文档库 最新最全的文档下载
当前位置:文档库 › 低温等离子的原理

低温等离子的原理

低温等离子的原理
低温等离子的原理

等离子体

等离子的基本原理

等离子体是物质存在(固、液、气体)的第四种状态,是由大量带电粒子组成的非束缚状态 的宏观体系。

闪电、霓虹、日光、等离子体电视等都是人们日常能感受得到的等离子体技术。

“等离子体”这门近代物理学始创于二十世纪五十年代,作为迅速发展的新兴学科其低温等 离子体、冷等离子体、热等离子体技术已广泛应用于医学、电子、工业、军事及日常生活等众多

领域。

等离子体的产生及与普通射频的区别:

在高温或强电场的作用下,原来呈中性的原子会被电离,生成一对可以自由运动的正负离子,

因为正负离子总是成对出现,所以正离子和负离子的数量相等,这种物质状态也就被称为等离子 体。

由于物质被电离后,正负离子之间的静电束缚已被打破,所以这时的正负离子又称做粒子,

并可自由运动,其具体运动状态完全由外界电磁场决定,这是等离子体与常见的固体、液体和气 体的重要差别。

高温等离子体和低温等离子体

物质必须经过电离才能转变到等离子体,而电离的方式又有两大类:

1. 固体、液体和气体:通常状态下,物质中的正负粒子因为带有异性电荷而吸引在一起的,形

成稳定并呈中性的原子或分子。 2. 高温等离子体:1000℃以上的等离子体称高温等离子体。

给物质提供热量,使其上升到足够的温度,物质内部粒子无规则热运动就会加剧,当粒子的 动能增加到一定程度时,带电粒子就会摆脱静电力的束缚而成为可以自由运动的离子,物质也转 化到高温等离子体。宇宙中 99.9%以上的物质(如太阳等恒星)均处于高温等离子态。 3. 低温等离子态:1000℃℃以下的等离子体称低温等离子体。低温等离子体又分为冷等离子体

和热等离子体。

在电场的作用下,物质内部的不同电性的粒子会受到方向相反的电场力,当电场足够强时,

正负粒子就无法再集合在一起,最终成为可以自由运动的离子,物质也转化到等离子态。由于这 种转化不需要高温就可以在常温下完成,所以成为低温等离子态。日光灯、霓虹灯、极光和等离

子体彩电等就是典型的低温等离子态。

等离子体低温消融术的工作原理

美国ARTHROCARE 公司发明并拥有专利的“等离子体”技术——COBLATION,即以特

定100KHz 超低频率电能激发介质(Nacl)产生等

离子体,在40~70℃蛋白质可逆变性的温度范围内,

靠“等离子体”产生的声波打断分子键,将蛋白质

等生物大分子直接裂解成O2,CO2,N2 等气体,

从而以“微创”的代价完成对组织切割、打孔、消

融、皱缩和止血等多种功能。并获得北美UL,欧

洲CE 和ISO9001 认证,美国FDA 和中国国家食品

药品监督局(SFDA)均已批准该技术在临床的应

用。

普通高频500-4000 KHz 可变电场下,粒子一方

面无法获得足够的加速时间,处于往复的振荡状

态;另一方面高频下的分子摩擦会产生较强的热效

应,且频率越高产热越多。

而100 KHz 低频稳定电场下,粒子则会获得更

长的加速时间,最终形成带有更大动能的高速带电

粒子,直接打断分子键。此外因频率低,较之高频大大降低了分子间的摩擦产热,使切割、消融

和止血等过程都在40-70℃内完

成,从而实现微创效应。

通过100KHz 超低频率的稳定

电场,将Nacl 等电解液激发成低

温等离子体,在电极前形成厚度

为100 微米的等离子体薄层。在

100KHz 超低频稳定电场下,等离

子体中的粒子——正负离子,会

获得更长的加速时间,粒子加速

运动最终形成带有足够动能的高

速带电粒子。

通常100KHz 低频稳定电场

下,激发一分子Nacl 会产生8 个

电子伏特的动能,而打断一个肽

键所需动能为 4 个电子伏特,使

靶组织细胞以分子为单位解体,

使蛋白质等组织裂解汽化成H2、

02、CO2、N2 和甲烷等低分子量气

体,在低温下形成切割和消融效

果。这与电刀和激光等外科设备

靠几百度的高温来汽化组织的工

作方式是截然不同的。

详细资料可参考:https://www.wendangku.net/doc/989741408.html,/

低温等离子工作原理

低温等离子 1、高科技创新产品:“低温等离子体”技术是电子、化学、催化等综合作用下 的电化学过程,是一全新的技术创新领域。是依靠等离子体在瞬间产生的强大电场能量电离、裂解有害气体的化学键能,从而破坏废气分子结构,达到净化目的。 2、 3、2、高效废气净化:本设备能高效去除挥发性有机物(VOC)、无机物、硫 化氢、氨气、硫醇类等主要污染物,以及各种恶臭味,除臭效率可达98%以上,对于长期弥漫、积累的恶臭、异味,24小时内即可祛除,并且具有强力杀灭空气中细菌、病毒等各种微生物能力,而且具有明显的防霉作用。 除臭效果超过国家颁布的恶臭污染物排放一级标准。 4、?? 5、3、无需添加任何物质:低温等离子体废气处理是一种干法净化过程,是一 种全新的净化过程,不需任何添加剂,不产生废水、废渣,不会导致二次污染。 6、?? 7、4、低温等离子适应性强:持久的净化功能,无须专人看管。可适应高浓度、 大气量、不同气态物质的净化处理,可在高温250℃,低温-50℃的环境内,净化区均可运转,特别是在潮湿,甚至空气。湿度饱和的环境下仍可正常运行,每天24小时连续工作,长期运行稳定可靠。 8、? 9、5、低耗节能:运行费用低廉、省电是“低温等离子体”专利核心技术之一, 处理1000M3/h臭气,耗电量仅0.25度。本设备无任何机械动作,自动化程度高,工艺简洁,操作简单,方便无需专人管理和日常维护,遇故障自动停机报警,只需作定期检查。 10、?? 11、6、低温等离子设备组合产品重量轻,体积小,可按场地要求立放、卧放, 可根据废气浓度、流量、成份进行串、并组合设计达到完全的废气净化。 12、?? 13、7、设备使用寿命长:本设备由不锈钢材,铜材、钼材、环氧树脂等材料 组成,抗氧化性强,对酸、碱气体、潮湿环境等具有良好的防腐性能。使用寿命长达15年以上。 14、?? 15、8、安全:“低温等离子体”设备内使用电压在36伏以下,安全可靠。 河南兴邦环保局指定合作单位,提供环评和检测等一站式服务 河南兴邦环保科技有限公司

等离子原理说明修订稿

等离子原理说明 内部编号:(YUUT-TBBY-MMUT-URRUY-UOOY-DBUYI-0128)

低温等离子体技术简介 低温等离子体是继固态、液态、气态之后的物质第四态,当外加电压达到气体的放电电压时,气体被击穿,产生包括电子、各种离子、原子和自由基在内的混合体。放电过程中虽然电子温度很高,但重粒子温度很低,整个体系呈现低温状态,所以称为低温等离子体。低温等离子体降解污染物是利用这些高能电子、自由基等活性粒子和废气中的污染物作用,使污染物分子在极短的时间内发生分解,并发生后续的各种反应以达到降解污染物的目的。 低温等离子体的产生途径很多,低温等离子体工业废气处理技术采用的放电形式为双介质阻挡放电 (Dielectric Barrier Discharge,简称DBD),该技术性能先进,运行稳定,获得广泛客户的认可。 装置示意图如图3-1所示。 介质阻挡放电是一种获得高气压下低温等离子体的放电方法,这种放电产生于两个电极之间。介质阻挡放电可以在0.1~10105Pa的气压下进行,具有辉光放电的大空间均匀放电和电晕放电的高气压运行的特点。整个放电是由许多在空间和时间上随机分布的微放电构成,这些微放电的持续时间很短,一般在10ns量级。介质层对此类放电有两个主要作用:一是限制微放电中带电粒子的运动,使微放电成为一个个短促的脉冲;二是让微放电均匀稳定地分布在整个面状电极之

间,防止火花放电。介质阻挡放电由于电极不直接与放电气体发生接触,从而避免了电极的腐蚀问题。 介质阻挡放电等离子体技术具有以下优点: ① 介质阻挡放电产生的低温等离子体中,电子能量高,几乎可以和所有的恶 臭气体分子作用。 ② 反应快,不受气速限制。 ③ 采用防腐蚀材料,电极与废气不直接接触,根本上解决了设备腐蚀问题。 ④ 只需用电,操作极为简单,无需派专职人员看守,基本不占用人工费。 ⑤ 设备启动、停止十分迅速,随用随开,不受气温的影响。 ⑥ 气阻小,工艺成熟。 低温等离子体净化工业废气的工作原理: 等离子体中能量的传递大致如下: 介质阻挡放电过程中,电子从电场中获得能量,通过碰撞将能量转化为污染 物分子的内能或动能,这些获得能量的分子被激发或发生电离形成活性基团,同时空气中的氧气和水分在高能电子的作用下也可产生大量的新生态氢、臭氧和羟图3-2 等离子体中能量

等离子切割机工作原理

第九章空气等离子切割机 第一节空气等离子切割机工作原理 一、等离子弧的产生与特点 通常把电弧密度为自然条件下的电弧密度(未经压缩)的电弧称为自由弧;自由弧的导电气体设有完全电离,电弧的温度在6000℃到8000℃之间。而在气压、电压和磁场的作用下,柱状的自由弧(柱截面积正比于功率)可以压缩成等离子弧,等离子弧的导电截面小能量集中。弧柱中气体几乎可全部达到离子状态。电弧温度可高达15000℃-30000℃。能使金属等物体迅速熔化。 二、等离子切割的原理与应用 切割,一般指的是金属的切割。等离子弧切割是利用极细而高温的等离子弧,使局部金属迅速熔化,再用气流把熔化的金属吹走的切割方法。等离子弧切割由于切割效率高、损耗低、适用范围广等优点已广泛应用于各类工程建设、制造等行业。 三、等离子弧切割电源与氩弧焊电源技术参数比较 四、等离子切割机工作技术参数

五、等离子切割与气体切割比较 第二节等离子切割的起弧方式 一、接触起弧与转移起弧 等离子弧切割一般有两种起弧方式: 1、接触式:即把与极针绝缘的喷嘴贴在工件(联接切割电源正端)上,然后把高频 高压电流加到联接电源负端的电极针(钨针),使极针喷出电弧,电弧在电压、 气压、磁场作用下形成等离子弧,通过大电流维持等离子弧稳定燃烧,然后稍 抬高喷嘴(避免炽热的工件损坏喷嘴),开始切割。其过程简图如图9.1 这种切割方式多适用于小电流(小功率的切割机)。 图9.1 2、转移弧式(维弧式):即把电源正端通过一定的电阻和继电器开关联接到喷嘴上, 使得极针与喷嘴间形成电弧(由于有电阻限流,电弧较小),然后把喷嘴靠近直 接联接电源正端的工件上,极针与工件间便形成能量更大的电弧,电弧被压缩 后形成等离子弧,而喷嘴与电源正端的联接被断开,开始切割。 图9.2为其过程简图 图9.2 转移弧式切割方式可以避免电弧在气压的作用下偏离喷嘴中心而损坏喷嘴。此种方式适用于大功率切割机。 二、转移起弧控制电路原理 转移弧式切割方式要求先在极针上喷嘴间产生小电弧,然后靠近工件产生等离子弧,通以大电流维持电弧稳定后断开用于起弧的高频高压电流以及小电弧,其控制电路原理图9.3 图9.3

低温等离子体技术在表面改性中的应用

低温等离子体技术在表面改性中的应用低温等离子体中粒子的能量一般约为几个至几十电子伏特,大于聚合物材料的结合键能(几个至十几电子伏特),完全可以破裂有机大分子的化学键而形成新键;但远低于高能放射性射线,只涉及材料表面,不影响基体的性能。处于非热力学平衡状态下的低温等离子体中,电子具有较高的能量,可以断裂材料表面分子的化学键,提高粒子的化学反应活性(大于热等离子体),而中性粒子的温度接近室温,这些优点为热敏性高分子聚合物表面改性提供了适宜的条件。 1 形成装置及影响因素 选择适宜的放电方式可获得不同性质和应用特点的等离子体,通常,热等离子体是气体在大气压下电晕放电产生,冷等离子体由低压气体辉光放电形成。 热等离子体装置是利用带电体尖端(如刀状或针状尖端和狭缝式电极)造成不均匀电场,称电晕放电,使用电压和频率、电极间距、处理温度和时间对电晕处理效果都有影响。电压升高、电源频率增大,则处理强度大,处理效果好。但电源频率过高或电极间隙太宽,会引起电极间过多的离子碰撞,造成不必要的能量损耗;而电极间距太小,会有感应损失,也有能量损耗。处理温度较高时,表面特性的变化较快。处理时间延长,极性基团会增多;但时间过长,表面则可能产生分解物,形成新的弱界面层。 冷等离子体装置是在密封容器中设置两个电极形成电场,用真空泵实现一定的真空度,随着气体愈来愈稀薄,分子间距及分子或离子

的自由运动距离也愈来愈长,受电场作用,它们发生碰撞而形成等离子体,这时会发出辉光,故称为辉光放电处理。辉光放电时的气压大小对材料处理效果有很大影响,另外与放电功率,气体成分及流动速度、材料类型等因素有关。 不同的放电方式、工作物质状态及上述影响等离子体产生的因素,相互组合可形成各种低温等离子体处理设备。 2 在表面改性中的应用 低温等离子体技术具有工艺简单、操作方便、加工速度快、处理效果好、环境污染小、节能等优点,在表面改性中广泛的应用。 2.1 表面处理 通过低温等离子体表面处理,材料表面发生多种的物理、化学变化,或产生刻蚀而粗糙,或形成致密的交联层,或引入含氧极性基团,使亲水性、粘结性、可染色性、生物相容性及电性能分别得到改善。 用几种常用的等离子体对硅橡胶进行表面处理,结果表明N2、Ar、O2、CH4-O2及Ar-CH4-O2等离子体均能改善硅橡胶的亲水性,其中CH4-O2和Ar-CH4-O2的效果更佳,且不随时间发生退化[6]。英国派克制笔公司将等离子体技术用于控制墨水流量塑料元件的改性工艺中,提高了塑料的润湿率。 文献表明,用低温等离子体在适宜的工艺条件下处理PE、PP、PVF2、LDPE等材料,材料的表面形态发生的显著变化,引入了多种含氧基团,使表面由非极性、难粘性转为有一定极性、易粘性和亲水性,有利于粘结、涂覆和印刷。

低温等离子工作原理

低温等离子工作原理 Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998

低温等离子 1、高科技创新产品:“低温等离子体”技术是电子、化学、催化等综合作用下 的电化学过程,是一全新的技术创新领域。是依靠等离子体在瞬间产生的强大电场能量电离、裂解有害气体的化学键能,从而破坏废气分子结构,达到净化目的。 2、 3、2、高效废气净化:本设备能高效去除挥发性有机物(VOC)、无机物、硫 化氢、氨气、硫醇类等主要污染物,以及各种恶臭味,除臭效率可达98%以上,对于长期弥漫、积累的恶臭、异味,24小时内即可祛除,并且具有强力杀灭空气中细菌、病毒等各种微生物能力,而且具有明显的防霉作用。除臭效果超过国家颁布的恶臭污染物排放一级标准。 4、? 5、3、无需添加任何物质:低温等离子体废气处理是一种干法净化过程,是 一种全新的净化过程,不需任何添加剂,不产生废水、废渣,不会导致二次污染。 6、 7、4、低温等离子适应性强:持久的净化功能,无须专人看管。可适应高浓 度、大气量、不同气态物质的净化处理,可在高温250℃,低温-50℃的环境内,净化区均可运转,特别是在潮湿,甚至空气。湿度饱和的环境下仍可正常运行,每天24小时连续工作,长期运行稳定可靠。 8、 9、5、低耗节能:运行费用低廉、省电是“低温等离子体”专利核心技术之一, 处理1000M3/h臭气,耗电量仅度。本设备无任何机械动作,自动化程度高,工艺简洁,操作简单,方便无需专人管理和日常维护,遇故障自动停机报警,只需作定期检查。 10、 11、6、低温等离子设备组合产品重量轻,体积小,可按场地要求立 放、卧放,可根据废气浓度、流量、成份进行串、并组合设计达到完全的废气净化。 12、 13、7、设备使用寿命长:本设备由不锈钢材,铜材、钼材、环氧树脂 等材料组成,抗氧化性强,对酸、碱气体、潮湿环境等具有良好的防腐性能。使用寿命长达15年以上。 14、 15、8、安全:“低温等离子体”设备内使用电压在36伏以下,安全可 靠。

等离子切割机工作原理

工作原理: 等离子是加热到极高温度并被高度电离的气体,它将电弧功率将转移到工件上,高热量使工件熔化并被吹掉,形成等离子弧切割的工作状态。 压缩空气进入割炬后由气室分配两路,即形成等离子气体及辅助气体。等离子气体弧起熔化金属作用,而辅助气体则冷却割炬的各个部件并吹掉已熔化的金属。 切割电源包括主电路及控制电路两部分,电气原理方框图见图所示: 主电路包括接触器,高漏抗的三相电源变压器,三相桥式整流器,高频引弧线圈及保护元件等组成。由高漏抗引成陡将的电源外特性。控制电路通过割炬上的按钮开关来完成整个切割工艺过程: 预通气—主电路供电—高频引弧—切割过程—息弧—停止。 主电路的供电由接触器控制;气体的通短由电磁阀控制;由控制电路控制高频振荡器引燃电弧,并在电弧建立后使高频停止工作。 此外,控制电路尚具备以下内部锁定功能: 1.热控开关动作,停止工作。 切割故障 1)割不透: a:板材厚度超过设备适用范围。 b:切割速度太快。 c:割炬倾度过大。 d:压缩空气压力过大或过小。 e:电网电压过低。 2)等离子弧不稳定: a:割炬移动太慢。 b:电源两相供电,工作电压减小。 c:压缩空气压力过大。 割炬的安装、维护及零件更换: 1.安装或更换割炬零件时,将割炬头朝上,然后按保护罩—导电喷咀—气体分配器—电极—割炬体的顺序拆卸;按相反顺序装配。安装喷咀时,要保持与电极的同心度。保护罩要拧紧,喷咀要压紧,若有松动,不能切割。

2.合理使用割炬,将喷咀与工件接触后在引弧;而切割结束时,应先松开手把按钮断弧,再将割炬从工件表面移开,这样可延长零件的使用寿命。当喷咀因中心空大而影响切割质量时应及时更换。 3.电极中心凹陷深达2毫米以上或不能引弧时,可将电极反向安装使用或更新。 4.发现保护罩、分配器裂开或严重损坏时应及时更换。 5.发现割炬体绝缘、人造革外套、电缆线绝缘、气管损坏破裂时,应及时修复或更换。 6.若要卸下割炬,将人造革外套后退,拆开开关连接接线,向后退出手把,再拆割炬体的连接接头。 7.更换新的陶瓷保护罩时,将割炬体上的O形密封圈涂少许凡士林油再旋入,可延长密封圈使用时间。 八、常见故障原因及排除方法:

低温等离子体表面处理技术

低温等离子体表面处 理技术

Plasma and first wall Introduction Today I will talk about something about my study on the first wall in the tokamak. Firstly, I will show you that what the plasma is in our life thought the following pictures such as: Fig.1 Lighning Fig.2 Aurora Fig.3 Astrospace Just as the pictures mentioned above , they are all consist of plasma. But, what does have in the plasma, now our scientist had given a definition that the plasma state is often referred to as the fourth state of matter and contains enough free charged particles(negative ions 、positive ions)and electronics. Like the photo below. Fig.4 Plasma production Plasma production In our research, we produce the plasma through an ICP (inductively coupled plasma)

低温等离子体介绍

低温等离子体介绍 基本概念 等离子体是物质存在的第四种状态。它由电离的导电气体组成,其中包括六种典型的粒子,即电子、正离子、负离子、激发态的原子或分子、基态的原子或分子以及光子。 事实上等离子体就是由上述大量正负带电粒子和中性粒子组成的,并表现出集体行为的一种准中性气体,也就是高度电离的气体。无论是部分电离还是完全电离,其中的负电荷总数等于正电荷总数,所以叫等离子体。 等离子体的分类 1、按等离子体焰温度分: (1)高温等离子体:温度相当于108~109 K完全电离的等离子体,如太阳、受控热核聚变等离子体。 (2)低温等离子体: 热等离子体:稠密高压(1大气压以上),温度103~105K,如电弧、高频和燃烧等离子体。 冷等离子体:电子温度高(103~104K)、气体温度低,如稀薄低压辉光放电等离子体、电晕放电等离子体、DBD介质阻挡放电等离子体、索梯放电等离子体等。 2、按等离子体所处的状态: (1)平衡等离子体:气体压力较高,电子温度与气体温度大致相等的等离子体。如常压下的电弧放电等离子体和高频感应等离子体。 (2)非平衡等离子体:低气压下或常压下,电子温度远远大于气体温度的等离子体。如低气压下DC辉光放电和高频感应辉光放电,大气压下DBD介质阻挡放电等产生的冷等离子体。 什么是低温(冷)等离子体? 冰升温至0℃会变成水,如继续使温度升至100℃,那么水就会沸腾成为水蒸气。随着温度的上升,物质的存在状态一般会呈现出固态→液态→气态三种物态的转化过程,我们把这三种基本形态称为物质的三态。那么对于气态物质,温度升至几千度时,将会有什么新变化呢? 由于物质分子热运动加剧,相互间的碰撞就会使气体分子产生电离,这样物质就变成由自由运动并相互作用的正离子和电子组

低温等离子原理与应用

低温等离子体技术在环境工程中的应用 低温等离子体技术在废气处理中的应用随着工业经济的发展,石油、制药、油漆、印刷和涂料等行业产生的挥发性有机废气也日渐增多,这些废气不仅会在大气中停留较长的时间,还会扩散和漂移到较远的地方,给环境带来严重的污染,这些废气吸入*** ,直接对***的健康产生极大的危害;另外工业烟气的无控制排放使全球性的大气环境日益恶化,酸雨(主要来源于工业排放的硫氧化物和氮氧化物)的危害引起了各国的重视。由于大气受污染而酸化,导致了生态环境的破坏,重大灾难频繁发生,给人类造成了巨大损失。因此选择一种经济、可行性强的处理方法势在必行。 降解挥发性有机污染物(VOCs)传统的处理方法如吸收、吸附、冷凝和燃烧等,对于低浓度的VOCs很难实现,而光催化降解VOCs又存在催化剂容易失活的问题,利用低温等离子体处理VOCs可以不受上述条件的限制,具有潜在的优势。但由于等离子体是一门包含放电物理学、放电化学、化学反应工程学及真空技术等基础学科之上的交叉学科。因此,目前能成熟的掌握该技术的单位非常的少。大部分宣传采用低温等离子技术处理废气的宣传都不是真正意义上的低温等离子废气处理技术。 是否是低温等离子体处理技术的简单判断方法: 现在,各传媒上宣传低温等离子废气处理的产品和技术很多,可这些产品的宣传大部分都是在炒低温等离子体概念。如何判断是否是真正意义上的低温等离子体技术?可以用下面两个简单的规则来判断,即使你不懂低温等离子体技术也能判断出是真是假。 (1)在废气处理的通道上必须充满了低温等离子体。这条规则判断很简单,只要用眼睛观察一下处理通道是否充满紫蓝色的放电就可以直观的了解是否是低温等离子体了(需要注意的是不要将各种颜色的灯光当作电离子体放电)。如果在废气处理的通道上只零星的分布若干的放电点或线,则处理的效果是非常有限的,因为,大部分的(VOCs)气体没有进过低温等离子体处理区域。 (2)低温等离子体处理系统必须要有一定的放电处理功率。通常需要在2?5瓦时/米3。即1000米3/时的风量需要处理的电功率为2KW?5KW。如果号称1000 米3/时的风量只需要几十或几百瓦的电功率,则最多也就是静电(除尘)处理或局部处理而已。要想分解VOCs 没有一定的能量是不可能的。 等离子体技术目前采用的有四类技术,介质阻挡放电(双介质、单介质)、尖端放电(金属、纤维)、板式放电、微波放电,实际应用也有采用组合模式。

空气等离子切割机操作规程

等离子切割机安全操作规程 1.操作人员应遵守一般焊工安全操作规程。按规定穿戴好劳动防护用品。 2.操作人员必须经专门安全技术培训,经考试合格,取得特种作业操作资格证后,方能上岗操作。 3.设备附近禁止存放易燃易爆物品,并应备有消防器材。 4.严禁在切割机导轨、工作面放置物品。不得在上面敲打、校直和修整工件。 5.新工件程序输入后,应先试运行,确认无误后再投入运行。 6.开机前应检查导轨、齿条及床身。检查气路系统有泄漏,排放储气筒、油水分离器内积水和杂质。检查消耗品及割炬防撞碰装置。 7.开机后应手动低速X、Y方向开动机床,检查确认有无异常情况。 8.手动升降割炬,检查动作有无异常。 9.起动等离子发生器,根据材料厚度调整气压。 10.切割过程中,观察调高系统及除尘系统工作是否正常,有异常应立即停机处理,排除故障。 11.工作时,操作人员不得离开岗位,注意观察机床运行情况,以免切割机走出有效行程范围或两台发生碰撞造成事故。 12.在运行中设备发生报警和其他故障时,应立即停止运行,及时排除。 等离子切割机的等离子是什么意思? 将气体物质加热到一定的温度,这时构成分子的原子发生分裂,形成为独立的原子,如氮分子会分裂成两个氮原子,我们称这种过程为气体分子的离解.如果再进一步升高温度,原子中的电子就会从原子中剥离出来,成为带正电荷的原子核和带负电荷的电子,这个过程称为原子的电离.当这种电离过程频繁发生,使电子和离子的浓度达到一定的数值时,物质的状态也就起了根本的变化,它的性质也变得与气体完全不同.为区别于固体、液体和气体这三种状态,我们称物质的这种状态为物质的第四态,又起名叫等离子态. 在茫茫无际的宇宙空间里,等离子态是一种普遍存在的状态。宇宙中大部分发光的星球内部温度和压力都很高,这些星球内部的物质差不多都处于等离子态。只有那些昏暗的行星和分散的星际物质里才可以找到固态、液态和气态的物质。 就在我们周围,也经常看到等离子态的物质。在日光灯和霓虹灯的灯管里,在眩目的白炽电弧里,都能找到它的踪迹。另外,在地球周围的电离层里,在美丽的极光、大气中的闪光放电和流星的尾巴里,也能找到奇妙的等离子态。 等离子切割机是利用高温等离子电弧的热量使工件切口处的金属局部熔化(和蒸发),并借高速等离子的动量排除熔融金属以形成切口的一种加工方法。

低温等离子体技术介绍

技术介绍 --低温等离子体 低温等离子体是继固态、液态、气态之后的物质的第四态,当外加电压达到气体的着火电压时,气体被击穿,产生包括电子、各种离子、原子和自由基在内的混合体。放电过程中虽然电子温度很高,但重粒子温度很低,整个体系呈现低温状态,所以称为低温等离子体。低温等离子体降解污染物是利用这些高能电子、自由基等活性粒子和废气中的污染物作用,使污染物分子在极短的时间内发生分解,并发生后续的各种反应以达到分解污染物的目的。 “QHDD-Ⅱ”低温等离子体工业废气处理成套设备和技术作为一种新型的气态污染物的治理技术是一个集物理学、化学、生物学和环境科学于一体的交叉综合性电子化学技术,由于能很容易使污染物分子高效分解且处理能耗低等特点,是目前国内外大气污染治理中最富有前景、最行之有效的技术方法之一,其使用和推广前景广阔,为工业领域VOC类有机废气及恶臭气体的治理开辟了一条新的思路。 低温等离子体废气处理技术与其他废气治理方法优缺点对比 表1-2 几种废气处理工艺的适用范围及优缺点 工艺名称原理适用范围优点缺点 掩蔽法采用更强烈的芳香气味与臭气掺和,以掩蔽臭气,使之能被人接收适用于需立即、暂时地消除低浓度恶臭气体影响地场合,恶臭强度左右,无组织排放源可尽快消除恶臭影响,灵活性大,费用低恶臭成分并没有被去除,麻痹了对原有污染物的感知 热力燃烧法在高温下恶臭物质与燃料气充分混和,实现完全燃烧适用于处理高浓度、小气量的可燃性气体净化效率高,恶臭物质被彻底氧化分解设备易腐蚀,消耗燃料,处理成本高,易形成二次污染,催化剂中毒 催化燃烧法

水吸收法利用臭气中某些物质易溶于水的特性,使臭气成分直接与水接触,从而溶解于水达到脱臭目的水溶性、有组织排放源的恶臭气体工艺简单,管理方便,设备运转费用低产生二次污染,需对洗涤液进行处理;净化效率低,应与其他技术联合使用,对水溶性差的物质等处理效果差 药液吸收法利用臭气中某些物质和药液产生化学反应的特性,去除某些臭气成分适用于处理大气量、高中浓度的臭气能够有针对性处理某些臭气成分,工艺较成熟净化效率不高,消耗吸收剂,易形成而二次污染 吸附法利用吸附剂的吸附功能使恶臭物质由气相转移至固相适用于处理低浓度,高净化要求的恶臭气体净化效率很高,可以处理多组分恶臭气体吸附剂费用昂贵,再生较困难,要求待处理的恶臭气体有较低的温度和含尘量 生物滤池恶臭气体经过除尘增湿或降温等预处理工艺后,从滤床底部由下向上穿过由滤料组成的滤床,恶臭气体由气相转移至水—微生物混和相,通过固着于滤料上的微生物代谢作用而被分解掉目前研究最多,工艺最成熟,在实际中也最常用的生物脱臭方法,又可细分为土壤脱臭法、堆肥脱臭法、泥炭脱臭法等。净化效率高,处理费用低占地面积大,易堵塞,填料需定期更换,脱臭过程很难控制,受温度和湿度的影响大,生物菌培训需要较长时间,遭到破坏后恢复时间较长。 生物滴滤池原理同生物滤池式类似,不过使用的滤料是诸如聚丙烯小球、陶瓷、木炭、塑料等不能提供营养物的惰性材料。只有针对某些恶臭物质而降解的微生物附着在填料上,而不会出现生物滤池中混和微生物群同时消耗滤料有机质的情况池内微生物数量大,能承受比生物滤池大的污染负荷,惰性滤料可以不用更换,造成压力损失小,而且操作条件极易控制占地面积大,需不断投加营养物质,而且操作复杂,受温度和湿度的影响大,生物菌培训需要较长时间,遭到破坏后恢复时间较长。 洗涤式活性污泥脱臭法将恶臭物质和含悬浮物泥浆的混和液充分接触,使之在吸收器中从臭气中去除掉,洗涤液再送到反应器中,通过悬浮生长的微生物代谢活动降解溶解的恶臭物质有较大的适用范围可以处理大气量的臭气,同时操作条件易于控制,占地面积小设备费用大,操作复杂而且需要投加营养物质 曝气式活性污泥脱臭法将恶臭物质以曝气形式分散到含活性污泥的混和液中,通过悬浮生长的微生物降解恶臭物质适用范围广,目前日本已用于粪便处理场、污水处理厂的臭气处理活性污泥经过驯化后,对不超过极限负荷量的恶臭成分,去除率可达%以上。受到曝气强度的限制,该法的应用还有一定局限

等离子切割机的原理

等离子切割机原理 现代工业需要对重型金属以及合金进行加 工:日常活动所必需的工具及运输载体的制造都离 不开金属。例如,起重机、汽车、摩天大楼、机器人以及悬索桥都是由精确加工成型的金属零部件 构成的。原因很简单:金属材料非常坚固和耐久。 对于大多数制造而言,特别是在满足大型和/或坚 固性方面,金属材料自然成为合理的选择。 有趣的是金属材料的坚固性同时也是它的缺 点:由于金属非常不容易损坏,那么要将其加工成 特定的形状就非常困难。当人们需要加工一个大小和强度与飞机机翼一样的部件时,如何实现精确的切割与成型呢?绝大多数情况下,这都需要求助于 等离子切割机。尽管这听起来像是科幻小说中的东西,但实际上自第二次世界大战以来,等离子切割机就已有了广泛的应用。 理论上讲,一台等离子切割机的原理非常简单。它是通过操控现知宇宙中最普遍的物质形态之一进行加工的。本文中,我们将揭开等离子切割机神秘的面纱,看看这种最为神奇的工具是如何塑造我们周围的世界的 二战中,美国的工厂生产装甲、武器和飞机的速度比轴心国快5倍。这些都多亏了私营工业在大规模生产领域所做的巨大革新。如何更有效的切割和连接飞机的部件就引发了其中一部分技术革新。许多生产军用飞机的工厂采用了一种新的焊接方法,该方法涉及到惰性气体保护焊的使用。突破性的发现在于通过电流电解的气体可以在焊接点附近形成一道屏障,以防止氧化。该新方法使得焊缝更加整齐,连接结构的强度更坚固。二十世纪六十年代初,工程师们又有了新的发现。他们发现加快气流速度和缩小气孔有助于提高焊接温度。新的系统可以得到比任何商用焊机更高的温度。事实上,在这样的高温下,此工具并不再起到焊接的作用。相反,它更像是一把锯,切割坚韧的金属如同热刀切黄油一般。 等离子电弧的引入革命性地提高了切具的速度、准确性以及切割种类,并且可应用于各种金属。下一节,我们将介绍该系统背后的科学原理。 Torchmate CNC Cutting Systems 供图 工作中的等离子切割机

等离子原理说明

低温等离子体技术简介 低温等离子体是继固态、液态、气态之后的物质第四态,当外加电压达到气体的放电电压时,气体被击穿,产生包括电子、各种离子、原子和自由基在内的混合体。放电过程中虽然电子温度很高,但重粒子温度很低,整个体系呈现低温状态,所以称为低温等离子体。低温等离子体降解污染物是利用这些高能电子、自由基等活性粒子和废气中的污染物作用,使污染物分子在极短的时间内发生分解,并发生后续的各种反应以达到降解污染物的目的。 低温等离子体的产生途径很多,低温等离子体工业废气处理技术采用的放电形式为双介质阻挡放电 (Dielectric Barrier Discharge,简称DBD),该技术性能先进,运行稳定,获得广泛客户的认可。 装置示意图如图3-1所示。 介质阻挡放电是一种获得高气压下低温等离子体的放电方法,这种放电产生于两个电极之间。介质阻挡放电可以在0.1~10 105Pa的气压下进行,具有辉光放电的大空间均匀放电和电晕放电的高气压运行的特点。整个放电是由许多在空间和时间上随机分布的微放电构成,这些微放电的持续时间很短,一般在10ns量级。介质层对此类放电有两个主要作用:一是限制微放电中带电粒子的运动,使微放电成为一个个短促的脉冲;二是让微放电均匀稳定地分布在整个面状电极之间,防止火花放电。介质阻挡放电由于电极不直接与放电气体发生接触,从而避免了电极的腐蚀问题。 介质阻挡放电等离子体技术具有以下优点: ①介质阻挡放电产生的低温等离子体中,电子能量高,几乎可以和所有的恶臭气体 分子作用。 ②反应快,不受气速限制。 ③采用防腐蚀材料,电极与废气不直接接触,根本上解决了设备腐蚀问题。

低温等离子体在有机净化废气中的应用与进展介绍

低温等离子体技术在有机净化废气 中的应用与进展 姓名:xxx 专业:环境工程 班级:xxx 指导老师:xxx 2015年12月xx日

低温等离子体技术在净化有机废气中的应用与进展 摘要 随着现代工业的快速发展,工业三废的排放量与日俱增,尤其是挥发性有机废气(VOCs)的排放,挥发性有机废气种类繁多、毒性强、扩散面广,是继颗粒物、二氧化硫、氮氧化合物之后又一类不容忽视的大气污染物。传统的有机废气处理方法存在流程复杂、运行成本高、处理效率低下、易产生二次污染等问题。低温等离子体技术利用自由基、高能电子等活性粒子与有机废气分子发生一系列理化反应,使有害气体在短时间内迅速催化降解为CO2和H2O以及其他小分子化合物。低温等离子体技术工艺流程简单、开停方便、运行费用低、去除效率高,在治理上具有明显优势,是国内外目前的研究热点之一。本文综述了低温等离子体在催化剂处理挥发性有机废气方面的技术研究进展,并展望了等离子体技术在废气处理领域的发展方向。 关键词:低温等离子体;有机挥发性废气(VOCs);催化降解

1 引言 工农业生产过程不可避免地要排放挥发性有机废气(VOCs),这是污染环境、危害人类健康的重要来源[1-2]。挥发性有机废气排放到大气中会引起光化学烟雾、臭氧层破坏等环境问题;大部分的VOCs 还具有毒性、刺激性、甚至致癌作用,对人体健康造成严重的危害[3]。为了应对(VOCs)对环境的破坏以及对人体健康的威胁,挥发性有机废气处理技术迅速成为国内外的研究热点之一。 2 常用有机废气处理技术 目前国内外有多种技术用于处理挥发性有机废气,其中较为常见的方法有:燃烧法、冷凝法、吸收法、吸附法、生物法、低温等离子体法等。 2.1 燃烧法 通过燃烧将VOCs转化为无害物质的过程称为燃烧法[4]。燃烧法的原理是燃烧氧化作用及在高温下的热分解。因此,燃烧法只适用于处理可燃的或在高温下易分解的VOCs。 2.2 冷凝法 冷凝法处理VOCs是利用废气中的各组分饱和蒸汽压不同这一特点,采用降温、升压等方法,将气态的VOCs液化分离[5],但冷凝法不适用于低浓度废气的处理。 2.3 吸收法 吸收法的原理是吸收质(VOCs)与吸收剂(水、酸溶液、碱溶液等)发生化学反应从而达到吸收去除效果。当VOCs成分复杂需多段净化时,该方法便不再适用,并且该法设备易腐蚀,易形成二次污染[6]。 2.4 吸附法 吸附法是用多孔性固体活性炭、分子筛、交换树脂、硅胶、飞灰等吸附去除废气。吸附法对大部分VOCs均适用,一般作为其他方法的后续处理[7]。但是吸附法也有它的缺点投资高、吸附剂用量大、再生困难、能耗大、占地面积大等缺点。

精简的低温等离子体灭菌器的原理和过程

低温等离子体灭菌概述 一、概述及灭菌原理 消毒:消毒(disinfection)从医院除污染的意义上是指用化学的或物理的方法杀灭或消除传播媒介上的病原微生物,使之达到无传播感染水平的处理即不再有传播感染的危险。杀灭或清除医院内环境中和传播媒介上的病原微生物称之为“医院消毒”。 灭菌:灭菌是指杀灭或去除外环境中一切微生物的过程。包括致病性微生物和不致病的微生物,如细菌(含芽胞)、病毒、真菌(含孢子)等,一般认为不包括原虫和寄生虫卵,以及藻类。 灭菌是个绝对的概念,意为完全杀灭所处理微生物,经过灭菌处理的物品可以直接进入人体无菌组织内而不会引起感染,因此,灭菌是最彻底的消毒。然而事实上要达到这样的程度是困难的,因此国际上通用方法规定,灭菌过程必须使物品污染的微生物的存活概率减少到10-6 (灭菌保证水平),换句话说,要将目标微生物杀灭率达到99.9999%。 1、概述 等离子体(Plasma)是物质的第四态,它是正、负带电粒子、中性原子、他子所形成的一团物质。就像云一样的存在状态,具

有能量密度高、化学活性成分丰富的特点。利用待离子体这样的特点进行灭菌,效果非常明显。而且速度快。等离子体灭菌的关键技术是:灭菌腔体中等离子体必须均匀,不存在死角。有一定的能量要求。 2、等离子体的形成: 等离子体属于物理概念,是自然界中存在的一种物质状态(即固体、液体和气体之外的第四态)。低温等离子体的产生通常是在几帕到几百帕的真空环境下,利用特定电磁电场作用,使某些中性气体的分子产生连续不断的电离,形成带负电荷和等量带正电荷的离子相互共存的物质状态,当电离率与复合率达到平衡时,这种稳定存在的物质形态就称之为等离子体。 同一种物质的不同状态,表示这种物质中粒子所具有不同的能量,例如固体冰获得能量融化成水,水获得能量汽化成水蒸汽,水蒸汽在特定的物理条件下又可形成等离子体,由此可知等离子体是一种能量更高的物质聚集态。组成等离子体的不仅有分子和原子,还有许多带电粒子,其粒子的能量约从几eV(电子福特)到几千eV不等,因而,其具有特殊的理化性能,在与物质的相互作用中会产生许多特殊的物理和化学效应。例如:过氧化氢(双氧水)是普通的临床消毒液,但需要将器械完全浸泡2小时以上,才能达到高级消毒水平;而等离子体灭菌器将极少量双氧水(2~5ml/次)激发成过氧化氢等离子体,可在几十秒钟的时间内、35~45℃条件下将106cpu/片的枯草杆菌芽孢全部杀灭,达到

低温等离子体技术及其在环保领域的应用

Advances in Environmental Protection 环境保护前沿, 2014, 4, 136-145 Published Online August 2014 in Hans. https://www.wendangku.net/doc/989741408.html,/journal/aep https://www.wendangku.net/doc/989741408.html,/10.12677/aep.2014.44019 Non-Thermal Plasma Technique and Its Application in the Field of Environmental Protection Zhiwei Ding, Yunlong Xie*, Kai Yan, Hongjuan Xu, Yijun Zhong Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua Email: *xieyunlong@https://www.wendangku.net/doc/989741408.html, Received: May 24th, 2014; revised: Jun. 20th, 2014; accepted: Jun. 29th, 2014 Copyright ? 2014 by authors and Hans Publishers Inc. This work is licensed under the Creative Commons Attribution International License (CC BY). https://www.wendangku.net/doc/989741408.html,/licenses/by/4.0/ Abstract In the last thirty years, non-thermal plasma (NTP) technology has been developed for the envi-ronmental protection, which has been more and more widely used in air pollutants, especially in volatile organic compounds (VOCs), NO x, SO2, etc. This work systematically introduces the me-chanism of producing NTP and eliminating pollutants, and highlights its application to the treat-ment of air pollutants. Furthermore, the influencing factor of treatment efficiency of the NTP and the current research situation of the NTP combined with other technologies are further summa-rized and analyzed. At last, this paper puts forward a promising viewpoint to better use the Non-thermal Plasma technology. Keywords Non-Thermal Plasma (NTP), Air Pollution Treatment, Environmental Protection, Synergistic Effect 低温等离子体技术及其在环保领域的应用 丁志威,谢云龙*,颜凯,许红娟,钟依均 浙江师范大学先进催化材料教育部重点实验室,金华 Email: *xieyunlong@https://www.wendangku.net/doc/989741408.html, *通讯作者。

等离子切割机作业指导书

等离子切割机作业指导书 一、目的 为了便于员工规范操作,提高工作效率,满足生产需要,使设备能保持最佳的性能状态和延长使用寿命,确保生产的正常进行。 二、原理 利用等离子弧的高温、高能量、高密度、高速这些特性,使切割区的金属材料迅速熔化,并用普通压缩空气将金属熔渣吹离基体,完成切割过程。 三、焊接参数调整范围 四、切割准备工作 (1)操作准备 1)检查外接电源准确无误。 2)检查工件地线已夹持在工件上。

3)接通气源,排放积水。 4)检查电源开关在断位。 5)闭合电网供电总开关,此时风扇开始工作,注意检查风向,风应该朝里吹,否则因主变压器得不到通风冷却,会缩短工作时间。 6)将面板上的电源开关扳到“通”位,电源指示灯亮。此时应有压缩空气从割炬中流出。注意过滤减压阀压力表指针是否在0.2—0.4兆帕位置,若压力不符,应在气体流动的情况下,调节过滤减压阀压力表上部旋钮,顺时针转动为增加压力,反之则降低。 7)让气体流通数分钟,以除去焊炬中的冷凝水汽。 (2)切割操作 1)割炬与工件接触按下按钮即可切割。可以从工件边缘开始切割,板材厚度不大时,也可在工件任何一点开始切割。割炬可垂直于工件或向一侧略为倾斜,但在工件中间开口时,割炬应略向一侧倾斜,以便吹除熔化金属,割穿金属。 2)将手把按钮按下并保持主电路接通,同时高频振荡器工作,直至切割电弧形成,高频振荡器即停止工作。此后可依靠割炬的移动来进行切割。同时切割指示灯亮。 3)切割时必须割穿金属后方能均匀移动,否则将损坏喷咀。移动速度过快或过慢将影响切割质量。 4)切割气压的调整:切割气压过高,流量过大,将影响切割厚度。切割气压过小将将影响喷咀的使用寿命。 5)提起割炬离开工件前,必须送开手把按钮,此时等离子弧熄灭,切割过程停止。 6)切割过程中,因割炬离开工件超过2毫米而熄弧,则需重新起弧。 7)因连接工作时间太长造成主变压器温度超过110℃时,热控保护开关动作,设备将自动关闭,无法启动。应待变压器冷却后可重新启动。 8)经常排除过滤减压阀中的积水,即逆时针旋转最下部螺丝,排除积水后再拧紧。若压缩空气中含水量过多,应考虑过滤减压阀与气源间再外加一只过滤阀,否则将影响切割质量 9)未进行切割工件时,尽量少按动割炬按钮,以免损坏机件。

低温等离子体治理工业废气技术

低温等离子体治理工业废气技术 工业的高速发展,生活活动的不断增加,使得大气污染状况持续恶化成为目前全球十大环境问题之一。以往的机械过滤、液体吸附、固体吸附、静电吸附、催化转化、生物吸附等技术对大气污染的治理起着重要的作用。但随着污染物成分的复杂化、浓度增大,这些技术的效率低、二次污染、腐蚀设备、工艺复杂、投资大、运行费用高等缺点逐渐显露出来。而低温等离子体催化协同技术作为国际环境科技领域内的尖端技术,在降解处理有毒有害废气方面显示了其能耗低、投资少、运行费用低、处理效率高、无二次污染的显著优点。 低温等离子体催化技术的作用机理 应用低温等离子体技术处理大气污染是目前世界公认的治理废气的有效方法。其原理为:在外加电场的作用下,介质放电产生的等离子体中大量的活性电子、离子等轰击污染物分子,使其电离、解离和激发,在内置催化剂的协同作用下,引发了一系列复杂的物理、化学反应,打开污染物分子之间的分子键,使复杂大分子污染物转变为简单小分子安全物质(如二氧化碳和水),或使有毒有害物质转变为无毒无害或低毒低害物质,并能有效地清除病毒和细菌,从而使污染物得以降解去除。 低温等离子体催化技术的技术特点 用该项技术处理大气污染具有以下优点: 1) 能耗低。可在室温下与催化剂反应,无需加热,极大地节约了能源,从而使成本大为降低 2) 无需外加原料,运行费用低。 3) 不产生副产物。催化剂可选择性地降解等离子体反应中所产生的副产物;能实现无害资源化处理,无二次污染。 4) 设备使用便利,运行可靠。集散控制,维护简便。 5) 尤其适于处理有气味及大风量的气体。 低温等离子体催化技术在大气污染治理中的应用 1 总悬浮颗粒、飘尘的净化 低温等离子体技术作为一种高效、新型的除尘技术,实现了除尘、脱硫、脱硝一体化。其除尘原理是:通过电晕放电产生的低温等离子体,其中的电子和离子在梯度场的作用下和废气中的颗粒物相互碰撞并附着在这些粒子上,使之成为荷电粒子,在电场力作用下向收尘极(又称集尘极)运动并在收尘极上沉积,从而达到除尘的目的。 2 脱硫、脱硝技术 在工业废气中,对环境影响最为严重的污染物是硫氧化物和氮氧化物。该技术利用高压脉冲电源产生的高能电子,激活燃煤烟气中的二氧化硫和氮氧化物,同时加入氨(NH3)作为反应剂,生成硫酸铵((NH4)2SO4)和硝酸铵(NH4N03)肥料与传统的化学方法相比,该技术具有成本较低、无二次污染,可同时脱硫、脱硝,形成的副产品--化肥可回收利用等优点,并且可以与静电除尘器等结合,有较好的应用前景。

相关文档