文档库 最新最全的文档下载
当前位置:文档库 › 直扩MSK调制解调技术研究

直扩MSK调制解调技术研究

直扩MSK调制解调技术研究
直扩MSK调制解调技术研究

zkq 20151125

MSK信号调制与研究

摘要 由于数字通信的高速发展,信息传输的带宽效率一直为人们所关注,对高效调制技术的探索具有重大的现实意义。随着社会信息化进程的加快,人们对通信的需求日益迫切,对通信质量的要求也越来越高。然而通信频谱是有限的,频率资源严重不足与高速可靠的信息传输存在着日益突出的矛盾,高效频谱利用率的数据传输已经成为当代通信技术梦寐以求的目标。怎样更有效的使用这些有限的频谱,如何节省频谱,高效利用频带成为通信领域研究的焦点。MSK是移频键控FSK的一种改进形式,他是许多调制方案中的一种类型,MSK可以解决OQPSK调制方式中不能解决包络起伏的问题,从而能够产生恒定包络、相位连续的调制信号[1]。因此对MSK 进行了深入的理论研究,为完善数字通信技术做出一点贡献。 现代数字调制技术的发展方向是最小功率谱占有率的恒包络数字调制技术。现代数字调制技术的关键在于相位变化的连续性,从而减少频率占用。本文的研究对象就是恒包络技术中的最小频移键控调制技术,其优良的特性使其在当今无线电通信系统中得到了大量的应用。本文还引出了最小频移键控的基本原理、调制原理、及其几种调制方式,并且比较了几种调制方式的优劣,最终选用了使用C52单片机进行调制,matlab进行仿真。 关键词:最小频移键控;单片机;调制器;matlab仿真

Abstract Due to the rapid development of digital communications, bandwidth efficient transmission of information has been of concern for people, of great practical significance to explore efficient modulation techniques. With the acceleration of the process of information society, people increasingly urgent need for communication, communication quality requirements are increasing. Communications spectrum is limited, however, a serious shortage of information transmission frequency resources and the presence of high-speed and reliable increasingly prominent contradiction, efficient spectrum utilization data transfer has become the holy grail of modern communications technology. How to more efficient use of the limited spectrum of these ways to reduce the spectral efficient use of the band becomes the focus of research in the field of communication. FSK Frequency Shift Keying MSK is a modification of that he is one of many types of modulation schemes, MSK OQPSK modulation method can solve the envelope fluctuation can not solve the problem, it is possible to generate a constant envelope, continuous phase modulation signal. Therefore MSK-depth theoretical study, to improve digital communications technology to make that contribution. Development direction of modern digital modulation techniques is the smallest share of the power spectrum of constant envelope digital modulation techniques. The key technology of modern digital modulation of the phase change is continuous, thereby reducing the frequency of usage. The object of study is the constant envelope techniques minimum shift keying modulation technology, its excellent features make it get a lot of applications in today's radio communication system. It also leads to the basic principles of minimum shift keying modulation principle, and several modulation schemes, and compare the advantages and disadvantages of several modulation schemes, the final selection is modulated using a C52 microcontroller, matlab simulation. Key words:Minimum Shift Keying;MCU;Modulator; matlab simulation

3高频实验三_幅度调制与解调

实验三:幅度调制与解调 一、实验目的 1、加深理解幅度调制与检波原理。 2、掌握用集成模拟乘法器构成调幅与检波电路的方法。 3、了解二极管包络检波的主要指标、检波效率及波形失真。 二、实验预习要求 1、复习《高频电子线路》中有关调幅与检波的内容; 2、阅读本实验的内容,熟悉实验的步骤; 三、实验原理和电路说明 1、调幅与检波原理简述: 调幅就是用低频调制信号去控制高频振荡(载波)的幅度,使高频振荡的振幅呈调制信号的规律变化:而检波则是从调幅波中取出低频信号。振幅调制信号按其不同频谱结构分为普通调幅(AM)信号,抑制载波的双边带调制(DSB)信号,抑制载波和一个边带的单边带调制信号。 把调制信号和载波同时加到一个非线性元件上(例如晶体二极管和晶体三极管),经过非线性变换电路,就可以产生新的频率成分,再利用一定带宽的谐振回路选出所需的频率成分就可实现调幅。 2、集成四象限模拟乘法器MCl496简介: 本器件的典型应用包括乘、除、平方、开方、倍频、调制、混频、检波、鉴相、鉴频动态增益控制等。它有两个输入端Vx、Vy和一个输出端Vo。一个理想乘法器的输出为V o=KVxVy,而实际输出存在着各种误差,其输出的关系为:Vo=K(Vx+Vxos)(Vy+Vyos) + Vzox。为了得到好的精度,必须消除Vxos、Vyos与Vzox 三项失调电压。集成模拟乘法器MC1496是目前常用的平衡调制/解调器,内部电路含有8个有源晶体管。本实验箱MCl496的内部原理图和管脚功能如图3-1所示:

图3-1 集成模拟乘法器MC1496电路原理图 MCl496各引脚功能如下: (1)、SIG+ 信号输入正端 (2)、GADJ 增益调节端 (3)、GADJ 增益调节端 (4)、SIG- 信号输入负端 (5)、BIAS 偏置端 (6)、OUT+ 正电流输出端 (7)、空脚 (8)、CAR+ 载波信号输入正端 (9)、空脚 (10)、CAR- 载波信号输入负端 (11)、空脚 (12)、OUT- 负电流输出端 (13)、空脚 (14)、V- 负电源 3、实际线路分析 U501是幅度调制乘法器,音频信号和载波分别从J50l和J502输入到乘法器的两个输入端,K501和K503可分别将两路输入对地短路,以便对乘法器进行输入失调凋

数字调制技术之MSK汇总

HEFEI UNIVERSITY 现代数字调制技术之MSK 系别 专业 班级 学号 姓名 指导老师 完成时间

摘要: 最小频移键控(Minimum-Shift Keying,缩写:MSK),是数字通信中一种连续相位的频移键控调制方式。类似于偏移四相相移键控(OQPSK),MSK同样将正交路基带信号相对于同相路基带信号延时符号间隔的一半,从而消除了已调信号中180°相位突变的现象。与OQPSK不同的是,MSK采用正弦型脉冲代替了OQPSK基带信号的矩形波形,因此得到恒定包络的调制信号,这有助于减少非线性失真带来的解调问题,可以用于特殊的一些场合。 关键词:MSK 正交性相位连续性调制解调功率谱特性

1、最小频移键控(MSK)的介绍 最小频移键控(Minimum-Shift Keying,缩写:MSK),是数字通信中一种连续相位的频移键控调制方式。 OQPSK和π/4-QPSK因为避免了QPSK信号相位突变180度的现象,所以改善了包络起伏,但并没有完全解决这一问题。由于包络起伏的根本原因在于相位的非连续变化,如果使用相位连续变化的调制方式就能从根本上解决包络起伏问题,这种方式称为连续相位调制。 最小频移键控(MSK)是2FSK的改进,它是二进制连续相位频移键控的一种特殊情况。2FSK信号虽然性能优良,易于实现,并得到了广泛的应用,但它还存在一些不足之处。首先,它的频带利用率较低,所占用的频带宽度比2PSK 大;其次,用开关法产生的2FSK信号其相邻码元的载波波形的相位可能不连续,通过带限系统后,会产生影响系统性能的包络起伏。此外,2FSK信号的两种波形不一定保证严格正交,而对于二进制数字调制信号来说,两种信号相互正交将改善系统的误码性能。为了克服上述缺点,对2FSK信号进行改进,提出MSK 调制方式。 MSK称为最小频移键控,有时也称为快速频移键控,所谓最小是指这种调制方式能以最小的调制指数(0.5)获得正交信号;而快速的含义是指在给定同样的频带内,MSK能比2PSK的数据传输速率更高,且带外频谱分量衰减得比2PSK快。 总结如下: 1.1、FSK的不足之处 (1)频带利用率低,所占频带宽度比2PSK大; (2)存在包络起伏,用开关法产生的2FSK信号其相邻码元的载波波形的相位可能不连续,会出现包络的起伏; (3)FSK信号的两种波形不一定保证严格正交。 1.2 、MSK信号的特点 (1)MSK信号的包络恒定不变; (2)MSK是调制指数为0.5的正交信号,频率偏移等于(±1/4Ts)Hz; (3)MSK波形的相位在码元转换时刻是连续的; (4)MSK波形的附加相位在一个码元持续时间内线性地变化±π/2 。

MSK调制与解调

信息科学与技术学院 通信原理 课程设计报告 课题名称:MSK系统的调制和解调 学生姓名: 学号: 专业年级:电子信息工程10级 班级:二班 指导教师: 完成时间:2013-7-10

目录 1.直流电机控制系统概述 .................................................................................... 错误!未定义书签。 1.1系统描述.......................................................................................... 错误!未定义书签。 1.2直流电机概述.................................................................................. 错误!未定义书签。 2.题目及要求........................................................................................................ 错误!未定义书签。 2.1 题目................................................................................................. 错误!未定义书签。 2.2要求.................................................................................................. 错误!未定义书签。3直流电机功能设计及描述 ................................................................................. 错误!未定义书签。 3.1直流电机的介绍.............................................................................. 错误!未定义书签。 3.1.1直流电机的结构.................................................................. 错误!未定义书签。 3.1.2直流电机的工作原理.......................................................... 错误!未定义书签。 3.1.3直流电机主要技术参数...................................................... 错误!未定义书签。 3.1.4直流电机的特点.................................................................. 错误!未定义书签。 3.1.5直流电机的用途.................................................................. 错误!未定义书签。 3.2数码管转速显示.............................................................................. 错误!未定义书签。 3.3电动机驱动电路设计...................................................................... 错误!未定义书签。 3.4控制直流电机的状态...................................................................... 错误!未定义书签。 3.5模块流程.......................................................................................... 错误!未定义书签。 4.总体方案设计 .................................................................................................... 错误!未定义书签。 4.1 设计思路....................................................................................... 错误!未定义书签。 4.2 设计原理....................................................................................... 错误!未定义书签。 4.3运行环境.......................................................................................... 错误!未定义书签。 4.4详细设计.......................................................................................... 错误!未定义书签。 4.4.1 所需元件及功能................................................................. 错误!未定义书签。 5.直流电动机调速控制电路仿真 ........................................................................ 错误!未定义书签。 5.1原理图布局...................................................................................... 错误!未定义书签。 5.2运行结果图...................................................................................... 错误!未定义书签。 6.总结.................................................................................................................... 错误!未定义书签。 7.参考文献............................................................................................................ 错误!未定义书签。 8.源代码................................................................................................................ 错误!未定义书签。

实验三模仿调制与解调

实验三、模拟调制与解调 一、实验目的 1、学习用MATLAB 进行模拟调制与解调的方法。 2、理解各种模拟调制解调系统的性能。 3、掌握幅度调制和角度调制的仿真方法。二、实验设备与器件 1、 计算机 2、 MATLAB 软件三、实验原理与步骤一)、调幅 1、AM 信号的仿真与解调 项目1、给定消息信号,,使用该信号以AM 方式调制一个载波频率为300Hz ,)4sin()2cos()(t e t t x t ππ-+=100≤≤t 幅度为1的正弦载波,试求: (1)消息信号的频谱和已调信号的频谱。(2)消息信号的功率和已调信号的功率。 clear all ts=0.001; t=0:ts:10-ts; fs=1/ts; df=fs/length(t); msg=randint(100,1,[-3,3],123); msg1=msg*ones(1,fs/10); msg2=reshape(msg1.',1,length(t));Pm=fft(msg2)/fs; f=-fs/2:df:fs/2-df; subplot(2,1,1) plot(f,fftshift(abs(Pm))) ;xlabel('李啊兴'); title('消息信号频谱') A=1; fc=300; Sam=(A+msg2).*(cos(2*pi*fc*t)+exp(-t).*sin(4*pi*fc*t)); Pam=fft(Sam)/fs; subplot(2,1,2) plot(f,fftshift(abs(Pam))); xlabel('李啊兴'); title('AM 信号频谱') axis([-500 500 0 23]) Pc=sum(abs(Sam).^2)/length(Sam) Ps=Pc-A^2/2 eta=Ps/Pc Pc = 2.3077Ps = 1.8077eta = 0.7833项目2、用Simulink 重做项目1 。

基础实验cm调制与解调实验

基础实验c m调制与解 调实验 集团标准化办公室:[VV986T-J682P28-JP266L8-68PNN]

基础实验6 PCM调制与解调实验 一、实验目的 1.掌握PCM编译码原理与系统性能测试; 2.熟悉PCM编译码专用集成芯片的功能和使用方法; 3.学习PCM编译码器的硬件实现电路,掌握它的调整测试方法。 二、实验仪器 1.PCM/ADPCM编译码模块,位号:H 2.时钟与基带数据产生器模块,位号:G 3.20M双踪示波器1台 4.低频信号源1台(选用) 5.频率计1台(选用) 6.信号连接线3根 7.小平口螺丝刀1只 三、实验原理 脉冲编码调制(PCM)是把一个时间连续、取值连续的模拟信号变换成时间离散、取值离散的数字信号在信道中传输。脉冲编码调制是对模拟信号进行抽样,量化和编码三个过程完成的。 PCM通信系统的实验方框图如图6-1所示。

在PCM脉冲编码调制中,话音信号经防混叠低通滤波器后进行脉冲抽样,变成时间上离散的PAM脉冲序列,然后将幅度连续的PAM脉冲序列用类似于“四舍五入”办法划归为有限种幅度,每一种幅度对应一组代码,因此PAM脉冲序列将转换成二进制编码序列。对于电话,CCITT规定抽样率为8KHz,每一抽样值编8位码(即为28=256个量化级),因而每话路PCM编码后的标准数码率是64kB。本实验应用的单路PCM编、译码电路是 TP3057 芯片(见图6-1中的虚线框)。此芯片采用a律十三折线编码,它设计应用于PCM 30/32系统中。它每一帧分32个时隙,采用时分复用方式,最多允许接入30个用户,每个用户

各占据一个时隙,另外两个时隙分别用于同步和标志信号传送,系统码元速率为。各用户PCM编码数据的发送和接收,受发送时序与接收时序控制,它仅在某一个特定的时隙中被发送和接收,而不同用户占据不同的时隙。若仅有一个用户,在一个PCM 帧里只能在某一个特定的时隙发送和接收该用户的PCM编码数据,在其它时隙没有数据输入或输出。 本实验模块中,为了降低对测试示波器的要求,将PCM 帧的传输速率设置为64Kbit/s或128Kbit/s两种,这样增加了编码数据码元的宽度,便于用低端示波器观测。此时一个PCM 帧里,可容纳的PCM编码分别为1路或2路。另外,发送时序FSX与接收时序FSR使用相同的时序,测试点为34TP01。实验结构框图已在模块上画出了,实验时需用信号连接线连接34P02和34P03两铆孔,即将编码数据直接送到译码端,传输信道可视为理想信道。 另外, TP3057芯片内部模拟信号的输入端有一个语音带通滤波器,其通带为200HZ~4000HZ,所以输入的模拟信号频率只能在这个范围内有效。 四、各测量点的作用 34TP01:发送时序FSX和接收时序FSR输入测试点,频率为8KHz的矩形窄脉冲; 34TP02:PCM线路编译时钟信号的输入测试点; 34P01:模拟信号的输入铆孔; 34P02:PCM编码的输出铆孔; 34P03:PCM译码的输入铆孔; 34P04:译码输出的模拟信号铆孔,波形应与34P01相同。 注:一路数字编码输出波形为8比特编码(一般为7个半码元波形,最后半个码元波形被芯片内部移位寄存器在装载下一路数据前复位时丢失掉),数据的速率由编译时钟决定,其中第一位为语音信号编码后的符号位,后七位为语音信号编码后的电平值。

MSK调制解调概述

目录 1 绪论 (1) 1.1 数字通信的发展 (1) 1.2研究MSK数字通信系统的意义 (1) 1.3通信系统仿真的意义 (1) 2 MSK系统调制解调原理 (3) 2.1 MSK调制原理 (3) 2.2 MSK解调原理 (5) 2.3 MSK的抗噪声性 (6) 2.4 MSK功率谱密度 (7) 3 MATLAB仿真设计与系统分析 (9) 3.1 MATLAB简介 (9) .3.2 MSK信号的调制 (9) 3.3 MSK解调实现 (10) 3.4叠加噪声的MSK系统 (10) 4 MSK系统分析 (11) 4.1 MSK信号的时域调制解调分析 (11) 4.2 MSK频域分析 (12) 4.3 加噪声系统分析 (12) 4.4误码率分析 (13) 5 总结 (14) 致谢 (15) 参考文献: (16) 附录:MSK信号调制解调的源程序代码 (17)

1 绪论 1.1 数字通信的发展 通信按照传统的理解就是信息的传输与交换,为了传递消息,各种消息需要转换成电信号,消息与电信号之间必须建立单一的对应关系,否则在接收端就无法复制出原来的消息。通常,消息被载荷到电信号的某一参量上,如果电信号的该参量携带着离散消息,则该参量必将是离散取值的。这样的信号就称为数字信号。如果电信号的参量连续取值,则称这样的信号为模拟信号。按照信道中传输的是模拟信号还是数字信号,可以相应地把通信系统分为两类:数字通信系统和模拟通信系统。 自1844年5月24日莫尔斯在华盛顿和巴尔的摩之间发送世界上斯一份电报以来 ,电报通信已经经历了150多年。但是长期以来,由于电报通信不如电话通信方便,作为数字通信主要形式的电报却比1876年贝尔发明的电话发展缓慢。直到20世纪60年代已后,数字通信才日益兴旺起来,数字通信迅速发展的基本原因是它与模拟通信相比,更能适应对通信技术越来越高的要求。第一数字传输抗干扰能力强,尤其是在中中继时,数字信号可以再生而消除噪声的积累;第二,传输差错可以控制,从而改善了传输的质量;第三,便于使用现代数字信号处理技术来对数字信息进行处理;第四,数字信息易于做高保密性的加密处理;第五,数字通信可以综合传递各种消息,使通信系统功能增强。 然而,数字通信的许多优点都是用比模拟通信占据更宽的带宽的系统频带而换来的。以电话为例,一路模拟电话只占据4khz 的带宽,而一路传输质量相同的数字电话这可能要占用数十千赫兹的带宽。 在系统频带紧张的场合,数字通信这一缺点显得很突出,但是在系统频带富裕的场合,比如毫米波通信,光通信等场合,数字通信几乎成了唯一的选择。 随着计算机技木和大规模集成技术的发展,数字通信在其发展过程中表现出了强大的生命力,它冲破了传统模拟通信方式的统治,逐步地发展、完善。可以预言:随着通信事业的发展,特别是各种宽带传输技术(例如光纤传输、数字微波等)、综合业务数字网(ISDN)的实用化,全数字化的通信方式必将逐步取代模拟通信方式而得到蓬勃发展。 1.2研究MSK 数字通信系统的意义 当今社会已经步入信息时代,在各种信息技术中信息的传输及通信起着支撑作用。而在频带资源日益紧张的今天,为了提高系统的容量(满足更多的用户)信道间隔已经是一减再减已经由最初的100khz 减到了今天的12.5khz 甚至更小。数字通信系统因其组网灵活,差错控制和保密性都比较容易,而且能够进入ISDN 网所以通信系统已逐步由模拟制式向数字制式过渡,信号的调制方式也逐步由模拟方式持续、广泛地向数字方式转化,数字通信系统成为了信息的传输的一种重要手段。 然而,一般的数字调制技术,如ASK 、PSK 和FSK 因传输效率低和抗干扰能力差而无法满足移动通信的要求,为此,需要专门研究一些抗干扰性强、误码性能好、频谱利用率高的数字调制技术,尽可能地提高单位频谱内传输数据的比特率,以适用于移动通信窄带数据传输的要求。 MSK 因具有: (1)已调信号振幅是恒定的; (2)信号的频率偏移严格等于± Ts 41 ,相应的调制指数()s t f f H ?-=12=0.5; (3)以载波相位在一个码元期间内准确地线性变化2 pi ± ; (4)在一个码元期间内,信号应包含四分子一载波周期的整数倍; (5)在码元转换时刻信号的相位是连续的,或者说,信号的波形没有突变。的特点使得MSK 通信系统抗干扰能力强适用于移动通信等窄带数据传输的要求。 1.3通信系统仿真的意义 在设计新系统或者对原有的通信系统做出修改或者进行相关的研究时,通常要进行建模和仿真,通过仿真结果衡量方案的可行性,从中选择最合理的系统配置和参数设置,然后再应用于实际系统

MSK系统在Simulink里的仿真学习资料

M S K系统在 S i m u l i n k里的仿真

系统设计与仿真 总体设计 MSK 只是多种调制解调模式中的一种。如下图所示:即信号源、调制部分、加性高斯白噪声信道(AWGN信道)和解调部分组成。 通过以下步骤进行研究: 1.对MSK数字通信系统调制解调原理进行分析研究并利用MATLAB软件建立仿 真模型。 2.通过前面的理论研究理解,设置仿真模型里的参数。 3.运用MATLAB软件的仿真功能,得出MSK数字通信系统各点的仿真波形图。 图 1 总体设计框图MSK系统在Simulink里的仿真仿真设计 图 2 MSK系统仿真

(1)信源部分 信源采用的是随机整数序列产生器,可以产生由0,1构成的序列。 图 3 随机整数产生器 (2) MSK调制部分 根据MSK信号表示函数可写成I/Q两路正交调制的形式,在这里采用这种方式来生成调制模块。 图 4 MSK信号调制部分 (3)加性高斯白噪声信道 加性高斯白噪声信道(AWGN 信道)是直接利用 Simulink 自带的 AWGN 模块,可以通过设置其中的信噪比来改变信道的性能。 (4) MSK解调部分 MSK作为一种特殊的2FSK,如果把MSK看成是正交2FSK,用2FSK方法进行相干解调。这里采用的是延时判决相干解调法。

图 5 MSK解调部分 仿真参数设置 调制部分 (1)随机整数产生器(Random Integer Generator) 该模块的设计主要是产生一组随机的0、1等概序列。 图 6 随机整数产生器 (2)载波与正弦形加权函数 载波可以分为I路载波和Q路载波。正弦形加权函数有同相分量正弦形加权函数和正交分量正弦形加权函数两种。

通信原理-实验一 Systemview系统下幅度调制与解调

实验一:Systemview 系统下幅度调制与解调 一.实验目的 1.熟悉Systemview 仿真软件; 2. 掌握调幅信号产生和解调的过程及实现方法; 2.研究输入信号和信道对调幅信号的影响; 二.实验原理 1.调制 幅度调制是无线电通信中最常用的调制方式之一。普通的调幅广播就是它的典型应用。 幅度调制的基本原理是用基带信号(调制信号)控制高频载波的幅度,使其携带基带信号信息,从而实现信息的传输。 调制的基本作用是频谱搬移,其目的是进行频率变换,使信号能够有效的传输(辐射)或实现信道的多路复用。 根据频谱特性的不同,通常可将调幅分为标准调幅(AM ),抑制载波双边带调幅(DSB ),单边带调幅(SSB )和残留边带调幅(VSB )等。 2.调制信号的实现方法 设f (t )为调制信号,高频载波为C (t )=A 0cos (ω0t +θ0) (1)标准调幅 AM 信号可以表示为: S AM (t )=[A 0+f (t )]cos (ω0t +θ0) 已调信号的频谱为(设θ。=0) S AM (ω)=πA o [δ(ω-ωo )+δ(ω+ω0)]+1/2[F (ω-ωo )+F (ω+ωo )] 标准调幅的数学模型如图1-1所示。 图1-1 标准调幅的数学模型 AM 信号在SystemView 中可由模块实现,如图1-2所示。 cos (ω0t + θ0 ) A 0

图1-2 AM 信号在SystemView 中的实现 调制信号和已调信号的波形如图1-3所示。 图1-3 调制信号和已调信号 3.解调 调制的逆变换过程叫解调。解调方法分为相干解调和非相干解调。 为了不失真的恢复调制信号,要求本地载波和接收信号的载波必须保持同频同相,这种方法称为相干解调。它适用各种调幅系统。它的一般数学模型如图1-4所示。 图1-4 相干解调数学模型

数字调制之MSK资料

现代数字调制 ---之最小频移键控 摘要:最小频移键控(MSK )是在2FSK 基础上的改进。首先介绍了2FSK 的不足,在其基础上我们研究了MSK 的工作情况。具体涉及MSK 的工作原理和特点以及实际中的应用,当然对于它的前景也是我们所关注的。 关键字:最小频移键控(MSK )、2FSK 1. 研究背景 2FSK 体制虽然性能优良、易于实现,并得到了广泛的应用,但是它的不足也是不容忽视的。首先,它占用的频带宽度比2PSK 大,即频带利用率比较低。其次,若用开关无法产生2FSK 信号,则相邻码元波形的相位可能不连续,因此在通过带通特性的电路后由于通频带的限制,使得信号波形的包络产生较大起伏。这种起伏是我们不希望有的。此外,一般来说,2FSK 信号的两种码元波形不一定严格正交。 为了克服上述缺点,对于2FSK 信号作了改进,发展出MSK 。 2. MSK 信号的基本原理 MSK 定义:最小频移键控(MSK )信号是一种包络恒定、相位连续、带宽最小并且严格正交的2FSK 信号,其波形图如下: 2. 2.1 MSK 信号的频率间隔 MSK 信号的第k 个码元可以表示为: )2cos()(k s k s k t T a t t s ?π ω++ =

式中,ωs - 载波角载频;a k = ± 1(当输入码元为“1”时,a k = + 1 ;当输入码元为“0”时,a k = - 1 );T s - 码元宽度; ?k - 第k 个码元的初始相位,它在一个码元宽度中是不变的。 由上式可以看出,当输入码元为“1”时, a k = +1 ,故码元频率f 1等于 f s + 1/(4T s );当输入码元为“0”时, a k = -1 ,故码元频率f 0等于f s - 1/(4T s )。所以, f 1 和f 0的差等于1 / (2Ts )。这是2FSK 信号的最小频率间隔。 2.2 MSK 码元中波形的周期数 可以改写为 式中 由于MSK 信号是一个正交2FSK 信号,它应该满足正交条件,即 上式左端4项应分别等于零,所以将第3项sin(2?k ) = 0的条件代入第1项,得到要求 即要求 或 上式表示,MSK 信号每个码元持续时间T s 内包含的波形周期数必须是1 / 4 周期的整数倍,即上式可以改写为 式中,N ― 正整数;m=0,1,2,3 并有 ) 4/(1) 4/(101s s s s T f f T f f -=+=0 )() 0sin()()2sin(])sin[(]2)sin[(010*********=--+--+-++++ωωωω?ωω?ωωωω?ωωk k s k s T T 0)2sin(=s s T ω... ,3,2,1, 4==n n T f s s ππs s f n T 41 =...,3,2,1=n s 1)4(4T m N T n f s s +==s s s s s T m N T f f T m N T f f 1 4141141410s 1? ?? ??-+=-=??? ??++=+ =)2cos()(k s k s k t T a t t s ?π ω++ =s s kT t T k ≤<-)1()2cos()(k s k s k t T a t t s ?π ω++ =s s kT t T k ≤<-)1(?? ?-=++=+=1 ), 2cos(1), 2cos()(01k k k k k a t f a t f t s 当当?π?πs s kT t T k ≤<-)1(

抽样定理和PCM调制解调实验报告

《通信原理》实验报告 实验一:抽样定理和PAM调制解调实验 系别:信息科学与工程学院 专业班级:通信工程1003班 学生姓名:陈威 同组学生:杨鑫 成绩: 指导教师:惠龙飞 (实验时间:2012 年 12 月 7 日——2012 年 12 月28日) 华中科技大学武昌分校

1、实验目的 1对电路的组成、波形和所测数据的分析,加深理解这种调制方法的优缺点。 2.通过脉冲幅度调制实验,使学生能加深理解脉冲幅度调制的原理。 2、实验器材 1、信号源模块 一块 2、①号模块 一块 3、60M 双踪示波器 一台 4、连接线 若干 3、实验原理 3.1基本原理 1、抽样定理 图3-1 抽样与恢复 2、脉冲振幅调制(PAM ) 所谓脉冲振幅调制,即是脉冲载波的幅度随输入信号变化的一种调制方式。如果脉冲载波是由冲激脉冲组成的,则前面所说的抽样定理,就是脉冲增幅调制的原理。 自然抽样 平顶抽样 ) (t m ) (t T

图3-3 自然抽样及平顶抽样波形 PAM方式有两种:自然抽样和平顶抽样。自然抽样又称为“曲顶”抽样,(t)的脉冲“顶部”是随m(t)变化的,即在顶部保持了m(t)变已抽样信号m s 化的规律(如图3-3所示)。平顶抽样所得的已抽样信号如图3-3所示,这里每一抽样脉冲的幅度正比于瞬时抽样值,但其形状都相同。在实际中,平顶抽样的PAM信号常常采用保持电路来实现,得到的脉冲为矩形脉冲。 四、实验步骤 1、将信号源模块、模块一固定到主机箱上面。双踪示波器,设置CH1通道为同步源。 2、观测PAM自然抽样波形。 (1)将信号源上S4设为“1010”,使“CLK1”输出32K时钟。 (2)将模块一上K1选到“自然”。 (3)关闭电源,连接 表3-1 抽样实验接线表 (5)用示波器观测信号源“2K同步正弦波”输出,调节W1改变输出信号幅度,使输出信号峰-峰值在1V左右。在PAMCLK处观察被抽样信号。CH1接PAMCLK(同步源),CH2接“自然抽样输出”(自然抽样PAM信号)。

MSK仿真实验报告

通达学院 2012/2013 学年第一学期 课程设计实验报告 模块名称 专业 学生班级 25 学生学号 09002522 学生姓名李x x 指导教师王x 数字msk调制系统的dsp实现 一.设计目的与任务 本课程总的目的是让学生通过实验学习数字信号处理器的开发软件ccs的使用,掌握数 字信号处理算法的软件仿真及dsp实现,培养学生的实际动手能力。要求学生理解实验原理 及实验方案,掌握正确的操作规程;完成所列课题中的学习任务,结合自己的兴趣,选择完 成综合设计课题。 本组选择的是数字msk调制系统的dsp实现,要求基带码元速率为1000b,载频为3000hz。 进行调制并给出仿真结果。 二.相关知识 数字调制是数字信号转换为与信道特性相匹配的波形的过程。调制波是二进制(或m进 制)的已编码的数字基带码流。调制的过程就是输入数据控制(键控)载波的幅度、频率和 相位。msk 是在数字调制技术上发展起来的。它是二进制连续相位频移键控(cpfsk)的一种 特殊情况。 2.1最小频移键控(msk) 频移键控和相位键控一样,由于调制信号包络恒定,有利于在非线性的信道中传输。msk 是二进制连续相位fsk 的一种特殊情况,有时叫做快速频移键控(ffsk),有时也叫做最小 频移键控(msk)。这两种名称的侧重点不同:msk 的“最小(minimum)”二字指的是这种调 制方式能以最小的调制指数(h=0.5)获得正交的调制信号,而ffsk 的“快速”二字指的是 对于给定的频带,它能比bpsk 传输更高速率的数据。 2.2 msk的基本概念 若cpfsk 信号表示为: 式中相位?(t )是时间t 的连续函数,标称载频fc是f2和f1的算术平均值,即: 式中,频率f2代表所传输数字序列{ak}中符号“1”,f1代表符号“-1”。(实际上传输 数字序列{ak}中符号“1”和“-1”,相当于二进制数据中的“1”和“0”,如下图)。 这样cpfsk信号用以下形式区分符号“1”和“-1”: 式中,?k是t=ktb时刻?(t)的值,它与调制过程的以往状态有关,它是为了保证t=ktb 时相位连续而加入的相位常数。调制指数为: (1) 考虑?k取值和调制指数h,可把(1)式统一表达式如下 : (2) 当(2)式中的h=0.5时,就得到了msk信号的数学表达式: 式中,ak取值±1。而波形相位为: (3) 可以看出:

幅度调制解调案例

幅度调制解调器案例 1. 理论公式解析 1.1 振幅调制信号分析 设载波电压为 ()cos cos 2c cm c cm c u t U t U ft ωπ== 设调制电压为 ()cos cos 2m m u t U t U Ft πΩΩΩ=Ω= 根据幅度调制信号的定义,已调信号的幅度随调制信号()u t Ω线性变化,那么普通AM 波的振幅()m U t 表达式 ()()t m U t U U k U t U u k U t U a cm cm m a cm m a cm m Ω+=??? ? ??Ω+=Ω=+=ΩΩΩcos 1cos 1cos a k 是叫做灵敏度的参数,a m 一般叫做调幅系数,也可以叫做调幅度或者调制度, cm m a a U U k m Ω=?= c c U U 是载波幅度根据调制信号变化程度。这给出了单频调制的调幅信号表达式 ()()()()()()cos =cos cos =1cos cos cos cos cos 11 cos cos cos 22 AM m c cm a m c cm a c cm c cm a c cm c a cm c a cm c u t U t t U k u t t U m t t U t U m t t U t m U t m U t ωωωωωωωωΩ=+Ω+Ω=+Ω=+ +Ω+-Ω 可以看出,三个高频分量组成了单频信号调制的已调波,分别是角频率为c ω的载波, ()c ω+Ω和()c ω-Ω两个新产生的角频率分量。其中上边频分量比c ω高,下边频分量比c ω低。频率分量为c ω的载波振幅还是为cm U ,两个边频分量的振幅都是1 2 a cm m U 。由于a m 不 可以超过1,所以边频振幅不大于1 2cm U ,把三个频率分量画成图,便能够得到图1所示的 频谱图。图1中,用每一条线段表示幅度调制波的一个正弦分量,幅度用线段的长度来表

基于SystemView的MSK的调制与解调仿真

一、实验名称:基于System View的MSK通信系统的仿真 二、实验环境:一台电脑、操作系统、System View软件 三、实验目的:1.掌握电路设计的基本思路和方法; 2.掌握系统各功能模块的基本工作原理; 3.提高对所学理论知识的理解能力; 4.能提高对所学知识的实际应用能力; 四、实验要求:1.学习System View仿真软件的使用; 2.对需要仿真的通信系统各功能模块的工作原理进行分析; 3.提出系统的设计方案,选用合适的模块; 4.对所设计系统进行仿真; 5.并对仿真结果进行分析。 五、实验原理: 1、MSK 的调制原理 MSK(最小频移键控)是移频键控FSK的一种改进形式。在FSK方式中,每一码元的频率不变或者跳变一个固定值,而两个相邻的频率跳变码元信号,其相位通常是不连续的。MSK方式,是FSK信号的相位始终保持连续变化的一种特殊方式,可以看成是调制指数为0.5的一种CPFSK信号。它是2FSK的一种特殊情况,在相邻符号交界处相位保持连续,具有正交信号的最小频差。 最小频移键控(MSK)信号是一种包络恒定、相位连续、带宽最小并且严格正交的2FSK信号,其波形图如下: MSK 信号可以看成是一种特殊的相位连续2FSK 信号,即保证两个频率键控信号正交的前提下,使用最小的频偏,此时必须满足:

MSK信号第n个码元的时间函数: MSK 具体调制过程如下:先将输入的基带信号进行差分编码,然后经串/并转换将其分成I、Q 两路,并互相交错一个码元宽度,再用加权函数cos(πt/2T b)和sin(πt/2T b)分别对I、Q 两路数据加权,然后将两路数据分别用正交载波调制,最后将I、Q 两路调制信号相加即得到MSK 调制信号。调制原理如图(1)所示。 2、MSK 的解调原理 由于MSK信号是他、一种2FSK信号,所以它也像2FSK信号那样,可以采用相干解调或非相干解调的方法,除此之外,MSK信号还可以采用延时判决相干解调的方法。

相关文档
相关文档 最新文档