文档库 最新最全的文档下载
当前位置:文档库 › 各种接口说明

各种接口说明

各种接口说明
各种接口说明

视频基础知识

目前,国内外各个视频会议生产厂家都陆续推出了自己的各种高清或超清产品,都在不遗余力的宣传图像分辨率。但是,要达到高清/超清的视频会议,单单有720p或者1080p的图像分辨率是不够的。视频会议作为多媒体的一种应用,整个系统涉及到前端视频采集、图像的编码能力、高质量的网络传输、高清晰的视频显示设备。另外,如果我们在观看高清晰视频图像的时候,不能得到一个更清晰、连续的音频效果,那么这个过程实际上就没有任何意义,所以高质量音频的重要性完全不亚于视频。所以在高清或者超清的视频会议中有几个关键的知识点需要了解:高清的视频分辨率、高清视频显示设备的接口、高质量的音频传输接口、高质量的音频。技术的发展都是循序渐进的过程,在本文档中不但列出了高清视频的相关术语,还把非高清视频系统中的相关术语也一并列出,这样会有一个很直观的比较过程。

1视频接口

我们经常在家里的电视机、各种播放器上,视频会议产品和监控产品的编解码器的视频输入/输出接口上看到很多视频接口,这些视频接口哪些是模拟接口、哪些是数字接口,哪些接口可以传输高清图像等,下面就做一个详细的介绍。

目前最基本的视频接口是复合视频接口、S-vidio接口;另外常见的还有色差接口、VGA接口、DVI接口、HDMI 接口、SDI接口。

1.1复合视频接口

1.1.1接口图

1.1.2说明

复合视频接口也叫AV接口或者Video接口,是目前最普遍的一种视频接口,几乎所有的电视机、影碟机类产品都有这个接口。

它是音频、视频分离的视频接口,一般由三个独立的RCA插头(又叫梅花接口、RCA接口)组成的,其中的V接

口连接混合视频信号,为黄色插口;L接口连接左声道声音信号,为白色插口;R接口连接右声道声音信号,为

红色插口。

1.1.3评价

它是一种混合视频信号,没有经过RF射频信号调制、放大、检波、解调等过程,信号保真度相对较好。图像品质

影响受使用的线材影响大,分辨率一般可达350-450线,不过由于它是模拟接口,用于数字显示设备时,需要一

个模拟信号转数字信号的过程,会损失不少信噪比,所以一般数字显示设备不建议使用。

1.2S-Video接口

1.2.1接口图

1.2.2说明

S接口也是非常常见的接口,其全称是Separate Video,也称为SUPER VIDEO。S-Video连接规格是由日本人开发的一种规格,S指的是“SEPARATE(分离)”,它将亮度和色度分离输出,避免了混合视讯讯号输出时亮度和色度的相互干扰。S接口实际上是一种五芯接口,由两路视亮度信号、两路视频色度信号和一路公共屏蔽地线共五条芯线组成。

1.2.3评价

同AV 接口相比,由于它不再进行Y/C混合传输,因此也就无需再进行亮色分离和解码工作,而且使用各自独立的传

输通道在很大程度上避免了视频设备内信号串扰而产生的图像失真,极大地提高了图像的清晰度。但S-Video 仍要将两路色差信号(Cr Cb)混合为一路色度信号C,进行传输然后再在显示设备内解码为Cb和Cr进行处理,这样多少仍会带来一定信号损失而产生失真(这种失真很小但在严格的广播级视频设备下进行测试时仍能发现) 。而且由于Cr Cb 的混合导致色度信号的带宽也有一定的限制,所以S-Video虽然已经比较优秀,但离完美还相去甚远。S-Video虽不是最好的,但考虑到目前的市场状况和综合成本等其它因素,它还是应用最普遍的视频接口之一。

1.3YPbPr /YCbCr色差接口

1.3.1接口图

1.3.2说明

色差接口是在S接口的基础上,把色度(C)信号里的蓝色差(b)、红色差(r)分开发送,其分辨率可达到600

线以上。它通常采用YPbPr 和YCbCr两种标识,前者表示逐行扫描色差输出,后者表示隔行扫描色差输出。现在

很多电视类产品都是靠色差输入来提高输入讯号品质,而且透过色差接口,可以输入多种等级讯号,从最基本的

480i到倍频扫描的480p,甚至720p、1080i等等,都是要通过色差输入才有办法将信号传送到电视当中。

1.3.3评价

由电视信号关系可知,我们只需知道Y、Cr、Cb的值就能够得到G(绿色)的值,所以在视频输出和颜色处理过程

中就统一忽略绿色差Cg而只保留Y Cr Cb,这便是色差输出的基本定义。作为S-Video的进阶产品,色差输出将

S-Video传输的色度信号C分解为色差Cr和Cb,这样就避免了两路色差混合译码并再次分离的过程,也保持了色度信道的最大带宽,只需要经过反矩阵译码电路就可以还原为RGB三原色信号而成像,这就最大限度地缩短了视频源到显示器成像之间的视频信号信道,避免了因繁琐的传输过程所带来的影像失真,所以色差输出的接口方式是目前最好模拟视频输出接口之一。

1.4VGA接口

1.4.1接口图

1.4.2说明

VGA接口也叫D-Sub接口。VGA接口是一种D型接口,上面共有15针,分成三排,每排五个。VGA接口是显卡上应用最为广泛的接口类型,绝大多数的显卡都带有此种接口。迷你音响或者家庭影院拥有VGA接口就可以方便的和计算机的显示器连接,用计算机的显示器显示图像。

1.4.3评价

VGA接口传输的仍然是模拟信号,对于以数字方式生成的显示图像信息,通过数字/模拟转换器转变为R、G、B三原色信号和行、场同步信号,信号通过电缆传输到显示设备中。对于模拟显示设备,如模拟CRT显示器,信号被直接送到相应的处理电路,驱动控制显像管生成图像。而对于LCD、DLP等数字显示设备,显示设备中需配置相应的A/D(模拟/数字)转换器,将模拟信号转变为数字信号。在经过D/A和A/D二次转换后,不可避免地造成了一些图像细节的损失。VGA接口应用于CRT显示器无可厚非,但用于数字电视之类的显示设备,则转换过程的图像损失会使显示效果略微下降。

1.5DVI接口

1.5.1接口图

目前的DVI接口分为两种:

一个是DVI-D接口,只能接收数字信号,接口上只有3排8列共24个针脚,其中右上角的一个针脚为空。不兼容模拟信号。

另外一种则是DVI-I接口,可同时兼容模拟和数字信号。兼容模拟幸好并不意味着模拟信号的接口D-Sub接口可以连接在DVI-I接口上,而是必须通过一个转换接头才能使用,一般采用这种接口的显卡都会带有相关的转换接头。

1.5.2说明

DVI全称为Digital Visual Interface,它是1999年由Silicon Image、Intel(英特尔)、Compaq(康柏)、IBM、HP(惠普)、NEC、Fujitsu(富士通)等公司共同组成DDWG(Digital Display Working Group,数字显示工作组)推出的接口标准。它是以Silicon Image公司的PanalLink接口技术为基础,基于TMDS (Transition Minimized Differential Signaling,最小化传输差分信号)电子协议作为基本电气连接。

TMDS是一种微分信号机制,可以将象素数据编码,并通过串行连接传递。显卡产生的数字信号由发送器按照TMDS协议编码后通过TMDS通道发送给接收器,经过解码送给数字显示设备。一个DVI显示系统包括一个传送器和一个接收器。传送器是信号的来源,可以内建在显卡芯片中,也可以以附加芯片的形式出现在显卡PCB上;而接收器则是显示器上的一块电路,它可以接受数字信号,将其解码并传递到数字显示电路中,通过这两者,显卡发出的信号成为显示器上的图象。

1.5.3评价

显示设备采用DVI接口具有主要有以下两大优点:

1、速度快

DVI传输的是数字信号,数字图像信息不需经过任何转换,就会直接被传送到显示设备上,因此减少了数字→模拟→数字繁琐的转换过程,大大节省了时间,因此它的速度更快,有效消除拖影现象,而且使用DVI进行数据传输,信号没有衰减,色彩更纯净,更逼真。

2、画面清晰

计算机内部传输的是二进制的数字信号,使用VGA接口连接液晶显示器的话就需要先把信号通过显卡中的D/A(数字/模拟)转换器转变为R、G、B三原色信号和行、场同步信号,这些信号通过模拟信号线传输到液晶内部还需要相应的A/D(模拟/数字)转换器将模拟信号再一次转变成数字信号才能在液晶上显示出图像来。在上述的D/A、A/D转换和信号传输过程中不可避免会出现信号的损失和受到干扰,导致图像出现失真甚至显示错误,而DVI接口无需进行这些转换,避免了信号的损失,使图像的清晰度和细节表现力都得到了大大提高。

1.6SDI接口

1.6.1接口图

1.6.2说明

SDI接口是“数字分量串行接口”。

串行接口是把数据的各个比特以及相应的数据通过单一通道顺序传送的接口。由于串行数字信号的数据率很高,在传送前必须经过处理。用扰码的不归零倒置(NRZI)来代替早期的分组编码,其标准为SMPTE-259M

和EBU-Tech-3267,标准包括了含数字音频在内的数字复合和数字分量信号。在传送前,对原始数据流进行

扰频,并变换为NRZI码,确保在接收端可靠地恢复原始数据。这样在概念上可以将数字串行接口理解为一

种基带信号调制。SDI接口能通过270Mb/s的串行数字分量信号,对于16:9格式图像,应能传送360Mb/s

的信号。

1.6.3评价

SDI接口不能直接传送压缩数字信号,数字录像机、硬盘等设备记录的压缩信号重放后,必须经解压并经SDI 接口输出才能进入SDI系统。如果反复解压和压缩,必将引起图像质量下降和延时增加,为此各种不同格式的数字录像机和非线性编辑系统,规定了自己的用于直接传输压缩数字信号的接口。(a)索尼公司的串行数字数据接口SDDI(SerialDigital Data Interface),用于Betacam-SX非线性编辑或数字新闻传输系统,通过这种接口,可以4倍速从磁带上载到磁盘。(b)索尼公司的4倍速串行数字接口QSDI(QuarterSerial Digital Interface),在DVCAM录像机编辑系统中,通过该接口以4倍速从磁带上载到磁盘、从磁盘下载到磁带或在盘与盘之间进行数据拷贝。(c)松下公司的压缩串行数字接口CSDI(CompressionSerial Digital Interface),用于DVCPRO和Digital-S数字录像机、非线性编辑系统中,由带基到盘基或盘基之间可以4倍速传输数据。

以上三种接口互不兼容,但都与SDI接口兼容。在270Mb/s的SDI系统中,可进行高速传输。这三种接口是为建立数字音视频网络而设计的,这类网络不象计算机网络那样使用握手协议,而使用同步网络技术,不会因路径不同而出现延时。

人们常在SDI信号中嵌入数字音频信号,也就是将数字音频信号插入到视频信号的行、场同步脉冲(行、场消隐)期间与数字分量视频信号同时传输。

1.7HDMI接口

1.7.1接口图

1.7.2说明

HDMI的英文全称是“High Definition Multimedia”,中文的意思是高清晰度多媒体接口。HDMI接口可以提供高达5Gbps的数据传输带宽,可以传送无压缩的音频信号及高分辨率视频信号。同时无需在信号传送前进行数/模或者模/数转换,可以保证最高质量的影音信号传送。应用HDMI的好处是:只需要一条HDMI线,便可以同时传送影音信号,而不像现在需要多条线材来连接;同时,由于无线进行数/模或者模/数转换,能取得更高的音频和视频传输质量。对消费者而言,HDMI技术不仅能提供清晰的画质,而且由于音频/视频采用同一电缆,大大简化了家庭影院系统的安装。

1.7.3评价

2002年的4月,日立、松下、飞利浦、Silicon Image、索尼、汤姆逊、东芝共7家公司成立了HDMI组织开始制定新的专用于数字视频/音频传输标准。2002年岁末,高清晰数字多媒体接口(High-definition Digital Multimedia Interface)HDMI 1.0标准颁布。与DVI相比,HDMI可以传输数字音频信号,并增加了对HDCP的支持,同时提供了更好的DDC可选功能。HDMI支持5Gbps的数据传输率,最远可传输15米,足

以应付一个1080p的视频和一个8声道的音

频信号。而因为一个1080p的视频和一个8

声道的音频信号需求少于4GB/s,因此HDMI

还有很大余量。这允许它可以用一个电缆分

别连接DVD播放器,接收器和PRR。此外HDMI

支持EDID、DDC2B,因此具有HDMI的设备

具有“即插即用”的特点,信号源和显示设

备之间会自动进行“协商”,自动选择最合

适的视频/音频格式。

HDMI在针脚上和DVI兼容,只是采用了不同的封装:HDMI to DVI-D转接头:

HDMI to DVI-D转接线:

1.8IEEE1394接口

1.8.1接口图

1.8.2说明

IEEE 1394也称为火线或iLink,它能够传输数字视频和音频及机器控制信号,具有较高的带宽,且十分稳

定。通常它主要用来连接数码摄像机、DVD录像机等设备。IEEE 1394接口有两种类型:6针的六角形接口

和4针的小型四角形接口。6针的六角形接口可向所连接的设备供电,而4针的四角形接口则不能。

1.8.3评价

它的设计初衷是成为电子设备(包括便携式摄像机、个人电脑、数字电视机、音/视频接收器、DVD播放机、打印机等)之间的一个通用连接接口。1394电缆可以传输不同类型的数字信号,包括视频、音频、数码音响、设备控制命令和计算机数据。IEEE 1394主要的性能特点如下:

数字接口:数据能够以数字形式传输,不需要模数转换,从而降低了设备的复杂性,保证了信号的质量。

热插拔:即系统在全速工作时,IEEE 1394设备也可以插入或拆除,用户会发现,增添一个1394器件,就像将电源线插入其电气插座中一样容易。

1.9BNC接口

1.9.1接口图

1.9.2说明

BNC接口是指同轴电缆接口,BNC接口用于75欧同轴电缆连接用,提供收(RX)、发(TX)两个通道,它用于非平衡信号的连接。

1.9.3评价

BNC(同轴电缆卡环形接口)接口主要用于连接高端家庭影院产品以及专业视频设备。BNC电缆有5个连接头,分别接收红、绿、蓝、水平同步和垂直同步信号。BNC接头可以让视频信号互相间干扰减少,可达到最佳信号响应效果。此外,由于BNC接口的特殊设计,连接非常紧,不必担心接口松动而产生接触不良。

2音频接口

除了高清视频带来的视觉上的冲击,音频方面质量也有很大提高,能给大家带来更逼真的现场效果。对于目前经常提到的音频接口做一个说明。

2.1RCA模拟音频

RCA接头就是常说的莲花头,利用RCA线缆传输模拟信号是目前最普遍的音频连接方式。每一根RCA线缆负责传输一个声道的音频信号,所以立体声信号,需要使用一对线缆。对于多声道系统,就要根据实际的声道数量配以相同数量的线缆。立体声RCA音频接口,一般将右声道用红色标注,左声道则用蓝色或者白色标注。

2.2平衡模拟音频

大三芯插头

XLR接口

与RCA模拟音频线缆直接传输声音的方式完全不同,平衡模拟音频(Balanced Analog Audio)接口使用两个通道分别传送信号相同而相位相反的信号。接收端设备将这两组信号相减,干扰信号就被抵消掉,从而获得高质量的模拟信号。平衡模拟音频通常采用XLR接口和大三芯接口。XLR俗称卡侬头,有三针插头和锁定装置组成。由于采用了锁定装置,XLR连接相当牢靠。大三芯接口则采用直径为6.35毫米的插头,其优点是耐磨损,适合反复插拔。平衡模拟音频连接主要出现在高级模拟音响器材或专业音频设备上。

2.3S/PDIF

S/PDIF(Sony/Philips Digital Interface,索尼和飞利浦数字接口)是由SONY公司与PHILIPS公司联合制定的一种数字音频输出接口。该接口广泛应用在CD播放机、声卡及家用电器等设备上,能改善CD的音质,给我们更纯正的听觉效果。该接口传输的是数字信号,所以不会像模拟信号那样受到干扰而降低音频质量。需要注意的是,S/PDIF接口是一种标准,同轴数字接口和光线接口都属于S/PDIF接口的范畴。

2.4数字同轴

数字同轴(Digital Coaxial)是利用S/PDIF接口输出数字音频的接口。同轴线缆有两个同心导体,导体和屏蔽层共用同一轴心。同轴线缆是由绝缘材料隔离的铜线导体,阻抗为75欧姆,在里层绝缘材料的外

部是另一层环形导体及其绝缘体,整个电缆由聚氯乙烯或特氟纶材料的护套包住。同轴电缆的优点是阻抗稳定,传输带宽高,保证了音频的质量。虽然同轴数字线缆的标准接头为BNC接头,但市面上的同轴数字线材多采用RCA接头。

2.5光纤

光纤(Optical)以光脉冲的形式来传输数字信号,其材质以玻璃或有机玻璃为主。光纤同样采用S/PDIF接口输出,其是带宽高,信号衰减小,常常用于连接DVD播放器和AV功放,支持PCM数字音频信号、Dolby 以及DTS音频信号。

2.6凤凰头

凤凰头也经常被用来作为音频的输入和输出端口。

3视频分辨率

3.1CIF

CIF是常用的标准化图像格式(Common Intermediate Format)。在H.323协议簇中,规定了视频采集设备

的标准采集分辨率。CIF = 352×288像素。

CIF格式具有如下特性:

(1) 电视图像的空间分辨率为家用录像系统(Video Home System,VHS)的分辨率,即352×288。

(2) 使用非隔行扫描。

(3) 使用NTSC帧速率,30幅/秒。

(4) 使用1/2的PAL水平分辨率,即288线。

(5) 对亮度和两个色差信号(Y、Cb和Cr)分量分别进行编码,它们的取值范围同ITU-R BT.601。即黑色=16,白色=235,色差的最大值等于240,最小值等于16。

下面为5种CIF 图像格式的参数说明。

sub-QCIF 128×96

QCIF 176×144

CIF 352×288

4CIF 704×576

9CIF 1056×864

16CIF 1408×1152

目前在视频会议行业中使用CIF、4CIF,而在监控行业中使用CIF、HALF D1、D1等几种分辨率。

3.2DCIF

在视频监控中,经过研究发现一种更为有效的监控视频编码分辨率(DCIF),其像素为528×384。DCIF

分辨率的是视频图像来历是将奇、偶两个HALF D1,经反隔行变换,组成一个D1(720*576),D1作边界

处理,变成4CIF(704×576),4CIF经水平3/4缩小、垂直2/3缩小,转换成528×384。528×384的像

素数正好是CIF像素数的两倍,为了与常说的2CIF(704*288)区分,我们称之为DOUBLE CIF,简称DCIF。

显然,DCIF在水平和垂直两个方向上,比Half D1更加均衡。

3.3Dx系列/720p/1080p

Dx系列是数字电视系统显示格式的标准,共分为如下五种规格。我们经常说的高清视频、超高清视频的720p

和1080p也是数字电视系统的显示格式。

D1:480i格式(525i):720×480(水平480线,隔行扫描),和NTSC模拟电视清晰度相同,行频为15.25kHz,

相当于我们所说的4CIF(720×576)。

D2:480p格式(525p):720×480(水平480线,逐行扫描),较D1隔行扫描要清晰不少,和逐行扫描DVD规格相同,行频为31.5kHz。

D3:1080i格式(1125i):1920×1080(水平1080线,隔行扫描),高清采用最多的一种分辨率,分辨率为1920×1080i/60HZ,行频为33.75kHz。

D4:720p格式(750p):1280×720(水平720线,逐行扫描),虽然分辨率较D3要低,但是因为逐行扫描,市面上更多人感觉相对于1080i(实际逐次540线)视觉效果更加清晰。在最大分辨率达到1920×1080的情况下,D3要比D4感觉更加清晰,尤其是文字表现力上,分辨率为1280×720p/60HZ,行频为45kHz。

D5:1080p格式(1125p):1920×1080(水平1080线,逐行扫描),目前民用高清视频的最高标准,分辨率为1920×1080p/60HZ,行频为67.5KHZ。

其中D1 和D2标准是我们一般模拟电视的最高标准,并不能称的上高清晰,D3的1080i标准是高清晰电视的基本标准,它可以兼容720p格式,而D5的1080p只是专业上的标准,并不是民用级别的,上面所给出的60HZ 只是理想状态下的场频,而它的行频为67.5KHZ,目前还没有如此高行频的电视问世,实际在专业领域里1080p 的场频只有24HZ,25HZ和30HZ。

需要指出的一点是,DVI接口是日本独有的特殊接口,国内电视几乎没有带这种接口的,最多的是色差接口,而色差接口最多支持到D4,理论上肯定没有HDMI(纯数字信号,支持到1080p)的最高清晰度高,但在1920×1080以下分辨率的电视机上,一般也没有很大差别。

4音频技术

视频通讯过程是视频和音频的实时双向完整通讯过程。在这个过程中我们为了获得高清晰视频图像,有时却忽略了另外一个重要的过程——音频通讯过程。如果我们在观看高清晰视频图像的时候,不能得到一个更清晰、连续的音频效果。那么这个过程实际上就没有任何意义,所以其重要性甚至超过视频。在传统的视频会议系统中音频技术发展极其缓慢,原因在于目前应用于视频通讯的音频编解码压缩标准都是为了保持传输时的低带宽占用和较高的编解码效率,从而将音频信号的采样频率、采样精度和采样范围指标做了极大的降低,使得所能提供的音频清晰度和还原性都有很大程度上的衰减。与用于存储和回放非实时压缩协议的标准(如OGG、MP3等)相比,音频的保真度非常低。这样就在某种程度上对现场声音的还原达不到要求。目前传统视频通讯过程中主要采用的是G.711、G.722、G.722.1、G.728等音频标准,音频宽度仅有50Hz-7KHz单声道,而人耳所能感知的自然界的频响能力可以达到20Hz-20KHz,因此,在对现场环境音的还原过程中过多的音频信息的丢失造成了无法真实表现现场情况。所以在高清晰视频通讯过程中我们势必要有一种相辅助的音频处理方式解决此问题。使整个高清晰通讯过程更去近于完美。

目前国际上对音频处理技术上标准较多,在对下一代实时交互音频处理上可以采用MPEG-1 Layer 2或AAC系列音频,对选用标准的原则是,音频频响范围要达到22KHz,这样就几乎可以覆盖了人耳听觉的全部范围,甚至在高频方面还有所超越,能够使现场音频得到真实自然的还原,并且在还原时可以采用双声道立体声回放,使整个视频通讯的声音有更强的临近感,达到CD级音质。同时在对链路带宽的适应和编解码效率上达到最佳。下面是各种音频编码标准的说明:

4.1G.711

类型:Audio

制定者:ITU-T

所需频宽:64Kbps

特性:算法复杂度小,音质一般

优点:算法复杂度低,压缩比小(CD音质>400kbps),编解码延时最短(相对其它技术)

缺点:占用的带宽较高

备注:70年代CCITT公布的G.711 64kb/s脉冲编码调制PCM。

4.2G.721

制定者:ITU-T

所需带宽:32Kbps

音频频宽:3.4KHZ

特性:相对于PCMA和PCMU,其压缩比较高,可以提供2:1的压缩比。

优点:压缩比大

缺点:声音质量一般

备注:子带ADPCM(SB-ADPCM)技术。G.721标准是一个代码转换系统。它使用ADPCM转换技术,实现64 kb/s A律或μ律PCM速率和32 kb/s速率之间的相互转换。

4.3G.722

制定者:ITU-T

所需带宽:64Kbps

音频宽度:7KHZ

特性:G722能提供高保真的语音质量

优点:音质好

缺点:带宽要求高

备注:子带ADPCM(SB-ADPCM)技术

4.4G.722.1

制定者:ITU-T

所需带宽:32Kbps/24Kbps

音频宽度:7KHZ

特性:可实现比G.722 编解码器更低的比特率以及更大的压缩。目标是以大约一半的比特率实现 G.722 大致相当的质量。

优点:音质好

缺点:带宽要求高

备注:目前大多用于电视会议系统。

4.5G.722.1附录C

制定者:ITU-T

所需带宽:48Kbps/32Kbps/4Kbps

音频宽度:14KHZ

特性:采用自Polycom 的Siren?14 专利算法,与早先的宽频带音频技术相比具有突破性的优势,提供了低时延的14 kHz 超宽频带音频,而码率不到MPEG4 AAC-LD 替代编解码器的一半,同时要求的运算能力仅为十分之一到二十分之一,这样就留出了更多的处理器周期来提高视频质量或者运行因特网应用程序,并且移动设备上的电池续航时间也可延长。

优点:音质更为清晰,几乎可与CD 音质媲美,在视频会议等应用中可以降低听者的疲劳程度。

缺点:是Polycom的专利技术。

备注:目前大多用于电视会议系统

4.6G.723(低码率语音编码算法)

制定者:ITU-T

所需带宽:5.3Kbps/6.3Kbps

音频宽度:3.4KHZ

特性:语音质量接近良,带宽要求低,高效实现,便于多路扩展,可利用C5402片内16kRAM实现53coder。达到ITU-TG723要求的语音质量,性能稳定。可用于IP电话语音信源编码或高效语音压缩存储。

优点:码率低,带宽要求较小。并达到ITU-TG723要求的语音质量,性能稳定。

缺点:声音质量一般

备注:G.723语音编码器是一种用于多媒体通信,编码速率为5.3kbits/s和6.3kbit/s的双码率编码方案。

G.723标准是国际电信联盟(ITU)制定的多媒体通信标准中的一个组成部分,可以应用于IP电话等系统中。其中,5.3kbits/s码率编码器采用多脉冲最大似然量化技术(MP-MLQ),6.3kbits/s码率编码器采用代数码激励线性预测技术。

4.7G.723.1(双速率语音编码算法)

制定者:ITU-T

所需带宽:5.3Kbps(22.9)

音频宽度:3.4KHZ

特性:能够对音乐和其他音频信号进行压缩和解压缩,但它对语音信号来说是最优的。G.723.1采用了执行不连续传输的静音压缩,这就意味着在静音期间的比特流中加入了人为的噪声。除了预留带宽之外,这种技术使发信机的调制解调器保持连续工作,并且避免了载波信号的时通时断。

优点:码率低,带宽要求较小。并达到ITU-TG723要求的语音质量,性能稳定,避免了载波信号的时通时断。缺点:语音质量一般

备注:G.723.1算法是ITU-T建议的应用于低速率多媒体服务中语音或其它音频信号的压缩算法,其目标应用系统包括H.323、H.324等多媒体通信系统。目前该算法已成为IP电话系统中的必选算法之一。

4.8G.728

制定者:ITU-T

所需带宽:16Kbps/8Kbps

音频宽度:3.4KHZ

特性:用于IP电话、卫星通信、语音存储等多个领域。G.728是一种低时延编码器,但它比其它的编码器都复杂,这是因为在编码器中必须重复做50阶LPC分析。G.728还采用了自适应后置滤波器来提高其性能。

优点:后向自适应,采用自适应后置滤波器来提高其性能

缺点:比其它的编码器都复杂

备注:G.728 16kb/s短延时码本激励线性预测编码(LD-CELP)。1996年ITU公布了G.728 8kb/s的CS-ACELP 算法,可以用于IP电话、卫星通信、语音存储等多个领域。16 kbps G.728低时延码激励线性预测。

G.728是低比特线性预测合成分析编码器(G.729和G.723.1)和后向ADPCM编码器的混合体。G.728是LD-CELP编码器,它一次只处理5个样点。对于低速率(56~128 kbps)的综合业务数字网(ISDN)可视电话,G.728是一种建议采用的语音编码器。由于其后向自适应特性,因此G.728是一种低时延编码器,但它比其它的编码器都复杂,这是因为在编码器中必须重复做50阶LPC分析。G.728还采用了自适应后置滤波器来提高其性能。

4.9G.729

制定者:ITU-T

所需带宽:8Kbps

音频宽度:3.4KHZ

特性:在良好的信道条件下要达到长话质量,在有随机比特误码、发生帧丢失和多次转接等情况下要有很好的稳健性等。这种语音压缩算法可以应用在很广泛的领域中,包括IP电话、无线通信、数字卫星系统和数字专用线路。

G.729算法采用“共轭结构代数码本激励线性预测编码方案”(CS-ACELP)算法。这种算法综合了波形编码和参数编码的优点,以自适应预测编码技术为基础,采用了矢量量化、合成分析和感觉加权等技术。

G.729编码器是为低时延应用设计的,它的帧长只有10ms,处理时延也是10ms,再加上5ms的前视,这就使得G.729产生的点到点的时延为25ms,比特率为8 kbps。

优点:语音质量良,应用领域很广泛,采用了矢量量化、合成分析和感觉加权,提供了对帧丢失和分组丢失的隐藏处理机制。

缺点:在处理随机比特错误方面性能不好。

备注:国际电信联盟(ITU-T)于1995年11月正式通过了G.729。ITU-T建议G.729也被称作“共轭结构代数码本激励线性预测编码方案”(CS-ACELP),它是当前较新的一种语音压缩标准。G.729是由美国、法国、日本和加拿大的几家著名国际电信实体联合开发的。

4.10G.729A

制定者:ITU-T

所需带宽:8Kbps(34.4)

音频宽度:3.4KHZ

特性:复杂性较G.729低,性能较G.729差。

优点:语音质量良,降低了计算的复杂度以便于实时实现,提供了对帧丢失和分组丢失的隐藏处理机制

缺点:性能较G.729差

备注:96年ITU-T又制定了G.729的简化方案G.729A,主要降低了计算的复杂度以便于实时实现,因此目前使用的都是G.729A。

4.11MPEG-1 audio layer 1

制定者:MPEG

所需带宽:384kbps(压缩4倍)

音频宽度:

特性:编码简单,用于数字盒式录音磁带,2声道,VCD中使用的音频压缩方案就是MPEG-1层Ⅰ。

优点:压缩方式相对时域压缩技术而言要复杂得多,同时编码效率、声音质量也大幅提高,编码延时相应增加。可以达到“完全透明”的声音质量(EBU音质标准)

缺点:频宽要求较高

备注:MPEG-1声音压缩编码是国际上第一个高保真声音数据压缩的国际标准,它分为三个层次:

--层1(Layer 1):编码简单,用于数字盒式录音磁带

--层2(Layer 2):算法复杂度中等,用于数字音频广播(DAB)和VCD等

--层3(Layer 3):编码复杂,用于互联网上的高质量声音的传输,如MP3音乐压缩10倍

4.12MPEG-1 audio layer 2,即MP2

制定者:MPEG

所需带宽:256~192kbps(压缩6~8倍)

音频宽度:

特性:算法复杂度中等,用于数字音频广播(DAB)和VCD等,2声道,而MUSICAM由于其适当的复杂程

度和优秀的声音质量,在数字演播室、DAB、DVB等数字节目的制作、交换、存储、传送中得到广泛应

用。

优点:压缩方式相对时域压缩技术而言要复杂得多,同时编码效率、声音质量也大幅提高,编码延时相

应增加。可以达到“完全透明”的声音质量(EBU音质标准)

缺点:

备注:同MPEG-1 audio layer 1

4.13MPEG-1 audio layer 3(MP3)

制定者:MPEG

所需带宽:128~112kbps(压缩10~12倍)

音频宽度:

特性:编码复杂,用于互联网上的高质量声音的传输,如MP3音乐压缩10倍,2声道。MP3是在综合MUSICAM 和ASPEC的优点的基础上提出的混合压缩技术,在当时的技术条件下,MP3的复杂度显得相对较高,编码不利于实时,但由于MP3在低码率条件下高水准的声音质量,使得它成为软解压及网络广播的宠儿。

优点:压缩比高,适合用于互联网上的传播

缺点:MP3在128KBitrate及以下时,会出现明显的高频丢失

备注:同MPEG-1 audio layer 1

4.14MPEG-2 audio layer

制定者:MPEG

所需带宽:与MPEG-1层1,层2,层3相同

音频宽度:

特性:MPEG-2的声音压缩编码采用与MPEG-1声音相同的编译码器,层1, 层2和层3的结构也相同,但它能支持5.1声道和7.1声道的环绕立体声。

优点:支持5.1声道和7.1声道的环绕立体声

缺点:

备注:MPEG-2的声音压缩编码采用与MPEG-1声音相同的编译码器,层1, 层2和层3的结构也相同,但它能支持5.1声道和7.1声道的环绕立体声。

4.15AAC-LD (dvanced Audio Coding,先进音频编码)

制定者:MPEG

所需带宽:48-64 kbps

音频宽度:22KHZ

特性:提供高质量的低延时的音频编码标准,以其20ms的算法延时提供更高的比特率和各种声音信号的高质量音频。

缺点:

备注:超宽带编解码器技术支持高达48KHz采样率的语音传输,与传统的窄带与宽带语音编解码器相比大幅提高了音质。该技术可提供接近CD音质的音频,数据速率高达48–64kbps,不仅提高了IP语音与视频应用的清晰度,而且支持电话音乐传输功能。高清语音通道支持更高的采样率,配合音频编解码器的高保真音效,显著丰富并扩展了频谱两端的音质范围,有效改善了语音回响性能,提高了清晰度。

接口使用说明文档

中国移动短信网关 SP端接口使用手册 China Mobile Shot Message Gateway Interface for SP Manual 作者:沈岗 日期:2004年1月 版本:V1.2

一、CMSMIF.CMPPApp 简要说明: 该类采用CMPP协议(V2.0)实现了SP端与移动短信网关的连接处理。 本类中,采用长连接方式与ISMG通讯。通信双方以客户-服务器方式建立TCP连接,用于双方信息的相互提交。当信道上没有数据传输时,通信双方应每隔时间C发送链路检测包以维持此连接,当链路检测包发出超过时间T后未收到响应,立即再发送链路检测包,再连续发送N-1次后仍未得到响应则断开此连接。参数C、T、N可通过属性配置。 消息发送时采用并发方式,即发送一条消息不等待网关回复确认,继续向网关发送短信,这样发送消息速度非常快,完全取决于网关的处理速度及网络速度。为避免消息丢失,同时采用了滑动窗口流量控制,窗口大小可通过属性设置。 消息接收、网络断开等采用事件触发方式,不需应用程序轮询,在此接口基础之上编程方便。 类中运用了多线程技术,如一条线程处理发送网络包,而另一条线程处理从网关上接收网络包,其他还有一些线程处理检测包、网络连接情况监测等,使程序思路明确、执行效率很高、运行非常稳定。 (一)属性 1.ActiveInterval 说明:检测包发送时间间隔,单位:毫秒。默认值为120000,即120秒。为上 述类说明中的C参数。 2.MaxNetworkPackSize 说明:与ISMG通讯时最大网络包大小,单位:字节。默认值为512Byte。 3.MaxRetryTimes 说明:网络超时最大重发次数,单位:次。默认值为3次。为类说明中的N。 4.OverTime 说明:网络包发送超时时间,单位:毫秒,超过此值还未收到回复则重发。默认值 为60000,即60秒。为类说明中的T。 5.QueueLength 说明:网络队列大小,单位:个,默认值为20。为类说明中的滑动窗口大小, 以控制发送流量。 (二)方法 1.ConnectToIsmg 方法说明: 连接到远程短信网关ISMG上,只有连接到远程短信网关上,才可进行短信收发操作。 在本操作中,自动初始化本地Socket,以连接到指定IP服务器的指定端口上。 声明原型:int ConnectToIsmg(string ServerIP,int Port,string SP_ID,string Secret,string SN) 参数说明: ServerIP:远程短信网关服务器的IP地址,如211.138.200.51 Port:远程短信网关服务器的端口号,如7890 SP_ID:企业服务代码

帝国CMS版接口说明

帝国CMS接口使用手册 一、简介 1、本接口应用于帝国CMS 版新闻系统模型的栏目文章发布; 2、本接口可以自动生成文章、栏目、首页等静态HTML页面; 3、本接口可以生成随机点击数,详见发布接口参数说明; 4、发布时请使用管理员用户帐号; 5、在帝国CMS utf8版使用本接口时,请在发布规则中选择编码为UTF-8; 6、本接口基于帝国CMS UTF8版制作,适用于帝国CMS GBK/utf-8等版本,应用于其他版本时请自行测试调整;; 7、接口文件无须任何改动即可使用,如果你希望增加校验或其他功能,请仔细修改; 8、2个接口文件请复制在网站 /e/admin目录下使用; 二、安装接口 在接口文件夹中找到接口文件,如图: 请将、等接口文件上传到指定目录,请使用二进制方式上传,如图: 三、配置发布规则 1、将范例发布规则文本导入ET2发布配置,或使用软件内置发布规则范例,如图:

2、将检查网址和发布网址中的“您的网站”改为您要发布的网站网址,如图: 3、在检查网址填上您要发布的栏目ID,如图: 4、在参数取值页,填上您要发布的网站栏目ID,如图: 这里查看栏目ID:

4、填上您的管理账号、密码,注意格式,如图: 四、接口说明 一、检查接口 1、接口文件名,为保密,请自行修改文件名; 2、本接口文件复制在网站/e/admin目录使用,如果目录名有变更,请自行对应; 3、主要参数 keyboard 文章标题 classid 栏目ID,用于指定检查栏目,可在后台网站栏目管理处查看; vercode 校验码,请自行设定,并在检查接口文件开始处修改$vercode 使其一致; 4、发布配置-文章检查网址处,可以如下填写: 注:使用大小写敏感的服务器的用户请注意网址大小写和网站文件一致 5、接口文件无须任何改动即可使用,如果你希望增加校验或其他功能,请仔细修改; 二、发布接口 1、接口文件名,为保密,请自行修改文件名; 2、本接口文件请复制在网站/e/admin目录下使用,为保密,请自行修改文件名;

各种显示接口的介绍

各种显示接口的介绍 中国投影网行业资讯2009-9-10 9:47:10编辑:晨阳[ 大中小] TV接口 TV接口又称RF射频输入,毫无疑问,这是在电视机上最早出现的接口。TV接口的成像原理是将视频信号(CVBS)和音频信号(Audio)相混合编码后输出,然后在显示设备内部进行一系列分离/ 解码的过程输出成像。由于需要较多步骤进行视频、音视频混合编码,所以会导致信号互相干扰,所以它的画质输出质量是所有接口中最差的。 AV接口 AV接口又称(RCA)可以算是TV的改进型接口,外观方面有了很大不同。它传输的是复合视频信号,也称做复合视频信号(CVBS)接口。分为了3条线,分别为:音频接口(红色与白色线,组成左右声道)和视频接口(黄色)。由于AV输出仍然是将亮度与色度混合的视频信号,所以依旧需要显示设备进行亮度和色彩分离,并且解码才能成像。这样的做法必然对画质会造成损失,所以AV接口的画质依然不能让人满意。 在连接方面非常的简单,只需将3种颜色的AV线与电视端的3种颜色的接口对应连接即可。总体来说,AV接口实现了音频和视频的分离传输,在成像方面可以避免音频与视频互相干扰而导致的画质下降。AV接口在电视与DVD连接中使用的比较广,是每台电视必备的接口之一。 S端子 S端子可以说是AV端子的改革,在信号传输方面不再将色度与亮度混合输出,而是分离进行信号传输,也就是Y、C分离传输,所以我们又称它为“二分量视频接口”。与AV 接口相比,S端子不再对色度与亮度混合传输,这样就避免了设备内信号干扰而产生的图像失真,能够有效的提高画质的清晰程度。 但S-Video仍要将色度与亮度两路信号混合为一路色度信号进行成像,所以说仍然存在着画质损失的情况。虽然S端子不是最好的,不过一般情况下AV信号为640线,S端子可达到1024线,但是这需要由片源来决定。一般来说这种接口在DVD、PS2、XBOX、NGC 等视频和游戏设备上广泛使用。 色差分量接口 对于色差来说,目前可能应用并不算很普遍,主要的原因是一些CRT电视机并没有提供色差分量的输入接口。简单的说,相比过去的AV和S端子,色差是将信号分为红、绿、

各种接口说明资料

视频基础知识 目前,国内外各个视频会议生产厂家都陆续推出了自己的各种高清或超清产品,都在不遗余力的宣传图像分辨率。但是,要达到高清/超清的视频会议,单单有720p或者1080p的图像分辨率是不够的。视频会议作为多媒体的一种应用,整个系统涉及到前端视频采集、图像的编码能力、高质量的网络传输、高清晰的视频显示设备。另外,如果我们在观看高清晰视频图像的时候,不能得到一个更清晰、连续的音频效果,那么这个过程实际上就没有任何意义,所以高质量音频的重要性完全不亚于视频。所以在高清或者超清的视频会议中有几个关键的知识点需要了解:高清的视频分辨率、高清视频显示设备的接口、高质量的音频传输接口、高质量的音频。技术的发展都是循序渐进的过程,在本文档中不但列出了高清视频的相关术语,还把非高清视频系统中的相关术语也一并列出,这样会有一个很直观的比较过程。 1视频接口 我们经常在家里的电视机、各种播放器上,视频会议产品和监控产品的编解码器的视频输入/输出接口上看到很多视频接口,这些视频接口哪些是模拟接口、哪些是数字接口,哪些接口可以传输高清图像等,下面就做一个详细的介绍。 目前最基本的视频接口是复合视频接口、S-vidio接口;另外常见的还有色差接口、VGA接口、DVI接口、HDMI 接口、SDI接口。 1.1复合视频接口 1.1.1接口图 1.1.2说明 复合视频接口也叫AV接口或者Video接口,是目前最普遍的一种视频接口,几乎所有的电视机、影碟机类产品都有这个接口。 它是音频、视频分离的视频接口,一般由三个独立的RCA插头(又叫梅花接口、RCA接口)组成的,其中的V接

口连接混合视频信号,为黄色插口;L接口连接左声道声音信号,为白色插口;R接口连接右声道声音信号,为 红色插口。 1.1.3评价 它是一种混合视频信号,没有经过RF射频信号调制、放大、检波、解调等过程,信号保真度相对较好。图像品质 影响受使用的线材影响大,分辨率一般可达350-450线,不过由于它是模拟接口,用于数字显示设备时,需要一 个模拟信号转数字信号的过程,会损失不少信噪比,所以一般数字显示设备不建议使用。 1.2S-Video接口 1.2.1接口图 1.2.2说明 S接口也是非常常见的接口,其全称是Separate Video,也称为SUPER VIDEO。S-Video连接规格是由日本人开发的一种规格,S指的是“SEPARATE(分离)”,它将亮度和色度分离输出,避免了混合视讯讯号输出时亮度和色度的相互干扰。S接口实际上是一种五芯接口,由两路视亮度信号、两路视频色度信号和一路公共屏蔽地线共五条芯线组成。 1.2.3评价 同AV 接口相比,由于它不再进行Y/C混合传输,因此也就无需再进行亮色分离和解码工作,而且使用各自独立的传

http接口说明

一、查询菜品列表接口(DONE) 1、功能说明 接受提供的菜品 XXX画面XXX功能(比如人口查询画面-查询| 人口查询画面-详细等)2、接口调用说明 2.1获取地址 2.2http请求方式 GET 2.3数据返回格式 JSON 2.4传递参数

2.5成功返回结果 [ “serverResponse”:”Success”, “totalRecords”:”52”, “page” : “10”, “pageSize” : “5”, “data”:{ “id” : “123”, “itemName” : “皇堡”, “priceNow” : “10”, “pricePast” : “12”, “servicePicture” :”s9118668.jpg”, “serviceStars” : “3” }, ……. { “id” : “”, “itemName” : “”, “priceNow” : “”, “pricePast” : “”, “servicePicture” :” s9118668.jpg”, “serviceStars” : “3” } ] 2.6返回结果解释

二、查询广告接口(DONE) 1、功能说明 接受广告图片,目前为一张 2、接口调用说明 2.1获取地址 2.2http请求方式 GET 2.3数据返回格式 JSON 2.4传递参数

2.5成功返回结果 { "serverResponse":"Success", “advertisePicture” : “0f736a68b929b0955b319ebc41336.jpg”} 2.6返回结果解释 三、查询订单列表接口(DONE) 1、功能说明 根据指定的客户id查询订单 2、接口调用说明 2.1获取地址 2.2http请求方式 GET 2.3数据返回格式 JSON

史上最全面主板接口图解多篇

1.前言 主板作为电脑的主体部分,提供着多种接口与各部件进行连接工作,而随着科技的不断发展,主板上的各种接口与规范也在不断升级、不断更新换代。其中比较典型的就是CPU接口,Intel方面,有奔腾、酷睿2系列的LGA 775,酷睿i7的LGA 1366接口,i5、i3的LGA 1156;AMD方面也从AM2升级到了AM2+以及AM3接口。其他如内存也从DDR升级到最新的DDR3,CPU供电接口也从4PIN 扩展到8PIN等。面对主板上如此多的接口,你都知道它们的用途吗? 如此繁多的接口,你全都认识吗? 在本文中,我们将对主流主板上的各种接口进行介绍,使用户能清楚、明白主板上各种接口的作用。 1、CPU接口 首先是CPU接口部分,目前PC上只有Intel和AMD两个公司生产的CPU,它们采用了不同的接口,而且同品牌CPU也有不同的接口类型。 Intel: Intel的CPU采用的是LGA 775、LGA 1366和LGA 1156这三种接口。除了酷睿i7系列采用的是LGA 1366接口,酷睿i5和i3采用的是LGA 1156,市面上其他型号的CPU都是采用LGA 775接口,可以说LGA 775仍是主流,各种接口都不兼容。在安装CPU时,注意CPU上的一个角上有箭头,把该箭头对着图中黄色圆圈的方向装即可。

Intel的LGA 775接口 Intel LGA 1366和LGA 1156接口 AMD: 2009年2月中,AMD发布了采用Socket AM3接口封装的Phenom II CPU和AM3接口的主板,而AM3接口相比AM2+接口最大的改进是同时提供DDR2和DDR3内存的支持。换句话说,以后推出的AM3接口CPU均兼容现有的AM2+平台,通过刷写最新主板BIOS,即可用在当前主流的AM2+主板(如AMD 770、780G、790GX/FX等)上,而用户也不必担心升级问题。

时钟系统对时接口说明

时钟系统对时接口说明 时钟系统可以为其它系统提供标准时间信号以保证各系统间的时钟统一。时钟系统可以提供两钟对时信号,一种是RS422接口形式的对时信号,另一种是NTP网络时间信号。具体说明如下: 1. RS422接口的标准时间输出 1.1 RS422标准时间接口说明: 时钟系统可以为本系统外的其它系统,例如为公务电话系统、专用电话系统、无线通信系统、电视监视系统、广播等系统提供标准时间信号。 接口功能:为其它系统提供对时信息。 接口类型:RS422接口线缆 物理接口方式:RS422 通讯协议:参照时钟系统标准时间接口协议 接口数量:每个系统各1路。 接口位置及工程界面:控制中心通信系统设备室综合配线架的外侧。 1.2 时钟系统标准时间接口协议: ①输出接口:标准RS-422端口 ②波特率:9600bit/s ③数据位:8位

④起始位:1位 ⑤停止位:1位 ⑥校验位:无 ⑦工作方式:异步 ⑨数据格式:(ASCII字符串,共21个字符) ebh,90h, 起始符 c: 41h 无外时钟校时, 47h GPS校时 n4,n3,n2,n1 年 m2,m1 月 d2,d1 日 w(30h~36h) 星期 h2,h1 时 m2,m1 分 s2,s1 秒 xxh 校验码(累加检验,取低8位) cr(odh) 1ah; 结束符. 例:EB 90 47 32 30 30 39 30 33 33 31 32 31 30 32 34 33 36 XX 0D 1A 信息为:2009-03-31 星期二10:24:36 有外部较时。 ⑩传输距离:1200米(采用0.5平方毫米的双绞软线,超过1200米需增加中继器)2. NTP接口的标准时间输出 时钟系统也可以通过NTP网络时间服务器为本系统外的其它系统提供基于以太网协议网络接口时间信号。具体说明如下: ☉网络协议: NTP v2, v3 & v4 (RFC1119& 1305) NTP broadcast mode SNTP Simple Network Time Protocol (RFC2030) MD5 Authentication (RFC 1321) Telnet (RFC854) DHCP (RFC2132) FTP (RFC 959)

接口清单说明

获取当前登录用户待办、已办工作流列表。 方法: class getWorkFlowList(String userName,String type,int beginIndex,int endIndex) 参数说明: userName:用户名 Type:获取工作流类型1:待办2:已办3:传阅消息 beginIndex:查询开始行 endIndex:查询结束行 输出说明: 获取当前登录用户可以发起的流程的列表。 以当前用户发起并提交一个流程。 方法: class submitBillFlow(String userName,String billId) 参数说明: UserName:提交用户名 billId:单据ID

流程传阅接口。 方法: class circulatedFlow(String assignId,String personId,String msg) 参数说明: assignId:任务ID,可通过待办、已办列表获取 personId:传阅人ID,支持多人ID用;隔开 Msg:传阅意见 流程传阅反馈(接收到传阅消息可提出意见提交反馈结果) 方法: class sendPassCommen(String billId,String procinstId,String personName ,String msg) 参数说明: billId:单据ID,可通过传阅列表获取 procinstId:流程实例,可通过传阅信息列表获取 personName :传阅发起人,可通过传阅列表获取 Msg:传阅反馈意见 获取传阅意见(通过流程实例)。 方法: class gegtCirculatedMsg(String procinstId) 参数说明: procinstId:流程实例ID,可通过待办、已办列表获取 输出说明:

系统参数配置说明书

系统参数配置说明书

一、浏览器使用建议 本系统建议使用IE浏览器,若使用IE8浏览器请将浏览器设置为非兼容模式。使用IE8兼容模式上传附件页面会出现如下图所示: 正常界面如下图所示,出现“”按钮可正常使用。 设置步骤如下: 1.打开IE浏览器,点击右上角的“”按钮。如下图所示:

2.将兼容性视图的勾选去掉,如下图所示: 二、下载安装Flash插件 在本系统中上传附件时出现如下界面的情况时,需要下载Flash插件并且安装。 安装成功后重启IE浏览器,上传附件页面出现“”按钮时可正常使用。 三、将“申报系统”设为信任站点(若系统可正常使用,可不进行设置) 1、打开IE浏览器,并在地址栏中输入网址,显示界面如下图所示:

2、点击浏览器的菜单条“工具—〉Internet选项”,其界面如下图所示: 3、选中“安全(标签)—〉受信任的站点—〉站点”,其界面如下图所示:

将输入框中输入“工业产品质量控制和技术评定实验室申报管理系统”的网址(如: https://www.wendangku.net/doc/9911593067.html,/lab/),并点击“添加”按钮,该网址进入下面的列表框中,最后点击“确认”按钮。 注意:在输入网址前,应该取消Checkbox的选中状态。 4、设置“受信任站点”的安全级别; 在Internet选项窗体中选择“安全(标签)—〉受信任的站点—〉自定义级别”,出现的界面如下图(右)所示: 请按照下面的要求,对“ActiveX控件和插件”进行安全设置: ActiveX控件自动提示:启用

●对标记为可安全执行脚本的ActiveX控件执行脚本:启用 ●对没有标记为可安全的ActiveX控件进行初始化和脚本运行:启用 ●二进制和脚本行为:启用 ●下载未签名的ActiveX控件:提示 ●下载未签名的ActiveX控件:启用 ●运行ActiveX控件和插件:启用 后面的内容保持现状,不进行调整。 提示:针对“ActiveX控件和插件”,仅对“下载未签名的ActiveX控件”为“提示”,其余全部为“启用”状态。 点击“确认”按钮,会弹出确认对话框,选中“是”,并在“Internet选项”窗体中点击“确认”按钮,则设置立即生效。 至此,信任站点的设置全部完成。 四、设置Word格式附件的打开方式(若系统可正常使用,可不进行设置) 1、打开“资源管理器”或“我的电脑”并在菜单中选择“工具—〉文件夹选项”, 如下图所示:

完整的接口解决方案说明书

文档编号:T-JKJS 文档版本:0.01 项目编号:XX-DX- PECS 《XX电信工程外部协作系统》 Project Exterior Cooperation System 施工单位接口技术解决方案 编写人:南疯日期:2006-10-30 审核人:日期: 批准人:日期: XXXXXX信息科技股份有限公司 地址:XXXXXXX 邮编:XXXXXX 电话:XXXXXXXX传真:XXXXXX 网站:XXXXXXXXX 修改记录(Revision Chart) 版本号批准人修改人修改0.01南疯2006-10-30 0.02详细修改记录: 序号

1引言 1.1编写目的 1.2覆盖范围 1.3预期读者与阅读建议 1.4文档约定 1.5术语与缩略语 1.6参考文献 2概述 3接口方式 4接口安全 4.1接口认证 4.2数据安全 5事务处理 6性能考虑 7容错处理 8数据格式 8.1约定 8.2施工系统向外协系统发送请求 8.2.1请求查询一个业务数据 8.2.2新增一条记录,得到记录的键值 8.2.3修改一条记录 8.2.4删除一条记录 8.2.5文档上传 8.2.6一条记录中一个文档字段上传多个文件 8.2.7补充上传文档 8.2.8在记录中删除一个文档 8.2.9获得文档的基本信息 8.2.10获得文档的所有兄弟信息 8.2.11获得文档的所有父亲信息 8.2.12下载一个文档 8.2.13获得字典 8.3外协系统向施工系统发送请求 8.3.1发送变更后的数据 8.3.2发送变更后的字典 8.3.3文档发送请求 9信息数据项 9.1数据表 9.2字段信息 9.3字典类型

最全的电脑各种接口接法讲解

https://www.wendangku.net/doc/9911593067.html, USB接法 一、概述 因为每个USB接口能够向外设提供+5V500MA的电流,当我们在连接板载USB接口时,一定要严格按照主板的使用说明书进行安装。绝对不能出错,否则将烧毁主板或者外设。相信有不少朋友在连接前置USB插线时也发生过类似的“冒烟事件”,因此到现在我都怕一不小心把自己的U盘在别人的机器上被烧了,所以在使用U盘拷文件时,一直都使用键盘口附近后置的USB接口,因为主板集成的接口安全,不会有电源接反的可能。 今天客户打电话投诉说自己的电脑等了半个多月才修好,可把自己的移动硬盘 往上面一接,屏幕上闪了一下发现新硬件,然后移动硬盘就没有动静了,再把移动硬盘接到办公室的电脑里也不能用了。当时我一听头就嗡的一下,马上派人上门检查,结果当用我自己做的测试线接到后置的USB接口,指示灯亮,但接到前置就根本不亮。拆机一看,果真接反了。后面的事就不用说了...。 由此前置USB数据线接反的严重性大家应该都知道了,但是如何防止类似的情况发生呢,这就需要我们能够准确判别前置USB线的排列顺序,可以正确连接前置USB接线。新机器倒还可以,有使用手册,翻一翻就可以了。但是旧主板呢,拿去修理的机器呢?没有主板手册怎么办?到网上下载主板的使用手册,太浪费时间了,更何况也不一定能够找到该型号主板的接线图。不过,如果我们晓得USB接口的基本布线结构,那问题不是就迎刃而解了吗。 二、USB接口实物图 主机端: 接线图: VCC Data- Data+ GND 实物图: 设备端: 接线图: VCC GND Data-

三、市面上常见的USB接口的布线结构 这两年市面上销售的主板,板载的前置USB接口,使用的都是标准的九针USB接口,第九针是空的,比较容易判断。但是多数品牌电脑使用的都是厂家定制的主板,我们维修的时候根本没有使用说明书;还有像以前的815主板,440BX,440VX主板等,前置USB的接法非常混乱,没有一个统一的标准。当我们维修此类机器时,如何判断其接法呢? 现在,我把市面上的比较常见的主板前置USB接法进行汇总,供大家参考。(说明:■代表有插针,□代表有针位但无插针。) 1、六针双排 这种接口不常用,这种类型的USB插针排列方式见于 精英 P6STP-FL(REV:1.1)主板,用于海尔小超人766主机。其电源正和电源负为两个前置USB接口共用,因此前置的两个USB接口需要6根线与主板连接,布线如下表所示。 ■DATA1+ ■DATA1- ■VCC ■DATA2- ■DATA2+ ■GND 2、八针双排 这种接口最常见,实际上占用了十针的位置,只不过有两个针的位置是空着的,如精英的P4VXMS(REV:1.0)主板等。该主板还提供了标准的九针接法,这种作是为了方便DIY在组装电脑时连接容易。 ■VCC ■DATA- ■DATA+ □NUL ■GND ■GND □NUL ■DATA+ ■DATA- ■VCC 微星 MS-5156

理正标准数据接口说明及格式

理正标准数据接口 一、 功能 通过该接口将理正标准接口数据读入到的数据库中 地层统计表、勘探点一览表、土工试验综合成 果表、 数表等成果、生成与静探有关的成果图等。 二、 接口格式 1、接口文件中包含的数据 接口中可输入的数据表包括钻孔表数据、土层表数据、静探表、取样表数据、湿陷 性黄土数据、 固结和固结试验项目数据、 颗分和颗分试验项目数据、 直剪和直剪试验 项目数据、 三轴和三轴试 验项目数据。各数据表及数据表中的先后内容如下表: (包括室内试验数据和静探数据) ,从而生成 物理力学指标统计表、物理力学指标设计参

2、 接 口 文 件 具 体 格 式 ; 钻孔 数 据 #ZK#钻孔编号勘探点类型 X 坐标丫坐标偏移量孔口标高水面标高勘探深度探井深度钻 孔直径 勘探开始日期 勘 探 结 束日期 ;土层数据 #TC#岩 土名称层底深度地层厚度主层编号亚层编号地质时代地质成因颜色密实度湿 度可塑性浑圆度均匀性 风化程度岩层倾向岩层倾角矿物成分结构构造包含物气味 描述完整程度坚硬程度破碎程度节理发育节理间距 #TC#岩 土名称层底深度地层厚度主层编号 ;静探数据 #JT#试验点底深度静探类型锥头阻力侧壁摩阻力比贯入阻力 #JT#试验点底深度静探类型锥头阻力侧壁摩阻力 比贯入阻力 ;取样数据 #QY#取样编号 度最大密度 自然抗压强度 剪切强度无侧限抗压强度(原状) 无侧限抗压强度(重塑) 灵敏度透水率剪切波速纵波 波速动弹性模量动剪切模量动泊松比回弹模量 ;湿陷性黄土数据 #SX#湿陷浸水压力 湿陷系数5 S 压力湿陷系数5 .2s 压力湿陷系数5 .3s 自重湿陷系数 湿陷 起始压力 #sx#显陷浸水压力 取样深度取样长度取样类型质量密度土粒比重含水量液限塑限最小密 水上休止角水下休止角渗透系数水平渗透系数垂直渗透系数单轴抗压强度 饱和抗压强度抗拉强度抗剪强度软化系 数桩侧摩阻力桩端摩阻力十字板

(完整版)电脑接口大全【图解】

每台电脑,无论台式机还是笔记本,里里外外都有许多接口和插槽,你全都认识吗?也许你已经对USB、PS/2、VGA等常用接口非常熟悉,但是你知道SCAR、T HDM,I 抑或USB接口分为Type A、Type B 等类型吗?总之这是一篇主要面对电脑初学者的文章,但那些有经验的用户也许也能从本文学到一些新知识 第一部分外部接口:用于连接各种PC外设 USB USB(Universal Serial Bus 通用串行总线)用于将鼠标、键盘、移动硬盘、数码相机、VoIP 电话(Skype)或打印机等外设等连接到PC。理论上单个USBh ost 控制器可以连接最多127 个设备。

3 X1 H8 g) q6 [5 y# `3 W0 L 硬件技术、网络技术、病毒安全、休闲娱乐, 软

件下载USB目前有两个版本,USB1.1 的最高数据传输率为12Mbps,USB2.0则提高到480Mbps。注意:二者的物理接口完全一致,数据传输率上的差别完全由PC 的USBh ost 控制器以及USB设备决定。USB 可以通过连接线为设备提供最高5V,500mA的电力。 接口有 3 种类型:- Type A :一般用于PC Mini-一般用于数码相机、数码摄像机、测量仪器以及 左边接头为Type A(连接PC),右为Type B(连接设备) USB Mini USB延长线,一般不应长于 5 米

请认准接头上的USB标志 USB分离线,每个端口各可以得到5V 500mA的电力。移动硬盘等用电大户可以使用这种线来从第二个USB端口获得额外电源 ( 500+500=1000m)A 你见过吗:USB接口的电池充电器

joomla接口说明

Joomla!接口使用手册 一、简介 1、本接口应用于Joomla! 文章发布; 2、发布时请使用管理员用户帐号; 3、Joomla! 是utf8网站,请在发布规则中选择编码为UTF-8; 4、本接口基于Joomla! 1.5.18官方中文版制作,应用于其他版本时请自行测试调整; 5、接口文件无须任何改动即可使用,如果你希望增加校验或其他功能,请仔细修改; 6、2个接口文件请复制在administrator网站根目录下使用; 二、安装接口 在接口文件夹中找到接口文件,如图: 请将etchk.php、etpost.php等接口文件上传到指定目录,请使用二进制方式上传,如图: 三、配置发布规则 1、复制范例发布规则或者将本节后附的范例规则文本导入ET2发布配置即可,如图:

2、将检查网址和发布网址中的“您的网站”改为您要发布的网站网址,如图: 3、在参数取值页,填上您要发布的网站栏目的单元ID和分类ID,分类ID可留空,如图: 这里查看单元ID:

这里查看分类ID: 4、填上您的管理账号、密码,注意格式,如图:

四、接口说明 一、检查接口 1、接口文件名etchk.php,为保密,请自行修改文件名; 2、本接口文件复制在网站administrator目录下使用; 3、主要参数 title文章标题 sectioned 单元ID,用于限定检查范围,可不填,请对照管理中心查看单元ID; catid 分类ID,用于限定检查范围,可不填,请对照管理中心查看分类ID; vercode 安全校验码,请自行设定,并在检查接口文件开始处修改vercode 使其一致; 4、发布配置-文章检查网址处,可以如下填写: http://您的网站/administrator/etchk.php?sectionid=&catid=&title=<%title%> 注:使用大小写敏感的服务器的用户请注意网址大小写和网站文件一致 5、接口文件无须任何改动即可使用,如果你希望增加校验或其他功能,请仔细修改; 二、发布接口 1、接口文件名etpost.php,为保密,请自行修改文件名; 2、本接口文件请复制在网站administrator目录下使用; 注:以下参数名后“=”号为示范取值而用,参数名本身不含“=”号; 固定取值的参数,可以在发布规则-参数取值中设置; 采集取值的参数项,请在发布规则-发布项中添加; 3、主要参数 Username 会员名参数名 passwd 密码参数名 title 主题标题参数名 text 内容参数名(若要进行分页请在数据整理中将ET2正文分隔标记“#-0-#”替换为Joomla分页标记


) etattachs 文件列表参数名; 4、附加参数 sectioned 单元ID,请对照管理中心查看; catid 分类ID,请对照管理中心查看; vercode 安全校验码,请自行设定,本项用以防止接口被他人利用,如果需

曝光常用系统参数说明

第一部分WAFER EXPOSURE PARAMETERS 如何打开系统参数: ●6型,7型,8型机用命令“Gped sys_ param_file” ●其他曝光机在主界面上选择“SETUP”,再选择“SET SYSTEM PARAMETERS”。 1Judgement for focus shot :on/off 简单说明: 一般情况下,在NIKON曝光程序对应的SHOT MAP 中有两种符号“+”和“* ”。其中 “* ”代表对应的BLOCK的中心在距离圆片边缘3mm以内。曝光时,此BLOCK可以执行AUTO FOCUS 。“+”代表对应的BLOCK的中心在距离圆片边缘3mm以外。曝光时,此BLOCK不可以执行AUTO FOCUS。 “*”对应的SHOT 称为:focus shot。 “+”对应的SHOT 称为:fixed focus shot。 ON:Performs focus shot/fixed focus shot judgment during exposure and determines the shot on the basis of the result. OFF: Sets all the shots for which”+” has been specified on the shot map data of exposure data as fixed focus shots .However,focus shots are judged again. 此参数功能举例说明: 下图产品SS169的曝光图。在曝光时,最右边一列的红色的“*”是经常发生边缘聚焦的位置。(因为此位置距离边缘太近了,在执行AUTO FOCUS 时,容易得到错误的信息)针对这种情况,我们可以把“*”改成“+”。并且把系统参数设置为Judgement for focus shot :off. (8型机默认“*”和“+” 之间的区别,不用修改系统参数) * * * * * * * * * * * + + * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * + * * * * * * * * * * * * * * 上述功能NIKON资料:"change a focus shot (*)to a fixed focus shot (+) on the shot map and to skip auto focus operation,set the "judgement of focus shot"system parameter to "off".If it isset to "on" the focus shot change on the shot map is ignored. 2 Shift focus position: intrashot/shot shift 简单说明 当一个BLOCK不能执行AUTO FOCUS 功能时,他就会执行SHIFT FOCUS 。此功能就是用来确定在什么位置执行Shift focus intrashot: Exeuted at a point in the shot where focusing is possible .A new focusing position is set within the area ih the shot where focusing is possible,and then focusing is done there.(After focusing ,the stage retures to the exposure position and exposure the shot is exposed)

完整的接口解决方案说明书

XXXXXX信息科技股份有限公司

1引言 1.1编写目的 本文档为XX电信工程外部协作系统(以下简称外协系统)与电信工程施工单位内部系统(以下简称施工系统)接口技术解决方案,以此作为外协系统与施工系统实施接口的技术方案依据和项目设计标准。 1.2覆盖范围 XX电信工程外部协作系统项目组 施工系统接口开发技术组 1.3预期读者与阅读建议 XX电信企业信息化部 XX电信工程建设部 XXXX公司开发人员 施工系统开发人员

1.4文档约定 粗体正文表示强调内容 红色正文表示未完成或需要今后考虑的内容 蓝色正文表示待讨论内容 1.5术语与缩略语 1.6参考文献 (XXXX) 2概述 建设XX电信工程外部协作系统的目标,是在工程项目的管理、建设、使用和实施单位之间搭建起数据交换和协同工作的信息平台,延伸与拓展工程建设管理信息化的应用范围,实现通信工程建设过程的信息化管理,促进工程项目的管理部门、建设部门、实施部门和使用部门之间业务流程协调有序地开展,实现工程项目设计、施工、监理管理功能,将相关的设计、施工、监理单位纳入到工程建设管理中,完善工程项目建设过程管理体系,通过信息化推动管理的规范化,在信息化的应用过程中不断探索市场环境下工程建设管理的新思路和新方法。 根据工程部业务工作的实际情况,项目首先满足工程建设管理中应用最广泛、问题最突出的基本需求。 项目功能需求包括: ?建立工程外部协作系统与MSS等系统的接口; ?建立设计协作服务、监理协作服务、施工协作服务模块,为邮电设计院、电话监理公司和电信工程公司提供工程部所需的协作服务,保证工程建设实施流程的开展; ?在建立工程协作服务模块的基础上,建立工程外部协作系统与邮电设计院、电话监理公司、电信工程公司信息系统的接口,实现工程部与三家实施单位的信息交互与

接口说明

phpcms v9文章模型栏目接口第三版使用手册 一、简介 1、本接口应用于phpcms v9.2.4 - v9.3.3版文章模型栏目文章发布; 2、本接口支持非默认站点发布; 3、本接口支持自动获取关键词、自动提取缩略图、自动摘要、自动分页、自定义字段等功能,详见发布接口部分说明; 4、支持网站后台栏目生成HTML设置; 5、发布时请使用具有管理权限的用户帐号; 6、本接口基于phpcms v9 UTF8版制作,适用于phpcms v9 GBK/utf-8等版本,应用于其他版本时请自行测试调整; 7、在phpcms v9 utf8版使用本接口时,请在发布规则中选择编码为UTF-8; 8、接口文件无须任何改动即可使用,如果你希望增加校验或其他功能,请仔细修改; 9、2个接口文件请复制在phpcms v9网站根目录下使用; 二、安装接口 在接口文件夹中找到接口文件,如图: 请将etchk_cms.php、etpost_cms.php等接口文件上传到指定目录,请使用二进制方式上传,如图: 三、配置发布规则 1、将范例发布规则文本导入ET2发布配置,或使用软件内置发布规则范例,如图:

2、将检查网址和发布网址中的“您的网站”改为您要发布的网站网址,如图: 3、在检查网址填上您的栏目ID,如图: 4、在检查网址填上您的站点ID,站点ID如留空则默认为1,如图: 5、在参数取值页,填上您要发布的栏目ID和站点ID,如图: 6、在网站后台内容管理-栏目管理处,可以看到各栏目的catid号,如图:

7、在网站后台-设置-站点管理中,可以查看站点ID,如图: 8、填上您的账号、密码,注意格式和账号权限,如图:

TV常见接口介绍

数码平板电视接口 现在电视机背后密密麻麻的接口,第一眼看过去让人眼花缭乱,有点晕的感觉。电视机的接口从早期最常见的有线TV输入、AV接口、S端子、色差分量接口、VGA接口、DVI接口、USB接口等,到如今又出现了最尖端的HDMI数字高清接口。我们知道,视频接口的发展是实现高清的前提。高清电视需要配备相应的接口,才能完全发挥其高清的画质。电视机接口的不断发展,除了是一个更新换代的过程以外,这些接口还是为了满足不同人群特别需求而进行的设计。这里就电视机中各种常见的接口作一介绍,以便帮助不同人群根据自己的需求选用。 一、TV输入接口: TV接口又称RF射频输入,毫无疑问,这是在电视机上最早出现的接口。TV 接口的成像原理是将视频信号(CVBS)和音频信号(Audio)相混合编码后输出,然后在显示设备内部进行一系列分离/解码的过程输出成像。由于需要较多步骤进行视频、音视频混合编码,所以会导致信号互相干扰,所以它的画质输出质量是所有接口中最差的。 二、AV接口(又称RCA): AV接口可以算是TV输入的改进型接口,它与TV接口,在外观方面有了很大不同。它分了三条线,分别为:音频接口(红色与白色线,组成左右声道)和视频接口(黄色)。在连接方面非常简单,只需将3种颜色的AV线与电视端的3种颜色的接口对应连接即可。由于AV输出仍然是将亮度与色度混合的视频信号,所以依旧需要显示设备进行亮度和色彩分离,并且解码才能成像。这样的做法必然会对画质造成损失,所以AV接口的画质依然不能让人满意。总体来说,AV接口实现了音频和视频的分离传输,在成像方面可以避免音频与视频互相干扰而导致的画质下降。AV接口在电视与DVD连接中使用的比较广,是每台电视必备的接口之一。 三、S端子: S端子可以说是AV端子的改进,在信号传输方面不再将色度与亮度混合输出,而是分离进行信度。与AV接口相比,S端子不再对色度与亮度混合传输,这样就避免了设备内信号干扰而产生的图像失号传输,所以我们又称它为“二分量视频接口”。与AV 接口相比,S端子不在对色度与亮度混合传输,这样就避免了设备内信号干扰而产生的图像失真,能够有效的提高画质的清晰程真,能够有效的提高画质的清晰程度。但S-Video仍要将色度与亮度两路信号混合为一路色度信号进行成像,所以说仍然存在着画质损失的情况。虽然S端子不是最好的,不过一般情况下AV信号为640线,S端子可达到1024线,但是这需要由片源来决定。一般来说这种接口在DVD、PS2、XBOX、NGC等视频和游戏设备上广泛使用。 四、色差分量接口:目前分量接口应用,并不算很普遍。主要的原因是一些CRT电视机并没有提供色差分量的输入接口。简单的说,相比过去的AV和S端子,色差是将信号分为红、绿、蓝三种基色来输入的。通过将这三种色彩直接提取出来的画面将更加的清晰、色彩更加逼真。色差连接还需要独立的2条音频线,类似于AV中的红线和白线,分别负责左右声道。色差分为逐行和隔行显示,一般来说分量接口上面都会有几个字母来表示逐行和隔行的。用YCbCr表示的是隔行,用YPbPr表示则是逐行,如果电视只有YCbCr分量端子的话,则说明电视不能支持逐行分量,而用YPbPr分量端子的话,便说明支持逐行和隔行2种分量。一般来说,档次好一些的电视拥有2组甚至3组分量接口,稍差一些的电视可能只有一组隔行,比如上面图中的电视就是有2组逐行接口。这种接口在DVD、PS2、XBOX、NGC等视频和游戏设备上都可以使用,画质方面要比S 端子好些。 五、VGA接口: VGA接口又称(S-Dub),就是将模拟信号传输到显示器的接口。这是源于电脑的输入接口,由于CRT显示器无法直接接受数字信号的输入,所以显卡只能采取将模拟信号输入显

http接口说明模板

http接口说明模板

一、查询菜品列表接口(DONE) 1、功能说明 接受提供的菜品 XXX画面XXX功能(比如人口查询画面-查询 | 人口查询画面-详细等) 2、接口调用说明 2.1获取地址 http://192.168.0.6:8080/FamilyServiceSystem/BookDinnerQueryAction?op eration=queryServiceItem 2.2http请求方式 GET 2.3数据返回格式 JSON 2.4传递参数 类型示例描述 参数名称是否 必须 page 是String 1 获取第几个分页的菜 品,默认第一个分页 为1

pageSize 是String 5 每页显示多少个菜 品,默认为5 isFood 是String true 查询食物还是饮料, 查询食物为true 饮料为false 饮料和食物为空 2.5成功返回结果 [ “serverResponse”:”Success”, “totalRecords”:”52”, “page” : “10”, “pageSize” : “5”, “data”:{ “id” : “123”, “itemName” : “皇堡”, “priceNow” : “10”, “pricePast” : “12”, “servicePicture” :”s9118668.jpg”, “serviceStars” : “3” }, ……. { “id” : “”, “itemName” : “”,

“priceNow” : “”, “pricePast” : “”, “servicePicture” :” s9118668.jpg”, “serviceStars” : “3” } ] 2.6返回结果解释 参数名称类型描述备注 page String 当前返回的 是第几页 id Int 菜品编号itemName String 菜品名字priceNow String 现价 pricePast String 原价servicePicture String 菜品图片 serviceStars String 菜品星级

相关文档
相关文档 最新文档