;

(2)当时,

当时,,

当时,不存在;

当时,

当时,,

当时,.

综合探究

函数的性质之奇偶性

函数的奇偶性 知识体系一函数的奇偶性的定义 1.偶函数: 一般地,对于函数f(x)的定义域内的任意一个x ,都有f(-x)=f(x),那么f(x)就叫做偶函数. 2.奇函数 一般地,对于函数f(x)的定义域内的任意一个x ,都有f(-x)=-f(x),那么f(x)就叫做奇函数. 注意: ○ 1函数是奇函数或是偶函数称为函数的奇偶性,函数的奇偶性是函数的整体性质;○ 2由函数的奇偶性定义可知,函数具有奇偶性的一个必要条件是,对于定义域内的任意一个x ,则-x 也一定是定义域内的一个自变量(即定义域关于原点对称). 二具有奇偶性的函数的图象的特征 偶函数的图象关于y 轴对称; 奇函数的图象关于原点对称. 三奇偶函数的性质: 1定义域关于原点对称;2()f x 为偶函数()(||) f x f x ?=3若奇函数()f x 的定义域包含0,则(0)0 f =4判断函数的奇偶性,首先要研究函数的定义域,有时还要对函数式化简整理,但必须注意使定义域不受影响;5牢记奇偶函数的图象特征,有助于判断函数的奇偶性;6判断函数的奇偶性有时可以用定义的等价形式: ()()0f x f x ±-=,()1() f x f x =±-7设()f x ,() g x 的定义域分别是12,D D ,那么在它们的公共定义域上: 奇+奇=奇,奇?奇=偶,偶+偶=偶,偶?偶=偶,奇?偶=奇 题型体系 一判断函数的奇偶性 例1判断下列函数的奇偶性 (1)()42+=x x f (2)()5x x f =(3)()x x x f +=1

总结:利用定义判断函数奇偶性的格式步骤: ○ 1首先确定函数的定义域,并判断其定义域是否关于原点对称;○ 2确定f(-x)与f(x)的关系;○ 3作出相应结论:若f(-x)=f(x)或f(-x)-f(x)=0,则f(x)是偶函数; 若f(-x)=-f(x)或f(-x)+f(x)=0,则f(x)是奇函数. 说明:函数具有奇偶性的一个必要条件是,定义域关于原点对称,所以判断函数的奇偶性应应首先判断函数的定义域是否关于原点对称,若不是即可断定函数是非奇非偶函数. 例2已知函数()f x 对一切,x y R ∈,都有()()()f x y f x f y +=+, (1)求证:()f x 是奇函数;(2)若(3)f a -=,用a 表示(12)f 二利用函数的奇偶性补全函数的图象 例1已知函数y=f(x)是偶函数,且知道x≥0时的图像,请作出另一半图像.三.函数的奇偶性与单调性的关系 例1.已知f(x)是奇函数,在(0,+∞)上是增函数,证明:f(x)在(-∞,0)上也是增函数 规律: 偶函数在关于原点对称的区间上单调性相反; 奇函数在关于原点对称的区间上单调性一致. 例2定义在)1,1(-上的奇函数)(x f 在整个定义域上是减函数,若0)21()1(<-+-a f a f ,求实数a 的取值范围。O x y

高中数学《函数的单调性》教案

《函数的单调性》说课稿 各位评委老师,上午好,我是号考生叶新颖。今天我的说课题目是函数的单调性。首先我们来进行教材分析。 一、教材分析 本课是苏教版新课标普通高中数学必修一第二章第1节《函数的简单性质》的内容,该节中内容包括:函数的单调性、函数的最值、函数的奇偶性。 函数的单调性是函数众多性质中的重要性质之一,函数的单调性一节中的知识是今后研究具体函数的单调性理论基础;在解决函数值域、定义域、不等式、比较两数大小等具体问题中均有着广泛的应用;在历年的高考中对函数的单调性考查每年都有涉及;同时在这一节中利用函数图象来研究函数性质的数形结合思想将贯穿于我们整个高中数学教学。 利用函数的单调性的定义证明具体函数的单调性一个难点,也是对函数单调性概念的深层理解,且在“作差、变形、定号”过程学生不易掌握。 学生刚刚接触这种证明方法,给出一定的步骤是必要的,有利于学生理解概念,也可以对学生掌握证明方法、形成证明思路有所帮助。另外,这也是以后要学习的不等式证明的比较法的基本思路,现在提出来对今后的教学也有了一定的铺垫。 二、教学目标: 根据新课标的要求,以及对教材结构与内容分析,考虑到学生已有的认知结构及心理特征,制定如下教学目标: 1、知识目标: (1)使学生理解函数单调性的概念,能判断并证明一些简单函数在给定区间上的单调性。 (2)通过函数单调性的教学,逐步培养学生观察、分析、概括与合作能力;2、能力目标: (1)通过本节课的学习,通过“数与形”之间的转换,渗透数形结合的数学思想。 (2)通过探究活动,明白考虑问题要细致、缜密,说理要严密、明确。 3、情感目标:在平等的教学氛围中,通过学生之间、师生之间的交流、合作与

第03讲-函数的基本性质(单调性、奇偶性、周期性)

第03讲 函数的性质 (单调性、奇偶性、周期性、对称性) 【考纲解读】 2. 函数概念与基本初等函数I (指数函数、对数函数、幂函数) (1)函数 ④ 理解函数的单调性、最大值、最小值及其几何意义;结合具体函数,了解函数奇偶性的含义. 【知识梳理】 1.单调性 定义: ①∈?21,x x 区间M(A M ?定义域), 012>-?x x 若②()()012>-=?x f x f y , 则③()x f 在M 上是增函数(M 称为增区间); 若②()()012<-=?x f x f y , 则③()x f 在M 上是减函数(M 称为增区间). 函数单调性题目类型 (1)利用定义的常见单调性题目: ①②?③,判断函数的单调性; ②③?①,判断自变量大小; ①③?②,判断函数值的大小。 (2)已知单调性,反求参数范围; (3)利用导数研究函数单调性; (4)利用已知函数的图像研究函数单调性; (5)复合函数的单调性 2.奇偶性 定义: (1)若()()x f x f D x =-∈?,,则()x f 是偶函数; 若()()000x f x f D x =/-∈?,使得,则()x f 不是偶函数; (2)若()()x f x f D x -=-∈?,,则()x f 是奇函数; 若()()000x f x f D x -=/-∈?,使得,则()x f 不是奇函数; 注意:定义的否定形式. 3.周期性:定义: 若存在非零常数T ,使得()()x f T x f D x =+∈?,, 则()x f 为周期函数,T 是一个周期. 4.对称性 (1)偶函数的图像关于y 轴对称; (2)奇函数的图像关于原点对称; (3)指数函数x a y =和对数函数x y a log =是互为反函数,它们的图像关于直线x y =对称; (4)若()x f 满足()()x a f x a f +=-,则()x f 的图像关于直线a x =对称; (5)若()x f 满足()()x a f x a f +-=-,则()x f 的图像 关于点()0, a 对称; (6)若()x f 满足()()x b f x a f +=-,则()x f 的图像 关于直线2 b a x += 对称; (7)若()x f 满足()()x a f b x a f +-=-2,则()x f 的 图像关于点()b a ,对称; 【典例精讲】 考点一 单调性 例1.(15湖南理)设函数()ln(1)ln(1)f x x x =+--,则()f x 是( ) A.奇函数,且在(0,1)上是增函数 B.奇函数,且在(0,1)上是减函数 C.偶函数,且在(0,1)上是增函数 D.偶函数,且在(0,1)上是减函数 【答案】A. 【解析】 试题分析:显然,)(x f 定义域为)1,1(-,关于原点对称,又∵)()1ln()1ln()(x f x x x f -=+--=-, ∴)(x f 练习 (2012山东理)设0a >且1a ≠, 则“函数()x f x a =在R 上是减函数”,是“函数 3()(2)g x a x =-在R 上是增函数”的 A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件 (2006北京)已知(31)4,1 ()log ,1 a a x a x f x x x -+?是 (,)-∞+∞上的减函数,那么a 的取值范围是 (C) (A )(0,1)(B )1(0,)3(C )11[,)73 (D )1 [,1)7 考点二 奇偶性 例2. (2013上海春)已知真命题:“函数()y f x =的图像关于点( )P a b 、成中心对称图形”的充要条件为“函数 ()y f x a b =+- 是奇函数”. (1)将函数3 2 ()3g x x x =-的图像向左平移1个单位,再向上平移2个单位,求此时图像对应的函数解析式,并利用题设中的真命题求函数()g x 图像对称中心的坐标; (2)求函数2 2()log 4x h x x =- 图像对称中心的坐标; (3)已知命题:“函数 ()y f x =的图像关于某直线成轴对 称图像”的充要条件为“存在实数a 和b,使得函数 ()y f x a b =+- 是偶函数” .判断该命题的真假.如果是真命题,请给予证明;如果是假命题,请说明理由,并类比题设的真命题对它进行修改,使之成为真命题(不必证明). 【答案】(1)平移后图像对应的函数解析式为32(1)3(1)2y x x =+-++, 整理得33y x x =-,

函数的所有性质

函数的性质(奇偶性、单调性、周期性、对称性) “定义域优先”的思想是研究函数的前提,在求值域、奇偶性、单调性、周期性、换元时易忽略定义域,所以必须先考虑函数的定义域,离开函数的定义域去研究函数的性质没有任何意义。 1. 奇偶性 奇偶性的判定法:首先考察定义域是否关于原点对称,再计算f(-x )与f(x )之间的关系:①f(-x)=f(x)为偶函数;f (-x)=-f(x)为奇函数; ②f(-x)-f (x )=0为偶;f(x )+f(-x)=0为奇; ③f(-x)÷f(x)=1是偶;f(x)÷f(-x)=-1为奇函数. (1)若定义域关于原点对称 (2)若定义域不关于原点对称 非奇非偶 例如:3 x y =在)1,1[-上不是奇函数 常用性质: 1.0)(=x f 是既奇又偶函数; 2.奇函数若在0=x 处有定义,则必有0)0(=f ; 3.偶函数满足) ()()(x f x f x f =-=; 4.奇函数图象关于原点对称,偶函数图象关于y 轴对称; 5.0)(=x f 除外的所有函数的奇偶性满足: (1)奇函数±奇函数=奇函数 偶函数±偶函数=偶函数 奇函数±偶函数=非奇非偶 (2) 奇函数×奇函数=偶函数 偶函数×偶函数=偶函数 奇函数×偶函数=奇函数 6.任何函数)(x f 可以写成一个奇函数 2) ()()(x f x f x --= ?和一个偶函数 2) ()()(x f x f x -+= ψ的和。 2. 单调性 定义:函数定义域为A,区间 ,若对任意且 ① 总有 则称 在区间M 上单调递增 ② 总有则称在区间M 上单调递减 应用:(一)常用定义法来证明一个函数的单调性 一般步骤:(1)设值(2)作差(3)变形(4)定号(5)结论 (二) 求函数的单调区间 定义法、图象法、复合函数法、导数法(以后学) 注:常用结论 (1) 奇函数在对称区间上的单调性相同 (2) 偶函数在对称区间上的单调性相反 (3) 复合函数单调性-------同增异减

高一数学 函数单调性讲解

高中数学必修一函数——单调性 考纲解读: 了解单调函数及单调区间的意义,掌握判断函数单调性的方法;掌握增,减函数的意义,理解函数单调函数的性质。 能力解读:函数单调性的判断和函数单调性的应用。利用函数单调性判断方法来判断函数的单调性,利用函数的单调性求解函数的最值问题。掌握并熟悉抽象函数以及符合函数的单调性判断方法。 知识要点: 1.函数单调性的定义, 2.证明函数单调性; 3.求函数的单调区间 4.利用函数单调性解决一些问题; 5.抽象函数与函数单调性结合运用 一、单调性的定义 (1)设函数)(x f y =的定义域为A ,区间A I ? 如果对于区间I 内的任意两个值1x ,2x ,当21x x <时,都有)()(21x f x f <,那么就说 )(x f y =在区间I 上是单调增函数,I 称为)(x f y =的单调增区间 如果对于区间I 内的任意两个值1x ,2x ,当21x x <时,都有)()(21x f x f >,那么就说 )(x f y =在区间I 上是单调减函数,I 称为)(x f y =的单调减区间 (2)设函数)(x f y =的定义域为A 如果存在定值A x ∈0,使得对于任意A x ∈,有)()(0x f x f ≤恒成立,那么称)(0x f 为 )(x f y =的最大值; 如果存在定值A x ∈0,使得对于任意A x ∈,有)()(0x f x f ≥恒成立,那么称)(0x f 为 )(x f y =的最小值。 二、函数单调性的证明 重点:函数的单调性只能在函数的定义域内来讨论,所以求函数的单调区间,必须 先求函数的定义域; (1)定义法求单调性 函数单调性定义中的1x ,2x 有三个特征:一是任意性;二是大小,即 )(2121x x x x <<;三是同属于一个单调区间,三者缺一不可;

(新)高中数学奇偶性练习题及答案

函数的奇偶性与周期性 一、填空题 1.已知函数f(x)=1+m ex -1是奇函数,则m 的值为________. 解析:∵f(-x)=-f(x),即f(-x)+f(x)=0,∴1+m e -x -1+1+m ex -1=0, ∴2- mex ex -1+m ex -1=0,∴2+m ex -1 (1-ex)=0,∴2-m =0,∴m =2. 答案:2 2.设f(x)是定义在R 上的奇函数,且当x >0时,f(x)=2x -3,则f(-2)=________. 解析:设x <0,则-x >0,f(-x)=2-x -3=-f(x),故f(x)=3-2-x ,所以f(-2)=3 -22=-1. 答案:-1 3.已知函数f(x)=a -12x +1,若f(x)为奇函数,则a =________. 解析:解法一:∵f(x)为奇函数,定义域为R ,∴f(0)=0?a -120+1=0?a =1 2. 经检验,当a =1 2 时,f(x)为奇函数. 解法二:∵f(x)为奇函数,∴f(-x)=-f(x),即a -1 2-x +1=-????a -12x +1. ∴2a = 12x +1+2x 1+2x =1,∴a =1 2. 答案:1 2 4.若f(x)=ax2+bx +3a +b 是定义在[a -1,2a]上的偶函数,则a =________,b = ________. 解析:由a -1=-2a 及f(-x)=f(x),可得a =1 3,b =0. 答案:13 5.设奇函数f(x)的定义域为[-5,5].若当x ∈[0,5]时,f(x)的图象如图所示,则不等式 f(x)<0的解集是________. 解析:由奇函数的定义画出函数y=f(x),x ∈[-5,5]的图象.由图象可知f(x)<0的解集 为:{x|-2<x <0或2<x <5}. 答案:{x|-2<x <0或2<x <5}

函数的性质奇偶性

第二章函数(奇偶性) 1.已知函数f (x )=ax 2+bx +c (a ≠0)是偶函数,那么g (x )=ax 3+bx 2+cx ( ) A .奇函数 B .偶函数 C .既奇又偶函数 D .非奇非偶函数 2.已知函数f (x )=ax 2+bx +3a +b 是偶函数,且其定义域为[a -1,2a ],则( ) A .3 1=a ,b =0 B .a =-1,b =0 C .a =1,b =0 D .a =3,b =0 3.已知f (x )是定义在R 上的奇函数,当x ≥0时,f (x )=x 2-2x ,则f (x )在R 上的表达式是( ) A .y =x (x -2) B .y =x (|x |-1) C .y =|x |(x -2) D .y =x (|x |-2) 4.已知f (x )=x 5+ax 3+bx -8,且f (-2)=10,那么f (2)等于( ) A .-26 B .-18 C .-10 D .10 5.函数1111)(22 +++-++=x x x x x f 是( ) A .偶函数 B .奇函数 C .非奇非偶函数 D .既是奇函数又是偶函数 6.若)(x ?,g (x )都是奇函数,2)()(++=x bg a x f ?在(0,+∞)上有最大值5,则f (x )在(-∞,0)上有( ) A .最小值-5 B .最大值-5 C .最小值-1 D .最大值-3 7.函数212 2)(x x x f ---=的奇偶性为________(填奇函数或偶函数) . 8.若y =(m -1)x 2+2mx +3是偶函数,则m =_________. 9.已知f (x )是偶函数,g (x )是奇函数,若11 )()(-=+x x g x f ,则f (x )的解析式为_______. 10.已知函数f (x )为偶函数,且其图象与x 轴有四个交点,则方程f (x )=0的所有实根之和为________. 11.设定义在[-2,2]上的偶函数f (x )在区间[0,2]上单调递减,若f (1-m )<f (m ),求实数m 的取值范围. 12.已知函数f (x )满足f (x +y )+f (x -y )=2f (x )·f (y )(x ∈R ,y ∈R ),且f (0)≠0,试证f (x )是偶函数.

高一数学函数的单调性知识点

高一数学函数单调性 一、函数单调性知识结构 【知识网络】 1.函数单调性的定义,2.证明函数单调性;3.求函数的单调区间 4.利用函数单调性解决一些问题;5.抽象函数与函数单调性结合运用 二、重点叙述 1. 函数单调性定义 (一)函数单调性概念 (1)增减函数定义 一般地,设函数y=f(x)的定义域为I,对于定义域I内某个区间D上的任意两个自变量的值x1、x2 : 如果当x1<x2时,都有f(x1 ) <f(x2 ),那么就说函数y=f(x)在区间D上是增函数; 如果当x1<x2时,都有f(x1 ) >f(x2 ),那么就说函数y=f(x)在区间D上是减函数。 如果函数在区间D上是增函数或减函数,那么就说函数在这一区间具有(严格的)单调性,区间D叫做的单调区间。 (2)函数单调性的内涵与外延 ⑴函数的单调性也叫函数的增减性。函数的单调性是对某个区间而言的,是一个局部概念。 ⑵由函数增减性的定义可知:任意的x1、x2∈D, ① x1<x2 ,且f(x1 ) <f(x2 ),y=f(x)在区间D上是增函数;(可用于判断或证明函数的增减性) ② y=f(x)在区间D上是增函数,且x1<x2 , f(x1 ) <f(x2 ) ;(可用于比较函数值的大小) ③ y=f(x)在区间D上是增函数,且f(x1 ) <f(x2 ), x1<x2。(可用于比较自变量值的大小) 2. 函数单调性证明方法 证明函数单调性的方法有:定义法(即比较法);导数法。 实际上,用导数方法证明一般函数单调性是很便捷的方法,定义法是基本方法,常用来证明解决抽象函数或不易求导的函数的单调性。 (1)定义法:利用增减函数的定义证明。在证明过程中,把数式的大小比较转化为求差比较(或求商比

高一数学--奇偶性

高一数学第四讲 函数的奇偶性 一、知识要点: 1、函数奇偶性定义: 如果对于函数f (x )定义域内的任意x 都有f (-x )=-f (x ),则称f (x )为奇函数; 如果对于函数f (x )定义域内的任意x 都有f (-x )=f (x ),则称f (x )为偶函数。 如果函数f (x )不具有上述性质,则f (x )既不是奇函数也不是偶函数 如果函数同时具有上述两条性质,则f (x )既是奇函数,又是偶函数。 2、函数奇偶性的判定方法:定义法、图像法 (1)利用定义判断函数奇偶性的格式步骤: ①首先确定函数的定义域是否关于原点对称;②确定f (-x )与f (x )的关系;③作出相应结论: 若f (-x ) = f (x ) 或 f (-x )-f (x ) = 0,则f (x )是偶函数; 若f (-x ) =-f (x ) 或 f (-x )+f (x ) = 0,则f (x )是奇函数。 ①函数是奇函数或是偶函数称为函数的奇偶性,函数的奇偶性是函数的整体性质; ②由函数的奇偶性定义可知,函数具有奇偶性的一个必要条件是,定义域关于原点对称。 (2) 利用图像判断函数奇偶性的方法: 图像关于原点对称的函数为奇函数,图像关于y 轴对称的函数为偶函数, (3)简单性质: 设()f x ,()g x 的定义域分别是12,D D ,那么在它们的公共定义域上: 奇+奇=奇,奇?奇=偶,偶+偶=偶,偶?偶=偶,奇?偶=奇 二、基础练习: 1. f (x ),g (x )是定义在R 上的函数,h (x )=f (x )+g (x ),则f (x ),g (x )均为偶函数,h (x )一定为偶函数吗? 反之是否成立? 2.已知函数y =f (x )是定义在R 上的奇函数,则下列函数中是奇函数的是 ①y =f (|x |); ②y =f (-x ); ③y =x ·f (x ); ④y =f (x )+x . 3.设函数若函数2 ()(2)(1)3f x k x k x =-+-+是偶函数,则)(x f 的递减区间是 4.已知y =f (x )是定义在R 上的奇函数,当x ≥0时,f (x )=x 2 -2x ,则在x<0上f (x )的表达式为 5. 设f (x )是R 上的偶函数,且在(0,+∞)上是减函数,若x 1<0,且x 1+x 2>0,则 f (x 1)与f (-x 2)的大小关系是 三、例题精讲: 题型1: 函数奇偶性的判定 例1. 判断下列函数的奇偶性: ① x x x x f -+-=11)1()(,②y =,③22 (0)()(0) x x x f x x x x ?+??④2 211)(x x x f --= 变式:设函数f (x )在(-∞,+∞)内有定义,下列函数: ① y =-|f (x )|; ②y =xf (x 2); ③y =-f (-x ); ④y =f (x )-f (-x )。 必为奇函数的有_ __(要求填写正确答案的序号)

函数的基本性质(教案)

[课题]:第一章集合与函数概念 1.3 函数的基本性质 主备人:高一数学备课组陈伟坚编写时间:2013年9月30日使用班级(21)(22) 计划上课时间:2013-2014学年第一学期第6 周星期一至三(四至六月考)[课标、大纲、考纲内容]: 学生在初中已学过一次函数、二次函数、反比例函数的图象与性质,通过这些基本初等函数引入函数的单调性和最值,学生还是容易接受的,但很多学生的二次函数的性质还不过关,需要加强。学生的阅读理解能力还是较弱,教师需要引导学生对函数的单调性、奇偶性的定义理解透彻。 1、重点:理解函数的单调性、最大(小)值及其几何意义;求函数的单调区间和最值;奇偶性的定义,判定函数的奇偶性的方法;运用函数图象理解和研究函数的性质。 2、难点:运用函数图象理解函数单调性和奇偶性的定义,研究基本函数的单调性和奇偶性。 第1课时 1.3.1 单调性与最大(小)值(1) 【教学目标】 1. 运用已学过的函数特别是二次函数的图象,理解函数的单调性的定义及其几何意义; 2. 学会运用函数图象理解和研究函数的性质; 3. 会用定义证明函数的单调性

【教学重难点】 教学重点: 理解函数的单调性的含义及其几何意义. 教学难点: 用定义证明函数的单调性. 【教学过程】 一、引入课题 1. 观察下列各个函数的图象,并说说它们分别反映了相应函数的哪些变化规律: 2. ○ 2 在区间 ____________ 上,随着x 的增 大,f(x)的值随着 ________ . 2.f(x) = -2x+1 ○1 从左至右图象上升还是下降 ______? ○ 2 在区间 ____________ 上,随着x 的增 大,f(x)的值随着 ________ . 3.f(x) = x 2 ○ 1在区间 ____________ 上,f(x)的值随 着x 的增大而 ________ . ○2 在区间 ____________ 上,f(x)的值随 着x 的增大而 ________ . 二、新课教学 (一)函数单调性定义 1.增函数 一般地,设函数y=f(x)的定义域为I , 如果对于定义域I 内的某个区间D 上的任意两个自变量的值x 1,x 2,当x 1

高中数学函数的单调性

一、选择题 1.若),(b a 是)(x f 的单调增区间,()b a x x ,,21∈,且21x x <,则有( ) A . ()()21x f x f < B . ()()21x f x f = C . ()()21x f x f > D . ()()021>x f x f 2.函数()2 2-=x y 的单调递减区间为( ) A .[)+∞,0 B .(]0,∞+ C .),2[+∞ D .]2,(-∞ 3.下列函数中,在区间)2,0(上递增的是( ) A .x y 1= B .x y -= C .1-=x y D .122++=x x y 4. 若函数1 2)(-= x a x f 在()0,∞-上单调递增,则a 的取值范围是( ) A .()0,∞- B .()+∞,0 C .()0,1- D .()+∞,1 5. 设函数x a y )12(-=在R 上是减函数,则有( ) A .2 1≥ a B .2 1≤ a C .2 1> a D .2 1< a 6. 如果函数2)1(2)(2+-+=x a x x f 在区间(]2,∞-上是减函数,那么实数a 的取值范围是( ) A .3≤a B .3≥a C .3-≥a D .3-≤a 二、填空题 7.函数1-=x y 的单调递增区间是____________. 8.已知函数)(x f 在()+∞,0是增函数,则)2(f a =,)2(π f b =,)2 3 (f c =的大小关系是__________________________. 9.函数32)(2 +--= x x x f 的单调递增区间是_______. 10.若二次函数45)(2 ++=mx x x f 在区间]1,(--∞是减函数,在区间),1(+∞- 上是增函数,则=)1(f ________. 三、解答题 11. 证明函数x x f 11)(-=在 )0,(-∞ 上是增函数. 12.判断函数x x y 1+ =在区间),1[+∞上的单调性,并给出证明.

高中数学必修一函数的性质单调性与奇偶性典型精讲精练

1文档收集于互联网,已整理,word 版本可编辑. 函数单调性 证明格式: ① 取任意两个数12,x x 属于定义域D ,且令12x x <(反之亦可); ② 作差12()()f x f x -并因式分解; ③ 判定 12()()f x f x -的正负性,并由此说明函数的增减性; 例 1 用定义法判定下列函数的增减性: ① y x =; ②2y x =; ③3y x =; ④y = ⑤1 y x = ; 练习:1. 判断函数()f x = 2.证明函数 3()f x x x =+在R 上是增函数; 例 2 已知函数 1 ()(0)f x x x x =+>,求证:函数的单调减区间为(0,1],增区间为[1,)+∞,并画出图像; 练习:证明函数 x x x f 2 )(+ =在),2(+∞上是增函数。 3.复合函数的单调性 复合函数的单调性判断(同增异减):构造中间过度函数,按定义比较函数大小并确定函数的单调性; 例 3 判断函数的单调性: (1 ) ()f x = (2 )()f x =; (3) 2 1 ()2 f x x = +; 练习:① y = ②2 13y x = -; ③ 2 154y x x = +-; ④ y ; 4.函数的单调性的等价关系 设[]1212,,,x x a b x x ∈≠那么 []1212()()()0x x f x f x -->?[]1212()() 0(),f x f x f x a b x x ->?-在上是增函数; []1212()()()0x x f x f x --时,()1f x >且对任意的,a b 都有()()()f a b f a f b +=? (1)求证: (0)1f = ; (2)求证:对任意的x R ∈恒有 ()0f x > ; (3)求证:f(x)是R 上的增函数 ; (4)若2()(2)1f x f x x ?->,求x 的取值范围 相关练习 1、设 ()f x 的图像关于原点对称,且在(0,)+∞内是增函数,又(3)0f -=,则()0x f x ?<的解集是………………( ) A {}|303x x x -<<>或 B {}|303x x x <-<<或 C {}|33x x x <->或 D {}|3003x x x -<<<<或 2、若 )(x f 的图像关于y 轴对称,且在[)+∞,0上是减函数,则235()(2)2 2 f f a a -++与的大小关系…( ) A )2 3(-f >)25 2(2++a a f B )23 (-f <)25 2(2++a a f C ) 23 (-f ≥ )2 5 2(2++a a f D 3() 2f -≤25(2)2 f a a ++

高考数学专题:函数的单调性

高考数学函数的单调性复习教案 考纲要求:了解函数单调性的概念,掌握判断一些简单函数的单调性的方法 。 函数单调性可以从三个方面理解 (1)图形刻画:对于给定区间上的函数()f x ,函数图象如从左向右连续上升,则称函数在该区间上单调递增,函数图象如从左向右连续下降,则称函数在该区间上单调递减。 (2)定性刻画:对于给定区间上的函数()f x ,如函数值随自变量的增大而增大,则称函数在该区间上单调递增,如函数值随自变量的增大而减小,则称函数在该区间上单调递减。 (3)定量刻画,即定义。 上述三方面是我们研究函数单调性的基本途径 判断增函数、减函数的方法: ①定义法:一般地,对于给定区间上的函数()f x ,如果对于属于这个区间的任意两个自变量的值1x 、2x ,当21x x <时,都有()()21x f x f <〔或都有()()21x f x f >〕,那么就说()f x 在这个区间上是增函数(或减函数)。 与之相等价的定义:⑴()()02121>--x x x f x f ,〔或都有()()02 121<--x x x f x f 〕则说()f x 在这个区间上是增函数(或减函数)。其几何意义为:增(减)函数图象上的任意两点()()()()2211,,,x f x x f x 连线的斜率都大于(或小于)0。 ⑵()()()[]02121>--x f x f x x ,〔或都有()()()[]02121<--x f x f x x 〕则说()f x 在这个区间上是增函数(或减函数)。 ②导数法:一般地,对于给定区间上的函数()f x ,如果()0`>x f 那么就说()f x 在这个区间上是增函数;如果()0`a 且0≤b 。 (年广东卷)下列函数中,在其定义域内既是奇函数又是减函数的是

高一数学函数单调性的定义图象及应用

函数的单调性习题 一. 选择题: 1.函数1 1 --=x y 的单调区间是 ( ) ),.(+∞-∞A )0,.(-∞B ),1(),1,.(+∞-∞C ()+∞-∞,1)1,.(Y D 2.如果函数)(x f 在],[b a 上是增函数,那么对于任意的)(],,[,2121x x b a x x ≠∈,下列结论中不正确的是 ( ) 0) ()(. 2 121>--x x x f x f A 0)]()()[.(2121>--x f x f x x B )()()()(.21b f x f x f a f C <<< 0) ()(. 121 2>--x f x f x x D 3.函数2)1(2)(2+-+=x a x x f 在区间]4,(-∞上单调递减,则a 的取值范围是( ) ),3.[+∞-A ]3,.(--∞B ]5,.(-∞C ),3[+∞ 4.函数2 1 )(++= x ax x f 在区间),2(+∞-上单调递增,则a 的取值范围是( ) )21,0.(A ),1()1,.(+∞--∞Y B ),2 1 .(+∞C ),2.(+∞-D 5.函数)2(,2 3 -≠+=x x y 在区间]5,0[上的最大值、最小值分别是( ) 0,73.A 0,23.B 73,23.C .D 最大值7 3 ,无最小值。 6.函数23)(2++=x x x f 在区间)5,5(+-上的最大值、最小值分别是( ) 12,42.A 41,42.-B 41,12.-C D 最小值4 1 -,无最大值。 7.下列命题正确的是 ( ) A 定义在),(b a 上的函数)(x f ,若存在),(21b a x x ∈,使得21x x <时有 )()(21x f x f <,那么)(x f 在),(b a 上为增函数。 B 定义在),(b a 上的函数)(x f ,若有无穷多对),(21b a x x ∈,使得21x x <时有 )()(21x f x f <,那么)(x f 在),(b a 上为增函数。 C 若)(x f 在区间1I 上为增函数,在区间2I 上也为增函数,那么)(x f 在21I I Y 上也一定为增函数, D 若在)(x f 区间I 上为增函数且),(),()(2121I x x x f x f ∈<,那么21x x <。 8.设),(),,(d c b a 都是)(x f 的单调增区间,且),(),,(21d c x b a x ∈∈21x x <,则)(1x f 与)(2x f 的大小关系为 ( ) )()(.21x f x f A < )()(.21x f x f B > )()(.21x f x f C = D 不能确定 9.考察函数:①x y =;②x x y =;③x x y 2 -=;④x x x y +=。其中在)0,(-∞上 为增函数的有( ) .A ①② B 。②③ C 。③④ .D ①④ 10.已知函数32)(2+-=x x x f 在闭区间],0[m 上有最大值3,最小值2,则m 的取值范围是( ) ),1.[+∞A ]2,0.[B ]2,.(--∞C ]2,1.[D 二. 填空题: 1. 函数x y -=在),[+∞a 上是减函数,则a 的取值范围是 2. 函数x x y 1 2- =的单调递增区间是 3. 函数562+-=x x y 的单调增区间是 4. 已知函数)(x f 在区间),0(+∞上是减函数,那么)1(2+-a a f 与)4 3 (f 的大小关 系为 5. 函数245x x y --=的单调递增区间是

北京四中高中数学 奇偶性基础知识讲解 新人教A版必修1

函数的奇偶性 【学习目标】 1.理解函数的奇偶性定义; 2.会利用图象和定义判断函数的奇偶性; 3.掌握利用函数性质在解决有关综合问题方面的应用. 【要点梳理】 要点一、函数的奇偶性概念及判断步骤 1.函数奇偶性的概念 偶函数:若对于定义域内的任意一个x ,都有f(-x)=f(x),那么f(x)称为偶函数. 奇函数:若对于定义域内的任意一个x ,都有f(-x)=-f(x),那么f(x)称为奇函数. 要点诠释: (1)奇偶性是整体性质; (2)x 在定义域中,那么-x 在定义域中吗?----具有奇偶性的函数,其定义域必定是关于原点对称的; (3)f(-x)=f(x)的等价形式为:()()()0,1(()0)() f x f x f x f x f x ---==≠, f(-x)=-f(x)的等价形式为:()()()01(()0)()f x f x f x f x f x -+-==-≠, ; (4)由定义不难得出若一个函数是奇函数且在原点有定义,则必有f(0)=0; (5)若f(x)既是奇函数又是偶函数,则必有f(x)=0. 2.奇偶函数的图象与性质 (1)如果一个函数是奇函数,则这个函数的图象是以坐标原点为对称中心的中心对称图形;反之,如果一个函数的图象是以坐标原点为对称中心的中心对称图形,则这个函数是奇函数. (2)如果一个函数为偶函数,则它的图象关于y 轴对称;反之,如果一个函数的图像关于y 轴对称,则这个函数是偶函数. 3.用定义判断函数奇偶性的步骤 (1)求函数()f x 的定义域,判断函数的定义域是否关于原点对称,若不关于原点对称,则该函数既不是奇函数,也不是偶函数,若关于原点对称,则进行下一步; (2)结合函数()f x 的定义域,化简函数()f x 的解析式; (3)求()f x -,可根据()f x -与()f x 之间的关系,判断函数()f x 的奇偶性. 若()f x -=-()f x ,则()f x 是奇函数; 若()f x -=()f x ,则()f x 是偶函数; 若()f x -()f x ≠±,则()f x 既不是奇函数,也不是偶函数; 若()f x -()f x =且()f x -=-()f x ,则()f x 既是奇函数,又是偶函数

函数的基本性质奇偶性教案2

1.3函数的基本性质-----奇偶性 (一)教学目标 1.知识与技能: 使学生理解奇函数、偶函数的概念,学会运用定义判断函数的奇偶性. 2.过程与方法: 通过设置问题情境培养学生判断、推断的能力. 3.情感、态度与价值观: 通过绘制和展示优美的函数图象来陶冶学生的情操. 通过组织学生分组讨论,培养学生主动交流的合作精神,使学生学会认识事物的特殊性和一般性之间的关系,培养学生善于探索的思维品质. (二)教学重点与难点 重点:函数的奇偶性的概念;难点:函数奇偶性的判断. (三)教学方法 应用观察、归纳、启发探究相结合的教学方法,通过设置问题引导学生观察分析归纳,形成概念,使学生在独立思考的基础上进行合作交流,在思考、探索和交流的过程中获得对函数奇偶性的全面的体验和理解. 对于奇偶性的应用采取讲练结合的方式进行处理,使学生边学边练,及时巩固. (四)教学过程 一.复习与回顾 1、在初中学习的轴对称图形和中心对称图形的定义是什么? 2、要求学生同桌两人分别画出函数f (x) =x3与g (x) = x2的图象. 3、多媒体屏幕上展示函数f (x) =x3和函数g (x) = x2的图象,并让学生分别求出x =±3,x =±2, x=±1 2 ,…的函数值,同时令两个函数图象上对应的点在两个函数图象上闪现,让学生发现两个函 数的对称性反映到函数值上具有的特性:f (–x) = –f (x),g (–x) = g (x). 然后通过解析式给出证明,进一步说明这两个特性对定义域内的任意一个x都成立. 二.新课讲授 1、奇函数、偶函数的定义: 奇函数:设函数y = f (x)的定义域为D,如果对D内的任意一个x,都有f (–x) = –f (x), 则这个函数叫奇函数. 偶函数:设函数y = g (x)的定义域为D,如果对D内的任意一个x,都有g (–x) = g (x),则这个函数叫做偶函数. 问题1:奇函数、偶函数的定义中有“任意”二字,说明函数的奇偶性是怎样的一个性质?与单调性有何区别? 强调定义中“任意”二字,说明函数的奇偶性在定义域上的一个整体性质,它不同于函数的单调性 . 问题2:–x与x在几何上有何关系?具有奇偶性的函数的定义域有何特征? 奇函数与偶函数的定义域的特征是关于原点对称. 问题3:结合函数f (x) =x3的图象回答以下问题: (1)对于任意一个奇函数f (x),图象上的点P (x,f (x))关于原点对称点P′的坐标是什么? 点P′是否也在函数f (x)的图象上?由此可得到怎样的结论. (2)如果一个函数的图象是以坐标原点为对称中心的中心对称图形,能否判断它的奇偶性? 2、奇函数与偶函数图象的对称性: 如果一个函数是奇函数,则这个函数的图象以坐标原点为对称中心的中心对称图形. 反之,如果一个函数的图象是以坐标原点为对称中心的中心对称图形,则这个函数是奇函数. 如果一个函数是偶函数,则它的图形是以y轴为对称轴的轴对称图形;反之,如果一个函数的图象关于y轴对称,则这个函数是偶函数. 3、举例分析

相关文档
相关文档 最新文档