文档库 最新最全的文档下载
当前位置:文档库 › 计算方法-解线性方程组的直接法实验报告

计算方法-解线性方程组的直接法实验报告

计算方法-解线性方程组的直接法实验报告
计算方法-解线性方程组的直接法实验报告

计算方法实验二实验报告

专业班级:姓名:学号:实验成绩:1.【实验题目】

解线性方程组的直接法

2.【实验目的】

●掌握高斯消元法及选列主元素的技术

●掌握三角分解法与追赶法

●掌握向量与矩阵的三种范数及其计算方法

●理解方程组的性态、条件数及误差分析

3.【实验内容】

求解方程组,AX=b 其中

4. 【实验要求】

(1)分别列选主元消去法与不选主元消去法分别对以上两个方程组求解

(2)观察小主元并分析对计算结果的影响。

(3)用追赶法求下述三对角线性方程组的解

5. 【算法描述】

6. 【源程序(带注释)】(1)一:列主元素消去法

#include

#include

#define N 20

using namespace std;

void load();

float a[N][N];

int m;

int main()

{

int i,j;

int c,k,n,p,r;

float x[N],l[N][N],s,d;

cout<<"下面请输入未知数的个数m=";

cin>>m;

cout<

cout<<"请按顺序输入增广矩阵a:"<

load();

for(i=0;i

{

for(j=i;j

c=(fabs(a[j][i])>fabs(a[i][i]))?j:i; /*找列最大元素*/ for(n=0;n

{

s=a[i][n];

a[i][n]=a[c][n];

a[c][n]=s;

}

/*将列最大数防在对角线上*/

for(p=0;p

cout<

cout<

for(k=i+1;k

{

l[k][i]=a[k][i]/a[i][i];

for(r=i;r

a[k][r]=a[k][r]-l[k][i]*a[i][r];

}

}

x[m-1]=a[m-1][m]/a[m-1][m-1];

for(i=m-2;i>=0;i--)

{

d=0;

for(j=i+1;j

d=d+a[i][j]*x[j];

x[i]=(a[i][m]-d)/a[i][i]; /*求解*/

}

cout<<"该方程组的解为:"<

for(i=0;i

cout<<"x["<

//

system("pause");

return 0;

}

void load()

{

int i,j;

for(i=0;

i

for(j=0;

j

j++)

cin>>a[i][j];

}

一般消去法

#include

void solve(float l[][100],float u[][100],float b[],float x[],int n) {

int i,j;

float t,s1,s2;

float y[100];

for(i=1;i<=n;i++) /* 第一次回代过程开始*/

{

s1=0;

for(j=1;j

{

t=-l[i][j];

s1=s1+t*y[j];

}

y[i]=(b[i]+s1)/l[i][i];

}

for(i=n;i>=1;i--) /* 第二次回代过程开始*/

{

s2=0;

for(j=n;j>i;j--)

{

t=-u[i][j];

s2=s2+t*x[j];

}

x[i]=(y[i]+s2)/u[i][i];

}

}

void main()

{

float a[100][100],l[100][100],u[100][100],x[100],b[100];

int i,j,n,r,k; float s1,s2;

for(i=1;i<=99;i++)/*将所有的数组置零,同时将L矩阵的对角值设为1*/ for(j=1;j<=99;j++)

{

l[i][j]=0,u[i][j]=0;

if(j==i) l[i][j]=1;

}

printf ("input n:\n");/*输入方程组的个数*/

scanf("%d",&n);

printf ("input array A:\n");/*读取原矩阵A*/

for(i=1;i<=n;i++)

for(j=1;j<=n;j++)

scanf("%f",&a[i][j]);

printf ("input array B:\n");/*读取列矩阵B*/

for(i=1;i<=n;i++)

scanf("%f",&b[i]);

for(r=1;r<=n;r++)/*求解矩阵L和U*/

{

for(i=r;i<=n;i++)

{

s1=0;

for(k=1;k<=r-1;k++)

s1=s1+l[r][k]*u[k][i];

u[r][i]=a[r][i]-s1;

}

for(i=r+1;i<=n;i++)

{

s2=0;

for(k=1;k<=r-1;k++)

s2=s2+l[i][k]*u[k][r];

l[i][r]=(a[i][r]-s2)/u[r][r];

}

}

printf("array L:\n");/*输出矩阵L*/ for(i=1;i<=n;i++) {

for(j=1;j<=n;j++)

printf("%7.3f ",l[i][j]);

printf("\n");

}

printf("array U:\n");/*输出矩阵U*/

for(i=1;i<=n;i++)

{

for(j=1;j<=n;j++)

printf("%7.3f ",u[i][j]); printf("\n");

}

solve(l,u,b,x,n);

printf("解为:\n");

for(i=1;i<=n;i++)

printf("x%d=%f\n",i,x[i]);

}

(2)

(3)

#include

#include

#include

#define N 20

double a[N], b[N], c[N-1], f[N], r[N]; int n;

void LUDecompose();

// LU分解

void backSubs();

// 回代

void main()

{

printf("请输入方程的维数n=");

scanf("%d",&n);

getchar();

if(n>N||n<=0)

{

printf("由于该维数过于犀利, 导致程序退出!");

return;

}

printf("\n输入下三角元素\n");

printf("输入%d个a值: ", n-1);

for (int i=1; i

scanf("%lf", &a[i]);

getchar();

printf("\n输入主对角线元素\n");

printf("输入%d个b值: ", n);

for (i=0; i

scanf("%lf", &b[i]);

getchar();

printf("\n输入上三角元素\n");

printf("输入%d个c值: ", n-1);

for (i=0; i

scanf("%lf", &c[i]);

getchar();

printf("\n输入%d个方程组右端项: \n", n);

for (i=0; i

scanf("%lf", &f[i]);

getchar();

LUDecompose();

backSubs();

printf("\n线性方程组的解为: \n");

for (i=0; i

printf("x%d=%lf\n", i+1, f[i]);

}

void LUDecompose(){

c[0]=c[0]/b[0];

for(int i=1;i

r[i]=a[i];

b[i]=b[i]-r[i]*c[i-1];

c[i]=c[i]/b[i];

}

r[i]=a[i];

b[i]=b[i]-r[i]*c[i-1];

}

void backSubs(){

f[0]=f[0]/b[0];

for(int i=1; i

f[i]=(f[i]-r[i]*f[i-1])/b[i];

f[n-1]=f[n-1];

for(i=n-2;i>=0;i--)

f[i]=f[i]-c[i]*f[i+1];

}

7.【实验结果与分析总结(含运行结果截图)】

《计算方法》课内实验报告

《计算方法》实验报告 姓名: 班级: 学号: 实验日期: 2011年10月26日

一、实验题目: 数值积分 二、实验目的: 1.熟悉matlab 编写及运行数值计算程序的方法。 2.进一步理解数值积分的基础理论。 3.进一步掌握应用不同的数值积分方法求解给定的积分并给出数据结果及误差分析。 三、实验内容: 1.分别用复合梯形求积公式及复合辛普森求积公式计算积分xdx x ln 10 ? , 要求计算精度达到410-,给出计算结果并比较两种方法的计算节点数. 2.用龙贝格求积方法计算积分dx x x ?+3 021,使误差不超过510-. 3.用3=n 的高斯-勒让德公式计算积分?3 1 sin x e x ,给出计算结果. 4.用辛普森公式(取2==M N ) 计算二重积分.5 .00 5 .00 dydx e x y ? ? - 四、实验结果: 1.(1)复合梯形法: 将区间[a,b]划分为n 等份,分点n k n a b h kh a x k ,2,1,0,,=-=+=在每个区间[1,+k k x x ](k=0,1,2,···n-1)上采用梯形公式,则得 )()]()([2)()(1 11 1 f R x f x f h dx x f dx x f I n n k k k b a n k x x k k ++===∑?∑? -=+-=+ 故)]()(2)([21 1 b f x f a f h T n k k n ++=∑-=称为复合梯形公式 计算步长和划分的区间 Eps=1E-4 h1=sqrt(Eps/abs(-(1-0)/12*1/(2+1))) h1 =0.0600 N1=ceil(1/h1) N1 =17 用复合梯形需要计算17个结点。 复合梯形: function T=trap(f,a,b,n) h=(b-a)/n;

计算方法上机实验报告

《计算方法》上机实验报告 班级:XXXXXX 小组成员:XXXXXXX XXXXXXX XXXXXXX XXXXXXX 任课教师:XXX 二〇一八年五月二十五日

前言 通过进行多次的上机实验,我们结合课本上的内容以及老师对我们的指导,能够较为熟练地掌握Newton 迭代法、Jacobi 迭代法、Gauss-Seidel 迭代法、Newton 插值法、Lagrange 插值法和Gauss 求积公式等六种算法的原理和使用方法,并参考课本例题进行了MATLAB 程序的编写。 以下为本次上机实验报告,按照实验内容共分为六部分。 实验一: 一、实验名称及题目: Newton 迭代法 例2.7(P38):应用Newton 迭代法求 在 附近的数值解 ,并使其满足 . 二、解题思路: 设'x 是0)(=x f 的根,选取0x 作为'x 初始近似值,过点())(,00x f x 做曲线)(x f y =的切线L ,L 的方程为))((')(000x x x f x f y -+=,求出L 与x 轴交点的横坐标) (') (0001x f x f x x - =,称1x 为'x 的一次近似值,过点))(,(11x f x 做曲线)(x f y =的切线,求该切线与x 轴的横坐标) (') (1112x f x f x x - =称2x 为'x

的二次近似值,重复以上过程,得'x 的近似值序列{}n x ,把 ) (') (1n n n n x f x f x x - =+称为'x 的1+n 次近似值,这种求解方法就是牛顿迭代法。 三、Matlab 程序代码: function newton_iteration(x0,tol) syms z %定义自变量 format long %定义精度 f=z*z*z-z-1; f1=diff(f);%求导 y=subs(f,z,x0); y1=subs(f1,z,x0);%向函数中代值 x1=x0-y/y1; k=1; while abs(x1-x0)>=tol x0=x1; y=subs(f,z,x0); y1=subs(f1,z,x0); x1=x0-y/y1;k=k+1; end x=double(x1) K 四、运行结果: 实验二:

MATLAB代码 解线性方程组的迭代法

解线性方程组的迭代法 1.rs里查森迭代法求线性方程组Ax=b的解 function[x,n]=rs(A,b,x0,eps,M) if(nargin==3) eps=1.0e-6;%eps表示迭代精度 M=10000;%M表示迭代步数的限制值elseif(nargin==4) M=10000; end I=eye(size(A)); n=0; x=x0; tol=1; %迭代过程 while(tol>eps) x=(I-A)*x0+b; n=n+1;%n为最终求出解时的迭代步数tol=norm(x-x0); x0=x; if(n>=M) disp('Warning:迭代次数太多,可能不收敛!'); return; end end 2.crs里查森参数迭代法求线性方程组Ax=b的解 function[x,n]=crs(A,b,x0,w,eps,M) if(nargin==4) eps=1.0e-6;%eps表示迭代精度 M=10000;%M表示迭代步数的限制值 elseif(nargin==5) M=10000; end I=eye(size(A)); n=0; x=x0; tol=1; %迭代过程 while(tol>eps) x=(I-w*A)*x0+w*b; n=n+1;%n为最终求出解时的迭代步数tol=norm(x-x0); x0=x;

if(n>=M) disp('Warning:迭代次数太多,可能不收敛!'); return; end end 3.grs里查森迭代法求线性方程组Ax=b的解 function[x,n]=grs(A,b,x0,W,eps,M) if(nargin==4) eps=1.0e-6;%eps表示迭代精度 M=10000;%M表示迭代步数的限制值 elseif(nargin==5) M=10000; end I=eye(size(A)); n=0; x=x0; tol=1;%前后两次迭代结果误差 %迭代过程 while(tol>eps) x=(I-W*A)*x0+W*b;%迭代公式 n=n+1;%n为最终求出解时的迭代步数tol=norm(x-x0); x0=x; if(n>=M) disp('Warning:迭代次数太多,可能不收敛!'); return; end end 4.jacobi雅可比迭代法求线性方程组Ax=b的解 function[x,n]=jacobi(A,b,x0,eps,varargin) if nargin==3 eps=1.0e-6; M=200; elseif nargin<3 error return elseif nargin==5 M=varargin{1}; end D=diag(diag(A));%求A的对角矩阵 L=-tril(A,-1);%求A的下三角阵

数值分析实验报告1

实验一误差分析 实验1.1(病态问题) 实验目的:算法有“优”与“劣”之分,问题也有“好”与“坏”之别。对数值方法的研究而言,所谓坏问题就是问题本身对扰动敏感者,反之属于好问题。通过本实验可获得一个初步体会。 数值分析的大部分研究课题中,如线性代数方程组、矩阵特征值问题、非线性方程及方程组等都存在病态的问题。病态问题要通过研究和构造特殊的算法来解决,当然一般要付出一些代价(如耗用更多的机器时间、占用更多的存储空间等)。 问题提出:考虑一个高次的代数多项式 显然该多项式的全部根为1,2,…,20共计20个,且每个根都是单重的。现考虑该多项式的一个扰动 其中ε(1.1)和(1.221,,,a a 的输出b ”和“poly ε。 (1(2 (3)写成展 关于α solve 来提高解的精确度,这需要用到将多项式转换为符号多项式的函数poly2sym,函数的具体使用方法可参考Matlab 的帮助。 实验过程: 程序: a=poly(1:20); rr=roots(a); forn=2:21 n form=1:9 ess=10^(-6-m);

ve=zeros(1,21); ve(n)=ess; r=roots(a+ve); -6-m s=max(abs(r-rr)) end end 利用符号函数:(思考题一)a=poly(1:20); y=poly2sym(a); rr=solve(y) n

很容易的得出对一个多次的代数多项式的其中某一项进行很小的扰动,对其多项式的根会有一定的扰动的,所以对于这类病态问题可以借助于MATLAB来进行问题的分析。 学号:06450210 姓名:万轩 实验二插值法

太原理工大学数值计算方法实验报告

本科实验报告 课程名称:计算机数值方法 实验项目:方程求根、线性方程组的直接解 法、线性方程组的迭代解法、代数插值和最 小二乘拟合多项式 实验地点:行勉楼 专业班级: ******** 学号: ********* 学生姓名: ******** 指导教师:李誌,崔冬华 2016年 4 月 8 日

y = x*x*x + 4 * x*x - 10; return y; } float Calculate(float a,float b) { c = (a + b) / 2; n++; if (GetY(c) == 0 || ((b - a) / 2) < 0.000005) { cout << c <<"为方程的解"<< endl; return 0; } if (GetY(a)*GetY(c) < 0) { return Calculate(a,c); } if (GetY(c)*GetY(b)< 0) { return Calculate(c,b); } } }; int main() { cout << "方程组为:f(x)=x^3+4x^2-10=0" << endl; float a, b; Text text; text.Getab(); a = text.a; b = text.b; text.Calculate(a, b); return 0; } 2.割线法: // 方程求根(割线法).cpp : 定义控制台应用程序的入口点。// #include "stdafx.h" #include"iostream"

心得体会 使用不同的方法,可以不同程度的求得方程的解,通过二分法计算的程序实现更加了解二分法的特点,二分法过程简单,程序容易实现,但该方法收敛比较慢一般用于求根的初始近似值,不同的方法速度不同。面对一个复杂的问题,要学会简化处理步骤,分步骤一点一点的循序处理,只有这样,才能高效的解决一个复杂问题。

物理实验报告格式范文

物理实验报告格式范文 一、实验目的 二、实验仪器和器材(要求标明各仪器的规格型号) 三、实验原理:简明扼要地阐述实验的理论依据、计算公式、画出电路图或光路图 四、实验步骤或内容:要求步骤或内容简单明了 五、数据记录:实验中测得的原始数据和一些简单的结果尽可能用表格形式列出,并要求正确表示有效数字和单位 六、数据处理:根据实验目的对测量结果进行计算或作图表示,并对测量结果进行评定,计算误差或不确定度. 七、实验结果:扼要地写出实验结论 八、误差分析:当实验数据的误差达到一定程度后,要求对误差进行分析,找出产生误差的原因. 九、问题讨论:讨论实验中观察到的异常现象及可能的解释,分析实验误差的主要来源,对实验仪器的选择和实验方法的改进提出建议,简述自己做实验的心得体会,回答实验思考题. 物理探究实验:影响摩擦力大小的因素 技能准备:弹簧测力计,长木板,棉布,毛巾,带钩长方体木块,砝码,刻度尺,秒表。 知识准备: 1. 二力平衡的条件:作用在同一个物体上的两个力,如果大小相等,方向相反,并且在同一直线上,这两个力就平衡。 2. 在平衡力的作用下,静止的物体保持静止状态,运动的物体保持匀速直线运动状态。 3. 两个相互接触的物体,当它们做相对运动时或有相对运动的趋势时,在接触面上会产生一种阻碍相对运动的力,这种力就叫摩擦力。 4. 弹簧测力计拉着木块在水平面上做匀速直线运动时,拉力的大小就等于摩擦力的大小,拉力的数值可从弹簧测力计上读出,这样就测出了木块与水平面之间的摩擦力。

探究导引 探究指导: 关闭发动机的列车会停下来,自由摆动的秋千会停下来,踢出去的足球会停下来,运动的物体之所以会停下来,是因为受到了摩擦力。 运动物体产生摩擦力必须具备以下三个条件:1.物体间要相互接触,且挤压;2.接触面要粗糙;3.两物体间要发生相对运动或有相对运动的趋势。三个条件缺一不可。 摩擦力的作用点在接触面上,方向与物体相对运动的方向相反。由力的三要素可知:摩擦力除了有作用点、方向外,还有大小。 提出问题:摩擦力大小与什么因素有关? 猜想1:摩擦力的大小可能与接触面所受的压力有关。 猜想2:摩擦力的大小可能与接触面的粗糙程度有关。 猜想3:摩擦力的大小可能与产生摩擦力的两种物体间接触面积的大小有关。 探究方案: 用弹簧测力计匀速拉动木块,使它沿长木板滑动,从而测出木块与长木板之间的摩擦力;改变放在木块上的砝码,从而改变木块与长木板之间的压力;把棉布铺在长木板上,从而改变接触面的粗糙程度;改变木块与长木板的接触面,从而改变接触面积。 物理实验报告 .化学实验报告 .生物实验报告 .实验报告格式 .实验报告模板 探究过程: 1. 用弹簧测力计匀速拉动木块,测出此时木块与长木板之间的摩擦力:0.7N 2. 在木块上加50g的砝码,测出此时木块与长木板之间的摩擦力:0.8N 3. 在木块上加200g的砝码,测出此时木块与长木板之间的摩擦力:1.2N 4. 在木板上铺上棉布,测出此时木块与长木板之间的摩擦力:1.1N 5. 加快匀速拉动木块的速度,测出此时木块与长木板之间的摩擦力:0.7N 6. 将木块翻转,使另一个面积更小的面与长木板接触,测出此时木块与长木板之间的摩擦力:0.7N 探究结论:

c 计算器实验报告

简单计算器 姓名: 周吉祥 实验目的:模仿日常生活中所用的计算器,自行设计一个简单的计算器程序,实现简单的计算功能。 实验内容: (1)体系设计: 程序是一个简单的计算器,能正确输入数据,能实现加、减、乘、除等算术运算,运算结果能正确显示,可以清楚数据等。 (2)设计思路: 1)先在Visual C++ 6.0中建立一个MFC工程文件,名为 calculator. 2)在对话框中添加适当的编辑框、按钮、静态文件、复选框和单 选框 3)设计按钮,并修改其相应的ID与Caption. 4)选择和设置各控件的单击鼠标事件。 5)为编辑框添加double类型的关联变量m_edit1. 6)在calculatorDlg.h中添加math.h头文件,然后添加public成 员。 7)打开calculatorDlg.cpp文件,在构造函数中,进行成员初始 化和完善各控件的响应函数代码。 (3)程序清单:

●添加的public成员: double tempvalue; //存储中间变量 double result; //存储显示结果的值 int sort; //判断后面是何种运算:1.加法2.减法3. 乘法 4.除法 int append; //判断后面是否添加数字 ●成员初始化: CCalculatorDlg::CCalculatorDlg(CWnd* pParent /*=NULL*/) : CDialog(CCalculatorDlg::IDD, pParent) { //{{AFX_DATA_INIT(CCalculatorDlg) m_edit1 = 0.0; //}}AFX_DATA_INIT // Note that LoadIcon does not require a subsequent DestroyIcon in Win32 m_hIcon = AfxGetApp()->LoadIcon(IDR_MAINFRAME); tempvalue=0; result=0; sort=0; append=0; }

实验报告格式

重庆工商大学 《统计学》实验报告 实验课程:统计学 _ 指导教师:陈正伟 _ 专业班级: 08 经济学 学生姓名:程剑波 学生学号: 2008011133 __

实验项目 实验日期实验地点80608 实验目的掌握统计学的基本计算方法和分析方法。 实验内容一、统计图绘制;二、动差、偏度系数、峰度系数的计算;三、趋势性的绘制; 四、相关分析与回归分析;五、时间数列的动态指标分析;六、循环变动的测 算分析。 通过统计学(2009.9.10-2009.12.15)实验报告如下: 一、统计图绘制; (一)过程: (二)结果: (三)分析: 二、动差、偏度系数、峰度系数的计算; (一)过程: (二)结果: (三)分析: 三、趋势性的绘制; (一)过程: (二)结果: (三)分析: 四、相关分析与回归分析; (一)过程: (二)结果: (三)分析:

五、时间数列的动态指标分析 (一)过程: (二)结果: (三)分析: 六、循环变动的测算分析。 (一)过程: (二)结果: (三)分析: 体会: 参考实验报告: 重庆工商大学数学与统计学院 综合评价方法及应用 实验报告

实验课程:非参数统计 _ 指导教师:陈正伟 _ 专业班级: 06市调2班 学生姓名:何春 学生学号: 2006004151 _

实验报告一 实验项目变异系数法相关系数法熵值发坎蒂雷法 实验日期2009-4-30 实验地点80608 实验目的 通过本实验本要求掌握综合评价指标体系中各个指标重要性权数的重要意义;掌握权数确定的定性和定量技术和技能;解决实际综合评价中重要性权数确定的处理技能。 实验内容 根据资料使用变异系数法、相关系数法、熵值法和坎蒂雷方法分别确定各个指标的权数。并进行权数比较分析。 检验方法的选择及实验步骤及结果: 1用变异系数求各个指标的权数: 基本步骤:(1)先求各个指标的均值Xi 和标准差 Si (2)接着求各个指标的变异系数Vi=Si/Xi (3)对Vi作作归一化处理,及得各个指标的权数 结果如下: 从这个表中可以看到最后一列的权数最大,即人均创造总收入这个指标在这项评价上的分辨信息丰富,这个指标的数值能明确区分开各个评价被评价对象差异。同理,第四列的权数最小,也就是说各个被评价对象在某项指标上的数值差异较小,那么这项指标区分开各评价对象的能力较弱。 2 用相关系数法求各个指标的权数: 基本步骤:(1)计算各个指标之间的相关系数矩阵 (2)构造分块矩阵 R1(去掉相关系数矩阵的第一行和第一列)R2 R3 R4 R5 R6 同理可得

计算方法实验报告格式

计算方法实验报告格式 小组名称: 组长姓名(班号): 小组成员姓名(班号): 按贡献排序情况: 指导教师评语: 小组所得分数: 一个完整的实验,应包括数据准备、理论基础、实验内容及方法,最终对实验结果进行分析,以达到对理论知识的感性认识,进一步加深对相关算法的理解,数值实验以实验报告形式完成,实验报告格式如下: 一、实验名称 实验者可根据报告形式需要适当写出. 二、实验目的及要求 首先要求做实验者明确,为什么要做某个实验,实验目的是什么,做完该实验应达到什么结果,在实验过程中的注意事项,实验方法对结果的影响也可以以实验目的的形式列出. 三、算法描述(实验原理与基础理论) 数值实验本身就是为了加深对基础理论及方法的理解而设置的,所以要求将实验涉及到的理论基础,算法原理详尽列出. 四、实验内容 实验内容主要包括实验的实施方案、步骤、实验数据准备、实验的算法以及可能用到的仪器设备. 五、程序流程图 画出程序实现过程的流程图,以便更好的对程序执行的过程有清楚的认识,在程序调试过程中更容易发现问题. 六、实验结果 实验结果应包括实验的原始数据、中间结果及实验的最终结果,复杂的结果可以用表格

形式列出,较为简单的结果可以与实验结果分析合并出现. 七、实验结果分析 实验结果分析包括对对算法的理解与分析、改进与建议. 数值实验报告范例 为了更好地做好数值实验并写出规范的数值实验报告,下面给出一简单范例供读者参考. 数值实验报告 小组名称: 小组成员(班号): 按贡献排序情况: 指导教师评语: 小组所得分数: 一、实验名称 误差传播与算法稳定性. 二、实验目的 1.理解数值计算稳定性的概念. 2.了解数值计算方法的必要性. 3.体会数值计算的收敛性与收敛速度. 三、实验内容 计算dx x x I n n ? += 1 10 ,1,2,,10n = . 四、算法描述 由 dx x x I n n ? += 1 10 ,知 dx x x I n n ?+=--101110,则

计算方法实验报告

计算方法实验报告(四) 方程和方程组的迭代解法 一、实验问题 利用简单迭代法,两种加速技术,牛顿法,改进牛顿法,弦割法求解习题5-1,5-2,5-3中的一题,并尽可能准确。 选取5-3:求在x=1.5附近的根。 二、问题的分析(描述算法的步骤等) (1)简单迭代法算法: 给定初始近似值,求的解。 Step 1 令i=0; Step 2 令(计算); Step 3 如果,则迭代终止,否则重复Step 2。 (2)Aitken加速法算法 Step 1 令k=0,利用简单迭代算法得到迭代序列; Step 2 令-(计算得到一个新的序列,其中k=0,1,2…);Step 3 如果,则迭代终止,否则重复Step 2。 (3)插值加速法算法 Step 1 令k=0,利用简单迭代算法得到迭代序列; Step 2 令+(计算得到一个新的序列,其中k=1,2,3…); Step 3 如果,则迭代终止,否则重复Step 2。 (4)牛顿法算法

Step 1给定初始近似值; Step 2令,其中k计算得到的序列; Step 3如果,则迭代终止,否则重复Step 2。 (5)改进牛顿法的算法 Step 1给定初始近似值; Step 2令,其中k迭代计算得到的序列; Step 3如果,则迭代终止,否则重复Step 2。 (6)弦割法算法(双点弦割法) Step 1给定初始近似值,; Step 2令其中k计算得到的序列; Step 3如果,则迭代终止,否则重复Step 2。 三、程序设计 (1)简单迭代法 利用迭代公式进行迭代运算。 #include #include #include double fun(double x) { double c=1+x*x; return pow(c,1/3.0); } void main() { double x=1.5; double y=0; double D=1;

数值分析5-用Jacobi迭代法和Gauss-Seidel迭代法求解线性方程组

作业六:分别编写用Jacobi迭代法和Gauss-Seidel迭代法求解线性方程组Ax=B的标准程序,并求下列方程组的解。 可取初始向量 X(0) =(0,0,0)’; 迭代终止条件||x(k+1)-x(k)||<=10e-6 (1) = (2) = Jacobi迭代法: 流程图 开 始 判断b中的最大值 有没有比误差大 给x赋初值 进行迭代 求出x,弱到100次还没到,警告不收 结束

程序 clear;clc; A=[8,-1,1;2,10,01;1,1,-5]; b=[1;4;3]; e=1e-6; x0=[0;0;0]'; n=length(A); x=zeros(n,1); k=0; r=max(abs(b)); while r>e for i=1:n d=A(i,i); if abs(d)100 warning('不收敛'); end end x=x0;

程序结果(1)

(2)

Gauss-Seidel迭代法: 程序 clear;clc; %A=[8,-1,1;2,10,01;1,1,-5]; %b=[1;4;3]; A=[5,2,1;-1,4,2;2,-3,10]; b=[-12;20;3]; m=size(A); if m(1)~=m(2) error('矩阵A不是方阵'); end n=length(b); %初始化 N=0;%迭代次数 L=zeros(n);%分解A=D+L+U,D是对角阵,L是下三角阵,U是上三角阵U=zeros(n); D=zeros(n); G=zeros(n);%G=-inv(D+L)*U d=zeros(n,1);%d=inv(D+L)*b x=zeros(n,1); for i=1:n%初始化L和U for j=1:n if ij U(i,j)=A(i,j); end end end for i=1:n%初始化D D(i,i)=A(i,i); end G=-inv(D+L)*U;%初始化G d=(D+L)\b;%初始化d %迭代开始 x1=x; x2=G*x+d; while norm(x2-x1,inf)>10^(-6)

直接法解线性方程组

直接法解线性方程组 实习题目: 仿照三对角方程组的追赶法解五对角方程组,其中系数矩阵为A,右端向量为:r。将A分解为LU。其中L为下三角,U为单位上三角。A为7*7阶的矩阵,其中对角元为4 5 6 7 8 9 10。上下次三角对角线元素为1 2 3 4 5 6 ;上下第二条对角线元素为1 2 3 4 5;右端项为:1 2 3 4 5 6 7. 要求:输出系数矩阵A,右端向量r,下三角矩阵L,单位上三角矩阵U,下三角矩阵Ly=b 的解向量y,单位上三角方程组Ux=y的解(即最终的解向量。保留七位小数。 实现方法:通过MATLAB编程实现。建立MATLAB脚本文件。 首先通仿照三对角方程组的追赶法得到五对角矩阵的实现算法。 然后又MATLAB编程实现。 实验结果(MATLAB截图):

结果分析: 通过提供的计算数据得到最终的解向量x及中间过程产生的下三角矩阵L,单位上三角矩阵U,下三角矩阵Ly=b 的解向量y。 同时为了确保算法的正确性,我还通过MATLAB的左除运算检验得使用此算法的计算结果正确。 这里由于是用MATLAB,最终结果为分数形式,考虑到精确解一般比近似解更好,因此未化成七位小数形式。 算法实现分析: 首先计算L和U的元素。由于已知L和U的特定形式(及除了对角线和上下次对角线和上下第二条对角线外,其余为0。故通过矩阵的乘法即可得到LU中元素的计算公式。(具体算法见MATLAB程序) 算法优劣点:

1.解此题时看上去要用较多的存储单元,但实际上只需存储系数矩阵A的不为0的元素。 2.A分解为LU计算完成后,后续计算x和y的“追赶过程”运算量一般来说计算量比较小。 3.此题也可用之前的LU算法求解。但此处算法与一般的LU分解的解线性方程组的算法,相比计算量小了不少。 4.对于此处特定的对称的系数矩阵A,算法还可以进一步优化。 5.由于我在此算法中A.L U的各对角值均用一个列向量表示,一个缺点在于输出A,L,U时要重新组成矩阵形式。不过优点在于减少了存储单元。 6.另一缺点是,未能将结果封装成一个文件。 后附MATLAB代码: c=[4,5,6,7,8,9,10];d=[1,2,3,4,5,6,0];b=[0,1,2,3,4,5,6];e=[1,2,3,4,5,0,0];a=[0,0,1,2,3,4,5]; r=[1 2 3 4 5 6 7]; w=zeros(7,1);x=zeros(7,1);y=zeros(7,1);m=zeros(7,1);n=zeros(7,1);h=zeros(7,1); w(1)=c(1);m(1)=d(1)/c(1);n(1)=e(1)/c(1); h(2)=b(2);w(2)=c(2)-h(2)*m(1);m(2)=(d(2)-b(2)*n(1))/w(2);n(2)=e(2)/w(2); for k=3:5 h(k)=b(k)-a(k)*m(k-2); w(k)=c(k)-a(k)*n(k-2)-h(k)*m(k-1); m(k)=(d(k)-h(k)*n(k-1))/w(k); n(k)=e(k)/w(k); end h(6)=b(6)-a(6)*m(4); w(6)=c(6)-a(6)*n(4)-h(6)*m(5); m(6)=(d(6)-h(6)*n(5))/w(6); h(7)=b(7)-a(7)*m(5); w(7)=c(7)-a(7)*n(5)-h(7)*m(6); y(1)=r(1)/w(1);y(2)=(r(2)-h(2)*y(1))/w(2); for k=3:7 y(k)=(r(k)-a(k)*y(k-2)-h(k)*y(k-1))/w(k); end x(7)=y(7); x(6)=y(6)-x(7)*m(6);

求解线性方程组——超松弛迭代法(c)

求解线性方程组——超松弛迭代法 #include #include using namespace std; float *one_array_malloc(int n); //一维数组分配float **two_array_malloc(int m,int n); //二维数组分配float matrix_category(float* x,int n); int main() { const int MAX=100;//最大迭代次数 int n,i,j,k; float** a; float* x_0; //初始向量 float* x_k; //迭代向量 float precision; //精度 float w; //松弛因子 cout<<"输入精度e:"; cin>>precision; cout<>n; a=two_array_malloc(n,n+1); cout<>a[i][j]; } } x_0=one_array_malloc(n); cout<>x_0[i]; } x_k=one_array_malloc(n);

cout<<"输入松弛因子w (1>w; float temp; //迭代过程 for(k=0;k

计算方法实验报告 拟合

南京信息工程大学实验(实习)报告 一、实验目的: 用最小二乘法将给定的十个点拟合成三次多项式。 二、实验步骤: 用matlab编制以函数为基的多项式最小二乘拟合程序,并用于对下列数据作三次多项式最小二乘拟合(取权函数wi=1) x -2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 y -2.30 -1 -0.14 -0.25 0.61 1.03 1.75 2.75 4.42 6.94 给定直线方程为:y=1/4*x3+1/2*x2+x+1 三、实验结论: 最小二乘法:通过最小化误差的平方和寻找数据的最佳函数匹配。利用最小二乘法可以简便地求得未知的数据,并使得这些求得的数据与实际数据之间误差的平方和为最小。最小二乘法还可用于曲线拟合。 一般地。当测量数据的散布图无明显的规律时,习惯上取n次代数多项式。 程序运行结果为: a = 0.9731 1.1023 0.4862 0.2238 即拟合的三次方程为:y=0.9731+1.1023x+0.4862*x2+0.2238*x3

-2.5 -2-1.5-1-0.5 00.51 1.52 2.5 -4-20246 81012 x 轴 y 轴 拟合图 离散点 y=a(1)+a(2)*x+a(3)*x.2+a(4)*x.3 结论: 一般情况下,拟合函数使得所有的残差为零是不可能的。由图形可以看出最小二乘解决了残差的正负相互抵消的问题,使得拟合函数更加密合实验数据。 优点:曲线拟合是使拟合函数和一系列的离散点与观测值的偏差平方和达到最小。 缺点:由于计算方法简单,若要保证数据的精确度,需要大量的数据代入计算。

实验报告的书写格式模版

实验报告的书写格式模版 有关实验报告的书写格式 一、完整实验报告的书写 完整的一份实验报告一般包括以下项目:实验名称: 实验目的: 实验器材: 实验原理: 实验步骤: 实验数据记录(表格)及处理: 实验结论(结果推导): 实验讨论或分析等。 二、实验报告书写方法  1、实验名称:就是这个实验是做什么的。 2、实验目的:一般都写掌握什么方法啊;了解什么啊;知道什么啊;会什么啊;…… 等。 3、实验器材:就是做这个实验需要的所有器材(仪器)。 4、实验原理:就是这个实验是根据什么来做的,一般书上会写,抄一下也就可以啦。 5、实验步骤:就是你做实验的过程,开始操作时,(1)做什么; (2)做什么;(3)做什么;……

6、实验数据记录(表格)及处理:根据实验中涉及以及实验得到的数据,设计表格,将有关数据填在表格相应的位置;数据处理,就是该计算的,按要求计算后填入表格对应位置。 7、实验结论(结果推导):就是做这个实验要得到的结果。 8、分析于讨论:写你的实验结果是否适合真实值?如果有误差要分析产生误差的原因,还有实验的一些比较关键的步骤的注意事项等。 对于初中生或小学生来说,书写的实验报告也可简单一点,有时也可不要分析于讨论,也可不写实验原理等。 三、探究实验书写一般有七个环节 1.提出问题:就是在生活中发现、提出问题。 2.猜想与假设:发现问题,就要弄清楚问题,在没有搞清楚之前总有基本的猜测和设想,这就是猜想与假设。 3.制定计划与设计实验:有了猜想,就有了实验的目的,再根据实验的目的设计实验方案,制定实验计划,包括取得证据的途径和方法,确定收集证据的范围。包括实验的理论依据(实验原理)、实验器材、实验步骤等。 4.进行实验与收集证据:上一步是动脑、思维活动,这一步是手脑并用的实验过程。 5.分析与论证:通过上面的实验,收集到一些数据,观察到一些现象,对其分析,得出事实与假设的关系,通过归纳、概括等方法,得到结论。

Gauss-Seidel迭代法求解线性方程组

Gauss-Seidel迭代法求解线性方程组

一. 问题描述 用Gauss-Seidel 迭代法求解线性方程组 由Jacobi 迭代法中,每一次的迭代只用到前一次的迭代值。使用了两倍的存储空间,浪费了存储空间。若每一次迭代充分利用当前最新的迭代值,即在计算第i 个分量 ) 1(+k i x 时,用最新分量 ) 1(1 +k x , ???+) 1(2 k x ) 1(1 -+k i x 代替旧分量 ) (1 k x , ???) (2 k x ) (1 -k i x ,可以起 到节省存储空间的作用。这样就得到所谓解方程组的Gauss-Seidel 迭代法。 二. 算法设计 将A 分解成U D L A --=,则b x =A 等价于b x =--U)D (L 则Gauss-Seidel 迭代过程 ) ()1()1(k k k Ux Lx b Dx ++=++ 故 ) ()1()(k k Ux b x L D +=-+ 若设1 )(--L D 存在,则 b L D Ux L D x k k 1)(1)1()()(--+-+-= 令 b L D f U L D G 11)()(---=-=,

则Gauss-Seidel 迭代公式的矩阵形式为 f Gx x k k +=+) () 1( 其迭代格式为 T n x x x x ) ()0()0(2)0(1)0(,,,???= (初始向量), ) (1 1 1 1 1 )()1()1(∑∑-=-+=++--=i j i i j k j ij k j ij i ii i i x a x a b a x )210i 210(n k ???=???=,,,;,,, 或者 ?? ???--=???=???==?+=∑∑-=-+=+++) (1)210i 210(111 1)()1()1()()1(i j i i j k j ij k j ij i ii i i i k i k i x a x a b a x n k k x x x ,,,;,,, 三. 程序框图

第三章 解线性方程组的直接方法

习题 3.1 1. 求下列方阵的秩: (1)??? ?? ??--340313021201;(2)????? ??----174034301320;(3)??????? ? ?---------12433023221453334 311 ;(4)??????? ??------34732038234202173132. 2. 求下列方阵的逆矩阵: (1) ?? ? ?? ? ?323513123; (2) ????? ?? ??-----1210232112201023. 3. 解下列矩阵方程 (1) 设 ???? ? ??--=????? ??--=1322 31,113122214B A ,求X 使B AX =; (2) 设 ??? ? ??-=? ???? ??---=132 321,433312120B A ,求X 使B XA =; (3) ?? ??? ??-=????? ??-=????? ??-=112510324, 123011113,1120111111C B A ,求X 使C AXB =. 4. 求下列行列式 (1)? ? ? ??? ??????71 1 0251020214214 ;(2)????????????-260523211213 141 2;(3)?? ? ???????---ef cf bf de cd bd ae ac ab ; (4) ????????????---d c b a 100110011001. 5. 判断下列线性方程组解的情况,如果有唯一解,则求出解. ???????=+++-=----=+-+=+++;01123,2532,242,5)1(432143214 3214321x x x x x x x x x x x x x x x x ? ? ???????=+=++=++=++=+;15,065,065,065,165)2(545434323212 1x x x x x x x x x x x x x (3) ? ?? ??=-++=-+-=-+-;3222, 2353, 132432143214321x x x x x x x x x x x x (4) ?????=---=--+=+++.034,0222,022432143214321x x x x x x x x x x x x 习题 3.2 1. 用回代法解上三角形线性方程组 (1)??? ????==+-=-+=++;63,3,6333,8484443432321x x x x x x x x x (2)?? ???? ?-=-=+--=+--=-+.63,1032,92,9244343242 1x x x x x x x x x 2. 用回代法解下三角形线性方程组

计算方法实验报告

实验报告 一、求方程f(x)=x^3-sinx-12x+1的全部根, ε=1e -6 1、 用一般迭代法; 2、 用牛顿迭代法; 并比较两种迭代的收敛速度。 一、首先,由题可求得:12cos 3)(2 ' --=x x x f . 其次,分析得到其根所在的区间。 ① 令()0=x f ,可得到x x x sin 1123 =+-. ② 用一阶导数分析得到1123 +-x x 和x sin 两个函数的增减区间;再用二阶导数分析得到 两个函数的拐点以及凹凸区间. ③ 在直角坐标轴上描摹出01123 =+-x x 和0sin =x 的图,在图上可以看到他们的交点,然后估计交点所在的区间,即是所要求的根的区间。经过估计,得到根所在的区间为 []3,4--,[]1,0和[]4,3. 1、 一般迭代法 (1)算法步骤: 设ε为给定的允许精度,迭代法的计算步骤为: ① 选定初值0x .由()0=x f 确定函数()x g ,得等价形式()x g x =. ② 计算()0x g .由迭代公式得()01x g x =. ③ 如果ε≤-01x x ,则迭代结束,取1x 为解的近似值;否则,用1x 代替0x ,重复步骤②和步骤③. (2)程序代码: ① 在区间[]3,4--内, 代码: clc

x0=-3.5; %初值0x iter_max=100; %迭代的最大次数 ep=1e-6; %允许精度 ε k=0; while k<=iter_max %k 从0开始到iter_max 循环 x1=(sin(x0)+12*x0-1).^(1/3); %代入0x ,算出1x 的值 if abs(x1-x0)

相关文档