文档库 最新最全的文档下载
当前位置:文档库 › 聚合实施方法

聚合实施方法

聚合实施方法
聚合实施方法

正离子聚合的新方法与新工艺

吴一弦** ,张来宝,黄强,刘强,李贝特,徐日炜

北京化工大学 化工资源有效利用国家重点实验室,北京 100029

关键词:正离子聚合 异丁烯 分子混合 聚异丁烯 丁基橡胶

聚合反应是高分子合成化学、高分子材料制备以及高分子材料高性能化的重要且关键的部分。随着社会不断发展进步,人们对化学工业中各种生产技术(包括聚合技术)提出更高的要求:不仅要高效节能,而且要无污染、低排放甚至零排放——开发环境友好的生产技术。为达此目的,就聚合物的生产技术而言,需在原有聚合方法和聚合技术基础上进一步提炼出基本科学问题,特别是与高效、节能和环境友好的总体目标紧密相关的科学问题进行研究,开发正离子聚合新工艺技术及新方法以及用于异丁烯、异戊二烯、苯乙烯类单体的正离子聚合,为设计合成官能化聚合物、立构规整聚合物、高性能化弹性体材料奠定基础。主要介绍以下几个方面内容:

(1)不同分子量的聚异丁烯系列产物的设计合成

采用可控正离子聚合方法以及调节聚合产物分子量与分子量分布的方法,可设计合成出分子量在5.0×102~8.0×106范围的低分子量、中分子量、高分子量和超高分子量的系列聚异丁烯产物。

(2)软段全饱和热塑弹性体材料的设计合成

通过单体顺序加料和可控的苯乙烯或其衍生物与异丁烯正离子嵌段共聚合,制备了具有优异的热氧稳定性、在不加稳定剂的情况下可重复加工和优异的减振性能和气体阻隔性能的软段全饱和聚异丁烯链段的热塑弹性体材料。

(3)环境友好介质中的正离子聚合新方法

水作为一种廉价且对环境友好的溶剂,一直受到学术界和工业界的很大关注。传统的离子聚合通常须在几乎无水、无氧和高纯惰性气体保护下进行。然而,近几年在水相中正离子聚合的研究进展,改变了多年来人们一直认为的离子聚合的概念。

(4)微观分子混合与正离子聚合新工艺

国家自然科学基金委(20474006,20774008)、中国石油化工股份有限公司、教育部新世纪优秀人才计划(NCET-04-0124)和教育部长江学者和创新团队发展计划资助(IRT0706)。

**wuyx@https://www.wendangku.net/doc/9a17646185.html,

绝大多数化学反应的最终目标是工业应用,不仅涉及化学问题,而且涉及工程与效率问题。将低温快速正离子聚合中化学与化工过程中的强化微观分子混合的工程技术相结合,找到两个不同学科领域中技术的共同结合点,开发正离子聚合连续聚合新工艺技术,建立一套特有的适用于低温快速的正离子聚合的高效聚合反应装置。

(5)提高聚合温度下的可控正离子聚合方法

正离子聚合中抑制副反应的是另一个重要问题。为了减少副反应,离子聚合通常需要在低温下进行,如典型的丁基橡胶合成需要在极低温度(-100℃)下进行聚合反应才能获得高分子量聚合物,从而导致高能耗生产。因此,若在适当提高聚合温度的条件下可以实现可控正离子聚合,有助于达到节能降耗的目标。

(6)高效选择性正离子聚合方法

混合C4馏分是石油裂解或催化裂化制乙烯产生的副产物,含有正丁烷、异丁烷、1-丁烯、顺-2-丁烯、反-2-丁烯、异丁烯、丁二烯等主要成分。2008年,我国乙烯的生产能力超过1000万吨,其中C4馏分的生产能力超过150万吨。因此,混合C4馏分原料资源的充分有效利用以及获取高附加值产品迫在眉睫。但是,混合C4馏分中异丁烯与正丁烯均可进行正离子聚合以及丁二烯、顺-2-丁烯、反-2-丁烯等组分的毒化作用,为此,我们开发新的引发体系,使得混合C4馏分中仅有异丁烯参与高效选择性正离子聚合,工艺简单,反应经济,并可制备出数均分子量为600~8000、分子量分布较窄、端基α-双键含量在80%以上、无色透明的高反应性聚异丁烯产物,为油品的无灰分散剂、清净剂的绿色合成工艺奠定基础。

参考文献:

(1)Gao L C, Yao J, Shen Z H, Wu Y X, Chen X F, Fan X H and Zhou Q F,Macromolecules, 2009, 42 (4):1047.

(2)Zhang C L, Wu Y X, Xu X, Li Y, Feng L, Wu G Y,2008,46(3): 936.

(3)Gao L C, Zhang C L, Liu X, Fan X H, Wu Y X, Chen X F, Zhou Q F. Soft Matter, 2008, 4: 1230-1236.

(4)Puskas J. E.; Kwon Y. Polym. Adv. Technol. 2006, 17, 615.

(5)Aoshima S, Yoshida T, et al. J Polym Sci Part A: Polym Chem 2007, 45: 1801. (6)Li Y, Wu Y X, Xu X, et al . J Polym Sci Part A: Polym Chem., 2007, 45, 3053.

(7)Bueno C, Cabral V F, Cardozo-Filho L, et al., J Supercritical Fluids. 2009, 48:183.

(8)Kostjuk S, Radchenko A, Ganachaud F. J Polym Sci Part A: Polym Chem, 2008, 46: 4743.

(9)Stewart P L, Lee D H, Brett D C, et al. J Am Chem Soc, 2005, 127: 46.

(10)Kanazawa A, Kanaoka S, Aoshima S. J Am Chem Soc, 2007, 129: 2420.

第5章聚合方法

思考题 2. 本体法制备有机玻璃板和通用级聚苯乙烯,比较过程特征,说明如何解决传热问题、保证产品品质。 答:本体法制备有机玻璃板过程中,有散热困难、体积收缩、产生气泡诸多问题;本体法制备通用级聚苯乙烯存在散热问题。前者采用预聚合、聚合和高温处理三阶段来控制;后者采用预聚和聚合两阶段来克服。 3. (略) 4. 悬浮聚合和微悬浮聚合在分散剂选用、产品颗粒特性上有何不同? 答:悬浮聚合分散剂主要是水溶性高分子和不溶于水的无机粉末,而微悬浮聚合在分散剂是特殊的复合乳化体系,即由离子型表面活性剂和难溶助剂组成;悬浮聚合产品的粒度一般在50μm~2000μm之间,而悬浮聚合产品的粒度介于0.2μm~1.5μm之间。 5.苯乙烯和氯乙烯悬浮聚合在过程特征、分散剂选用、产品颗粒特性上有何不同? 答:苯乙烯悬浮聚合的初始体系属于非均相,其中液滴小单元则属均相,最后形成透明小珠状,故有珠状(悬浮)聚合之称,而氯乙烯悬浮聚合中,聚氯乙烯将从单体液滴中沉析出来,形成不透明粉状产物,故可称作沉淀聚合或粉状(悬浮)聚合。 聚苯乙烯要求透明,选用无机分散剂为宜,因为聚合结束后可以用稀硫酸洗去,而制备聚氯乙烯可选用保护能力和表面张力适当的有机高分子作分散剂,有时可添加少量表面活性剂。 聚苯乙烯为透明的珠状产品,聚氯乙烯为不透明的粉状产物。 6. 比较氯乙烯本体聚合和悬浮聚合的过程特征、产品品质有何不同? 答:氯乙烯本体聚合除了悬浮聚合具有的散热、防粘特征外,更需要解决颗粒疏松结构的保持问题,多采用两段聚合来解决。本体法聚氯乙烯的颗粒特性与悬浮法树脂相似,疏松,但无皮膜,更洁净。 7. 简述传统乳液聚合中单体、乳化剂和引发剂的所在场所,链引发、链增长和链终止的场所和特征,胶束、胶粒、单体液滴和速率的变化规律。 答:单体的场所:水中、增溶胶束、单体液滴 乳化剂的场所:水中、胶束、增溶胶束、单体液滴表面 引发剂的场所:水中 引发的场所:增溶胶束 增长的场所:乳胶粒内 终止的场所:乳胶粒内 (1)增速期:这一阶段胶数不断减少直至消失,乳胶粒数不断增加,聚合速率相应提高,单体液滴数目不变,但体积减少; (2)恒速期:这一阶段只有单体液滴和乳胶粒,单体液滴数目减少直至消失,乳胶粒数目恒定,聚合速率不变; (3)降速期:这一阶段只有乳胶粒,单体液滴数目减少直至消失,乳胶粒数目恒定,聚合速率随着乳胶粒内单体浓度的降低而降低。 8. 简述胶束成核、液滴成核、水相成核的机理和区别。 答:难溶于水的单体所进行的经典乳液聚合,以胶束成核为主。经典乳液聚合体系选用水溶性引发剂,在水中分解成初级自由基,引发溶于水中的微量单体,在水相中增长成短链自由基。聚合物疏水时,短链自由基只增长少量单元就沉析出来,与初级自由基一起被增容胶束捕捉,引发其中的单体聚合而成核,即所谓胶束成核。

聚合方法

聚合方法 本体聚合1。本体聚合概述1。基本概念 本体聚合是指单体在少量引发剂存在下的聚合(即使没有引发剂,但在光、热或辐射能下)。本体聚合 的⒇特征 ⑴优点 ⑴本体聚合 的主要优点是聚合体系组分简单,工艺相对简单。当单体转化率高时,分离过程和聚合物后处理过程可以省略,粒状树脂可以直接造粒。同时设备利用率高,产品纯度高。(2) 的缺点是系统粘度高,聚合热不易排出,自动加速现象严重,不可能发生爆炸聚合,轻则影响产品质量,重则聚合失败。(3)本体聚合工艺 分为预聚合和聚合两个阶段。 \预聚合\是转化率不高,体系粘度不高,聚合热容易在聚合初期排出的阶段。通过在更高的温度下在更短的时间内搅拌来加速反应,从而提出自动加速现象。这样,缩短了聚合周期,提高了生产效率。 \一旦出现自动加速现象,就进行聚合反应。应降低聚合温度以降低正常聚合速率,并充分利用自动加速现象,使反应基本上在稳定的条件下进行。 ,避免了自动加速现象造成的局部过热,保证了安全生产和产品质

量。这是本体聚合组分\预聚合\和\聚合\两阶段聚合的原因。 本体聚合工艺采用预聚和聚合两个阶段,不同的聚合阶段控制不同的聚合温度。其次,鉴于本体聚合的特点,聚合物合成工业中的 本体聚合体系具有较低的聚合热和苯乙烯等单体的均聚率。本体聚合适用于甲基丙烯酸甲酯。单体的均聚率为 和更高,如醋酸乙烯酯,不适合本体聚合。用于聚合物生产的本体聚合方法包括:热聚合甲基丙烯酸甲酯浇铸本体聚合苯乙烯 乙烯高压气相自由基本体聚合 氯乙烯非均相本体聚合。一些国外工厂的聚氯乙烯生产采用本体聚合,但比例很小。正在开发中。甲基丙烯酸甲酯的本体聚合ⅰ.实验目的和要求: 1。了解本体聚合 2的原理和特点。掌握本体聚合的合成方法和有机玻璃3的生产工艺。了解聚合温度对产品质量的影响。实验原理:链引发: 链增长: 链终止: 本体聚合是单体本身在引发剂的作用下或在没有任何介质的情况下直接利用热和光辐射进行的聚合反应。这种方法的优点是生产过程相对简单。聚合物无需后处理,产品相对纯净,可直接聚合成各种规格的板材、棒材和管材。然而,由于大量热介质的存在和聚合过程中粘度的增加,聚合物也是不良导体,聚合释放的热量难以除去,导致局

2015聚合物制备工程 复习范围

2015聚合物制备工程复习范围 一、基本概念与简述题 1. 聚合物生产过程的基本内容包括什么?聚合物制备工程的内容主要包括哪些方 面? 2. 举例说明如何选择一种或几种聚合物所采用的不同聚合实施方法,并说明理由。 3. 聚合物工业的原料来源有哪些?哪些属于可再生资源?简述乙烯、丙烯、异丁烯、 异戊二烯、苯乙烯、氯乙烯、丙烯酸酯类单体的制备方法。单体或有机溶剂在储存及运输过程中应注意的问题? 4. 反应器的最基本特征是什么?反应器按照操作形式如何分类及其特点? 5. 聚合反应器按照结构特征分类有几种?釜式反应器的结构特征及搅拌附件的安 装;釜式聚合反应器的除热方式及其所适用的场所。 6. 搅拌器有哪些种类?各有何特点?如何选用搅拌器? 7. 挡板、导流桶作用是什么?选择的依据是什么?在实际安装时需要注意哪些问 题? 8. 聚合物生产的分离、后处理包括的内容及其对产品性能的影响? 9. 分离的含义是什么?通常聚合物从聚合介质中分离有几种方法? 10. 写出反应器设计的物料衡算方程。分别写出间歇反应器与理想连续反应器的物料 衡算方程。 11. 间歇反应器、理想混合反应器、平推流反应器的定义及反应物的浓度变化特征? 12. 停留时间分布函数F(t)和停留时间分布密度函数E(t)的概念和联系,测定原理和方 法及其对应的函数关系。 13. 连锁聚合常用的聚合实施方法、特点、及其主要品种 14. 本体聚合的主要工程问题是什么?采取何措施解决之?实施本体聚合的主要反应 器是什么?主要产品及其聚合机理是什么? 15. 溶液聚合的主要品种有哪些?如何选择溶液聚合所用的溶剂? 16. 悬浮聚合的定义、聚合体系组成?悬浮聚合适合哪些产品的生产? 17. 常用悬浮聚合分散剂有哪些种类?其稳定机理是什么? 18. 乳液聚合的定义、聚合体系组成?乳液聚合适合哪些产品的生产? 19. 乳化剂稳定乳液的原理是什么?破乳有哪些方法? 20. 乳化剂的特征参数有哪些?如何选择乳化剂的类型和用量? 21. 凝胶效应、玻璃化效应及其机理? 22. 乳液聚合的机理与特点。 23. 如何控制乳液聚合的反应速率和乳胶粒的直径尺寸? 24. 在乳液聚合中聚合温度和引发剂的选择主要依据是什么?

第四章 离子聚合与配位聚合生产工艺..

第四章离子聚合与配位聚合生产工艺 4.1离子聚合及其工业应用 定义:单体在阳离子或阴离子作用下,活化为带正电荷或带负电荷的活性离子,再与单体连锁聚合形成高聚物的化学反应,统称为离子型聚合反应。 离子型聚合反应:阳离子聚合;阴离子聚合;配位离子型聚合 应用: 丁基橡胶、聚异丁烯、聚甲醛、聚硅氧烷、聚环氧乙烷等;高密度聚乙烯、等规聚丙烯、顺丁橡胶等;活性高聚物、遥爪高聚物等。 4.1.1阳离子聚合反应 单体:具有强推电子取代基和共轭效应的烯烃类单体、羰基化合物、杂环。 工业化生产所用的主要单体有:异丁烯、苯乙烯、环醚、甲醛、乙烯基醚类、异戊二烯等。 引发剂 共性:阳离子聚合所用的引发剂为“亲电试剂”。 作用:提供氢质子或碳阳离子与单体作用完成链引发过程。 常用的引发剂 阳离子聚合反应机理 以异丁烯为单体,以三氟化硼为引发剂,水为助引发剂 ●链引发: 链增长: 链转移: (活性中心向单体转移):

另一情况 显然,以上一种方式为主。 向反离子转移,离子对重排: 向助引发剂转移 链转移结果又产生了新活性中心,它仍然可以进行反应。对于向单体转移终止的发生比自由基聚合时要快得多,同时,又是控制产物相对分子质量的主要因素。因此,阳离子聚合多采用低温聚合。 链终止 终止之一(与反离子中的阴离子作用而终止): 终止之二(与水、醇、酸等终止剂作用而终止) 阳离子可控聚合 根据:阳离子聚合反应难以控制的原因在于碳正离子非常活泼。通过亲核作用使碳正离子稳定则可以获得“活性”阳离子增长链。 方法:1.选择适当的亲核对应离子B-;2.外加路易士碱(X) 方法1:采用碘化氢/碘(HI/I2)引发体系。对应阴离子B-由被碘分子活化的碘阴离子(I-—I2)组成,它使碳正离子处于活性种状态。例如乙烯基醚的活性阳离子聚合反应:

聚合反应实施方法1

第二章聚合反应的工业实施方法 第一节连锁聚合反应的工业实施方法 工业实施方法主要有:本体聚合、悬浮聚合、溶液聚合、乳液聚合等。 一、本体聚合——适用于自由基、离子型聚合反应 1.定义:在不加溶剂或分散介质情况下,只有单体本身在引发剂(有时也不加)或光、热、辐射的作用下进行聚合反应的一种方法。 基本组成:单体、引发剂。有时也加入增塑剂、抗氧剂、紫外线吸收剂和色料等。 2.分类 (1)根据单体与聚合物相互混溶的情况可分为:均相、非均相聚合(或沉淀聚合)两种。 均相聚合反应:凡单体与所形成的聚合物能相互混溶,在聚合过程中无分相现象发生的反应。 沉淀聚合反应:单体与所形成的聚合物不能相互混溶,在聚合过程中,聚合物逐渐沉析出来的反应。 (2)根据参加反应的单体的状态,可分为气相、液相、固相本体聚合,其中液相本体聚合应用最广泛。 (3)工业上分,间歇法、连续法。 3.特点: (1)聚合方法简单,生产速度快,产品纯度高,设备少。 (2)易产生局部过热,致使产品变色,发生气泡甚至爆聚。 (3)反应温度不易恒定,所以反应产物的相对分子质量分散性较大。 (4)产品容易老化。 1

4.主要产品: PS树脂、PMMA树脂、PE树脂、PVC树脂等。 5.主要影响因素: (1)单体的聚合热 会放出大量的热量,如何排除是生产中的第一个关键问题。 工业生产中:一般采用两段式聚合 第一段在较大的聚合釜中进行,控制10%~40%以下转化率;第二 段进行薄层(如板状)聚合或以较慢的速度进行。 (2)聚合产物的出料 是本体聚合的第二个问题,控制不好不但会影响产品的质量,还会造成生产事故。 解决办法:根据产品特性,选出料方式 浇铸脱模制板材或型材, 熔融体挤出造粒, 粉状出料。 6.优点;产物纯净,适于生产板材、型材等透明制品,也可生产电绝缘材料和医用材料。 7.应用:实验室研究(如单体聚合能力、动力学研究、竟聚率测定。 二、溶液聚合 1.定义:将单体和引发剂溶解于适当溶剂中进行聚合反应的一种方法。 基本组成→单体、引发剂、溶剂 2.类型: (1)根据溶剂与单体和聚合物相互混溶的情况分为:均相、非均相溶液聚合(或沉淀聚合)两种。 均相聚合反应:凡溶剂与单体和聚合物能相互混溶,得到的产物为高聚物溶液

聚合反应的工业实施方法

第七章聚合反应的工业实施方法 第一节缩聚反应的工业实施方法 工业实施方法主要有:熔融缩聚、固相缩聚、溶液缩聚、界面缩聚、乳液缩聚等。 一、熔融缩聚 1.定义:指反应中不加溶剂,反应温度在单体和缩聚物熔融温度以上进行的缩聚反应。 2.特点:(1)反应温度高(一般在200℃以上); (2)利于提高反应速率和排出低分子副产物; (3)符合可逆平衡规律; (4)单体易发生成环反应,缩聚物易发生裂解反应。 3.工艺特点: (1)不用溶剂、工艺过程简单、成本低(聚酯、聚酰胺、聚氨酯) 熔融→缩聚→造粒→干燥→成品 (2)反应需要在高温(200~300℃)下进行; (3)反应时间较长(4——6小时); (4)常需在惰性气体的保护下进行; (5)反应后期需要在高真空度下进行; (6)反应物的浓度大,生产能力大。 4.关键问题:充分除出低分子副产物。 5.影响因素: (1)单体配料比 ------------------------------------------------------------------------------------------------------------------------1 《高聚物生产技术》

对产物平均相对分子质量有决定性影响。 生产上:混缩聚→均缩聚 挥发性较大的单体采用适当多加 (2)反应程度 通过排出低分子副产物的办法提高反应程度。 方法:提高真空度; 强烈机械搅拌; 改善反应器结构(如采用卧式缩聚釜、薄层缩聚法等); 采用扩链剂(扩链剂能增加低分子副产物的扩散速率); 通入惰性气体。 (3)温度、氧、杂质 先高温后低温; 通入惰性气体,并加入抗氧剂; 清除杂质。 (4)催化剂 加入能提高反应速率。 二、固相缩聚 1.定义:指在原料熔点(或软化温度)以下进行的缩聚反应。 2.类型: (1)反应温度在单体熔点以下的固相缩聚→固相缩聚 (2)反应温度在单体熔点以上,但在缩聚物熔点以下的→熔融缩聚制备预聚物,再在预聚物熔点(或软化点)以下进行固相缩聚。 (3)体型缩聚反应或环化缩聚反应→固态下进行的。 ------------------------------------------------------------------------------------------------------------------------2 《高聚物生产技术》

高分子化学复习题——填空题精选复习课程

一、填空题 1. 聚合物有两个分散性,是相对分子质量多分散性和聚合度多分散性。 2. 聚合反应按机理来分逐步聚合和连锁聚合两大类,如按单体与聚合物组成差别分为加聚反应、缩聚反应和开环反应。 3.阻聚和缓聚反应的本质:链自由基向阻聚剂和缓聚剂的链转移反应,可能生成没有引发活性的中性分子,也可能是活性低的新自由基。两者的区别是程度上的不同,前者使聚合反应完全终止,后者只是使聚合反应速度降低。 4. 在自由基聚合中,具有能同时获得高聚合和高相对分子质量的实施方法有乳液聚合 5.乳液聚合的特点是可以同时提高相对分子质量和反应速率,原因是:乳化剂浓度对聚合反应速率和聚合度的影响是一致的,对乳化程度的强化而可以同时达到较高的聚合速率和聚合度的目的。 6.合成高聚物的几种聚合方法中,能获得最窄的相对分子质量分布的是阴离子聚合 7. 线形缩聚的核心问题是相对分子质量的影响因素和控制;体形缩聚的关键问题是凝胶点的控制。所有缩聚反应共有的特征是逐步特性 8.在自由基聚合和缩聚反应中,分别用单体的转化率和反应程度来表征聚合反应进行的深度。 9. 线形缩聚相对分子质量的控制手段有加入单官能团的单体,进行端基封锁和控制反应官能团加入的当量比。 10.所谓的配位聚合是指采用的引发剂是金属有机化合物与过渡化合物的络合体系,单体在聚合反应中通过活性中心进行配位而插入活性中心离子与反离子之间,最后完成聚合过程。所谓的定向聚合是指指能够生成立构规整性聚合物为主(>=75%)的聚合反应。 11.自由基聚合的特征慢引发、快增长、速终止。阳离子的聚合特征是快引发、快增长、难终止、易转移。阴离子的聚合特征是快引发、慢增长、易转移、无终止。 12.自由基聚合的实施方法有本体聚合、悬浮聚合、乳液聚合、溶液聚合。逐步聚合的实施方法溶液聚合、界面聚合、熔融聚合。 13.用动力学推导共聚组成方程时做了五个假定,分别是等活性理论、稳态、忽略链转移、双基终止、无解聚反应和无前末端效应。 14.推导微观聚合动力学方程,作了4个基本假定是:链转移反应无影响、等活性理论、聚合度很大、稳态假设。 15.自由基聚合规律是转化率随时间而增高,延长反应时间可以提高转化率。缩聚反应规律是转化率随时间无关,延长反应时间是为了提高聚合度。 16. 在聚合过程中,加入正十二硫醇的目的是调节相对分子质量,原理是发生链转移反应 17. 悬浮聚合的基本配方是水、单体、分散剂、油溶性引发剂,影响颗粒形态的两种重要因素是分散剂和搅拌。乳液聚合的配方是单体、水、水溶性引发剂、水溶性乳化剂 18.Ziegler-Natta引发剂的主引发剂是IVB~VIIIB族过渡金属化合物,共引发剂是IA~IIIA 族金属有机化合物。 19. 三大合成材料是塑料、纤维、橡胶。 20. 非晶高聚物随温度变化而出现的三种力学状态是玻璃态、高弹态、粘流态。 21. 影响聚合物反应活性的化学因素主要有极性效应和共轭效应。 22. 两种单体的Q、e值越接近越易发理想共聚聚合,相差越远易发生交替共聚聚合。 23.熔点是晶态聚合物的热转变温度,而玻璃化温度则主要是非晶态聚合物的热转变温度。 24. 室温下,橡胶处于高弹态,粘流温度为其使用上限温度,玻璃化温度为其使用下限温度。 25.高分子,又称聚合物,一个大分子往往由许多简单的结构单元通过共价键重复键接而成。 26.玻璃化温度和熔点是评价聚合物耐热性的重要指标。

第八章--聚合方法

第八章--聚合方法

第八章聚合方法习题参考答案 1.解释下列名词: (1)聚合反应与聚合方法 (2)本体聚合、溶液聚合、悬浮聚合、乳液聚合 (3)熔融缩聚、溶液缩聚、界面缩聚、固相缩聚 解答: (1)聚合反应:主要是指单体到聚合物的合成反应,主要涉及聚合反应机理、反应条件—如引发剂、溶剂、温度、压力、反应时间等。 聚合方法:主要是指完成一个聚合反应所采用的方法。主要涉及聚合工艺、配方、原料精制、产物分离及后处理等。 (2)本体聚合:不加其它介质,单体在引发剂、或催化剂、或热、光、辐射等其它引发方法作用下进行的聚合。 溶液聚合:单体和引发剂或催化剂溶于适当的溶剂中的聚合。 悬浮聚合:单体以小液滴状悬浮在分散介质中的聚合。 乳液聚合:单体在水介质中,由乳化剂

分散成乳液状态进行的聚合。 (3)熔融缩聚:在体系中只有单体和少量催化剂,在单体和聚合物熔点以上(一般高于熔点10~25O C)进行的缩聚。 溶液缩聚:单体、催化剂在溶剂中进行的缩聚。 界面缩聚:单体处于不同的相态中,在相界面处发生的缩聚。 固相缩聚:在原料(单体及聚合物)熔点或软化点以下进行的缩聚。 2.比较本体聚合、溶液聚合、悬浮聚合和乳液聚合的基本组分和优缺点。 解答: (1)本体聚合:体系主要由单体和引发剂或催化剂组成,其它有相对分子质量调节剂、润滑剂等。 优点是体系组成简单,因而产物纯净,特别适用于生产板材、型材等透明制品。 不足是反应热不易排除。 (2)溶液聚合:体系主要由单体、引发剂或催化剂和溶剂组成。 优点是溶剂的加入形成一均相聚合体

系,有利于导出聚合热,同时利于降低体系粘度,减弱凝胶效应。 不足是加入溶剂后容易引起副反应;溶剂的回收、精制增加了设备及成本,并加大了工艺控制难度;降低了单体及引发剂的浓度,致使溶液聚合的反应速率比本体聚合要低;降低了反应装置的利用率。 (3)悬浮聚合:体系主要由单体、引发剂、悬浮剂和分散介质组成。 优点是体系粘度低,聚合热容易导出,散热和温度控制比本体聚合、溶液聚合容易得多;产品相对分子质量及分布比较稳定,聚合速率及相对分子质量比溶液聚合要高一些。杂质含量比乳液聚合低;后处理比溶液聚合和乳液聚合简单,生产成本较低,三废较少;产物可直接用于加工。 不足是聚合物中附有少量悬浮剂残余物,影响了制品的透明性和电绝缘性。 (4)乳液聚合:体系主要由单体、引发剂、乳化剂和分散介质组成。 优点是可以通过增加乳胶粒的方法同时提高聚合反应速率和聚合度,聚合反应速率快、聚合度高是乳液聚合不同于其它聚合方法的一个显著特

第二章聚合反应基础学习知识原理

第二章 聚合反应原理 第一节 概述 聚合物的合成方法可概括如下: ???? ??? ?加聚反应,属于连锁聚合机理 单体的聚合反应聚合物的合成反应缩聚反应,属于逐步聚合机理 大分子反应 其中,单体的聚合反应是聚合物合成的重要方法。 (一)高分子化学的一些基本概念 1.高分子化合物(high molecular weight compound )——由许多一种或几种结构单元通过共价键连接起来的呈线形、分支形或网络状的高分子量的化合物,称之为高分子量化合物,简称高分子化合物或高分子。高分子化合物也称之为大分子(macromolecule )、聚合物(polymer )。 高分子化合物的特点: (1)高的分子量:M.W.(molecular weight )>104;M.W.<103时称为齐聚物(oligomer )、寡聚物或低聚物; (2)存在结构单元:结构单元是由单体(小分子化合物)通过聚合反应转变成的构成大分子链的单元; (3)结构单元通过共价键连接,连接形式有线形、分支形或网络状结构。 如聚苯乙烯(PS ):M.W.:10~30万,线形,含一种结构单元—苯乙烯单元,属通用合成 塑料。 2 n CH CH n ★结构单元(structural unit )和重复单元(repeating unit ): PVC PMMA PS

CH 2 CH Cl CH 2 C CH 3 C O OCH 3 CH 2 CH O 结构单元和重复单元相同 如尼龙-66(聚己二酰己二胺),有两个结构单元,两个结构单元链接起来组成其重复单元。 尼龙-66 尼龙-6 NH(CH 2)6NH CO(CH 2)4CO 结构单元 结构单元 重复单元 NH(CH 2)5C O 2.聚合度(degree of polymerization ,DP )——即一条大分子所包含的重复单元的个数,用DP 表示; 对缩聚物,聚合度通常以结构单元计数,符号为X n ;n X DP 、X n 对加聚物一般相同。 对缩聚物有时可能不同,如对尼龙-66,X n =2DP ;对尼龙-6,X n =DP 。因此,谈及聚合度时,一定要明确其计数对象。 3.高分子化合物的结构式(structural formula ) 高分子化合物的结构式用下式表示,其中下标n 表示重复单元的个数,即重复单元记数的聚合度。 重复单元 n CH 2 n CH 2 CH n Cl CH 2 n CH 2 CH n CH 3 CH 3 COOH HOOC n +HO(CH 2)2OH C O C O O(CH 2)2O n HO H +(2n-1)H 2O n

聚合物合成工艺学-复习题

填空题 1.塑料、合成橡胶和合成纤维被称为三大合成材料。 2.五大通用塑料是聚乙烯、聚丙烯、聚苯乙烯、聚氯乙烯和ABS树脂 3.五大工程塑料是聚酰胺(尼龙)、聚甲醛、聚碳酸酯、聚苯醚和热塑性聚酯。 4.塑料的原料是合成树脂和添加剂(助剂)。 5.制造橡胶制品时加入硫化剂的作用是使线形合成橡胶分子变成松散的交联 结构 6.离子聚合及配位聚合反应实施方法本体聚合、溶液聚合和淤浆聚合。 7.高分子合成工业的任务是将简单的有机化合物,经聚合反应使之合成为高分 子化合物。 8.废旧塑料回收利用的方式及其特点。作为材料再生循环利用:再处理后降级 使用;作为化学品循环利用:降解,高温裂解或催化裂解;作为能源回收利用:粉碎作燃料 9.石油裂解气经分离可得到乙烯、丙烯、丁烯、丁二烯;石油炼制产生的液体 经加氢催化重整可转化为芳烃,萃取分离可得苯、甲苯、二甲苯等。 10.炼焦(高温干馏):煤在焦炉内隔绝空气加热到1000℃,可获得焦炭、化学 产品和煤气。 11.高分子合成材料可分为塑料、合成纤维、合成橡胶、涂料、粘合剂、离子交 换树脂等。 12.三大合成纤维是聚酯纤维、聚丙烯腈纤维和聚酰胺纤维。 13.高分子合成材料最主要的原料是合成树脂和合成橡胶。 14.塑料生产中稳定剂的作用是防止成型过程中高聚物受热分解或老化。润滑剂 的作用是在高聚物成型过程中附着于材料表面以防止粘着模具,并增加流动性。 15.大型高分子合成生产装置的过程可分为:原料准备及精制、催化剂配制、聚 合反应、分离、聚合物后处理、溶剂回收等。核心是聚合反应过程。 16.自由基聚合的实施方法主要为本体聚合、乳液聚合、悬浮聚合和溶液聚合。 17.高分子合成工业的任务是将基本有机合成工业生产的单体,经过聚合反应合 成高分子化合物,从而为高分子合成材料成型工业提供基本原料. 18.高分子化合物生产流程评价的内容包括:生产方式、产品性能、原料路线、 能量消耗与利用、生产技术水平考查。 19.石油是生产重要基本有机化工原料乙烯、丙烯、丁二烯、苯、甲苯、二甲苯 (通称“三烯三苯”)的原料。 20.电石法生产乙炔的反应原理:CaC2+H2O→C2H2+Ca(OH)2 21.煤焦油经分离可得苯、甲苯、苯酚等。 22.自由基聚合可以采用四种工艺过程,乳液、悬浮、溶液、本体。 23.乳聚丁苯橡胶一般分为两种低温、高温。 24.乳液丁苯胶的合成是按自由基机理进行反应的。 25.酚醛树脂是由苯酚与甲醛反应制备的。 26.制备PE采用的催化剂(引发剂)是TiCl4+AlR3;制备PP采用的催化剂(引 发剂)是TiCl3+AlR3。 27.聚氨酯是由异氰酸酯与多元醇反应制备的。反应类型为聚加成反应。 28.悬浮聚合主要组分包括悬浮剂、单体、引发剂、水。 29.不饱和聚酯树脂的单体分别为不饱和酸酐和二元醇。

聚合实施方法

正离子聚合的新方法与新工艺 吴一弦** ,张来宝,黄强,刘强,李贝特,徐日炜 北京化工大学 化工资源有效利用国家重点实验室,北京 100029 关键词:正离子聚合 异丁烯 分子混合 聚异丁烯 丁基橡胶 聚合反应是高分子合成化学、高分子材料制备以及高分子材料高性能化的重要且关键的部分。随着社会不断发展进步,人们对化学工业中各种生产技术(包括聚合技术)提出更高的要求:不仅要高效节能,而且要无污染、低排放甚至零排放——开发环境友好的生产技术。为达此目的,就聚合物的生产技术而言,需在原有聚合方法和聚合技术基础上进一步提炼出基本科学问题,特别是与高效、节能和环境友好的总体目标紧密相关的科学问题进行研究,开发正离子聚合新工艺技术及新方法以及用于异丁烯、异戊二烯、苯乙烯类单体的正离子聚合,为设计合成官能化聚合物、立构规整聚合物、高性能化弹性体材料奠定基础。主要介绍以下几个方面内容: (1)不同分子量的聚异丁烯系列产物的设计合成 采用可控正离子聚合方法以及调节聚合产物分子量与分子量分布的方法,可设计合成出分子量在5.0×102~8.0×106范围的低分子量、中分子量、高分子量和超高分子量的系列聚异丁烯产物。 (2)软段全饱和热塑弹性体材料的设计合成 通过单体顺序加料和可控的苯乙烯或其衍生物与异丁烯正离子嵌段共聚合,制备了具有优异的热氧稳定性、在不加稳定剂的情况下可重复加工和优异的减振性能和气体阻隔性能的软段全饱和聚异丁烯链段的热塑弹性体材料。 (3)环境友好介质中的正离子聚合新方法 水作为一种廉价且对环境友好的溶剂,一直受到学术界和工业界的很大关注。传统的离子聚合通常须在几乎无水、无氧和高纯惰性气体保护下进行。然而,近几年在水相中正离子聚合的研究进展,改变了多年来人们一直认为的离子聚合的概念。 (4)微观分子混合与正离子聚合新工艺 国家自然科学基金委(20474006,20774008)、中国石油化工股份有限公司、教育部新世纪优秀人才计划(NCET-04-0124)和教育部长江学者和创新团队发展计划资助(IRT0706)。 **wuyx@https://www.wendangku.net/doc/9a17646185.html,

第八章 聚合方法

第八章聚合方法习题参考答案 1.解释下列名词: (1)聚合反应与聚合方法 (2)本体聚合、溶液聚合、悬浮聚合、乳液聚合 (3)熔融缩聚、溶液缩聚、界面缩聚、固相缩聚 解答: (1)聚合反应:主要是指单体到聚合物的合成反应,主要涉及聚合反应机理、反应条件—如引发剂、溶剂、温度、压力、反应时间等。 聚合方法:主要是指完成一个聚合反应所采用的方法。主要涉及聚合工艺、配方、原料精制、产物分离及后处理等。 (2)本体聚合:不加其它介质,单体在引发剂、或催化剂、或热、光、辐射等其它引发方法作用下进行的聚合。 溶液聚合:单体和引发剂或催化剂溶于适当的溶剂中的聚合。 悬浮聚合:单体以小液滴状悬浮在分散介质中的聚合。 乳液聚合:单体在水介质中,由乳化剂分散成乳液状态进行的聚合。 (3)熔融缩聚:在体系中只有单体和少量催化剂,在单体和聚合物熔点以上(一般高于熔点10~25O C)进行的缩聚。 溶液缩聚:单体、催化剂在溶剂中进行的缩聚。 界面缩聚:单体处于不同的相态中,在相界面处发生的缩聚。 固相缩聚:在原料(单体及聚合物)熔点或软化点以下进行的缩聚。 2.比较本体聚合、溶液聚合、悬浮聚合和乳液聚合的基本组分和优缺点。 解答: (1)本体聚合:体系主要由单体和引发剂或催化剂组成,其它有相对分子质量调节剂、润滑剂等。 优点是体系组成简单,因而产物纯净,特别适用于生产板材、型材等透明制品。 不足是反应热不易排除。 (2)溶液聚合:体系主要由单体、引发剂或催化剂和溶剂组成。 优点是溶剂的加入形成一均相聚合体系,有利于导出聚合热,同时利于降低体系粘度,减弱凝胶效应。 不足是加入溶剂后容易引起副反应;溶剂的回收、精制增加了设备及成本,并加大了工艺控制难度;降低了单体及引发剂的浓度,致使溶液聚合的反应速率比本体聚合要低;降低了反应装置的利用率。 (3)悬浮聚合:体系主要由单体、引发剂、悬浮剂和分散介质组成。 优点是体系粘度低,聚合热容易导出,散热和温度控制比本体聚合、溶液聚合容易得多;产品相对分子质量及分布比较稳定,聚合速率及相对分子质量比溶液聚合要高一些。杂质含量比乳液聚合低;后处理比溶液聚合和乳液聚合简单,生产成本较低,三废较少;产物可直接用于加工。 不足是聚合物中附有少量悬浮剂残余物,影响了制品的透明性和电绝缘性。 (4)乳液聚合:体系主要由单体、引发剂、乳化剂和分散介质组成。 优点是可以通过增加乳胶粒的方法同时提高聚合反应速率和聚合度,聚合反应速率快、聚合度高是乳液聚合不同于其它聚合方法的一个显著特征。 不足是聚合物中附有乳化剂残余,影响了制品的透明性和电绝缘性;后处理工艺复杂等。

聚合实施方法

第四章聚合实施方法 4.1.本体聚合 一.定义:不加其它介质,只有单体本身在印发剂、光、热辐射的作用下进行的聚合。二.配方组成:单体+引发剂(或用光、热辐射引发)+(助剂,如少量颜料、增塑剂、润滑剂、分子量调节剂) 三.分类: 1.根据单体和聚合体的互溶情况分为均相和非均相两种。均相本体聚合,是指聚合物溶于单体,在聚合过程中物料逐渐变稠,始终成为均一相态,最后变成硬块。St、MMA的本体聚合就属均相本体聚合。非均相本体聚合是单体聚合后新生成的聚合物不溶于单体中,从而沉淀下来成为异相,即非均相氯乙烯的本体聚合。 2.按参加反应的单体的相态分为气相和液相两种。气相本体聚合最为成熟的是高压聚乙烯的生产。典型的液相本体聚合有St、MMA的本体聚合。 四.优缺点 1.优点:生产流程短、设备少,易于连续化、生产能力大、产品纯度高、透明性好,此法适用于生产板材或其它型材。 2.缺点:①反应热大,不易排出,危险性大 ②由于反应体系粘度大,分子扩散困难,所以形成的聚合物分子量分布变宽。五.聚合机理:遵循自由基聚合一般机理,提高反应速率时,往往分子量降低。 六.意义 理论上:由于其组成简单、影响因素少,特别适用于实验室研究。如:a.单体聚合能力的初步鉴定b.动力学研究c.竞聚率测定d.少量聚合物的试制 实际生产上:许多单体均可采用本体聚合方法,不论是气体、液体或固体。 七.生产工艺特征 关键是反应热的排出,△H=55~95KJ∕mol 20%以下,体系粘度小,散热无困难 30%以上,粘度大,散热不易,加上凝胶效应,放热更高,如果散热不良,轻者,造成局部过热,分子量分布变宽,影响产品质量;重者,温度失调,引起短聚,为解决此问题,在工艺和设备的设计上采取了多种措施: 〈1〉使反应进行到一定转化率就分离出聚合物。 〈2〉采用较低的反应温度、较低浓度的引发剂进行聚合。 〈3〉将聚合分布进行,控制转化率“自动加速效应”,使放热均匀。 〈4〉强化聚合设备的传热。 〈5〉采用紫外光或辐射引发聚合,以降低反应温度,利于热的传递。 八.生产实例 目前,乙烯的聚合方法就以所采用的压力高低分为高压法、中压法和低压法。所得聚合物相应地被称为高压PE、中压PE及低压PE。高压PE是将乙烯压缩到150-250MPa的高压条件下,用氧或过氧化物作引发剂,与200℃左右的温度下经自由基聚合反应而制得。其P较低,一般为0.910-0.940g/cm3,故称为低密度PE,简称LDPE。分子具有长短支链,分子量一般不超过50000。中压PE是用载于氧化硅-氧化铝上的氧化铭为催化剂,在106-170℃,2-4MPa压力下使乙烯聚合成聚乙烯,低压PE使用Alets-ticl4为催化剂,在数个兆帕的低压下使乙烯聚合成PE,中压法和低压法都属于配位聚合,所生成的聚乙烯密度较高,在0.940-0.970g/cm3之内,故称为高密度聚乙烯,简称HDPE。高密度聚乙烯是线性的,并有少量的短支链。此外还有近年来发展迅速的线性分子,有一定数量无轨分布支链的线性低密度聚乙烯(LLDPE)及高分子量,特高分子量,超高分子量的PE。

高分子化学第五章答案

高分子化学第五章答案

第五章聚合方法 思考题5.1 聚合方法(过程)中有许多名称,如本体聚合、溶液聚合和悬浮聚合,均相聚合和非均相聚合,沉淀聚合和淤浆聚合,试说明它们相互问的区别和关系。 答聚合方法有不同的分类方法,如下表:序 号 分类方法聚合物 1 2 3 按聚合体系中 反应物的状态 按聚合体系的 溶解性 按聚合的单体 形态 本体聚合、溶液聚合、 悬浮聚合乳液聚合 均相聚合、非均相 聚合、沉淀聚合 气相聚合、固相聚 合 按聚合体系中反应物的相态考虑,本体聚合是单体加有(或不加)少量引发剂的聚合。溶液聚合是单体和引发剂溶于适当溶剂中的聚合。悬浮聚合一般是单体以液滴状悬浮在水中的聚合,体系主要由单体、水、油溶性引发剂、分散剂四部分组成。 按聚合体系的溶解性进行分类,聚合反应可以

分成均相聚合和非均相聚合。当单体、溶剂、聚合物之间具有很好的相溶性时,聚合为均相聚合;当单体、溶剂、聚合物之间相溶性不好而产生相分离的聚合,则为非均相聚合。 聚合初始,本体聚合和溶液聚合多属于均相体系,悬浮聚合和乳液聚合属于非均相聚合;如单体和聚合物完全互溶,则该本体聚合为均相聚合;当单体对聚合物的溶解性不好,聚合物从单体中析出,此时的本体聚合则成为非均相的沉淀聚合;溶液聚合中,聚合物不溶于溶剂从而沉析出来,就成为沉淀聚合,有时称作淤浆聚合。 思考题 5.2 本体法制备有机玻璃板和通用级聚苯乙烯,比较过程特征,说明如何解决传热问题、保证产品品质。 答间歇本体聚合是制备有机玻璃板的主要方法。为解决聚合过程中的散热困难、避免体积收缩和气泡产生,保证产品品质,将聚合分成预聚合、聚合和高温后处理三个阶段来控制。①预聚合。在90-95℃下进行,预聚至10%~20%转化率,自动加速效应刚开始较弱,反应容易控制,但体积已经部分收缩,体系有一定的黏度,

四种聚合方法的比较

Made by LQ 四种聚合方法的比较 本体聚合 溶液聚合 悬浮聚合 乳液聚合 定义 指不加其他介质,仅有单体本身和少量 引发剂(或不加)的聚合 单体和引发剂溶于适当溶剂的聚合 借助机械搅拌和分散剂的作用,使油溶性单体以小液滴悬浮在水介质中,形成稳定的悬浮体进行聚合 借助机械搅拌和乳化剂的作用,使单体分散在水或非水介质中,形成稳定的乳液而进行聚合 聚合体系中存在的物质 单体 液态 亲油性、亲水性 亲油性 亲油性 引发剂 可溶于单体 可溶于溶剂 可溶于单体 可溶于水 溶剂 无 水、有机溶剂 水 水 其他 无 无 分散剂 乳化剂(表面活性剂) 聚合物体系的状态 均相体系 均相体系 非均相体系 非均相体系 聚合体系中进行搅拌 困难 容易 必要 必要 聚合热的排除 困难 比较容易 容易 容易 聚合速率 快 慢 快 非常快 聚合物的分子量 高 低 高 非常高 聚合物的分离 容易(直接使用) 使用不良溶剂使其沉淀 容易(过滤) 困难(需盐析) 聚合物中的杂质 非常少 少 略多 多 聚合场所 本体内 溶液内 液滴内 胶束和乳胶粒内 聚合机理 提高速率的因素将使分子量降低 向溶剂链转移,分子量和速率均降低 提高速率的因素将使分子量降低 同时提高聚合速率和分子量 生产特征 不易散热,连续聚合时要保证传热混合;间歇法生产板材或型材的设备简单 散热容易,可连续化,不宜制成干燥粉状或粒状树脂 散热容易,间歇生产,后续工艺复杂,需有分离、洗涤、干燥等工序 散热容易,可连续化,制粉状树脂时, 需经凝聚、洗涤、干燥 产物特性 聚合物纯净,宜生产透明浅色制品,分 子量分布较宽 一般聚合物溶液直接使用 比较纯净,可能留有少量分散剂 留有部分乳化剂和其他助剂

聚氯乙烯四大聚合方法

聚氯乙烯四大聚合方法 3.1悬浮聚合 悬浮聚合通过不断进行搅拌使单体液滴在水中保持悬浮状态,聚合反应在单体小液滴中进行。通常悬浮聚合反应为间歇聚合。 近年来各公司对PVC树脂间歇悬浮聚合工艺的配方、聚合釜、产品品种和质量不断研究和改进,开发出各具特点的工艺技术,目前应用较多的是Geon公司(原B.F Goo drichg公司)技术、日本信越公司技术、欧洲EVC公司技术, 这三大公司的技术在19 90年以来世界新增的PVC树脂生产能力中各占大约21%的比例。 3.2乳液聚合 乳液聚合与悬浮聚合基本类似,只是要采用更为大量的乳化剂,并且不是溶于水中而是溶于单体中。这种聚合体系可以有效防止聚合物粒子的凝聚,从而得到粒径很小的聚合物树脂,一般乳液法生产的PVC树脂的粒径为0.1—0.2mm,悬浮法为20―200m m。引发剂体系与悬浮聚合也有所不同,通常是含有过硫酸盐的氧化还原体系。干燥方法也设计成可以保持较小的粒径的方式, 常常采用一些喷雾干燥剂。由于不可能将乳化剂完全除去,因此用乳液法生产的树脂不能用于生产需要高透明性的制品如包装薄膜或要求吸水性很低的制品如电线绝缘层。一般来说乳液聚合PVC树脂的价格高于悬浮聚合的树脂,然而需要以液体形式配料的用户使用这种树脂,如糊树脂。在美国大部分乳液聚合的树脂产品都是糊树脂(又叫分散型树脂),少量用于乳胶。在欧洲,各种乳液工艺也用于生产通用树脂,尤其是压延和挤出用树脂。 3.3本体聚合 本体法生产工艺在无水、无分散剂,只加入引发剂的条件下进行聚合,不需要后处理设备,投资小、节能、成本低。用本体法PVC树脂生产的制品透明度高、电绝缘性好、易加工,用来加工悬浮法树脂的设备均可用于加工本体法树脂。PVC本体工艺在80年

(完整版)高分子化学复习题——填空题精选.docx

一、填空题 1.聚合物有两个分散性,是相对分子质量多分散性和聚合度多分散性。 2.聚合反应按机理来分逐步聚合和连锁聚合两大类 ,如按单体与聚合物组成差别分为加聚反应、缩聚反应和开环反应。 3.阻聚和缓聚反应的本质:链自由基向阻聚剂和缓聚剂的链转移反应,可能生成没有引发活 性的中性分子,也可能是活性低的新自由基。两者的区别是程度上的不同,前者使聚合反 应完全终止,后者只是使聚合反应速度降低。 4. 在自由基聚合中,具有能同时获得高聚合和高相对分子质量的实施方法有乳液聚合 5.乳液聚合的特点是可以同时提高相对分子质量和反应速率,原因是:乳化剂浓度对聚合反 应速率和聚合度的影响是一致的,对乳化程度的强化而可以同时达到较高的聚合速率和聚 合度的目的。 6.合成高聚物的几种聚合方法中,能获得最窄的相对分子质量分布的是阴离子聚合 7. 线形缩聚的核心问题是相对分子质量的影响因素和控制;体形缩聚的关键问题是凝胶点的控制。所有缩聚反应共有的特征是逐步特性 8.在自由基聚合和缩聚反应中,分别用单体的转化率和反应程度来表征聚合反应进行的深度。 9. 线形缩聚相对分子质量的控制手段有加入单官能团的单体,进行端基封锁和控制反应官能团加入的当量比。 10.所谓的配位聚合是指采用的引发剂是金属有机化合物与过渡化合物的络合体系,单体在聚合反应中通过活性中心进行配位而插入活性中心离子与反离子之间,最后完成聚合过程。所谓的定向聚合是指指能够生成立构规整性聚合物为主(>=75%) 的聚合反应。 11.自由基聚合的特征慢引发、快增长、速终止。阳离子的聚合特征是快引发、快增长、难 终止、易转移。阴离子的聚合特征是快引发、慢增长、易转移、无终止。 12.自由基聚合的实施方法有本体聚合、悬浮聚合、乳液聚合、溶液聚合。逐步聚合的实施方法溶液聚合、界面聚合、熔融聚合。 13.用动力学推导共聚组成方程时做了五个假定,分别是等活性理论、稳态、忽略链转移、 双基终止、无解聚反应和无前末端效应。 14.推导微观聚合动力学方程,作了4个基本假定是 :链转移反应无影响、等活性理论、聚合 度很大、稳态假设。 15.自由基聚合规律是转化率随时间而增高,延长反应时间可以提高转化率。缩聚反应规律是转化率随时间无关,延长反应时间是为了提高聚合度。 16. 在聚合过程中,加入正十二硫醇的目的是调节相对分子质量,原理是发生链转移反应 17. 悬浮聚合的基本配方是水、单体、分散剂、油溶性引发剂,影响颗粒形态的两种重要因素是分散剂和搅拌。乳液聚合的配方是单体、水、水溶性引发剂、水溶性乳化剂 18. Ziegler-Natta引发剂的主引发剂是IVB~VIIIB 族过渡金属化合物,共引发剂是 IA~IIIA 族金属有机化合物。 19.三大合成材料是塑料、纤维、橡胶。 20.非晶高聚物随温度变化而出现的三种力学状态是玻璃态、高弹态、粘流态。 21. 影响聚合物反应活性的化学因素主要有极性效应和共轭效应。 22.两种单体的 Q、 e 值越接近越易发理想共聚聚合,相差越远易发生交替共聚聚合。 23.熔点是晶态聚合物的热转变温度,而玻璃化温度则主要是非晶态聚合物的热转变温度。 24.室温下,橡胶处于高弹态,粘流温度为其使用上限温度,玻璃化温度为其使用下限温度。 25.高分子,又称聚合物,一个大分子往往由许多简单的结构单元通过共价键重复键接而成。 26.玻璃化温度和熔点是评价聚合物耐热性的重要指标。

聚合方法

表面引发原子转移自由基聚合原理及应用 研究综述 杜亚伟1 (武汉工程大学材料科学与工程学院、高分子物理与化学、湖北武汉、430073) 摘要:本综述主要介绍表面原子转移自由基聚合方法接枝。另外,本文还介绍了聚合物刷当前的研究进展。 关键词:聚合物刷;分子设计;接枝聚合物;表面原子转移自由基聚合 引言 表面引发原子转移自由基聚合(SI-ATRP)是在材料表面获得可控聚合物刷的一种有效方法。聚合物在材料表面物理吸附或化学接枝所形成的单分子层界面被称为聚合物刷(图1),是由密度很高的聚合物分子链的一端连接于表面或界面上而形成的一种特殊高分子结构。在聚合物刷的分子设计中,聚合物刷的主要连接方式有两种,聚合物刷中分物理吸附法和化学键接法[1-4]。在这其中表面引发原子转移自由基聚合(SI-ATRP)是研究的重点。活性自由基聚合的引入帮助研究者更加高效容易地设计各种聚合物刷分子实现各种不同的功能。 图1 聚合物刷的微观形态 活性自由基聚合从上个世纪90年代开始就是高分子化学领域研究的热点。根据Szwarc 第一次提出的活性聚合的概念,所谓活性聚合是指那些不存在增长链终止反应和不可逆链转移等副反应的聚合反应。在活性聚合反应过程中,生成的活性中心的活性保持到聚合结束,反应的引发速率大于增长速率,从而保证所有活性中心以相同速率增长,可以有效地控制聚合物分子量、分子量分布和分子结构,聚合产物具有单分散性,规整性良好的特点[5]。活性自由基聚合主要包括活性开环聚合(ROP)、氮氧自由基法(TEMPO)、开环歧化聚合(ROMP)、可逆加成-裂解链转移聚合(RAFT)、原子转移自由基聚合(ATRP )等,其中以原子转移自由基聚合的研究最为活跃。

相关文档