文档库 最新最全的文档下载
当前位置:文档库 › 概率论与数理统计第四版沈恒范4~6章习题答案

概率论与数理统计第四版沈恒范4~6章习题答案

概率论与数理统计第四版沈恒范4~6章习题答案
概率论与数理统计第四版沈恒范4~6章习题答案

第四章

第五章

65高堂22222

第六章

全国历自学考试概率论与数理统计(二)试题与答案

全国2011年4月自学考试概率论与数理统计(二) 课程代码:02197 选择题和填空题详解 试题来自百度文库 答案由王馨磊导师提供 一、单项选择题(本大题共10小题,每小题2分,共20分) 在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。错选、多选或未选均无分。 1.设A , B , C , 为随机事件, 则事件“A , B , C 都不发生”可表示为( A ) A .C B A B .C B A C .C B A D .C B A 2.设随机事件A 与B 相互独立, 且P (A )=5 1, P (B )=5 3, 则P (A ∪B )= ( B ) A .253 B .2517 C .5 4 D .2523 3.设随机变量X ~B (3, 0.4), 则P {X ≥1}= ( C ) A .0.352 B .0.432 C .0.784 D .0.936 解:P{X ≥1}=1- P{X=0}=1-(1-0.4)3=0.784,故选C. 4.已知随机变量X 的分布律为 , 则P {-2<X ≤4}= ( C ) A .0.2 B .0.35 C .0.55 D .0.8 解:P {-2<X ≤4}= P {X =-1}+ P {X =2}=0.2+0.35=0.55,故选C. 5.设随机变量X 的概率密度为4 )3(2 e 2 π21)(+-= x x f , 则E (X ), D (X )分别为 ( ) A .2,3- B .-3, 2 C .2,3 D .3, 2 与已知比较可知:E(X)=-3,D(X)=2,故选B. 6.设二维随机变量 (X , Y )的概率密度为? ??≤≤≤≤=,,0, 20,20,),(其他y x c y x f 则常数 c = ( A ) A .4 1 B .2 1 C .2 D .4 解:设D 为平面上的有界区域,其面积为S 且S>0,如果二维随机变量 (X ,Y )的概率密度为 则称 (X ,Y )服从区域D 上的均匀分布,

概率论与数理统计第4章作业题解

第四章作业题解 4.1 甲、乙两台机床生产同一种零件, 在一天内生产的次品数分别记为 X 和 Y . 已知 ,X Y 的概率分布如下表所示: 如果两台机床的产量相同, 问哪台机床生产的零件的质量较好? 解: 11.032.023.014.00)(=?+?+?+?=X E 9.0032.025.013.00)(=?+?+?+?=Y E 因为 )()(Y E X E >,即乙机床的平均次品数比甲机床少,所以乙机床生产的零件质量较好。 4.2 袋中有 5 个球, 编号为1,2,3,4,5, 现从中任意抽取3 个球, 用X 表示取出的3 个球中的 最大编号,求E (X ). 解:X 的可能取值为3,4,5. 因为1.01011)3(35 == = =C X P ;3.010 3)4(35 2 3== = =C C X P ; 6.010 6)5(3 5 24=== =C C X P 所以 5.46.053.041.03)(=?+?+?=X E 4.3 设随机变量X 的概率分布1 {}(0,1,2,),(1) k k a P X k k a +===+ 其中0a >是个常 数,求()E X 解: 1 1 2 1 1 1 ()(1) (1) (1) k k k k k k a a a E X k k a a a -∞ ∞ +-=== = +++∑∑ ,下面求幂级数11 k k k x ∞ -=∑的和函数, 易知幂级数的收敛半径为1=R ,于是有 1 2 1 1 1()( ),1,1(1) k k k k x k x x x x x ∞ ∞ -==''=== <--∑ ∑

《概率论与数理统计》讲义#(精选.)

第一章 随机事件和概率 第一节 基本概念 1、排列组合初步 (1)排列组合公式 )! (! n m m P n m -= 从m 个人中挑出n 个人进行排列的可能数。 )! (!! n m n m C n m -= 从m 个人中挑出n 个人进行组合的可能数。 例1.1:方程 x x x C C C 765107 11=-的解是 A . 4 B . 3 C . 2 D . 1 例1.2:有5个队伍参加了甲A 联赛,两两之间进行循环赛两场,试问总共的场次是多少? (2)加法原理(两种方法均能完成此事):m+n 某件事由两种方法来完成,第一种方法可由m 种方法完成,第二种方法可由n 种方法来完成,则这件事可由m+n 种方法来完成。 (3)乘法原理(两个步骤分别不能完成这件事):m ×n 某件事由两个步骤来完成,第一个步骤可由m 种方法完成,第二个步骤可由n 种方法来完成,则这件事可由m ×n 种方法来完成。 例1.3:从5位男同学和4位女同学中选出4位参加一个座谈会,要求与会成员中既有男同学又有女同学,有几种不同的选法? 例1.4:6张同排连号的电影票,分给3名男生和3名女生,如欲男女相间而坐,则不同的分法数为多少? 例1.5:用五种不同的颜色涂在右图中四个区域里,每一区域涂上一种颜

色,且相邻区域的颜色必须不同,则共有不同的涂法 A.120种B.140种 C.160种D.180种 (4)一些常见排列 ①特殊排列 ②相邻 ③彼此隔开 ④顺序一定和不可分辨 例1.6:晚会上有5个不同的唱歌节目和3个不同的舞蹈节目,问:分别按以下要求各可排出几种不同的节目单? ①3个舞蹈节目排在一起; ②3个舞蹈节目彼此隔开; ③3个舞蹈节目先后顺序一定。 例1.7:4幅大小不同的画,要求两幅最大的排在一起,问有多少种排法? 例1.8:5辆车排成1排,1辆黄色,1辆蓝色,3辆红色,且3辆红车不可分辨,问有多少种排法? ①重复排列和非重复排列(有序) 例1.9:5封不同的信,有6个信箱可供投递,共有多少种投信的方法? ②对立事件 例1.10:七人并坐,甲不坐首位,乙不坐末位,有几种不同的坐法? 例1.11:15人中取5人,有3个不能都取,有多少种取法? 例1.12:有4对人,组成一个3人小组,不能从任意一对中取2个,问有多少种可能性?

《概率论与数理统计》实验报告答案

《概率论与数理统计》实验报告 学生姓名李樟取 学生班级计算机122 学生学号201205070621 指导教师吴志松 学年学期2013-2014学年第1学期

实验报告一 成绩 日期 年 月 日 实验名称 单个正态总体参数的区间估计 实验性质 综合性 实验目的及要求 1.了解【活动表】的编制方法; 2.掌握【单个正态总体均值Z 估计活动表】的使用方法; 3.掌握【单个正态总体均值t 估计活动表】的使用方法; 4.掌握【单个正态总体方差卡方估计活动表】的使用方法; 5.掌握单个正态总体参数的区间估计方法. 实验原理 利用【Excel 】中提供的统计函数【NORMISINV 】和平方根函数【SQRT 】,编制【单个正态总体均值Z 估计活动表】,在【单个正态总体均值Z 估计活动表】中,只要分别引用或输入【置信水平】、【样本容量】、【样本均值】、【总体标准差】的具体值,就可以得到相应的统计分析结果。 1设总体2~(,)X N μσ,其中2σ已知,12,,,n X X X L 为来自X 的一个样本,12,,,n x x x L 为 样本的观测值 于是得到μ的置信水平为1-α 的置信区间为 利用【Excel 】中提供的统计函数【TINV 】和平方根函数【SQRT 】,编制【单个正态总体均值t 估计活动表】,在【单个正态总体均值t 估计活动表】中,只要分别引用或输入【置信水平】、【样本容量】、【样本均值】、【样本标准差】的具体值,就可以得到相应的统计分析结果。 2.设总体2~(,)X N μσ,其中2 σ未知,12,,,n X X X L 为来自X 的一个样本,12,,,n x x x L 为样本的观测值 整理得 /2/21X z X z n n P αασαμσ? ?=-??? ?-<<+/2||1/X U z P n ασμα????==-??????-

林初中2017届中考数学压轴题专项汇编:专题20简单的四点共圆(附答案)

专题20 简单的四点共圆 破解策略 如果同一平面内的四个点在同一个圆上,则称之为四个点共圆·一般简称为”四点共圆”.四点共圆常用的判定方法有: 1.若四个点到一个定点的距离相等,则这四个点共圆. 如图,若OA=OB=OC=OD,则A,B,C,D四点在以点O为圆心、OA为半径的 圆上. D 【答案】(1)略;(2)AB,CD相交成90°时,MN取最大值,最大值是2. 【提示】(1)如图,连结OP,取其中点O',显然点M,N在以OP为直径的⊙O'上,连结NO'并延长,交⊙O'于点Q,连结QM,则∠QMN=90°,QN=OP=2,而∠MQN=180°-∠BOC=60°,所以可求得MN的长为定值. (2)由(1)知,四边形PMON内接于⊙O',且直径OP=2,而MN为⊙O'的一条弦,故MN为⊙O'的直径时,其长取最大值,最大值为2,此时∠MON=90°. 2.若一个四边形的一组对角互补,则这个四边形的四个顶点共圆. 如图,在四边形ABCD中,若∠A+∠C=180°(或∠B+∠D=180°)则A,B,C,D四点在同一个圆上.

D 【答案】(1)略;(2)AD ;(3)AD=DE·tanα. 【提示】(1)证A,D,B,E四点共圆,从而∠AED=∠ABD=45°,所以AD=DE. (2)同(1),可得A,D,B,E四点共圆,∠AED=∠ABD=30°,所以AD DE =tan30°, 即AD= 3 DE. 3.若一个四边形的外角等于它的内对角,则这个四边形的四个顶点共圆. 如图,在四边形ABCD中,∠CDE为外角,若∠B=∠CDE,则A,B,C,D四点在同一个圆上. 【答案】略 4.若两个点在一条线段的同旁,并且和这条线段的两端连线所夹的角相等,那么这两个点和这条线段的两个端点共圆. 如图,点A,D在线段BC的同侧,若∠A=∠D,则A,B,C,D四点在同一个圆上.

概率论与数理统计考研复习资料

概率论与数理统计复习 第一章 概率论的基本概念 一.基本概念 随机试验E:(1)可以在相同的条件下重复地进行;(2)每次试验的可能结果不止一个,并且能事先明确试验的所有可能结果;(3)进行一次试验之前不能确定哪一个结果会出现. 样本空间S: E 的所有可能结果组成的集合. 样本点(基本事件):E 的每个结果. 随机事件(事件):样本空间S 的子集. 必然事件(S):每次试验中一定发生的事件. 不可能事件(Φ):每次试验中一定不会发生的事件. 二. 事件间的关系和运算 1.A ?B(事件B 包含事件A )事件A 发生必然导致事件B 发生. 2.A ∪B(和事件)事件A 与B 至少有一个发生. 3. A ∩B=AB(积事件)事件A 与B 同时发生. 4. A -B(差事件)事件A 发生而B 不发生. 5. AB=Φ (A 与B 互不相容或互斥)事件A 与B 不能同时发生. 6. AB=Φ且A ∪B=S (A 与B 互为逆事件或对立事件)表示一次试验中A 与B 必有一个且仅有一个发生. B=A, A=B . 运算规则 交换律 结合律 分配律 德?摩根律 B A B A = B A B A = 三. 概率的定义与性质 1.定义 对于E 的每一事件A 赋予一个实数,记为P(A),称为事件A 的概率. (1)非负性 P(A)≥0 ; (2)归一性或规范性 P(S)=1 ; (3)可列可加性 对于两两互不相容的事件A 1,A 2,…(A i A j =φ, i ≠j, i,j=1,2,…), P(A 1∪A 2∪…)=P( A 1)+P(A 2)+… 2.性质 (1) P(Φ) = 0 , 注意: A 为不可能事件 P(A)=0 . (2)有限可加性 对于n 个两两互不相容的事件A 1,A 2,…,A n , P(A 1∪A 2∪…∪A n )=P(A 1)+P(A 2)+…+P(A n ) (有限可加性与可列可加性合称加法定理) (3)若A ?B, 则P(A)≤P(B), P(B -A)=P(B)-P(A) . (4)对于任一事件A, P(A)≤1, P(A)=1-P(A) . (5)广义加法定理 对于任意二事件A,B ,P(A ∪B)=P(A)+P(B)-P(AB) . 对于任意n 个事件A 1,A 2,…,A n ()()() () +∑ + ∑ - ∑=≤<<≤≤<≤=n k j i k j i n j i j i n i i n A A A P A A P A P A A A P 111 21 …+(-1)n-1P(A 1A 2…A n ) 四.等可能(古典)概型 1.定义 如果试验E 满足:(1)样本空间的元素只有有限个,即S={e 1,e 2,…,e n };(2)每一个基本事件的概率相等,即P(e 1)=P(e 2)=…= P(e n ).则称试验E 所对应的概率模型为等可能(古典)概型. 2.计算公式 P(A)=k / n 其中k 是A 中包含的基本事件数, n 是S 中包含的基本事件总数. 五.条件概率 1.定义 事件A 发生的条件下事件B 发生的条件概率P(B|A)=P(AB) / P(A) ( P(A)>0). 2.乘法定理 P(AB)=P(A) P (B|A) (P(A)>0); P(AB)=P(B) P (A|B) (P(B)>0). P(A 1A 2…A n )=P(A 1)P(A 2|A 1)P(A 3|A 1A 2)…P(A n |A 1A 2…A n-1) (n ≥2, P(A 1A 2…A n-1) > 0) 3. B 1,B 2,…,B n 是样本空间S 的一个划分(B i B j =φ,i ≠j,i,j=1,2,…,n, B 1∪B 2∪…∪B n =S) ,则 当P(B i )>0时,有全概率公式 P(A)= ()()i n i i B A P B P ∑=1

概率论与数理统计第四版课后习题答案

概率论与数理统计课后习题答案 第七章参数估计 1.[一] 随机地取8只活塞环,测得它们的直径为(以mm 计) 74.001 74.005 74.003 74.001 74.000 73.998 74.006 74.002 求总体均值μ及方差σ2的矩估计,并求样本方差S 2。 解:μ,σ2 的矩估计是 61 22 106)(1?,002.74?-=?=-===∑n i i x X n X σμ 621086.6-?=S 。 2.[二]设X 1,X 1,…,X n 为准总体的一个样本。求下列各总体的密度函数或分布律中的未知参数的矩估计量。 (1)? ??>=+-其它,0,)()1(c x x c θx f θθ 其中c >0为已知,θ>1,θ为未知参数。 (2)?? ???≤≤=-.,01 0,)(1其它x x θx f θ 其中θ>0,θ为未知参数。 (5)()p p m x p p x X P x m x m x ,10,,,2,1,0,)1()(<<=-==- 为未知参数。 解:(1)X c θc θc c θdx x c θdx x xf X E θθc θ θ =--=-== =+-∞+-∞+∞ -? ? 1 ,11)()(1令, 得c X X θ-= (2),1)()(10 += = = ? ? ∞+∞ -θθdx x θdx x xf X E θ 2 )1(,1 X X θX θθ-==+得令 (5)E (X ) = mp 令mp = X , 解得m X p =? 3.[三]求上题中各未知参数的极大似然估计值和估计量。 解:(1)似然函数 1211 )()()(+-=== ∏θn θ n n n i i x x x c θ x f θL 0ln ln )(ln ,ln )1(ln )ln()(ln 1 1 =- +=-++=∑∑ ==n i i n i i x c n n θθ d θL d x θc θn θn θL

概率论与数理统计实验报告

概率论与数理统计 实验报告 概率论部分实验二 《正态分布综合实验》

实验名称:正态分布综合实验 实验目的:通过本次实验,了解Matlab在概率与数理统计领域的应用,学会用matlab做概率密度曲线,概率分布曲线,直方图,累计百分比曲线等简单应用;同时加深对正态分布的认识,以更好得应用之。 实验内容: 实验分析: 本次实验主要需要运用一些matlab函数,如正态分布随机数发生器normrnd函数、绘制直方图函数hist函数、正态分布密度函数图形绘制函数normpdf函数、正态分布分步函数图形绘制函数normcdf等;同时,考虑到本次实验重复性明显,如,分别生成100,1000,10000个服从正态分布的随机数,进行相同的实验操作,故通过数组和循环可以简化整个实验的操作流程,因此,本次实验程序中要设置数组和循环变量。 实验过程: 1.直方图与累计百分比曲线 1)实验程序 m=[100,1000,10000]; 产生随机数的个数 n=[2,1,0.5]; 组距 for j=1:3 for k=1:3 x=normrnd(6,1,m(j),1); 生成期望为6,方差为1的m(j)个 正态分布随机数

a=min(x); a为生成随机数的最小值 b=max(x); b为生成随机数的最大值 c=(b-a)/n(k); c为按n(k)组距应该分成的组数 subplot(1,2,1); 图形窗口分两份 hist(x,c);xlabel('频数分布图'); 在第一份里绘制频数直方图 yy=hist(x,c)/1000; yy为各个分组的频率 s=[]; s(1)=yy(1); for i=2:length(yy) s(i)=s(i-1)+yy(i); end s[]数组存储累计百分比 x=linspace(a,b,c); subplot(1,2,2); 在第二个图形位置绘制累计百分 比曲线 plot(x,s,x,s);xlabel('累积百分比曲线'); grid on; 加网格 figure; 另行开辟图形窗口,为下一个循 环做准备 end end 2)实验结论及过程截图 实验结果以图像形式展示,以下分别为产生100,1000,10000个正态分布随机数,组距分别为2,1,0.5的频数分布直方图和累积百分比曲线,从实验结果看来,随着产生随机数的数目增多,组距减小,累计直方图逐渐逼近正态分布密度函数图像,累计百分比逐渐逼近正态分布分布函数图像。

九年级数学四点共圆例题讲解

九年级数学四点共圆例题讲解 知识点、重点、难点 四点共圆就是圆得基本内容,它广泛应用于解与圆有关得问题.与圆有关得问题变化多,解法灵活,综合性强,题型广泛,因而历来就是数学竞赛得热点内容。 在解题中,如果图形中蕴含着某四点在同一个圆上,或根据需要作出辅助圆使四点共圆,利用圆得有关性质定理,则会使复杂问题变得简单,从而使问题得到解决。因此,掌握四点共圆得方法很重要。 判定四点共圆最基本得方法就是圆得定义:如果A、B、C、D四个点到定点O得距离相等,即OA=OB=OC =OD,那么A、B、C、D四点共圆. 由此,我们立即可以得出 1、如果两个直角三角形具有公共斜边,那么这两个直角三角形得四个顶点共圆。 将上述判定推广到一般情况,得: 2、如果四边形得对角互补,那么这个四边形得四个顶点共圆。 3、如果四边形得外角等于它得内对角,那么这个四边形得四个顶点共圆。 4、如果两个三角形有公共底边,且在公共底边同侧又有相等得顶角,那么这两个三角形得四个顶点共圆。 运用这些判定四点共圆得方法,立即可以推出: 正方形、矩形、等腰梯形得四个顶点共圆。 其实,在与圆有关得定理中,一些定理得逆定理也就是成立得,它们为我们提供了另一些证明四点共圆得方法.这就就是: 1、相交弦定理得逆定理:若两线段AB与CD相交于E,且AE·EB=CE·ED,则A、B、C、D四点共圆。 2.割线定理得逆定理:若相交于点P得两线段PB、PD上各有一点A、C,且PA·PB =PC·PD,则A、B、 C、D四点共圆。 3、托勒密定理得逆定理:若四边形ABCD中,AB·CD+BC·DA= AC·BD,则ABCD就是圆内接四边形。 另外,证多点共圆往往就是以四点共圆为基础实现得一般可先证其中四点共圆,然后证其余各点均在这个圆上,或者证其中某些点个个共圆,然后判断这些圆实际就是同一个圆。 例题精讲 例1:如图,P为△ABC内一点,D、E、F分别在BC、CA、AB上。已知P、D、C、E四点共圆,P、E、A、F 四点共圆,求证:B、D、P、F四点共圆。 证明连PD、PE、PF.由于P、D、C、F四点共圆,所以∠BDP = ∠PEC.又由于A、E、P、F四点共圆,所以∠PEC =∠AFP.于就是∠BDP= ∠AFP,故B、D、P、F四点共圆。 例2:设凸四边形ABCD得对角线AC、BD互相垂直,垂足为E,证明:点E关于AB、BC、CD、DA得对称点共圆。 为1 2 ,此变换把E关于AB、BC、 证明以E为相似中心作相似变换,相似比 CD、DA得对称点变为E在AB、BC、CD、DA上得射影P、Q、R、S(如图)、只需证明PQRS就是圆内接四边形。 由于四边形ESAP、EPBQ、EQCR及ERDS都就是圆内接四边形(每个四边形都有一组对角为直角),由E、P、B、Q共圆有∠EPQ = ∠EBQ、由E、Q、C、R共圆有∠ERQ=∠ECQ,于就是∠EPQ+∠ERQ = ∠EBQ+∠ECQ=90°、同理可得∠EPS +∠ERS =90°、从而有∠SPQ+∠QRS =180°,故PQRS就是圆内接四边形。 例3:梯形ABCD得两条对角线相交于点K,分别以梯形得两腰为直径各作一圆,点K位于这两个圆之外,证明:由点K向这两个圆所作得切线长度相等。 证明如图,设梯形ABCD得两腰为AB与CD,并设AC、BD与相应二圆得第二个交点分别为M、N、由于∠AMB、∠CND就是半圆上得圆周角,所以∠AM B=∠CND = 90°.从而∠BMC =∠BNC=90°,故B、M、N、C四点共圆,因此∠MNK=∠ACB.又∠ACB =∠KAD,所以∠MNK =∠KAD、于就是M、N、D、A四点共圆,因此KM·KA = KN·KD、由切割线定理得K向两已知圆所引得切线相等。 例4:如图,A、B为半圆O上得任意两点,AC、BD垂直于直径EF,BH⊥OA,求证:DH=AC、证法一在BD上取一点A',使A'D = AC,则ACDA'就是矩形。连结A'H、AB、OB、由于BD⊥EF、BH⊥OA,所以∠BDO =∠B HO=90°、于就是D、B, H、O四点共圆,所以∠HOB =∠HDB、由于∠AHB =∠AA'B = 90°,所以A、H、A'、B四点共圆。故∠DA'H=∠OAB,因此∠DHA'=∠OBA、而OA = OB,所以∠OBA=∠OAB,于就是∠DHA'=∠D A'H、所以DH=DA',故DH =

《概率论与数理统计》基本名词中英文对照表

《概率论与数理统计》基本名词中英文对照表英文中文 Probability theory 概率论 mathematical statistics 数理统计 deterministic phenomenon 确定性现象 random phenomenon 随机现象 sample space 样本空间 random occurrence 随机事件 fundamental event 基本事件 certain event 必然事件 impossible event 不可能事件 random test 随机试验 incompatible events 互不相容事件 frequency 频率 classical probabilistic model 古典概型 geometric probability 几何概率 conditional probability 条件概率 multiplication theorem 乘法定理 Bayes's formula 贝叶斯公式 Prior probability 先验概率 Posterior probability 后验概率 Independent events 相互独立事件 Bernoulli trials 贝努利试验 random variable 随机变量

probability distribution 概率分布 distribution function 分布函数 discrete random variable 离散随机变量distribution law 分布律hypergeometric distribution 超几何分布 random sampling model 随机抽样模型binomial distribution 二项分布 Poisson distribution 泊松分布 geometric distribution 几何分布 probability density 概率密度 continuous random variable 连续随机变量uniformly distribution 均匀分布exponential distribution 指数分布 numerical character 数字特征mathematical expectation 数学期望 variance 方差 moment 矩 central moment 中心矩 n-dimensional random variable n-维随机变量 two-dimensional random variable 二维离散随机变量joint probability distribution 联合概率分布 joint distribution law 联合分布律 joint distribution function 联合分布函数boundary distribution law 边缘分布律

概率论与数理统计实验报告

概率论与数理统计实验报告 一、实验目的 1.学会用matlab求密度函数与分布函数 2.熟悉matlab中用于描述性统计的基本操作与命令 3.学会matlab进行参数估计与假设检验的基本命令与操作 二、实验步骤与结果 概率论部分: 实验名称:各种分布的密度函数与分布函数 实验内容: 1.选择三种常见随机变量的分布,计算它们的方差与期望<参数自己设 定)。 2.向空中抛硬币100次,落下为正面的概率为0.5,。记正面向上的次数 为x, (1)计算x=45和x<45的概率, (2)给出随机数x的概率累积分布图像和概率密度图像。 3.比较t(10>分布和标准正态分布的图像<要求写出程序并作图)。 程序: 1.计算三种随机变量分布的方差与期望 [m0,v0]=binostat(10,0.3> %二项分布,取n=10,p=0.3 [m1,v1]=poisstat(5> %泊松分布,取lambda=5 [m2,v2]=normstat(1,0.12> %正态分布,取u=1,sigma=0.12 计算结果: m0 =3 v0 =2.1000 m1 =5 v1 =5 m2 =1 v2 =0.0144 2.计算x=45和x<45的概率,并绘图 Px=binopdf(45,100,0.5> %x=45的概率 Fx=binocdf(45,100,0.5> %x<45的概率 x=1:100。 p1=binopdf(x,100,0.5>。 p2=binocdf(x,100,0.5>。 subplot(2,1,1>

plot(x,p1> title('概率密度图像'> subplot(2,1,2> plot(x,p2> title('概率累积分布图像'> 结果: Px =0.0485 Fx =0.1841 3.t(10>分布与标准正态分布的图像 subplot(2,1,1> ezplot('1/sqrt(2*pi>*exp(-1/2*x^2>',[-6,6]> title('标准正态分布概率密度曲线图'> subplot(2,1,2> ezplot('gamma((10+1>/2>/(sqrt(10*pi>*gamma(10/2>>*(1+x^2/10>^(-(10+1>/2>',[-6,6]>。b5E2RGbCAP title('t(10>分布概率密度曲线图'> 结果:

四点共圆(习题)

圆内接四边形与四点共圆 思路一:用圆的定义:到某定点的距离相等的所有点共圆。→若连在四边形的三边的中垂线相交于一点,那么这个四边形的四个顶点共圆。(这三边的中垂线的交点就是圆心)。 产生原因:圆的定义:圆可以看作是到定点的距离等于定长的点的集合。 基本模型: AO=BO=CO=DO ? A、B、C、D四点共圆(O为圆心) 思路二:从被证共圆的四点中选出三点作一个圆,然后证另一个点也在这个圆上,即可证明这四点共圆。→要证多点共圆,一般也可以根据题目条件先证四点共圆,再证其他点也在这个圆上。 思路三:运用有关性质和定理: ①对角互补,四点共圆:对角互补的四边形的四个顶点共圆。 产生原因:圆内接四边形的对角互补。 基本模型: ∠ + = 180 B)? A、B、C、D四点共圆 ∠D 180 = ∠ + ∠D A(或0 ②张角相等,四点共圆:线段同侧两点与这条线段两个端点连线的夹角相等,则这两个点和线段的两个端点共四个点共圆。 产生原因:在同圆或等圆中,同弧所对的圆周角相等。 方法指导:把被证共圆的四个点连成共底边的两个三角形,且两三角形都在这底边的同侧,若能证明其顶角(即:张角)相等(同弧所对的圆周角相等),从而即可肯定这四点共圆。

∠? A、B、C、D四点共圆 = CAB∠ CDB ③同斜边的两个直角三角形的四个顶点共圆,其斜边为圆的直径。 产生原因:直径所对的圆周角是直角。 ∠D = C? A、B、C、D四点共圆 = ∠ 90 ④外角等于内对角,四点共圆:有一个外角等于其内对角的四边形的四个顶点共圆。产生原因:圆内接四边形的外角等于内对角。 基本模型: ∠? A、B、C、D四点共圆 = ECD∠ B

概率论与数理统计基本知识

概率论与数理统计基本知识点 一、概率的基本概念 1.概率的定义: 在事件上的一个集合函数P ,如果它满足如下三个条件: (1)非负性 A A P ?≥,0)( (2)正规性 1)(=ΩP (3)可列可加性 若事件,...,2,1,=n A n 两两互斥 则称P 为概率。 2.几何概型的定义: 若随机试验的样本空间对应一个度量有限的几何区域S ,每一基本事件与S 内的点一一对应,则任一随机事件A 对应S 中的某一子区域D 。(若事件A 的概率只与A 对应的区域D 的度量成正比,而与D 的形状及D 在S 中的位置无关。)==(每点等可能性)则称为几何概型。 的度量 对应区域的度量 对应区域S D )()()(Ω=Ω= A m A m A P 3.条件概率与乘法公式: 设A,B 是试验E 的两个随机事件,且0)(>B P ,则称) () ()|(B P AB P B A P = 为事件B 发生的条件下,事件A 发生的条件概率。(其中)(AB P 是AB 同时发生的概率) 乘法公式:)|()()|()()(B A P B P A B P A P AB P == 4.全概率公式与贝叶斯公式: (全概率公式)定理:设n A A A ...,21是样本空间Ω的一个划分,n i A P i ,...,2,1,0)(=>,B 是任一事件,则有∑== n i i i A B P A P B P 1 )|()()(。 (贝叶斯公式)定理:设n A A A ...,21是样本空间Ω的一个划分,n i A P i ,...,2,1,0)(=>,B 是任一事件,则∑== =?n k k k i i A B P A P A B P A P B A P n i 1 ) |()() |()()|(,,...,2,1。 5.事件的独立性: 两事件的独立性:(定义)设A 、B 是任意二事件,若P(AB)= P(A)P(B),则称事件A 、B 是相互独立的。(直观解释)A 、B 为试验E 的二事件,若A 、 B 的发生互不影响。 二、随机变量和分布函数:

四点共圆例题及答案

证明四点共圆的基本方法 证明四点共圆有下述一些基本方法: 方法1 从被证共圆的四点中先选出三点作一圆,然后证另一点也在这个圆上,若能证明这一点,即可肯定这四点共圆. 方法2 把被证共圆的四个点连成共底边的两个三角形,且两三角形都在这底边的同侧,若能证明其顶角相等,从而即可肯定这四点共圆.(若能证明其两顶角为直角,即可肯定这四个点共圆,且斜边上两点连线为该圆直径。) 方法3 把被证共圆的四点连成四边形,若能证明其对角互补或能证明其一个外角等于其邻补角的内对角时,即可肯定这四点共圆. 方法4 把被证共圆的四点两两连成相交的两条线段,若能证明它们各自被交点分成的两线段之积相等,即可肯定这四点共圆;或把被证共圆的四点两两连结并延长相交的两线段,若能证明自交点至一线段两个端点所成的两线段之积等于自交点至另一线段两端点所成的两线段之积,即可肯定这四点也共圆.(根据托勒密定理的逆定理) 方法5 证被证共圆的点到某一定点的距离都相等,从而确定它们共圆. 上述五种基本方法中的每一种的根据,就是产生四点共圆的一种原因,因此当要求证四点共圆的问题时,首先就要根据命题的条件,并结合图形的特点,在这五种基本方法中选择一种证法,给予证明. 例1 如图,E、F、G、H分别是菱形ABCD各边的中点.求证:E、F、G、H 四点共圆. 证明菱形ABCD的对角线AC和 BD相交于点O,连接OE、OF、OG、OH. ∵AC和BD 互相垂直, ∴在Rt△AOB、Rt△BOC、Rt△COD、 Rt△DOA中,E、F、G、H,分别是AB、 BC、CD、DA的中点,

即E、F、G、H四点共圆. (2)若四边形的两个对角互补(或一个外角等于它的内对角),则四点共圆. 例2 如图,在△ABC中,AD⊥BC,DE⊥AB,DF⊥AC. 求证:B、E、F、C四点共圆. 证明∵DE⊥AB,DF⊥AC, ∴∠AED+∠AFD=180°, 即A、E、D、F四点共圆, ∠AEF=∠ADF. 又∵AD⊥BC,∠ADF+∠CDF=90°, ∠CDF+∠FCD=90°, ∠ADF=∠FCD. ∴∠AEF=∠FCD, ∠BEF+∠FCB=180°, 即B、E、F、C四点共圆. (3)若两个三角形有一条公共边,这条边所对的角相等,并且在公共边的同侧,那么这两个三角形有公共的外接圆. 【例1】在圆内接四边形ABCD中,∠A-∠C=12°,且∠A∶∠B=2∶3.求∠A、∠B、∠C、∠D的度数. 解∵四边形ABCD内接于圆,

自考概率论与数理统计基础知识.

一、《概率论与数理统计(经管类)》考试题型分析: 题型大致包括以下五种题型,各题型及所占分值如下: 由各题型分值分布我们可以看出,单项选择题、填空题占试卷的50%,考查的是基本的知识点,难度不大,考生要把该记忆的概念、性质和公式记到位。计算题和综合题主要是对前四章基本理论与基本方法的考查,要求考生不仅要牢记重要的公式,而且要能够灵活运用。应用题主要是对第七、八章内容的考查,要求考生记住解题程序和公式。结合历年真题来练习,就会很容易的掌握解题思路。总之,只要抓住考查的重点,记住解题的方法步骤,勤加练习,就能够百分百达到过关的要求。二、《概率论与数理统计(经管类)》考试重点说明:我们将知识点按考查几率及重要性分为三个等级,即一级重点、二级重点、三级重点,其中,一级重点为必考点,本次考试考查频率高;二级重点为次重点,考查频率较高;三级重点为预测考点,考查频率一般,但有可能考查的知识点。第一章随机事件与概率 1.随机事件的关系与计算 P3-5 (一级重点)填空、简答事件的包含与相等、和事件、积事件、互不相容、对立事件的概念 2.古典概型中概率的计算 P9 (二级重点)选择、填空、计算记住古典概型事件概率的计算公式 3. 利用概率的性质计算概率 P11-12 (一级重点)选择、填空 ,(考得多)等,要能灵活运用。 4. 条件概率的定义 P14 (一级重点)选择、填空记住条件概率的定义和公式: 5. 全概率公式与贝叶斯公式 P15-16 (二级重点)计算记住全概率公式和贝叶斯公式,并能够运用它们。一般说来,如果若干因素(也就是事件)对某个事件的发生产生了影响,求这个事件发生的概率时要用到全概率公式;如果这个事件发生了,要去追究原因,即求另一个事件发生的概率时,要用到贝叶斯公式,这个公式也叫逆概公式。 6. 事件的独立性(概念与性质) P18-20(一级重点)选择、填空定义:若,则称A与B 相互独立。结论:若A与B相互独立,则A与,与B 与都相互独立。 7. n重贝努利试验中事件A恰好发生k次的概率公式 P21(一级重点)选择、填空在重贝努利试验中,设每次试验中事件的概率为(),则事件A恰好发生。第二章随机变量及其概率分布 8.离散型随机变量的分布律及相关的概率计算 P29,P31(一级重点)选择、填空、计算、综合。记住分布律中,所有概率加起来为1,求概率时,先找到符合条件的随机点,让后把对应的概率相加。求分布律就需要找到随机变量所有可能取的值,和每个值对应的概率。 9. 常见几种离散型分布函数及其分布律 P32-P33(一级重点)选择题、填空题以二项分布和泊松分布为主,记住分布律是关键。本考点基本上每次考试都考。 10. 随机变量的分布函数 P35-P37(一级重点)选择、填空、计算题记住分布函数的定义和性质是关键。要能判别什么样的函数能充当分布函数,记住利用分布函数计算概率的公式:①;②其中;③。 11. 连续型随机变量及其概率密度 P39(一级重点)选择、填空重点记忆它的性质与相关的计算,如①;;反之,满足以上两条性质的函数一定是某个连续型随机变量的概率密度。③;④ 设为的

《概率论与数理统计》习题 第五章 数理统计的基本概念

第五章 数理统计的基本概念 一. 填空题 1. 设X 1, X 2, …, X n 为来自总体N(0, σ2 ), 且随机变量)1(~) (22 1 χ∑==n i i X C Y , 则常数 C=___. 解. ∑=n i i X 1 ~ N(0, n σ2 ), )1,0(~1 N n X n i i σ ∑= 所以 2 1,1σ σ n c n c = = . 2. 设X 1, X 2, X 3, X 4来自正态总体N(0, 22)的样本, 且2 43221)43()2(X X b X X a Y -+-=, 则a = ______, b = ______时, Y 服从χ2分布, 自由度为______. 解. X 1-2X 2~N(0, 20), 3X 3-4X 4~N(0, 100) )1,0(~2022 1N X X -, )1,0(~1004343N X X - 20 1 ,20 1 = = a a ; 100 1,100 1 = = b b . Y 为自由度2的χ2分布. 3. 设X 1, X 2, …, X n 来自总体χ2(n)的分布, 则._____)(______,)(==X D X E 解. 因为X 1, X 2, …, X n 来自总体χ2(n), 所以 E(X i ) = n, D(X i ) = 2n (i = 1, 2, …, n) ,)(n X E = 22) ()(2 2 1=?= =∑=n n n n X D X D n i i 二. 单项选择题 1. 设X 1, X 2, …, X n 为来自总体N(0, σ2 )的样本, 则样本二阶原点矩∑==n i i X n A 1 2 21的方差为 (A) σ2 (B) n 2 σ (C) n 42σ (D) n 4 σ 解. X 1, X 2, …, X n 来自总体N(0, σ2), 所以

《概率论与数理统计》浙江大学第四版课后习题答案

概率论与数理统计习题答案 第四版 盛骤 (浙江大学) 浙大第四版(高等教育出版社) 第一章 概率论的基本概念 1.[一] 写出下列随机试验的样本空间 (1)记录一个小班一次数学考试的平均分数(充以百分制记分)([一] 1) ??? ????=n n n n o S 1001, ,n 表小班人数 (3)生产产品直到得到10件正品,记录生产产品的总件数。([一] 2) S={10,11,12,………,n ,………} (4)对某工厂出厂的产品进行检查,合格的盖上“正品”,不合格的盖上“次品”,如连续查出二个次品就停止检查,或检查4个产品就停止检查,记录检查的结果。 查出合格品记为“1”,查出次品记为“0”,连续出现两个“0”就停止检查,或查满4次才停止检查。 ([一] (3)) S={00,100,0100,0101,1010,0110,1100,0111,1011,1101,1110,1111,} 2.[二] 设A ,B ,C 为三事件,用A ,B ,C 的运算关系表示下列事件。 (1)A 发生,B 与C 不发生。 表示为: C B A 或A - (AB+AC )或A - (B ∪C ) (2)A ,B 都发生,而C 不发生。 表示为: C AB 或AB -ABC 或AB -C

(3)A ,B ,C 中至少有一个发生 表示为:A+B+C (4)A ,B ,C 都发生, 表示为:ABC (5)A ,B ,C 都不发生, 表示为:C B A 或S - (A+B+C)或C B A ?? (6)A ,B ,C 中不多于一个发生,即A ,B ,C 中至少有两个同时不发生 相当于C A C B B A ,,中至少有一个发生。故 表示为:C A C B B A ++。 (7)A ,B ,C 中不多于二个发生。 相当于:C B A ,,中至少有一个发生。故 表示为:ABC C B A 或++ (8)A ,B ,C 中至少有二个发生。 相当于:AB ,BC ,AC 中至少有一个发生。故 表示为:AB +BC +AC 6.[三] 设A ,B 是两事件且P (A )=0.6,P (B )=0. 7. 问(1)在什么条件下P (AB )取到最大值,最大值是多少?(2)在什么条件下P (AB )取到最小值,最小值是多少? 解:由P (A ) = 0.6,P (B ) = 0.7即知AB ≠φ,(否则AB = φ依互斥事件加法定理, P (A ∪B )=P (A )+P (B )=0.6+0.7=1.3>1与P (A ∪B )≤1矛盾). 从而由加法定理得 P (AB )=P (A )+P (B )-P (A ∪B ) (*) (1)从0≤P (AB )≤P (A )知,当AB =A ,即A ∩B 时P (AB )取到最大值,最大值为 P (AB )=P (A )=0.6, (2)从(*)式知,当A ∪B=S 时,P (AB )取最小值,最小值为 P (AB )=0.6+0.7-1=0.3 。 7.[四] 设A ,B ,C 是三事件,且0)()(,4 1 )()()(=== ==BC P AB P C P B P A P ,8 1 )(= AC P . 求A ,B ,C 至少有一个发生的概率。 解:P (A ,B ,C 至少有一个发生)=P (A +B +C )= P (A )+ P (B )+ P (C )-P (AB )-P (BC )

相关文档
相关文档 最新文档