文档库 最新最全的文档下载
当前位置:文档库 › 刚体的运动学与动力学问题

刚体的运动学与动力学问题

刚体的运动学与动力学问题
刚体的运动学与动力学问题

刚体的运动学与动力学问题

编者按中国物理学会全国中学生物理竞赛委员会2000 年第十九次会议对《全国中学生物理竞赛内容提要》作了一些调整和补充,并决定从2002 年起在复赛题与决赛题中使用提要中增补的内容.

一、竞赛涉及有关刚体的知识概要

1. 刚体

在无论多大的外力作用下,总保持其形状和大小不变的物体称为刚体.刚体是一种理想化模型,实际物体在外力作用下发生的形变效应不显著可被忽略时,即可将其视为刚体,刚体内各质点之间的距离保持不变是其重要的模型特征.

2 . 刚体的平动和转动

刚体运动时,其上各质点的运动状态(速度、加速度、位移)总是相同的,这种运动叫做平动.研究刚体的平动时,可选取刚体上任意一个质点为研究对象.刚体运动时,如果刚体的各个质点在运动中都绕同一直线做圆周运动,这种运动叫做转动,而所绕的直线叫做转轴.若转轴是固定不动的,刚体的运动就是定轴转动.刚体的任何一个复杂运动总可看做平动与转动的叠加,刚体的运动同样遵从运动独立性原理.

3. 质心质心运动定律

质心这是一个等效意义的概念,即对于任何一个刚体(或质点系),总可以找到一点C,它的运动就代表整个刚体(或质点系)的平动,它的运动规律就等效于将刚体(或质点系)的质量集中在点C,刚体(或质点系)所受外力也全部作用在点C时,这个点叫做质心.当外力的作用线通过刚体的质心时,刚体仅做平动;当外力作用线不通过质心时,整个物体的运动是随质心的平动及绕质心的转动的合成.质心运动定律物体受外力F 作用时,其质心的加速度为aC,则必有F=maC,这就是质心运动定律,该定律表明:不管物体的质量如何分布,也不管外力作用点在物体的哪个位置,质心的运动总等效于物体的质量全部集中在此、外力亦作用于此点时应有的运动.

4 . 刚体的转动惯量J

刚体的转动惯量是刚体在转动中惯性大小的量度,它等于刚体中每个质点的质量mi与该质点到转轴的距离ri的平方的乘积的总和,即

J=miri2.

从转动惯量的定义式可知,刚体的转动惯量取决于刚体各部分的质量及对给定转轴的分布情况.我们可以利用微元法求一些质量均匀分布的几何体的转动惯量.

5. 描述转动状态的物理量

对应于平动状态参量的速度v、加速度a、动量p=mv、动能Ek=(1 /2 )mv2;描述刚体定轴转动状态的物理量有:

角速度ω角速度的定义为ω=Δθ/Δt.在垂直于转轴、离转轴距离r处的线速度与角速度之间的关系为v=rω.

角加速度角加速度的定义为α=Δω/Δt.在垂直于转轴、离转轴距离r处的线加速度与角加速度的关系为at=rα.

角动量L角动量也叫做动量矩,物体对定轴转动时,在垂直于转轴、离转轴距离r处某质量为m的质点的角动量大小是mvr=mr2ω ,各质点角动量的总和即为物体的角动量,即

L=miviri=(miri2)ω=Jω.

转动动能Ek当刚体做转动时,各质点具有共同的角速度ω及不同的线速度v,若第i个质点质

量为mi,离转轴垂直距离为ri,则其转动动能为(1 /2 )mivi2=(1 /2 )miri2ω2,整个刚体因转动而具有的动能为所有质点的转动动能的总和,即

Ek=(1 /2 )(miri2)ω2=(1 /2 )Jω2.

6 . 力矩M力矩的功W冲量矩I

如同力的作用是使质点运动状态改变、产生加速度的原因一样,力矩是改变刚体转动状态、使刚体获得角加速度的原因.力的大小与力臂的乘积称为力对转轴的力矩,即

M=Fd.

类似于力的作用对位移的累积叫做功,力矩的作用对角位移的累积叫做力矩的功.恒力矩M的作用使刚体转过θ角时,力矩所做的功为力矩和角位移的乘积,即A=Mθ.

与冲量是力的作用对时间的累积相似,力矩的作用对时间的累积叫做冲量矩,冲量矩定义为力矩乘以力矩作用的时间,即I=MΔt.

7. 刚体绕定轴转动的基本规律

转动定理刚体在合外力矩M的作用下,所获得的角加速度与合外力矩大小成正比,与转动惯量J成反

比,即M=Jα.如同质点运动的牛顿第二定律可表述为动量形式,转动定理的角动量表述形式是

M=ΔL/Δt.

转动动能定理合外力矩对刚体所做的功等于刚体转动动能的增量,即

W=(1 /2 )Jω12-(1 /2 )JωO2.

该定理揭示了力矩作用对角位移的积累效应是改变刚体的转动动能.

角动量定理转动物体所受的冲量矩等于该物体在这段时间内角动量的增量,即

MΔt=L1-L0=Jωt-Jω0.

该定理体现了力矩作用的时间积累效应是改变刚体转动中的动量矩.

角动量守恒定律当物体所受合外力矩等于零时,物体的角动量保持不变,此即角动量守恒定律.该定律适用于物体、物体组或质点系当不受外力矩或所受合外力矩为零的情况.在运用角动量守恒定律时,要注意确定满足守恒条件的参照系.

如果将上述描述刚体的物理量及刚体的运动学与动力学规律与质点相对照(如表1 所示),可以发现它们极具平移对称性,依据我们对后者的熟巧,一定可以很快把握刚体转动问题的规律.表1

质点的直线运动刚体的定轴转动

位移s角位移θ

速度vv=Δs/Δt角速度ωω=Δθ/Δt

加速度aa=Δv/Δt角加速度αα=Δω/Δt匀速直线运动s=vt匀角速转动θ=ωt

匀变速直线运动

v1=v0+at

s=v0t+(1 /2 )at2vt2-v02=2 as

匀变速转动

ω1=ω0+αt

θ=ω0t+(1 /2 )αt2ω t2-ωO2=2αθ

牛顿第二定律F=ma

转动定理M=Jα

动量定理

Ft=mvt-mv0(恒力)

角动量定理

Mt=Jωt-Jω0

动能定理

Fs=( 1 /2 )mvt2-(1 /2 )mv0

2转动动能定理

Mθ=(1 / 2 )Jωt2-( 1 /2 )Jω

O2

动量守恒定律

mv=常量角动量守恒定律Jω=常量

二、确定物体转动惯量的方法

物体的转动惯量是刚体转动状态改变的内因,求解转动刚体的动力学问题,离不开转动惯量的确定.确定刚体的转动惯量的途径通常有:

1. 从转动惯量的定义来确定

对于一些质量均匀分布、形状规则的几何体,计算它们关于对称轴的转动惯量,往往从定义出发,运用微元集合法,只需要初等数学即可求得.

例1 如图1 所示,正六角棱柱形状的刚体的质量为M,密度均匀,其横截面六边形边长为a.试求该棱柱体相对于它的中心对称轴的转动惯量.

图 1

分析与解这里求的是规则形状的几何体关于它的中心对称轴的转动惯量.从转动惯量的定义出发,我们可将棱柱沿截面的径向均匀分割成n(n→∞)个厚度均为(/ 2 )·(a/n)、棱长为l的六棱柱薄壳,确定任意一个这样的薄壳对中心轴的元转动惯量Ji,然后求和即可,有

J=Ji.

图 2

现在,先给出一矩形薄板关于与板的一条边平行的轴OO′的转动惯量.板的尺寸标注如图2 所示,质量为m且均匀分布,轴OO′与板的距离为h,沿长为b的边将板无限切分成n条长为l、宽为b/

n的窄条,则有

J板=lim(m/bl)·(b/n)·l[h2+(ib/n)2]

=m[(h2/n)+(i2/n3)b2]

=m(h2+(b2/ 3 )).

回到先前的六棱柱薄壳元上,如图1 所示,由对称性可知其中第i个薄壳元的hi=ia/2 n,b=ia/ 2 n.薄壳元对轴OO′的转动惯量是1 2 J板,即

Ji=1 2ρl(a/2 n)(ia/2 n)[(ia/2 n)2+(1 /3 )(ia/ 2 n)2].

式中,ρ是六棱柱体的密度,即

ρ=M/6 ×(1 /2 )·a2·(/2 )l=2 M/3 a2l.

则六棱柱体对中心对称轴OO′的转动惯量为

J=1 2 ρl·(a/n)·(/2 )·(ia/2 n)[((ia/n)·(

/ 2 ))2+(1 / 3 )(ia/ 2 n)]

= 1 2 ρl·(a4/ 4 )·(i3/n4)·[3 /4 + 1 /1 2 ]

=( 5 Ma2/3 )i3/n4

=( 5 Ma2/3 )(1 /n4)(1 3+2 3+…+n3)

=( 5 Ma2/3 )(1 /n4)·(n2(n+1 )2/4 )

= 5 Ma2/1 2 .

2 . 借助于平行轴定理

在刚体绕某点转动时,需对过该点的轴求转动惯量,借助于平行轴定理,可以解决这样的问题:已知刚体对过质心的轴的转动惯量,如何求对不通过质心但平行于过质心转轴的轴的转动惯量.平行轴定理:设任意物体绕某固定轴O的转动惯量为J,绕过质心而平行于轴O的转动惯量为JC,则有J=JC+Md2,式中d 为两轴之间的距离,M为物体的质量.

图 3

证明:如图3 所示,C为过刚体质心并与纸面垂直的轴,O为与它平行的另一轴,两轴相距为d,在与轴垂直的平面内以质心C为原点,过CO的直线为x轴,建立xCy坐标系.Mi代表刚体上任一微元的质量,它与轴C及轴O的距离依次为Ri和ri,微元与质心连线与x轴方向的夹角为θi,由转动惯量的定义知,刚体对轴O的转动惯量应为

J=miri2

=mi(Ri2+d2- 2 dRicosθ)

=miRi2+mid2-2 dmiRicosθi.

上式中第一项即为刚体对质心C的转动惯量JC;第二项J=mid2=d2mi=Md

2,M是刚体的总质量;而第三项中miRicosθi=mixi,xi是质量元在xCy平面坐标系内的x坐标,按质心的定义,有

mixi=0 ,所以J=JC+Md2.

在上述例1 中,我们已求得正六棱柱关于其中心轴的转动惯量,利用平行轴定理,我们还可求得六棱柱相对于棱边的转动惯量为

J′=(5 /1 2 )Ma2+Ma2=(17 /1 2 )Ma2.

3. 运用垂直轴定理

对任意的刚体,任取直角三维坐标系Oxyz,刚体对x、y、z 轴的转动惯量分别为Jx、Jy、Jz,可以证明Jx+Jy+Jz=2 miri2,ri是质元到坐标原点的距离.

图 4

证明:如图4 所示,质元mi的坐标是xi、yi、zi,显然,ri2=xi2+yi2+zi2.而刚体对x、y、z轴的转动惯量依次为

Jx=mi(yi2+zi2),Jy=(xi2+zi2),

Jz=mi(xi2+yi2).

则Jx+Jy+Jz=2 mi(xi2+yi2+zi2)=2 miri2.

这个结论就是转动惯量的垂直轴定理,或称正交轴定理.这个定理本身及其推导方法对转动惯量求解很有指导意义.

例2 从一个均匀薄片剪出一个如图5 所示的对称的等臂星.此星对C轴的转动惯量为J.求该星对C1轴的转动惯量.C和C1轴都位于图示的平面中,R和r都可看做是已知量.

图 5

分析与解设星形薄片上任意一质元到过中心O而与星平面垂直的轴O距离为ri,则星对该轴的

转动惯量为miri2 = JO,由于对称性,星对C轴及同平面内与C轴垂直的D轴的转动惯量相等,均为已知量J;同样,星对C1轴及同平面内与C1轴垂直的D1轴的转动惯量亦相等,设为J1,等同于垂直轴定理的推导,则

JC+JD=2 J=JO,JC1+JD1=2 J1=JO,

于是有 2 J=2 J1,即J1=J.

4 . 巧用量纲分析法

根据转动惯量的定义J=miri2,其量纲应为[ML2],转动惯量的表达式常表现为kma

2形式,m是刚体的质量,a是刚体相应的几何长度,只要确定待定系数k,转动惯量问题便迎刃而解.例3 如图6 甲所示,求均匀薄方板对过其中心O且与x轴形成α角的轴C的转动惯量.

图 6

分析与解如图6 (甲所示为待求其转动惯量的正方形薄板,设其边长为l,总质量为M,对C轴的转动惯量为J=kMl2,过中心O将板对称分割成四个相同的小正方形,各小正方形对过各自质心且平行于C的轴的转动惯量为

(kM/4 )·(l/2 )2=kMl2/1 6 .

如图 6 乙所示,小正方形的轴与C轴距离为D或d,由平行轴定理,它们对C轴的转动惯量应分别为(kMl2/1 6 )+(M/ 4 )D2(两个质心与C轴距离为D的小正方形)或(kMl2/1 6 )+(M/ 4 )d2(两个质心与C轴距离为d的小正方形),则有下列等式成立,即kMl2=2 ((kMl2/1 6 )+(M/4 )D2)+2 ((kMl2/1 6 )+(M/ 4 )D2).

整理可得( 3 /2 )kl2=(D2+d2).

而由几何关系,可得D=(l/ 2 )·(/ 2 )sin(π/4 +α),

d=(l/2 )·(/2 )sin(π/4 -α),

故有( 3 /2 )kl2=(l2/8 )[sin2(π/ 4 +α)+sin2(π/4 -α)],

则k= 1 /1 2 .

于是求得正方形木板对过其中心O的轴的转动惯量为J=(1 /1 2 )Ml2,且与角α无关.

5 .一些规则几何体的转动惯量

一些规则几何体的转动惯量如表2 所示.

表2

三、刚体运动问题例析

根据今年将实行的CPhO新提要,刚体运动问题应该要求运用质心运动定理、角动量定理及角动量守恒定律等刚体基本运动规律来求解刚体转动的动力学与运动学问题.下面就此展示四个例题.例4 在平行的水平轨道上有一个缠着绳子且质量均匀的滚轮,绳子的末端固定着一个重锤.开始时,滚轮被按住,滚轮与重锤系统保持静止.在某一瞬间,放开滚轮.过一定的时间后,滚轮轴得到了固定的加速度a,如图7 甲所示.假定滚轮没有滑动,绳子的质量可以忽略.试确定:

(1 )重锤的质量m和滚轮的质量M之比;

(2 )滚轮对平面的最小动摩擦因数.

图7

分析与解与处理质点的动力学问题一样,处理刚体转动的力学问题,要清楚了解力矩与转动惯量对刚体运动的制约关系.

(1 )当滚轮轴亦即滚轮质心纯滚动而达到恒定的加速度a时,其角加速度为α=a/R,R为滚轮的半径.滚轮可看做质量均匀的圆盘,其关于质心的转动惯量为( 1 /2 )MR2,分析滚轮受力情况如图7 乙所示,可知以轮与水平轨道的接触点C为瞬时转动轴考察将比较方便,因为接触点处的力对刚体的这种转动不产生影响.关于C轴,对滚轮形成转动力矩的只有绳子上的张力T,张力T可以通过重锤的运动来确定:相对于接触点C,滚轮的质心的水平加速度为a,重锤相对滚轮质心的线加速度也为a,且方向应沿绳子向下,这两个加速度是由重锤所受到的重力与绳子拉力提供的,重锤的加速度为这两个加速度的矢量和.由牛顿第二定理,有

mgtanθ=ma,(mg/cosθ)-T′=ma,

则T=T′=m-ma.

再研究滚轮,注意到C点到张力T的作用线之距离的几何尺寸,滚轮对C轴的转动惯量可用平行轴定理转换为( 3 /2 )MR2,对滚轮运用转动定律,有

(m-ma)(1 -(a/))R=(3 /2 )MR2·(a/R).

解之得m/M= 3 a/ 2 (-a)2.

(2 )对滚轮应用质心运动定理,滚轮质心加速度为a,方向水平,则应有

f-Tsinθ=Ma,N-Tcosθ=Mg,

其中sinθ=a/,cosθ=g/,

那么,动摩擦因数满足μ≥f/N=a/g.

在上面解答中,确定滚轮与重锤的相关加速度是本题的“题眼”所在.

例5 如图8 甲所示,在光滑地面上静止地放置着两根质量均为m,长度均为l的均匀细杆,其中一杆由相等的两段构成,中间用光滑的铰链连接起来,两段在连接点可以弯折但不能分离.在两杆的一端,各施以相同的垂直于杆的水平冲量I.试求两细杆所获得的动能之比.

图8

分析与解本题的求解方向是通过质心的动量定理与刚体的角动量定理,求得杆的质心速度及绕质心的角速度,进而求出杆由于这两个速度所具有的动能.

如图8 乙所示,设杆1 在冲量I作用下,质心获得的速度为vC,杆的角速度为ω,由质心的动量定理,得

I=mvC,

由刚体的角动量定理,得I·l/ 2 =Jω=(1 /1 2 )ml2ω.

则杆 1 的动能为Ek1 =( 1 /2 )mvc2+(1 /2 )Jω2

=( 1 /2 )m(I/m)2+(1 /2 )J(Il/ 2 J)2

=(I2/2 m)+( 3 I2/2 m)= 2 I2/m.

如图8 丙所示为杆2 的左、右两段受力情况,当在杆2 左端作用冲量I时,在两段连接处,有一对相互作用的冲量I1与I1′,它们大小相等,方向相反.由于两段受力情况不同,各段的质心速度及角速度均不同,但在连接处,注意到“不分离”的条件,左段的右端与右段的左端具有相同的速度.现对两段分别运用动量定理和角动量定理,对杆 2 左段,有

I-I1=(m/2 )vC1,(I+I1)·(l/4 )=(ml2/9 6 )ω1,对杆 2 右段,有

I1′=(m/2 )vC2 ,I1′·l/4 =(ml2/9 6 )ω2.由连接处“不分离”条件得左、右两段的速度与角速度的关系是

由以上各式,可得

ω1=1 8 I/ml,ω2=-6 I/ml,vC1 =5 I/2 m,vC2 =I/2 m,于是可计算杆 2 的动能为

Ek2 =(1 /2 )·(m/2 )(vC1 2+vC2 2)+(1 /2 )·(J/2 )(ω12+ω22)

=7 I2/2 m.

易得 1 、2 两杆的动能之比为E1∶E2=4 ∶7 .

本题求解中,抓住杆2 左、右两段连接处速度相同的相关关系,全盘皆活.

例6 形状适宜的金属丝衣架能在如图9 所示的平面里的几个平衡位置附近做小振幅摆动.在位置甲和位置乙里,长边是水平的,其它两边等长.三种情况下的振动周期都相等.试问衣架的质心位于何处?摆动周期是多少?(第13 届IPhO试题)

图9

图10

分析与解本题涉及刚体做简谐运动的问题,即复摆的运动规律.一个在重力作用下绕水平轴在竖直面内做小角度摆动的刚体称为复摆或物理摆.我们先来推导复摆的周期公式.如图 1 0 所示,设O为转轴(悬点),质心C与转轴距离(等效摆长)为l,质量为m,对转轴的转动惯量为J,最大偏角θ<5°.由机械能守恒定律,可得

mgl( 1 -cosθ)=( 1 /2 )Jω′2.①

ω′是刚体的质心通过平衡位置时的角速度.对摆长l、质量m的理想单摆而言,有mgl(1 -cosθ)=(1 /2 )mv2=(1 /2 )m(lω)2=( 1 /2 )m(Aω0)2.②

②式中ω0是摆球(质点)通过平衡位置时的角速度,A是振幅(A= l),ω0是摆球振动的圆频率.可知

ω0=.

将①式变形为

mgl(1 -cosθ)=(1 /2 )Jω′2=(1 /2 )m(l·ω′)

=( 1 /2 )m(Aω0′)2,

比较②式,即对复摆与单摆作等效变换,可得复摆小幅振动(亦为谐振)的圆频率为ω0′=ω0=,

那么复摆的周期公式为T=2π.

图11

由题设条件确定衣架的质心位置及转动惯量,依据复摆周期公式,即可确定三种情况下相同的摆动周期T.如图11 所示,质心O到转轴A、B、C的距离设为a、b、c,由图9 甲所示衣架的平衡位置可知,质心O必在衣架长边的中垂线AB上,在三种情况下衣架对转轴A、B、C的转动惯量依次为JA=JO+ma2,JB=JO+mb2,JC=JO+mc2.

式中JO为所设衣架对质心O的转动惯量,m是衣架总质量.因为三种情况下的周期相同,故有(JO+ma2)/mga=(JO+mc2)/mgc,

即(JO-mac)(c-a)=0 ,

显然c≠a,则可知JO=mac;

又有(JO+ma2)/mga=(JO+mb2)/mgb,

即(JO-mab)(b-a)=0 ,

此式中因c>b,故(JO- mab)≠0 ,

则必有a=b,即质心位于AB之中点.衣架周期为

T= 2π=2π.

根据图9 标注的尺寸可知

a=5 cm,c=cm≈2 1 .6 cm,

代入后得T≈1. 0 3 s.

本题是国际物理奥林匹克的一道赛题,题意简洁,解答方法也很多,笔者给出的这种解法应该说比较严密且巧妙.

最后,我们再尝试解答另外一道比较繁难的国际物理奥林匹克竞赛试题,该题涉及动量矩守恒定律的运用.

例7 如图1 2 所示,一个质量为m,半径为RA的均匀圆盘A在光滑水平面xOy内以速度v沿x轴方向平动,圆盘中心至x轴的垂直距离为b.圆盘A与另一静止的、其中心位于坐标原点O的均匀圆盘B相碰.圆盘B的质量与A相同,半径为RB.假定碰撞后两圆盘接触处的切向速度分量(垂直于连心线方向的速度)相等,并假设碰撞前后两圆盘沿连心线方向的相对速度大小不变.在发生碰撞的情况下,试求:

(1 )碰后两圆盘质心速度的x分量和y分量,结果要以给定的参量m、RA、RB、v和b表

(2 )碰后两圆盘的动能,结果要以给定的参量m、RA、RB、v和b表示.(第24 届IPhO试题)

分析与解(1 )本题情景是质量相同的运动圆盘A与静止圆盘B在水平面上发生非弹性斜碰.碰撞前后,质心动量守恒——系统不受外力;对O点的角动量守恒——外力冲量矩为零;动能不守恒——碰撞后两圆盘接触处的切向速度分量相等,必有摩擦力存在,动能有损失.本题给出诸多的附加条件,除了根据动量守恒与角动量守恒列出基本方程外,还必须根据附加条件给出足够的补充方程,并适当选用速度分量,方可最终得解.

图12 图13

如图13 所示,设碰撞时两盘质心连线与x轴成θ角,由几何关系可知

b= (RA+ RB)sinθ.

对系统,在法向与切向动量均守恒,即

mvsinθ=mvAt+mvBt,

mvcosθ=mvAn+mvBn,

式中,vAt、vBt、vAn、vBn是A、B盘碰撞后沿切向与径向的质心速度;系统对O点的角动量守恒即

mvb=JAωA+mvAt(RA+RB)+JBωB,

该式中,JA=( 1 /2 )mRA 2 ,JB=(1 /2 )mRB 2 ,ωA、ωB为两盘碰撞后的角速度(待定).注意碰撞后A盘既有转动又有平动,对O点的角动量由两部

分组成,而B盘质心在O点,故角动量仅为JBωB.上述三个方程涉及六个未知量,需列出补充方程.根据两盘接触处切向速度相同有

vAt-ωARA=vBt+ωBRB,

根据两盘法向相对速度不变有

vcosθ=vBn-vAn.

对B盘,由动量定理和角动量定理,摩擦力f的作用是

f·Δt=mvBt,f·RB·Δt=JBωB,

即mvBtRB=JBω B.

由上述六个方程,解得

ωA=vsinθ/3 RA,ωB=vsinθ/3 RB,

vAt=(5 /6 )vsinθ,ωBt=(1 /6 )vsinθ,

vAn=0 ,vBn=vcosθ.

碰后两盘的质心速度的x分量分别为

vAx=vAtsinθ+vAncosθ=(5 /6 )vsin2θ,

vBx=vBtsinθ+vBncosθ=(1 /6 )vsin2θ+vcos2θ,

碰后两盘的质心速度的y分量分别为

vAy=vAtcosθ-vAnsinθ=(5 /6 )vsinθcosθ,

vBy=vBtcosθ-vBnsinθ=-(5 /6 )vsinθcosθ,

其中sinθ=b/(RA+RB),cosθ=/(RA+RB).(2 )各圆盘的动能是各盘质心平动动能与圆盘转动动能之和,这里不再赘述,答案是

EA=3 mv2b2/8 (RA+RB),EB=( 1 /2 )mv2( 1 -(11 b2/ 1 2 (RA+RB)2)).

四、CPhO竞赛训练题

1 .如图1 4 所示,质量为m的均匀圆柱体的截面半径为R,长为

2 R.试求圆柱体绕通过质心及两底面边缘的转轴(如图中的Z1、Z2轴)的转动惯量J.

图14 图15

2 .如图15 所示,匀质立方体的边长为a,质量为m.试求该立方体绕对角线轴PQ的转动惯量J.

3 .椭圆细环的半长轴为A,半短轴为B,质量为m(未必匀质),已知该环绕长轴的转动惯量为JA,试求该环绕短轴的转动惯量JB.

4 .在一根固定的、竖直的螺杆上有一个螺帽,螺距为s,螺帽的转动惯量为J,质量为m.假定螺帽与螺杆间的动摩擦因数为零,螺帽以初速度v0向下移动,螺帽竖直移动的速度与时间有什么关系?这是什么样的运动?重力加速度为g .

5 .如图1

6 所示,两个质量和半径均相同的实心圆柱轮,它们的质心轴互相平行,并用一轻杆相连,轴与轴承间的摩擦忽略不计.两轮先以共同的初速度v0沿水平方向运动,两轮的初角速度为零,如图 1 6 甲所示.然后同时轻轻地与地面相接触,如图1 6 乙所示,设两轮与地面之间的动摩擦因数分别为μ1和μ2(μ1>μ2).试求两轮均变为纯滚动所需的时间及纯滚动后的平动速度大小.

图16 图17

6 .如图1

7 所示,光滑水平地面上静止地放着质量为M、长为l的均匀细杆.质量为m的质点以垂直于杆的水平初速度v0与杆的一端发生完全非弹性碰撞.试求:( 1 )碰后系统质心的速度及绕质心的角速度;( 2 )实际的转轴(即静止点)位于何处?

7 .如图1 8 所示,实心圆柱体从高度为h的斜坡上由静止做纯滚动到达水平地面上,且继续做纯滚动,与光滑竖直墙发生完全弹性碰撞后返回,经足够长的水平距离后重新做纯滚动,并纯滚动地爬上斜坡.设地面与圆柱体之间的动摩擦因数为μ,试求圆柱体爬坡所能达到的高度h′.

图18 图19

8 .如图19 所示,半径为R的乒乓球绕质心轴的转动惯量为J=(2 /3 )mR2,m为乒乓球的质量.乒乓球以一定的初始条件在粗糙的水平面上运动,开始时球的质心速度为vC0,初角速度为ω0,两者的方向如图 1 8 所示.已知乒乓球与地面间的动摩擦因数为μ.试求乒乓球开始做纯滚动所需的时间及纯滚动时的质心速度.

9 .一个均匀的薄方板的质量为M,边长为a,固定它的一个角点,使板竖直悬挂,板在自身的重力作用下,在方板所在的竖直平面内摆动.在通过板的固定点的对角线上距固定点的什么位置(除去转动轴处之外),粘上一个质量为m的质点,板的运动不会发生变化?已知对穿过板中心而垂直于板的轴,方板的转动惯量为J=( 1 /6 )Ma2.

图20

1 0 .如图20 所示,一个刚性的固体正六角棱柱,形状就像通常的铅笔,棱柱的质量为M,密度均匀.横截面呈六边形且每边长为a.六角棱柱相对于它的中心轴的转动惯量为J=( 5 /1

2 )Ma2,相对于棱边的转动惯量是J′=(17 /1 2 )Ma2.现令棱柱开始不均匀地滚下斜面.假设摩擦力足以阻止任何滑动,并且一直接触斜面.某一棱刚碰上斜面之前的角速度为ωi,碰后瞬间角速度为ωf,在碰撞前后瞬间的动能记为Eki和Ekf,试证明:ωf=sωi,Ekf=rEki,并求出系数s和r的值.(第 2 9 届IPhO试题)

五、训练题简答

图21 图22

1 .解:如图

2 1 所示,对图所示的Z1、Z2、Z坐标系与Z3、Z4、Z坐标系运用正交轴定理,有

J1+J2+J5=J3+J4+J5,

J3=(1 /2 )mR2,J4=(7 /1 2 )mR2,J1=J2,

则J1=J2=(13 /24 )mR2.

2 .解:将立方体等分为边长为a/2 的八个小立方体,依照本文例

3 分析法用量纲求解,有

kma2= 2 ·k(m/8 )(a/2 )2+6 ·[k(m/8 )(a/2 )2

+(m/8 )(a/)2],

则k= 1 /6 ,J=( 1 / 6 )ma2.

3 .解:由正交轴定理JA+JB=mi(xi2+yi2)及椭圆方程(x2/A2)+(y2/B2)=1 ,得

JB=mA2-(A2/B2)JA.

4 .解:由机械能守恒,得

mgs=(1 /2 )J(ωt2-ωO2)+(1 /2 )m(vt2-v02),

又ωt/vt=ω0/v0=2π/s,

可得vt2-v02= 2 m/((4π2J/s2)+m)g= 2 g′s.

故螺帽沿螺杆竖直向下做匀加速直线运动,有

vt=v0+g′t,g′=m/((4π2J/s2)+m).

5 .解:两轮相对于地面动量守恒,因为μ1>μ2,轮1 先做纯滚动,轮2 做纯滚动所需时间为t,则系统从触地到均做纯滚动时对地面角动量守恒,得

2 mv0R=2 mvtR+2 ·(1 /2 )mR2ω,

又vt=ωR,解得

vt=(2 /3 )v0,ω=2 v0/3 R,t=ω/α2=ωR/2μ2g=v0/3 μ2g.

6 .解:碰后系统质心位置从杆中点右移为

Δx=(m/(M+m))·(l/2 ).

由质心的动量守恒,求得质心速度为

vC=(m/(M+m))v0.

由角动量守恒并考虑质心速度与角速度关系,求得瞬时轴在杆中心左侧x=l/6 处,ω=6 mv0/(M+ 4 m)l.

7 .解:纯滚动时,无机械能损失,v=Rω.非纯滚动时,运用动量定理及角动量定理,求上坡前的质心速度及角速度,根据机械能守恒即可求得.h′=h/9 .

8 .解:乒乓球与地接触点O即滚动又滑动且达到纯滚动时,由角动量守恒,得

mRvC0 -Jω0=mRvC+Jω,

即vC0 -vC=(2 / 3 )R(ω0+ω),

达到纯滚动时,有vC=Rω,

可得到纯滚时质心速度为vC=( 3 /5 )vC0 -( 2 /3 )Rω0.

其中,若vC0 >(2 /3 )Rω0,纯滚动后,球向右顺时针方向做纯滚动;vC0 <(2 /3 )Rω0,则纯滚动后,球向左逆时针方向做纯滚动.

质心做匀加速运动,达到纯滚时间设为t,由vC=vC0 -μgt,可得

t=2 (vC0 +Rω0)/5 μg.

9 .解:原薄方板对悬点的转动惯量J0=(2 /3 )Ma2,粘上质量为m的质点后有J=(2 /3 )Ma2+m·x2.振动周期相同,应有

J0/Mgl=J/(M+m)gl′,

l′=(mx+Ml)/(M+m),l=(/2 )a,

解得x=( 2 / 3 )a.

1 0 .解:设以某棱为轴转动时间Δt,此碰撞瞬间前后的角速度分别为ωi、ωf,时间短,忽略重力冲量及冲量矩,知矢量关系如图

2

3 所示.

图23

对质心有NΔt=Ma(ωf-ωi)sin3 0 °,

-fΔt=Ma(ωf-ωi)cos3 0 °,

对刚体有

fΔtacos3 0 °-NΔtasin3 0 °=(5 /1 2 )Ma2(ωf-ωi).解得ωf=(11 /17 )ωi,s=11 /17 ,r=s2=1 2 1 /28 9 .

大学物理刚体部分知识点总结

一、刚体的简单运动知识点总结 1、刚体运动的最简单形式为平行移动与绕定轴转动。 2、刚体平行移动。 ·刚体内任一直线段在运动过程中,始终与它的最初位置平行,此种运动称为刚体平行移动,或平移。 ·刚体作平移时,刚体内各点的轨迹形状完全相同,各点的轨迹可能就是直线,也可能就是曲线。 ·刚体作平移时,在同一瞬时刚体内各点的速度与加速度大小、方向都相同。 3、刚体绕定轴转动。 ?刚体运动时,其中有两点保持不动,此运动称为刚体绕定轴转动,或转动。 ?刚体的转动方程φ=f(t)表示刚体的位置随时间的变化规律。 ?角速度ω表示刚体转动快慢程度与转向,就是代数量, 。角速度也可以用矢量表示, 。 ?角加速度表示角速度对时间的变化率,就是代数量, ,当α与ω同号时,刚体作匀加速转动;当α与ω异号时,刚体作匀减速转动。角加速度也可以用矢量表示, 。 ?绕定轴转动刚体上点的速度、加速度与角速度、角加速度的关系: 。 速度、加速度的代数值为。 ?传动比。

二. 转动定律转动惯量 转动定律 力矩相同,若转动惯量不同,产生的角加速度不同 与牛顿定律比较: 转动惯量 刚体绕给定轴的转动惯量J 等于刚体中每个质元的质量与该质元到转轴距离的平方的乘积之总与。 定义式质量不连续分布 质量连续分布 物理意义 转动惯量就是描述刚体在转动中的惯性大小的物理量。 它与刚体的形状、质量分布以及转轴的位置有关。 计算转动惯量的三个要素:

(1)总质量; (2)质量分布; (3)转轴的位置 (1) J 与刚体的总质量有关 几种典型的匀质刚体的转动惯量 平行轴定理与转动惯量的可加性 1) 平行轴定理 设刚体相对于通过质心轴线的转动惯量为Ic,相对于与之平行的另一轴的转动惯量为I,则可以证明I 与Ic 之间有下列关系 2c I I md =+ 2)转动惯量的可加性 对同一转轴而言,物体各部分转动惯量之与 等于整个物体的转动惯量。 三 角动量 角动量守恒定律 2 c I I md =+

ANSYS刚体运动学分析详解

刚体运动学分析 一、前处理 1.创建分析项目 双击主界面Toolbox中的Analysis System>Rigid Dynamics(刚体动力学)选项,在项目管理区创建分析项目A,如图所示。 2.定义材料数据 1)双击项目A中的A2栏Engineering Data项,进入材料参数设置界面,在该界面下即可进行材料参数设置。 2)根据实际工程材料的特性,在Properties of Outline Row 2: Structure Steel表中可以修改材料的特性。 3)关闭A2:Engineering Data,返回到Workbench主界面,材料库添加完毕。 3.添加几何模型 1)在A2栏的Geometry上单击鼠标右键,在弹出的快捷菜单中选择Import Geometry>Browse,此时会弹出“打开”对话框。 2)在弹出的对话框中选择文件路径,导入chap16几何体文件,此时A2栏Geometry后的?变为√,表示实体模型已经存在。 3)单击DM(DesignModeler)界面右上角的“关闭”按钮退出DM,返回到Workbench主界面。 4. 定义零件行为 1)双击主界面项目管理区项目A中的A3栏Model项,进入Mechanical界面,在该界面下即可进行网格的划分、分析设置、结果查看等操作。

2)选择Mechanical界面左侧Outline树结构图中Geometry选项下的所有Solid,在Details of “Solid”中确保所有的Solid对象的Stiffness Behavior(刚度特性)均为Rigid(刚性),如图所示。 5.设置连接 1)查看是否生成了Contact接触,如存在,则全部删除,如图所示。 2)选择Mechanical界面左侧Outline树结构图中的Connections对象,然后在工具箱中选择Body-Ground>Revolute,此时树结构图中出现Revolute对象。 3)设置Revolute对象的细节窗口如图所示,然后单击选择左边实体底部的孔,并在细节窗口中的Scope中单击Apply按钮。 4)按照上面的方法,继续添加Revolute对象。设置Revolute对象的细节窗口如图所示。然后单击选择右边实体底部的孔,并在细节窗口中的Scope中单击Apply按钮。

大学物理刚体动力学

第二章 刚体力学基础 自学练习题 一、选择题 1.有两个力作用在有固定转轴的刚体上: (1)这两个力都平行于轴作用时,它们对轴的合力矩一定是零; (2)这两个力都垂直于轴作用时,它们对轴的合力矩可能是零; (3)当这两个力的合力为零时,它们对轴的合力矩也一定是零; (4)当这两个力对轴的合力矩为零时,它们的合力也一定是零; 对上述说法,下述判断正确的是:( ) (A )只有(1)是正确的; (B )(1)、(2)正确,(3)、(4)错误; (C )(1)、(2)、(3)都正确,(4)错误; (D )(1)、(2)、(3)、(4)都正确。 【提示:(1)如门的重力不能使门转动,平行于轴的力不能提供力矩;(2)垂直于轴的力提供力矩,当两个力提供的力矩大小相等,方向相反时,合力矩就为零】 2.关于力矩有以下几种说法: (1)对某个定轴转动刚体而言,内力矩不会改变刚体的角加速度; (2)一对作用力和反作用力对同一轴的力矩之和必为零; (3)质量相等,形状和大小不同的两个刚体,在相同力矩的作用下,它们的运动状态一定相同。 对上述说法,下述判断正确的是:( ) (A )只有(2)是正确的; (B )(1)、(2)是正确的; (C )(2)、(3)是正确的; (D )(1)、(2)、(3)都是正确的。 【提示:(1)刚体中相邻质元间的一对内力属于作用力和反作用力,作用点相同,则对同一轴的力矩和为零,因而不影响刚体的角加速度和角动量;(2)见上提示;(3)刚体的转动惯量与刚体的质量和大小形状有关,因而在相同力矩的作用下,它们的运动状态可能不同】 3.一个力(35)F i j N =+作用于某点上,其作用点的矢径为m j i r )34( -=,则该力对坐标原点的力矩为 ( ) (A )3kN m -?; (B )29kN m ?; (C )29kN m -?; (D )3kN m ?。 【提示:(43)(35)430209293 5 i j k M r F i j i j k k k =?=-?+=-=+ =】 4.均匀细棒OA 可绕通过其一端O 而与棒垂直的水平固定光滑轴 转动,如图所示。今使棒从水平位置由静止开始自由下落,在棒摆 到竖直位置的过程中,下述说法正确的是:( ) (A )角速度从小到大,角加速度不变; (B )角速度从小到大,角加速度从小到大; (C )角速度从小到大,角加速度从大到小;

大学物理06刚体力学

刚体力学 1、(0981A15) 一刚体以每分钟60转绕z 轴做匀速转动(ω? 沿z 轴正方向).设某时刻刚体上一点 P 的位置矢量为k j i r ??? ? 5 4 3++=,其单位为“10-2 m ”,若以“10-2 m ·s -1”为速度单位,则该时刻P 点的速度为: (A) k j i ???? 157.0 125.6 94.2++=v (B) j i ??? 8.18 1.25+-=v (C) j i ??? 8.18 1.25--=v (D) k ?? 4.31=v [ ] 2、(5028B30) 如图所示,A 、B 为两个相同的绕着轻绳的定滑轮.A 滑轮挂一质量为M 的物体,B 滑轮受拉力F ,而且F =Mg .设A 、 B 两滑轮的角加速度分别为A 和B ,不计滑轮轴的摩擦,则 有 (A) A =B . (B) A >B . (C) A < B . (D) 开始时 A = B ,以后 A < B . [ ] 3、(0148B25) 几个力同时作用在一个具有光滑固定转轴的刚体上,如果这几个力的矢量和为零,则此刚体 (A) 必然不会转动. (B) 转速必然不变. (C) 转速必然改变. (D) 转速可能不变,也可能改变. [ ] 4、(0153A15) 一圆盘绕过盘心且与盘面垂直的光滑固定轴O 以角速度 按图 示方向转动.若如图所示的情况那样,将两个大小相等方向相反但不在同一条直线的力F 沿盘面同时作用到圆盘上,则圆盘的角速度 (A) 必然增大. (B) 必然减少. (C) 不会改变. (D) 如何变化,不能确定. [ ] 5、(0165A15) 均匀细棒OA 可绕通过其一端O 而与棒垂直的水平固定光滑轴转动,如图所示.今使棒从水平位置由静止开始自由下落,在棒摆动到竖直位置的过程中,下述说法哪一种是正确的? (A) 角速度从小到大,角加速度从大到小. A M B F O F F ω O A

刚体的运动学与动力学问题

刚体的运动学与动力学问题 编者按中国物理学会全国中学生物理竞赛委员会2000 年第十九次会议对《全国中学生物理竞赛内容提要》作了一些调整和补充,并决定从 2002 年起在复赛题与决赛题中使用提要中增补的内容. 一、竞赛涉及有关刚体的知识概要 1. 刚体 在无论多大的外力作用下,总保持其形状和大小不变的物体称为刚体.刚体是一种理想化模型,实际物体在外力作用下发生的形变效应不显著可被忽略时,即可将其视为刚体,刚体内各质点之间的距离保持不变是其重要的模型特征. 2 . 刚体的平动和转动 刚体运动时,其上各质点的运动状态(速度、加速度、位移)总是相同的,这种运动叫做平动.研究刚体的平动时,可选取刚体上任意一个质点为研究对象.刚体运动时,如果刚体的各个质点在运动中都绕同一直线做圆周运动,这种运动叫做转动,而所绕的直线叫做转轴.若转轴是固定不动的,刚体的运动就

是定轴转动.刚体的任何一个复杂运动总可看做平动与转动的叠加,刚体的运动同样遵从运动独立性原理. 3. 质心质心运动定律 质心这是一个等效意义的概念,即对于任何一个刚体(或质点系),总可以找到一点C,它的运动就代表整个刚体(或质点系)的平动,它的运动规律就等效于将刚体(或质点系)的质量集中在点C,刚体(或质点系)所受外力也全部作用在点C时,这个点叫做质心.当外力的作用线通过刚体的质心时,刚体仅做平动;当外力作用线不通过质心时,整个物体的运动是随质心的平动及绕质心的转动的合成. 质心运动定律物体受外力 F 作用时,其质心的加速度为aC,则必有F=maC,这就是质心运动定律,该定律表明:不管物体的质量如何分布,也不管外力作用点在物体的哪个位置,质心的运动总等效于物体的质量全部集中在此、外力亦作用于此点时应有的运动. 4 . 刚体的转动惯量J

大学物理刚体部分练习题

02刚体 一、选择题 1.0148:几个力同时作用在一个具有光滑固定转轴的刚体上,如果这几个力的矢量和为零,则此刚体 (A) 必然不会转动 (B) 转速必然不变 (C) 转速必然改变 (D) 转速可能不变,也可能改变 [ ] 2.0153:一圆盘绕过盘心且与盘面垂直的光滑固定轴O 以角速度按图示方向转动。若如图所示的情况那样,将两个大小相等方向相反但不在同一条直线的力F 沿盘面同时作用到 圆盘上,则圆盘的角速度ω (A) 必然增大 (B) 必然减少 (C) 不会改变 (D) 如何变化,不能确定 [ ] 3.0165:均匀细棒OA 可绕通过其一端O 而与棒垂直的水平固定光滑轴转动,如图所示。今使棒从水平位置由静止开始自由下落,在棒摆动到竖直位置的过程中,下述说法哪一种是正确的? (A) 角速度从小到大,角加速度从大到小 (B) 角速度从小到大,角加速度从小到大 (C) 角速度从大到小,角加速度从大到小 (D) 角速度从大到小,角加速度从小到大 [ ] 4.0289:关于刚体对轴的转动惯量,下列说法中正确的是 (A )只取决于刚体的质量,与质量的空间分布和轴的位置无关 (B )取决于刚体的质量和质量的空间分布,与轴的位置无关 (C )取决于刚体的质量、质量的空间分布和轴的位置 (D )只取决于转轴的位置,与刚体的质量和质量的空间分布无关 [ ] 5.0292:一轻绳绕在有水平轴的定滑轮上,滑轮的转动惯量为J ,绳下端挂一物体。物体所 受重力为P ,滑轮的角加速度为。若将物体去掉而以与P 相等的力直接向下拉绳子,滑轮的角加速度将 (A) 不变 (B) 变小 (C) 变大 (D) 如何变化无法判断 [ ] 6.0126:花样滑冰运动员绕通过自身的竖直轴转动,开始时两臂伸开,转动惯量为J 0,角 速度为。然后她将两臂收回,使转动惯量减少为J 0。这时她转动的角速度变为: (A) (B) (C) (D) [ ] 7.0132:光滑的水平桌面上,有一长为2L 、质量为m 的匀质细杆,可绕过其中点且垂直于 杆的竖直光滑固定轴O 自由转动,其转动惯量为mL 2 ,起初杆静止。 为m v 相向运动,如图所示。当两小球同时与杆的两个端点发生完全非 弹性碰撞后,就与杆粘在一起转动,则这一系统碰撞后的转动角速 ωαα0ω 31 31ω() 03/1ω03ω03ω31 O v 俯视图

大学物理-力学考题

一、填空题(运动学) 1、一质点在平面内运动, 其1c r = ,2/c dt dv =;1c 、2c 为大于零的常数,则该质点作 运动。 2.一质点沿半径为0.1=R m 的圆周作逆时针方向的圆周运动,质点在0~t 这段 时间内所经过的路程为4 2 2t t S ππ+ = ,式中S 以m 计,t 以s 计,则在t 时刻质点的角速度为 , 角加速度为 。 3.一质点沿直线运动,其坐标x 与时间t 有如下关系:x=A e -β t ( A. β皆为常数)。则任意时刻t 质点的加速度a = 。 4.质点沿x 轴作直线运动,其加速度t a 4=m/s 2,在0=t 时刻,00=v ,100=x m ,则该质点的运动方程为=x 。 5、一质点从静止出发绕半径R 的圆周作匀变速圆周运动,角加速度为β,则该质点走完半周所经历的时间为______________。 6.一质点沿半径为0.1=R m 的圆周作逆时针方向的圆周运动,质点在0~t 这段时间内所经过的路程为2t t s ππ+=式中S 以m 计,t 以s 计,则t=2s 时,质点的法向加速度大小n a = 2/s m ,切向加速度大小τa = 2/s m 。 7. 一质点沿半径为0.10 m 的圆周运动,其角位移θ 可用下式表示3 2t +=θ (SI). (1) 当 2s =t 时,切向加速度t a = ______________; (2) 当的切向加速度大小恰为法向加速度 大小的一半时,θ= ______________。 (rad s m 33.3,/2.12) 8.一质点由坐标原点出发,从静止开始沿直线运动,其加速度a 与时间t 有如下关系:a=2+ t ,则任意时刻t 质点的位置为=x 。 (动力学) 1、一质量为kg m 2=的质点在力()()N t F x 32+=作用下由静止开始运动,若此力作用在质点上的时间为s 2,则该力在这s 2内冲量的大小=I ;质点在第 s 2末的速度大小为 。

多体系统动力学基本理论

第2章多体系统动力学基本理论

本章主要介绍多体系统动力学的基本理论,包括多刚体系统动力学建模、多柔体系统动力学建模、多体系统动力学方程求解及多体系统动力学中的刚性(Stiff)问题。通过本章的学习可以对多体系统动力学的基本理论有较深入的了解,为具体软件的学习打下良好的理论基础。 2.1 多体系统动力学研究状况 多体系统动力学的核心问题是建模和求解问题,其系统研究开始于20世纪60年代。从60年代到80年代,侧重于多刚体系统的研究,主要是研究多刚体系统的自动建模和数值求解;到了80年代中期,多刚体系统动力学的研究已经取得一系列成果,尤其是建模理论趋于成熟,但更稳定、更有效的数值求解方法仍然是研究的热点;80年代之后,多体系统动力学的研究更偏重于多柔体系统动力学,这个领域也正式被称为计算多体系统动力学,它至今仍然是力学研究中最有活力的分支之一,但已经远远地超过一般力学的涵义。 本节将叙述多体系统动力学发展的历史和目前国内外研究的现状。 2.1.1 多体系统动力学研究的发展 机械系统动力学分析与仿真是随着计算机技术的发展而不断成熟的,多体系统动力学是其理论基础。计算机技术自其诞生以来,渗透到了科学计算和工程应用的几乎每一个领域。数值分析技术与传统力学的结合曾在结构力学领域取得了辉煌的成就,出现了以ANSYS、NASTRAN等为代表的应用极为广泛的结构有限元分析软件。计算机技术在机构的静力学分析、运动学分析、动力学分析以及控制系统分析上的应用,则在二十世纪八十年代形成了计算多体系统动力学,并产生了以ADAMS和DADS为代表的动力学分析软件。两者共同构成计算机辅助工程(CAE)技术的重要内容。 多体系统是指由多个物体通过运动副连接的复杂机械系统。多体系统动力学的根本目的是应用计算机技术进行复杂机械系统的动力学分析与仿真。它是在经典力学基础上产生的新学科分支,在经典刚体系统动力学上的基础上,经历了多刚体系统动力学和计算多体系统动力学两个发展阶段,目前已趋于成熟。 多刚体系统动力学是基于经典力学理论的,多体系统中最简单的情况——自由质点和一般简单的情况——少数多个刚体,是经典力学的研究内容。多刚体系统动力学就是为多个刚体组成的复杂系统的运动学和动力学分析建立适宜于计算机程序求解的数学模型,并寻求高效、稳定的数值求解方法。由经典力学逐步发展形成了多刚体系统动力学,在发展过程中形成了各具特色的多个流派。 早在1687年,牛顿就建立起牛顿方程解决了质点的运动学和动力学问题;刚体的概念最早由欧拉于1775年提出,他采用反作用力的概念隔离刚体以描述铰链等约束,并建立了

大学物理试题库刚体力学 Word 文档

第三章 刚体力学 一、刚体运动学(定轴转动)---角位移、角速度、角加速度、线量与角量的关系 1、刚体做定轴转动,下列表述错误的是:【 】 A ;各质元具有相同的角速度; B :各质元具有相同的角加速度; C :各质元具有相同的线速度; D :各质元具有相同的角位移。 2、半径为0.2m 的飞轮,从静止开始以20rad/s 2的角加速度做定轴转动,则t=2s 时,飞轮边缘上一点的切向加速度τa =____________,法向加速度n a =____________,飞轮转过的角位移为_________________。 3、刚体任何复杂的运动均可分解为_______________和 ______________两种运动形式。 二、转动惯量 1、刚体的转动惯量与______________ 和___________________有关。 2、长度为L ,质量为M 的均匀木棒,饶其一端A 点转动时的转动惯量J A =_____________,绕其中心O 点转动时的转动惯量J O =_____________________。 3、半径为R 、质量为M 的均匀圆盘绕其中心轴(垂直于盘面)转动的转动惯量J=___________。 4、两个匀质圆盘A 和B 的密度分别是A ρ和B ρ,若B A ρρ>,但两圆盘的质量和厚度相同,如两盘对通过盘心垂直于盘面轴的转动惯量各为A J 和B J 则:【 】 (A )B A J J >; (B )B A J J < (C )B A J J = (D )不能确定 三、刚体动力学----转动定理、动能定理、角动量定理、角动量守恒 1、一长为L 的轻质细杆,两端分别固定质量为m 和2m 的小球,此系统在竖直平面内可绕过中点O 且与杆垂直的水平光滑固定轴(O 轴)转 动.开始时杆与水平成60°角,处于静止状态.无初转速地释放以后, 杆球这一刚体系统绕O 轴转动.系统绕O 轴的转动惯量J = ___________.释放后,当杆转到水平位置时,刚体受到的合外力矩M =____ __;角加速度β= ____ __. 2、一个能绕固定轴转动的轮子,除受到轴承的恒定摩擦力矩M r 外,还受到恒定外力矩M 的作用.若M =20 N ·m ,轮子对固定轴的转动惯量为J =15 kg ·m 2.在t =10 s 内,轮子的角速度由ω =0增大到ω=10 rad/s ,则M r =_______. 3、【 】银河系有一可视为物的天体,由于引力凝聚,体积不断收缩。设它经过一万年体积收缩了1%,而质量保持不变。则它的自转周期将______;其转动动能将______ (A )减小,增大; (B)不变,增大; (C) 增大,减小; (D) 减小,减小 4、【 】一子弹水平射入一竖直悬挂的木棒后一同上摆。在上摆的过程中,一子弹和木棒为系统(不包括地球),则总角动量、总动量及总机械能是否守恒?结论是: (A )三者均不守恒; (B )三者均守恒;

多体系统动力学综述

1. 绝对节点坐标法 传统有限元方法建立的单元为非等参数单元,其使用节点处的位移梯度来描述物体的无限小的转动,但在物体发生大变形时,节点处的位移梯度已不能准确描述物体的转动变形,从而极大影响到计算的精度。 Shabana [1]提出了绝对节点坐标法(Absolute nodal coordinate formulation, ANCF ),其理论基础主要是有限元和连续介质力学理论。该方法将物体的单元节点坐标定义在全局坐标系下,使用节点处的斜率(slope)矢量作为节点坐标而不是节点处的无限小转动[2],不需要另外计算刚体位移与柔性变形之间的耦合,能较精确地计算大变形的多体系统动力学问题。其最终推导出的多体系统的微分代数方程组(DAEs )中,质量矩阵是一个常数矩阵,但刚度矩阵将是一个非线性的时间函数。 1.1梁单元的绝对节点坐标法 Shabana 首先推导出一维梁单元的绝对节点坐标法模型[1][3]。在这种模型中,梁单元用中性轴来简化,如图1所示,其上面任意一点P 在全局坐标系下的坐标表达为: 23101232320123r =Se r a a x a x a x r b b x b x b x ??+++??==????+++???? 图1 其中,x 为沿轴线的单元局部坐标,[]0,x l ∈,l 为梁单元初始长度;S 为单元形函数;e 为含有8个单元节点坐标的广义坐标矢量。 123456781102205162e []|,|,|,|, T x x x l x l e e e e e e e e e r e r e r e r ========= 1 2 1 2 304078,,,x x x l x l r r r r e e e e x x x x ====????====????

大学物理刚体力学基础习题思考题及答案

习题5 5-1.如图,一轻绳跨过两个质量为 m 、半径为r 的均匀圆盘状定滑轮,绳的两端 分别挂着质量为2m 和m 的重物,绳与滑轮间无相对滑动,滑轮轴光滑,两个定 滑轮的转动惯量均为 mr 2 / 2,将由两个定滑轮以及质量为 2m 和m 的重物组成 的系统从静止释放,求重物的加速度和两滑轮之间绳的力。 解:受力分析如图,可建立方程: 广 2mg T 2 2ma ① T1 mg ma ② J (T 2 T)r J ③ (T T 1)r J ④ 虹 a r , J mr 2/2 ⑤ 联立,解得:a 1g, T 4 上,设开始时杆以角速度 °绕过中心O 且垂直与桌面的轴转动,试求: (1)作 用于杆的摩擦力矩;(2)经过多长时间杆才会停止转动。 解:(1)设杆的线密度为: d f dmg gd x, 微元摩擦力矩:d M g xd x , (2)根据转动定律 M J J 马, t 有: 0 Mdt Jd dt 1 . -mglt 1 [2 —m l 0, . . t _oL 4 12 3 g 或利用: M t J J 0,考虑到 0, J 1 | 2 一 ml , 12 有:t ol 。 11 a mg 5-2.如图所示,一均匀细杆长为 l ,质量为m ,平放在摩擦系数为 的水平桌面 一小质元dm dx,有微元摩擦力: 考虑对称性, l_ M 2 2 有摩擦力 矩: gxdx 1

5-3.如图所示,一个质量为m的物体与绕在定滑轮上的绳子相联,绳子的质量 可以忽略,它与定滑轮之间无滑动。假设定滑轮质量为M、半径为 R,其转动惯量为MR2/2,试求该物体由静止开始下落的过程中, 下落速度与时间的关系。 解:受力分析如图,可建立方程: r mg T ma ① * TR J ② —, 1 ~2 — k a R , J — mR —-③ 2 2mg Mmg 联立,解得:a ------------ — , T ----------- —, 考虑到a四,.?. v dv 「旦—dt,有:v dt 0 0 M 2m M 2m 5-4.轻绳绕过一定滑轮,滑轮轴光滑,滑轮的质量为M /4,均匀分布在其边缘上,绳子A端有一质量为M的人抓住了绳端,而在绳的另一端B系了一质量为M /4的重物,如图。已知滑轮对O 轴的转动惯量J MR2 /4 ,设人从静止开始以相对绳匀速向上爬时,绳与滑轮间无相对滑动,求B端重物上升的加速度? 解一: 分别对人、滑轮与重物列出动力学方程 Mg T1Ma A人 T2M 4g M 心 a B物 4 T1R T2R J滑轮 由约束方程:a A a B R 和J MR2/4,解上述方程组 得到a —. 2 解二: 选人、滑轮与重物为系统,设 U为人相对绳的速度,V为重

第十三讲刚体的运动和动力学问题

第十三讲 刚体的运动学与动力学问题 一 竞赛内容提要 1、刚体;2、刚体的平动和转动;3、刚体的角速度和角加速度;4、刚体 的转动惯量和转动动能;5、质点、质点系和刚体的角动量;6、转动定理和角动量定理;7、角动量守恒定律。 二 竞赛扩充的内容 1、刚体:在外力的作用下不计形变的物体叫刚体。刚体的基本运动包括刚体的平动和刚体绕定轴的转动,刚体的任何复杂运动均可由这两种基本运动组合而成。 2、刚体的平动;刚体的平动指刚体内任一直线在运动中始终保持平行,刚体上任意两点运动的位移、速度和加速度始终相同。 3、刚体绕定轴的转动;刚体绕定轴的转动指刚体绕某一固定轴的转动,刚体上各点都在与转轴垂直的平面内做圆周运动,各点做圆周运动的角位移Φ、角速度ω和角加速度β相同(可与运动 学的s 、v 、a 进行类比)。且有:ω=t t ??Φ→?lim 0;β=t t ??→?ωlim 0。当β为常量时,刚体做匀加 速转动,类似于匀加速运动,此时有:ω=ω0+βt ; Φ=Φ0+ω0t+βt 2/2; ω2-ω02=2β(Φ-Φ0)。式中,Φ0、ω0分别是初始时刻的角位移和角速度。对于绕定轴运动的刚体上某点的运动情况,有:v=ωR , a τ=βR , a n =ω2R=v 2/R, 式中,R 是该点到轴的距离,a τ、a n 分别是切向加速度和法向加速度。 例1 有一车轮绕轮心以角速度ω匀速转动,轮上有一小虫自轮心沿一根辐条向外以初速度v 0、 加速度a 作匀加速爬行,求小虫运动的轨迹方程。 例2 一飞轮作定轴转动,其转过的角度θ和时间t 的关系式为:θ=at+bt 2-ct 3,式中,a 、b 、c 都是恒量,试求飞轮角加速度的表示式及距转轴r 处的切向加速度和法向加速度。 例3 如图所示,顶杆AB 可在竖直槽K 内滑动,其下端由凸轮K 推动,凸轮 绕O 轴以匀角速度ω转动,在图示瞬间,OA=r ,凸轮轮缘与A 接触处,法线n 与OA 之间的夹角为α,试求此瞬时顶杆OA 的速度。

大学物理刚体部分知识点总结复习过程

一、刚体的简单运动知识点总结 1.刚体运动的最简单形式为平行移动和绕定轴转动。 2.刚体平行移动。 ·刚体内任一直线段在运动过程中,始终与它的最初位置平行,此种运动称为刚体平行移动,或平移。 ·刚体作平移时,刚体内各点的轨迹形状完全相同,各点的轨迹可能是直线,也可能是曲线。 ·刚体作平移时,在同一瞬时刚体内各点的速度和加速度大小、方向都相同。 3.刚体绕定轴转动。 ?刚体运动时,其中有两点保持不动,此运动称为刚体绕定轴转动,或转动。 ?刚体的转动方程φ=f(t)表示刚体的位置随时间的变化规律。 ?角速度ω表示刚体转动快慢程度和转向,是代数量,。角速度也可以用矢量表示,。 ?角加速度表示角速度对时间的变化率,是代数量,,当α与ω同号时,刚体作匀加速转动;当α与ω异号时,刚体作匀减速转动。角加速度也可以用矢量表示,。 ?绕定轴转动刚体上点的速度、加速度与角速度、角加速度的关系: 。 速度、加速度的代数值为。 ?传动比。

二.转动定律转动惯量 转动定律 力矩相同,若转动惯量不同,产生的角加速度不同 与牛顿定律比较: 转动惯量 刚体绕给定轴的转动惯量J 等于刚体中每个质元的质量与该质元到转轴距离的平方的乘积之总和。 定义式质量不连续分布 质量连续分布 物理意义 转动惯量是描述刚体在转动中的惯性大小的物理量。 它与刚体的形状、质量分布以及转轴的位置有关。 计算转动惯量的三个要素:

(1)总质量; (2)质量分布; (3)转轴的位置 (1) J 与刚体的总质量有关 几种典型的匀质刚体的转动惯量 平行轴定理和转动惯量的可加性 1) 平行轴定理 设刚体相对于通过质心轴线的转动惯量为Ic ,相对于与之平行的另一轴的转动惯量为I ,则可以证明I 与Ic 之间有下列关系 2c I I md =+ 2)转动惯量的可加性 对同一转轴而言,物体各部分转动惯量之和 等于整个物体的转动惯量。 三 角动量 角动量守恒定律 2 c I I m d =+

大学物理习题及解答(刚体力学)

1 如图所示,质量为m 的小球系在绳子的一端,绳穿过一铅直套管,使小球限制在一光滑水平面上运动。先使小球以速度0v 。绕管心作半径为r D 的圆周运动,然后向下慢慢拉绳,使小球运动轨迹最后成为半径为r 1的圆,求(1)小球距管心r 1时速度大小。(2)由r D 缩到r 1过程中,力F 所作的功。 解 (1)绳子作用在 小球上的力始终通过中 心O ,是有心力,以小球 为研究对象,此力对O 的 力矩在小球运动过程中 始终为零,因此,在绳子缩短的过程中,小球对O 点的角动量守恒,即 1 0L L = 小球在r D 和r 1位置时的角动量大小 1100r mv r mv = 1 00r r v v = (2)可见,小球的速率增大了,动能也增大了,由功能定理得力所作的功 ??????-=-=-=1)(21 2 1)(21 2 1212102020210202021r r mv mv r r mv mv mv W

2 如图所示,定滑轮半径为r ,可绕垂直通过轮心的无摩擦水平轴转动,转动惯量为J ,轮上绕有一轻绳,一端与劲度系数为k 的轻弹簧相连,另一端与质量为m 的物体相连。 物体置于倾角为θ的光滑斜面上。 开始时,弹簧处于自然长度,物体速度为零,然后释放物体沿斜面下 滑,求物体下滑距离l 时, 物体速度的大小。 解 把物体、滑轮、弹簧、 轻绳和地球为研究系统。在 物体由静止下滑的过程中,只有重力、弹性力作功,其它外力和非保守内力作功的和为零,故系统的机械能守恒。 设物体下滑l 时,速度为v ,此时滑轮的角速度为ω 则 θωsin 2121210222mgl mv J kl -++= (1) 又有 ωr v = (2) 由式(1)和式(2)可得 m r J kl mgl v +-=22 sin 2θ

大学物理第3章刚体力学习题解答

第3章 刚体力学习题解答 3.13 某发动机飞轮在时间间隔t 内的角位移为 ):,:(43s t rad ct bt at θθ-+=。求t 时刻的角速度和角加速度。 解:23212643ct bt ct bt a dt d dt d -== -+== ωθβω 3.14桑塔纳汽车时速为166km/h ,车轮滚动半径为0.26m ,发动机转速与驱动轮转速比为0.909, 问发动机转速为每分多少转? 解:设车轮半径为R=0.26m ,发动机转速为n 1, 驱动轮转速为n 2, 汽车速度为v=166km/h 。显然,汽车前进的速度就是驱动轮边缘的线速度, 909.0/2212Rn Rn v ππ==,所以: min /1054.1/1024.93426.014.3210 166909.02909.013 rev h rev n R v ?=?===????π 3.15 如题3-15图所示,质量为m 的空心圆柱体,质量均匀分布,其内外半径为r 1和r 2,求对通过其中心轴的转动惯量。 解:设圆柱体长为h ,则半径为r ,厚为dr 的薄圆筒的质量dm 为: 2..dm h r dr ρπ= 对其轴线的转动惯量dI z 为 232..z dI r dm h r dr ρπ== 2 1 222211 2..()2 r z r I h r r dr m r r ρπ== -? 3.17 如题3-17图所示,一半圆形细杆,半径为 ,质量为 ,求对过细杆二端 轴的转动惯量。 解:如图所示,圆形细杆对过O 轴且垂直于圆形细杆所在平面的轴的转动惯量为mR 2,根据垂直轴定理z x y I I I =+和问题的对称性知:圆形细杆对过 轴的转动惯量为 1 2 mR 2,由转动惯量的可加性可求得:半圆形细杆对过细杆二端 轴的转动惯量为:21 4 AA I mR '=

大学物理刚体部分知识点总结上课讲义

大学物理刚体部分知 识点总结

一、刚体的简单运动知识点总结 1.刚体运动的最简单形式为平行移动和绕定轴转动。 2.刚体平行移动。 ·刚体内任一直线段在运动过程中,始终与它的最初位置平行,此种运动称为刚体平行移动,或平移。 ·刚体作平移时,刚体内各点的轨迹形状完全相同,各点的轨迹可能是直线,也可能是曲线。 ·刚体作平移时,在同一瞬时刚体内各点的速度和加速度大小、方向都相同。 3.刚体绕定轴转动。 ?刚体运动时,其中有两点保持不动,此运动称为刚体绕定轴转动,或转动。 ?刚体的转动方程φ=f(t)表示刚体的位置随时间的变化规律。 ?角速度ω表示刚体转动快慢程度和转向,是代数量,。角速度也可以用矢量表示,。 ?角加速度表示角速度对时间的变化率,是代数量,,当α与ω同号时,刚体作匀加速转动;当α与ω异号时,刚体作匀减速转动。角加速度也可以用矢量表示,。 ?绕定轴转动刚体上点的速度、加速度与角速度、角加速度的关系: 。 速度、加速度的代数值为。

?传动比。 二.转动定律转动惯量 转动定律 力矩相同,若转动惯量不同,产生的角加速度不同 与牛顿定律比较: 转动惯量 刚体绕给定轴的转动惯量 J 等于刚体中每个质元的质量与该质元到转轴距离的平方的乘积之总和。 定义式质量不连续分布

质量连续分布 物理意义 转动惯量是描述刚体在转动中的惯性大小的物理量。 它与刚体的形状、质量分布以及转轴的位置有关。 计算转动惯量的三个要素: (1)总质量; (2)质量分布; (3)转轴的位置 (1) J 与刚体的总质量有关 几种典型的匀质刚体的转动惯量 刚体转轴位置转动惯量J 细棒(质量为m,长为l)过中心与棒垂直212 ml 细棒(质量为m,长为l)过一点与棒垂直23 ml 细环(质量为m,半径为 R)过中心对称轴与环面垂直2 mR 细环(质量为m,半径为 R)直径22 mR 圆盘(质量为m,半径为 R)过中心与盘面垂直22 mR 圆盘(质量为m,半径为直径24 mR

大学物理_刚体的定轴转动_习题及答案

第4章 刚体的定轴转动 习题及答案 1.刚体绕一定轴作匀变速转动,刚体上任一点是否有切向加速度是否有法向加速度切向和法向加速度的大小是否随时间变化 答:当刚体作匀变速转动时,角加速度β不变。刚体上任一点都作匀变速圆周运动,因此该点速率在均匀变化,v l ω=,所以一定有切向加速度t a l β=,其大小不变。又因该点速度的方向变化, 所以一定有法向加速度2 n a l ω=,由于角速度变化,所以法向加速度的大小也在变化。 2. 刚体绕定轴转动的转动定律和质点系的动量矩定理是什么关系 答:刚体是一个特殊的质点系,它应遵守质点系的动量矩定理,当刚体绕定轴Z 转动时,动量矩定理的形式为z z dL M dt = ,z M 表示刚体对Z 轴的合外力矩,z L 表示刚体对Z 轴的动量矩。()2z i i L m l I ωω==∑,其中()2i i I m l =∑,代表刚体对定轴的转动惯量,所以 ()z z dL d d M I I I dt dt dt ω ωβ= ===。既 z M I β=。 所以刚体定轴转动的转动定律是质点系的动量矩定理在刚体绕定轴转动时的具体表现形式, 及质点系的动量矩定理用于刚体时在刚体转轴方向的分量表达式。 3.两个半径相同的轮子,质量相同,但一个轮子的质量聚集在边缘附近,另一个轮子的质量分布比较均匀,试问:(1)如果它们的角动量相同,哪个轮子转得快(2)如果它们的角速度相同,哪个轮子的角动量大 答:(1)由于L I ω=,而转动惯量与质量分布有关,半径、质量均相同的轮子,质量聚集在边缘附近的轮子的转动惯量大,故角速度小,转得慢,质量分布比较均匀的轮子转得快; (2)如果它们的角速度相同,则质量聚集在边缘附近的轮子角动量大。 4.一圆形台面可绕中心轴无摩擦地转动,有一玩具车相对台面由静止启动,绕轴作圆周运动,问平台如何运动如小汽车突然刹车,此过程角动量是否守恒动量是否守恒能量是否守恒 答:玩具车相对台面由静止启动,绕轴作圆周运动时,平台将沿相反方向转动;小汽车突然刹车过程满足角动量守恒,而能量和动量均不守恒。 5.一转速为1200r min 的飞轮,因制动而均匀地减速,经10秒后停止转动,求: (1) 飞轮的角加速度和从开始制动到停止转动,飞轮所转过的圈数; (2) 开始制动后5秒时飞轮的角速度。 解:(1)由题意飞轮的初角速度为 0240()n rad s ωππ== 飞轮作均减速转动,其角加速度为 20 0404/10 rad s t ωωπ βπ--= = =-? 故从开始制动到停止转动,飞轮转过的角位移为 201 2002 t t rad θωβπ?=?+?= 因此,飞轮转过圈数为

多体系统动力学简介20081202

多体系统动力学简介

多体系统动力学研究对象——机构 工程中的对象是由大量零部件构成的系统。在对它们进行设计优化与性态分析时可以分成两大类 一类为结构 ——正常工况下构件间没有相对运动(房屋建筑,桥梁等) ——关心的是这些结构在受到载荷时的强度、刚度与稳定 一类为机构 ——系统在运动过程中这些部件间存在相对运动(汽车,飞机起落架。机器人等)——力学模型为多个物体通过运动副连接的系统,称为多体系统 多体系统动力学俄研究的对象——机构(复杂机械系统)

不考虑系统运动起因的情况下研究各部件的位置与姿态及其变化速度和加速度的关系 典型案例:平面和空间机构的运动分析 系统各部件间通过运动副与驱动装置连接在一起 数学模型:各部件的位置与姿态坐标的非线性代数方程,以及速度与加速度的线性代数方程

当系统受到静载荷时,确定在运动副制约下的系统平衡位置以及运动副静反力 典型案例:机车或汽车中安装有大量的弹簧阻尼器,整车设计中必须考虑系统在静止状态下车身的位置与姿态,为平稳性与操纵稳定性的研究打下基础 数学模型:非线性微分代数方程组

讨论载荷和系统运动的关系 研究复杂机械系统在载荷作用下各部件的动力学响应是工程设计中的重要问题 动力学正问题——已知外力求系统运动的问题 动力学逆问题——已知系统运动确定运动副的动反力,是系统各部件强度分析的基础 动力学正逆混合问题——系统的某部分构件受控,当它们按照某已知规律运动时,讨论在外载荷作用下系统其他构件如何运动 数学模型:非线性微分代数方程组

机械系统的多体系统力学模型 在对复杂机械系统进行运动学与动力学分析前需要建立它的多体系统力学模型。对系统如下四要素进行定义: ?物体 ?铰链 ?外力(偶) ?力元 实际工程中的机械系统多体系统力学模型的定义取决于研究的目的 模型定义的要点是以能揭示系统运动学与动力学性态的最简模型为优 性态分析的求解规模与力学模型的物体与铰的个数有关

华理工大学大学物理习题之刚体力学习题详解

习题三 一、选择题 1.一根长为l 、质量为M 的匀质棒自由悬挂于通过其上端的光滑水平轴上。现有一质量为m 的子弹以水平速度v 0射向棒的中心,并以v 0/2的水平速度穿出棒,此后棒的最大偏转角恰为90?,则v 0的大小为 [ ] (A ; (B ; (C (D ) 22 163M gl m 。 答案:A 解: 11122 , 1122 J J J J Mg l ωωωω=+?? ?=??? 22211, 243l ml J m J Ml ??=== ??? 0012/2v v l l ω==,0021/21 /22 v v l l ωω===,111121 ()2J J J J ωωωω-= = 21122J Mgl ω=, 2 112J J Mgl J ω?? ?= ??? , 22 114J Mgl J ω= 2 2 202244143v ml l Mgl Ml ?? ???=?,Mgl M v m =?2 02163,2202 163M v gl m =,所以 3 40gl m M v = 2.圆柱体以80rad/s 的角速度绕其轴线转动,它对该轴的转动惯量为24kg m ?。在恒力矩作用下,10s 内其角速度降为40rad/s 。圆柱体损失的动能和所受力矩的大小为 [ ] (A )80J ,80N m ?; (B )800J ,40N m ?;(C )4000J ,32N m ?;(D )9600J ,16N m ?。 答案:D 解:800=ω,40=ω,10=t ,4J = 2201122k E J J ωω-?= - 2 2011()4(64001600)9600(J)22 k E J ωω?=-=??-= M 恒定,匀变速,所以有 0t ωωα=-,0t ωω α-= ,08040 416N m 10 M J J t ωω α--==? =? =? 3.一个转动惯量为J 的圆盘绕一固定轴转动,初角速度为0ω。设它所受阻力矩与转动角速度成正比M k ω=- (k 为正常数)。

刚体力学基础-习题-解答

衡水学院 理工科专业 《大学物理B 》 刚体力学基础 习题 命题教师:郑永春 试题审核人:张郡亮 一、填空题(每空1分) 1、三个质量均为m 的质点,位于边长为a 的等边三角形的三个顶点上。此系统对通过三角形中心并垂直于三角形平面的轴的转动惯量J 0=__ ma 2 _,对通过三角形中心且平行于其一边的轴的转动惯量为J A =__ 12 ma 2 _,对通过三角形中心和一个顶点的轴的转动惯量为J B =__ 2 1ma 2 。 2、两个质量分布均匀的圆盘A 和B 的密度分别为ρA 和ρB (ρA >ρB ),且两圆盘的总质量和厚度均相同。设两圆盘对通过盘心且垂直于盘面的轴的转动惯量分别为J A 和J B ,则有J A < J B 。 3、 一作定轴转动的物体,对转轴的转动惯量J =3.0 kg ·m 2,角速度ω0=6.0 rad/s .现对物体加一恒定的制动力矩M =-12 N ·m ,当物体的角速度减慢到ω=2.0 rad/s 时,物体已转过了角度?θ=__4.0rad 4、两个滑冰运动员的质量各为70 kg ,均以6.5 m/s 的速率沿相反的方向滑行,滑行路线间的垂直距离为10 m ,当彼此交错时,各抓住一10 m 长的绳索的一端,然后相对旋转,则抓住绳索之后各自对绳中心的角动量 L =__2275 kg·m 2·s 1 _;它们各自收拢绳索,到绳长为5 m 时,各自的速率υ =__13 m·s 1_。 5、有一质量均匀的细棒,可绕垂直于棒的一端的水平轴转动。如将此棒放在水平位置,然后任其下落,则在下落过程中的角速度大小将 变大 ,角加速度大小将 变小 。 二、单项选择题(每小题2分) ( A )1、有两个力作用在一个有固定转轴的刚体上,下列说法正确的是: A.这两个力都平行于轴作用时,它们对轴的合力矩一定是零; B.这两个力都垂直于轴作用时,它们对轴的合力矩一定是零; C.当这两个力的合力为零时,它们对轴的合力矩也一定是零; D.当这两个力对轴的合力矩为零时,它们的合力也一定是零。 ( C )2、一轻绳绕在有水平轴的定滑轮上,滑轮的转动惯量为J ,绳下端挂一物体。物体所受重力为P ,滑轮的角加速度为α.若将物体去掉而以与P 相等的力直接向下拉绳子,滑轮的角加速度α将 A.不变; B.变小; C.变大; D.如何变化无法判断。 ( C )3、关于刚体的转动惯量,下列说法中正确的是 A.只取决于刚体的质量,与质量的空间分布和轴的位置无关; B.取决于刚体的质量和质量的空间分布,与轴的位置无关; C.取决于刚体的质量、质量的空间分布和轴的位置; D.只取决于转轴的位置,与刚体的质量和质量的空间分布无关。 ( C )4、一人造地球卫星到地球中心O 的最大距离和最小距离分别是R A 和R B .设卫星对应的角动量分别是L A 、L B ,动能分别是E KA 、E KB ,则应有 A.L B > L A ,E KA = E KB ; B.L B < L A ,E KA = E KB ; C.L B = L A ,E KA < E KB ; D.L B = L A ,E KA > E KB . ( C )5、一圆盘正绕垂直于盘面的水平光滑固定轴O 转动,如图1射来两个质量 相同,速度大小相同,方向相反并在一条直线上的子弹,子弹射入圆盘并且留在盘内, O M m m 图1

相关文档