文档库 最新最全的文档下载
当前位置:文档库 › 微分方程模型

微分方程模型

常微分方程在数学建模中的应用.

微分方程应用 1 引言 常微分方程的形成与发展和很多学科有着密切的联系,例如力学、天文学、物理学等.数学的其他分支的快速发展,产生出很多新兴学科,这些新兴学科的产生都对常微分方程的发展有着深刻的影响,而且当前计算机的快速发展更是为常微分方程的应用及理论研究提供了非常有力的工具. 数学解决实际问题就必须建立模型,而数学建模就是把数学语言描述实际现象的过程.利用数学去解决各类实际问题时,建立数学模型是十分重要的一步,但是也是最困难的一步.建立数学模型的过程,是把错综复杂的实际问题简化、抽象为合理的数学结构的过程.要通过大量调查、收集相关数据资料,观察和研究实际对象的固有特征和内在规律,抓住问题的主要矛盾,建立起反映实际问题的数量关系,然后利用数学的理论和方法去分析和解决问题. 因此本文先简要介绍了如何建立微分方程模型,并通过具体的实例来简单地介绍了微分方程在数学建模中的应用. 2 数学模型简介 通常我们把现实问题的一个模拟称为模型.如交通图、地质图、航空模型和建筑模型等.利用字母、数学及其它数学符号建立起来的等式或不等式以及图表、图象、框图等来模拟现实的模型称为数学模型.数学模型在实际生活中经常碰到,如求不规则图形的面积,可建立定积分的数学模型,求变化率的问题可建立导数模型,统计学中抽样调查,买彩票中奖的概率问题等等.学会建立数学模型对解决实际生活问题会有很大的帮助. 建立数学模型是沟通摆在面前的实际问题与数学工具之间联系的一座必不可少的桥梁.随着科学技术的进步,特别是电子计算机技术的迅速发展,数学已经渗透到从自然科学技术到工农业生产建设,从经济生活到社会生活的各个领域.一般地说,当实际问题需要我们对所研究的现实对象提供分析、预报、决策、控制等方面的定量结果时,往往都离不开数学的应用,而建立数学模型则是这个过程的关键环节. 3 常微分方程模型 3.1 常微分方程的简介

微分方程建模案例

第五章微分方程建模案例 微分方程作为数学科学的中心学科,已经有三百多年的发展历史,其解法和理论已日臻完善,可以为分析和求得方程的解(或数值解)提供足够的方法,使得微分方程模型具有极大的普遍性、有效性和非常丰富的数学涵。微分方程建模包括常微分方程建模、偏微分方程建模、差分方程建模及其各种类型的方程组建模。微分方程建模对于许多实际问题的解决是一种极有效的数学手段,对于现实世界的变化,人们关注的往往是其变化速度、加速度以及所处位置随时间的发展规律,其规律一般可以用微分方程或方程组表示,微分方程建模适用的领域比较广,涉及到生活中的诸多行业,其中的连续模型适用于常微分方程和偏微分方程及其方程组建模,离散模型适用于差分方程及其方程组建模。本章主要介绍几个简单的用微分方程建立的模型,让读者一窥方程的应用。下面简要介绍利用方程知识建立数学模型的几种方法: 1.利用题目本身给出的或隐含的等量关系建立微分方程模型 这就需要我们仔细分析题目,明确题意,找出其中的等量关系,建立数学模 型。 例如在光学里面,旋转抛物面能将放在焦点处的光源经镜面反射后成为平行光线,为了证明具有这一性质的曲线只有抛物线,我们就是利用了题目中隐含的条件——入射角等于反射角来建立微分方程模型的。 2.从一些已知的基本定律或基本公式出发建立微分方程模型

我们要熟悉一些常用的基本定律、基本公式。例如从几何观点看,曲线 y y(x)上某点的切线斜率即函数y y(x)在该点的导数;力学中的牛顿第二运 动定律:F ma ,其中加速度a 就是位移对时间的二阶导数,也是速度对时间 的一阶导数等等。从这些知识出发我们可以建立相应的微分方程模型。 例如在动力学中,如何保证高空跳伞者的安全问题。对于高空下落的物体, 我们可以利用牛顿第二运动定律建立其微分方程模型, 设物体质量为m ,空气阻 力 系数为k ,在速度不太大的情况下,空气阻力近似与速度的平方成正比;设时 刻t 时物体的下落速度为v ,初始条件:v (o ) 0.由牛顿第二运动定律建立其微 分方程模型: 求解模型可得: 体在地面上的投影面积。根据极限速度求解式子,在m,, 一定时,要求落地速 度w 不是很大时,我们可以确定出s 来,从而设计出保证跳伞者安全的降落伞的 直径大小来 3?利用导数的定义建立微分方程模型 dv m 一 dt mg kv 2 ? k(exp[2t 由上式可知,当t 其中,阻力系数k 1) 时,物体具有极限速度: lim v t mg :k , s , 为与物体形状有关的常数, 为介质密度,s 为物 、mg(exp[2t 1)

3.1 微分方程模型的建模步骤

第3章微分方程模型 3.1 微分方程模型的建模步骤 在自然科学以及工程、经济、医学、体育、生物、社会等学科中的许多系统,有时很难找到该系统有关变量之间的直接关系——函数表达式,但却容易找到这些变量和它们的微小增量或变化率之间的关系式,这时往往采用微分关系式来描述该系统——即建立微分方程模型。我们以一个例子来说明建立微分方程模型的基本步骤。 例1 某人的食量是10467(焦/天),其中5038(焦/天)用于基本的新陈代谢(即自动消耗)。在健身训练中,他所消耗的热量大约是69(焦/公斤?天)乘以他的体重(公斤)。假设以脂肪形式贮藏的热量100%地有效,而1公斤脂肪含热量41868(焦)。试研究此人的体重随时间变化的规律。 模型分析 在问题中并未出现“变化率”、“导数”这样的关键词,但要寻找的是体重(记为W )关于时间t 的 函数。如果我们把体重W 看作是时间t 的连续可微函数,我们就能找到一个含有的dt dW 微分方程。 模型假设 1.以)(t W 表示t 时刻某人的体重,并设一天开始时人的体重为0W 。 2.体重的变化是一个渐变的过程。因此可认为 )(t W 是关于t 连续而且充分光滑的。 3.体重的变化等于输入与输出之差,其中输入是指扣除了基本新陈代谢之后的净食量吸收;输出就是进行健身训练时的消耗。 模型建立 问题中所涉及的时间仅仅是“每天”,由此,对于“每天” 体重的变化=输入-输出。 由于考虑的是体重随时间的变化情况,因此,可得 体重的变化/天=输入/天—输出/天。 代入具体的数值,得 输入/天 = 10467(焦/天)—5038(焦/天)=5429(焦/天), 输出/天 = 69(焦/公斤?天)×W (公斤)= 69W (焦/天)。 体重的变化/天=t W ??(公斤/天)dt dW t =→?0 考虑单位的匹配,利用 “公斤/天=公斤焦天 焦/41868 /”, 可建立如下微分方程模型

微分方程模型

微分方程模型 一、 一阶常微分方程模型 在很多实际问题的研究中,经常要涉及各变量的变化率问题。这些问题的解决通常要建立相应的微分方程模型。微分方程模型在自然科学中的应用主要以物理,力学等客观规律为基础建立起来,而在经济学,人口预测等社会科学方面的应用则是在类比,假设等措施下建立起来。 (一)人口模型 人口数量以及和次类似的动植物种群 的个体数量都是离散变量,不具有连续可微性。但由于短时间内改变的是少数个体,与整体数量相比,这种变化是很微小的。基于此原因,为了成功应用数学工具,我们通常假定大规模种群的个体数量是时间的连续可微函数。此假设条件在非自然科学的问题中常常用到。 1、指数增长模型(Malthus 人口模型) 美国人口学家Malthus(1766-1834)于1798年根据百余年人口统计资料提出了著名的人口指数增长模型。 模型假设:在人口的自然增长过程中,单位时间内人口增量与人口总数成比。 模型建立:设)(t N 为t 时刻的人口述,考察时间区间t t ?+上的人口变动。 t t rN t N t t N ?=-?+)()()( 令0→?t 可以得到微分方程模型 ?? ???=>=00)(0,N r N r rN dt dN 可以解得此方程的解为 )(00)(t t r e N t N -= 模型分析和应用: (1)当0>r 时,人口将随着时间的增加无限的增长,这是一个不合理的模型,因为一个环境的资源不可能容纳无限增长的人口,从生态环境的角度分析也可以看出其中的不合理性。一般说来,就一个种群的发展规律看,在种群的发展初期种群数的变化是和指数增长模型大致吻合的(甚至可能出现年增长率递增的现象),但是随着人口数的增加,人口的年增长率将呈现逐年递减的现象。再考虑到环境适应程度的制约,想象人口的增长不可能超过某个度。 (2)对于其中常数增长率r 的估计可以使用拟合或者参数估计的方法得到。 (3)在实际情况下,可以使用离散的近似表达式t r N t N )1()(0+=作为人口的预测表达式。 (4)从实际的人口检验情况看,指数增长模型对于时间间隔比较短,并且背景情况改变不大的情况适用。对于长时间的人口数模型不合适。 2、阻滞增长模型( Logistic 模型) 和指数增长模型相比较,阻滞增长模型考虑到自然资源和环境条件等其他因素对人口的增长的阻滞作用,而且随着人口的增加,这种阻滞作用将越来越大。

微分方程模型和应用

微分方程模型 应用和计算
华南理工大学理学院数学系 刘深泉教授

典型微分方程模型
? Malthus人口模型 ? Logistic模型 ? 新产品推广模型 ? 两物种竞争模型 ? 正规战-游击战模型 ? Lotka-Volterra模型 ? 海洋种群生态学 ? 多物种相互作用和变化

马尔萨斯(Malthus)指数人口模型
假设人口增长率r是常数
1 N
dN dt
=r

dN dt
= rN
特点:种群数量翻一番的时间固定
马尔萨斯模型的预报结果, 1961年世界人口30.6 (3.06×109) 人口增长率2%,每35年增加一倍。
1700年至1961的260年人口数量 人口数量每34.6年增加一倍,
两者也几乎相同。

Logisitic模型
dN = r N (1- N )
dt
Nmax
N(t0) = N0
模型检验 Logistic模型效果如何呢? 克朗皮克(Crombic)人工饲养小谷虫的实验。 数学家高斯(E·F·Gauss)做原生物草履虫实验,都和 Logistic曲线吻合。

Logistic模型描述种群增长
高斯把5只草履虫放进盛有0.5cm3营养液的小试管,开始时草履 虫以每天230.9%的速率增长,此后增长速度不断减慢,到第五
天达到最大量375个,实验数据与r=2.309,a=0.006157, N(0)=5的Logistic曲线:
N(t)=1+7347e5-2.309t

常微分方程在数学建模中的应用

北方民族大学学士学位论文 论文题目:常微分方程在数学建模中的应用 院(部)名称:信息与计算科学学院 学生姓名:马木沙 专业:信计学号:20093490 指导教师姓名:魏波 论文提交时间: 论文答辩时间: 学位授予时间: 北方民族大学教务处制

摘要 本文利用常微分方程和数学建模二者之间的联系,了解微分方程的一般理论、微分方程解的存在惟一性、微分方程的稳定性问题、通过几个典型的数学模型如:人口模型、减肥的数学模型、化工车间通风模型、传染病的传播模型及定性分析等例子来体现微分方程在数学建模中的应用. 用数学理论解决实际生活中的问题.微分方程的出现以及运用微分方程在数学建模中的应用,就是为了更好地使更多的人理解并运用数学理论,更好的解决实际生活中的问题.努力在各个领域利用并渗透数学知识的广泛运用. 关键词:常微分方程,数学建模,数学模型

Abstract In this paper, ordinary differential equations and mathematical modeling contact between the two, understand the general theory of differential equations, stability problems of the existence and uniqueness of differential equations, differential equations, several typical mathematical models such as: demographic model,example of the mathematical model of weight loss, chemical plant ventilation model, spread of infectious diseases, model and qualitative analysis to reflect the application of differential equations in mathematical modeling. found that the application of mathematical theory to study and solve problems in the actual process of the emergence of ordinary differential equations andOrdinary Differential Equations in Mathematical Modeling widely used, in order to better enable ordinary people to understand and use mathematical theory, solving real-world problems. sublimation theory by the knowledge-based transformation to the ability to type, highlight the differential equationsand differential equations in mathematical modeling efforts made outstanding and significant contribution in various fields. Keywords: ordinary differential equations, mathematical modeling, mathematical model.

微分方程模型建模实例

微分方程模型建模实例 1.一个半球状雪堆,其体积融化的速率与半球面面积S成正比,比例系数k > 0。设融化中雪堆始终保持半球状,初始半径为R且3小时中融化了总体积的7/8,问雪堆全部融化还需要多长时间? 2.从致冰厂购买了一块立方体的冰块,在运输途中发现,第一小时大约融化了1/4 (1)求冰块全部融化要多长时间(设气温不变) (2)如运输时间需要2.5小时,问:运输途中冰块大约会融化掉多少? 3.一展开角为α的圆锥形漏斗内盛着高度为H的水,设漏斗底部的孔足够大(表面张力不计),试求漏斗中的水流光需要多少时间? 4.容器甲的温度为60度,将其内的温度计移入容器乙内,设十分钟后温度计读数为70度,又过十分钟后温度计读数为76度,试求容器乙内的温度。 5.一块加过热的金属块初始时比室温高70度,20分钟测得它比室温高60度,问:(1)2小时后金属块比室温高多少?(2)多少时间后,金属块比室温高10度? 6.设初始时容器里盛放着含净盐10千克的盐水100升,现对其以每分钟3升的速率注入清水,容器内装有搅拌器能将溶液迅时搅拌均匀,并同时以每分钟2升的速率放出盐水,求1小时后容器里的盐水中还含有多少净盐? 7.某伞降兵跳伞时的总质量为100公斤(含武器装备),降落伞张开前的空气阻力为0.5v,该伞降兵的初始下落速度为0,经8秒钟后降落伞打开,降落 伞打开后的空气阻力约为0.6 试球给伞降兵下落的速度v(t),并求其下落的极限速度。 8. 1988年8月5日英国人Mike McCarthy创建了一项最低开伞的跳伞纪录,它从比萨斜塔上跳下,到离地179英尺时才打开降落伞,试求他落地时的速度。 9.证明对数螺线r=A 上任一处的切线与极径的夹角的正切为一常 数,()

微分方程模型

数学建模学习辅导 第三章 微分方程模型 本章重点: 车间空气清洁问题、减肥问题、单种群增长问题与多物种相互作用问题等数学模型的建立过程与所使用的方法 复习要求: 1.进一步理解建模基本方法与基本建模过程,掌握平衡原理与微元法在建模中的用法. 所谓平衡原理是指自然界的任何物质在其变化的过程中一定受到某种平衡关系的支配.注意发掘实际问题中的平衡原理是从物质运动机理的角度组建数学模型的一个关键问题.就象中学的数学应用题中等量关系的发现是建立方程的关键一样. 微元法是指在组建对象随着时间或空间连续变化的动态模型时,经常考虑它在时间或空间的微小单元变化情况,这是因为在这些微元上的平衡关系比较简单,而且容易使用微分学的手段进行处理.这类模型基本上是以微分方程的形式给出的. 例1 设警方对司机饮酒后驾车时血液中酒精含量的规定为不超过80%(mg/ml). 现有一起交通事故,在事故发生3个小时后,测得司机血液中酒精含量是56%(mg/ml), 又过两个小时后, 测得其酒精含量降为40%(mg/ml),试判断: 事故发生时,司机是否违反了酒精含量的规定? 解:模型建立 设)(t x 为时刻t 的血液中酒精的浓度, 则依平衡原理时间间隔],[t t t ?+内, 酒精浓度的改变量 t t x x ??∝?)(, 即 t t kx t x t t x ?-=-?+)()()( 其中k >0为比例常数, 式前负号表示浓度随时间的推移是递减的, 遍除以t ?, 并令0→?t , 则得到 ,d d kx t x -= 且满足40)5(,56)3(==x x 以及0)0(x x =. 模型求解 容易求得通解为kt c t x -=e )(, 代入0)0(x x =,得到 kt x t x -=e )(0 则)0(0x x =为所求. 又由,40)5(,56)3(==x x 代入0)0(x x =可得 17.04056e 40e 56e 25030=?=????==--k x x k k k 将17.0=k 代入得 25.93e 5656e 17.03017 .030≈?=?=??-x x >80

差微分方程 数学建模经典案例

差分方程作业题 黄冈职业技术学院 宋进健 胡敏 熊梦颖 1.一对年轻夫妇准备购买一套住房,但缺少资金近6万元。假设它们每月可有节余900元,且有如下的两种选择: (1)使用银行贷款60000元。月利率0.01,贷款期25年=300个月; (2) 到某借贷公司借贷60000元,月利率0.01,22年还清。只要(i )每半个月还316元,(ii) 预付三个月的款。 你能帮他们做出明智的选择吗? 模型假设: (1)银行及借贷公司在贷款期限内利率不变; (2)不考虑物价变化和经济等因素从而影响利率; (3)银行利息按复利计算且单位时间可任意缩短至时间变量连续性变化 建立模型: 对第一种情况有: 设n 年期贷款月利率为r ,共贷款 元,贷款后第k 个月时欠款余额为 元,月还款m 元。 模型求解: 由MATLAB 得出结果m=631.9345 建立模型: 对第二种情况有: 设n 年期贷款半月利率为r ,共贷款A 0元,贷款后第k 个月时欠款余额为A k 元,半月还款m 元。 模型求解: ()() 011 1,k k k r A A r m k N r +-=+-∈1 0)1()1(300 300 300 -= ?=++r r A A r m N k m r A A k K ∈-+=+,) 1(1 N k m r A A k K ∈-+=+,) 1(1 ()() 011 1,k k k r A A r m k N r +-=+-∈1 0)1()1(528 528 528 -= ?=++r r A A r m A k A 0

由MATLAB 得出结果m= 313.0038 模型分析:由第一种方式计算m=631.9345小于月节余额900元,能够承受月还款;由第二种方式计算m= 313.0038小于借贷公司要求没半个月还款316元,如果按照借贷公司要求则每月还款为632元大于第一种还款方式631.9345元,故选择第一种还款方式。 2. 在一城市的某商业区内,有两家有名的快餐店“肯德基”分店和“麦当劳”分 店。据统计每年“肯德基”保有其上一年老顾客的1/3,而另外的2/3顾客转移到“麦当劳”;每年“麦当劳”保有其上一年的老顾客的1/2,而另外的1/2顾客转移到“肯德基”。 用二维向量X k =[x k y k ]T 表示两个快餐店市场分配的情况,初始的市场分配为X 0 = [200 200]T 如果有矩阵L 存在,使得 X k +1 = LX k ,则称 L 为状态转移矩阵。 (1) 写出X k =[x k y k ]T 和X k+1=[x k +1 y k +1]T 的递推关系式,以及状态转移矩阵L 。 (2) 根据递推关系计算近几年的市场分配情况; 模型假设: (1) 当前的肯德基和麦当劳的市场份额继续不变。 (2) 肯德基和麦当劳不推出优惠活动和新的经营计划。 模型建立: 初始的市场分配数量为:200,2000 0==y x 以一年为一时间段,则某时刻两个快餐店的顾客数量可用向量] ,[1 1y x T X =表 示。用向量] ,[y x X k k T k =表示第K 年两个快餐店顾客数量分布。 ??? ????+ = + = ++x y y y x x k k k k k k 3 22 121311 1 模型求解: 故X k =[x k y k ]T 和X k+1=[x k +1 y k +1]T 的递推关系式为??? ? ?? ? + =+ =++x y y y x x k k k k k k 3 221 21311 1,状 态转移矩阵?????? ? ???? ???=3221213 1 L 由初始数据计算近几年的市场分配情况,MATLAB 程序如下:

微分方程在几类实际问题中的应用

毕业设计(论文) 题目名称:微分方程在几类实际问题中的应用院系名称:理学院 班级:数学102 学号:201000134223 学生姓名:陈博先 指导教师:宋长明 2014年 6 月

论文编号:201000134223 微分方程在几类实际问题中的应用Application of Differential Equation in Several Practical Problems 院系名称:理学院 班级:数学102 学号:201000134223 学生姓名:陈博先 指导教师:宋长明 2014年6 月

摘要 在数学上,物质运动和其变化规律是用函数关系进行描述的,但是实际问题中常常不能直接写出反应相应规律的函数,却比较容易建立起这些变量与它们的导数之间的关系式,即微分方程.只有一个自变量的微分方程即为常微分方程,简称为微分方程. 本文讨论的是微分方程在实际问题中的应用.微分方程在各个学科领域都可以发挥出其数学优势,将微分方程理论和实际问题结合起来,便可建立实际问题的模型.本文在介绍微分方程应用背景的基础上,结合微分方程的概念性质,利用归纳总结的方法探讨了常微分方程在物理问题、生物问题、军事问题、经济问题和医学问题等“现实生活”中问题的应用,同时结合相应实例进行分析.从这些应用问题中,我们可以看出:微分方程,它确实是数学联系实际的一个活跃分支. 关键词:微分方程;实际问题;应用;数学模型

Abstract In mathematics, the motion of matter and its change rule are described by the relationship of function. But for practical problems , compared with writing the reaction of the corresponding rules directly, establishing the relationship between these variables and their derivatives named differential equation becomes relatively easy. Only a variable of differential equation is called ordinary differential equation, for short differential equation. In this paper, we discuss the application about differential equations in the actual problems. Differential equation can perform its mathematical advantage in various https://www.wendangku.net/doc/9b15054883.html,bining differential equation theory and practical problems, we can establish the model of the actual problems.Based on the application background of differential equation and combined with the concept and nature of differential equation,this paper discussed the application of ordinary differential equation in the field of physics,biology,military,economic and medicine,and so on,with the method of summarizing. From these applications,we can see that differential equation is really a active branch of connetting math and practical problems. Keywords: differential equations;the actual problem;application;mathematical model

数学建模实验答案微分方程模型

实验07 微分方程模型(2学时) (第5章 微分方程模型) 1.(验证)传染病模型2(SI 模型)p136~138 传染病模型2(SI 模型): 0(1),(0)di k i i i i dt =-= 其中, i (t )是第t 天病人在总人数中所占的比例。 k 是每个病人每天有效接触的平均人数(日接触率)。 i 0是初始时刻(t =0)病人的比例。 1.1 画~di i dt 曲线图p136~138 取k =0.1,画出i dt di ~的曲线图,求i 为何值时dt di 达到最大值,并在曲线图上标注。 参考程序:

提示:fplot, fminbnd, plot, text, title, xlabel 1)画曲线图 用fplot函数,调用格式如下: fplot(fun,lims) fun必须为一个M文件的函数名或对变量x的可执行字符串。 若lims取[xmin xmax],则x轴被限制在此区间上。 若lims取[xmin xmax ymin ymax],则y轴也被限制。 本题可用 fplot('0.1*x*(1-x)',[0 1.1 0 0.03]); 2)求最大值 用求解边界约束条件下的非线性最小化函数fminbnd,调用格式如下:x=fminbnd('fun',x1,x2) fun必须为一个M文件的函数名或对变量x的可执行字符串。 返回自变量x在区间x1

常微分方程在数学建模中的应用

常微分方程在数学建模中的应用 这里介绍几个典型的用微分方程建立数学模型的例子. 一、人口预测模型 由于资源的有限性,当今世界各国都注意有计划地控制人口的增长,为了得到人口预测模型,必须首先搞清影响人口增长的因素,而影响人口增长的因素很多,如人口的自然出生率、人口的自然死亡率、人口的迁移、自然灾害、战争等诸多因素,如果一开始就把所有因素都考虑进去,则无从下手.因此,先把问题简化,建立比较粗糙的模型,再逐步修改,得到较完善的模型. 例1( 马尔萨斯 (Malthus ) 模型) 英国人口统计学家马尔萨斯(1766—1834)在担任牧师期间,查看了教堂100多年人口出生统计资料,发现人口出生率是一个常数,于1789年在《人口原理》一书中提出了闻名于世的马尔萨斯人口模型,他的基本假设是:在人口自然增长过程中,净相对增长(出生率与死亡率之差)是常数,即单位时间内人口的增长量与人口成正比,比例系数设为r ,在此假设下,推导并求解人口随时间变化的数学模型. 解 设时刻t 的人口为)(t N ,把)(t N 当作连续、可微函数处理(因人口总数很大,可近似地这样处理,此乃离散变量连续化处理),据马尔萨斯的假设,在t 到t t ?+时间段内,人口的增长量为 t t rN t N t t N ?=-?+)()()(, 并设0t t =时刻的人口为0N ,于是 ?????==. , 00)(d d N t N rN t N 这就是马尔萨斯人口模型,用分离变量法易求出其解为 )(00e )(t t r N t N -=, 此式表明人口以指数规律随时间无限增长. 模型检验:据估计1961年地球上的人口总数为9 1006.3?,而在以后7年中,人口总数以每年2%的速度增长,这样19610=t ,901006.3?=N ,02.0=r ,于是 ) 1961(02.09 e 1006.3)(-?=t t N . 这个公式非常准确地反映了在1700—1961年间世界人口总数.因为,这期间地球上的人 口大约每35年翻一番,而上式断定34.6年增加一倍(请读者证明这一点). 但是,后来人们以美国人口为例,用马尔萨斯模型计算结果与人口资料比较,却发现有很大的差异,尤其是在用此模型预测较遥远的未来地球人口总数时,发现更令人不可思议的问题,如按此模型计算,到2670年,地球上将有36 000亿人口.如果地球表面全是陆地(事实上,地球表面还有80%被水覆盖),我们也只得互相踩着肩膀站成两层了,这是非常荒谬的,因此,这一模型应该修改. 例2(逻辑Logistic 模型) 马尔萨斯模型为什么不能预测未来的人口呢?这主要是地

微分方程应用模型

微分方程应用模型 ㈠本课的基本要求 会利用微分方程解决一些简单的应用问题 ㈡本课的重点、难点 重点、难点均为据实际问题建立微分方程 ㈢教学内容 前面几节中,我们已介绍了微分方程的概念及简单微分方程的求解问题。微分方程的理论和解法都是应用数学的重要分支,这是因为它在工程,经济及科学的众多领域都有非常重要的应用。而微分方程之所以能解决实际问题,根本原因是由于方程中的未知函数是工程、经济及科学中要探寻的函数关系。这样,如何对实际问题建立其微分方程就成了重要的,而且是和解方程截然不同的问题,这就是微分方程的建模问题。这些问题常常是困难的,因为它不仅需要熟知导数、微分在相应问题中的含义,即其几何的、物理的、经济的含义等,还需在一定的专业技术知识,这样才能对实际问题进行正确的抽象和简化,找到其未知量所满足的微分关系式,也就是建立起实际问题的微分方程模型来。但这些问题也并非难到“无章可循”,事实上应用微分方程解决实际问题,常常有一定的模式,这些模式就是问题所遵循的有共性的规律,或者分析实际问题时所采用的共同方法。 例1 碳定年代法问题 这个问题前面 已提到过,这里不再介绍 例2 设有一车间容积为10800立方米,开始时空气中含有0.12%的2co 。为了保证工人的身体健康,用一台风量为1500立方米/分的鼓风机通入室外新鲜空气,新鲜空气中含0.04%的2co 。假定通入的新鲜空气与车间原有空气能很快混合均匀,并以相同的风量排出,问鼓风机开始10分钟后,车间中2co 的浓度为多少? 从该例可以看出,用微元法建立微分方程的思想是:考虑自变量的一个微小改变量dx ,由于dx 很小时,变化过程可看作是均匀的,因而我们可以用未知函数的微分dy 去近似代替函数y 的改变量,然后再根据物理规律去建立微分方程。 例3 新产品的推销问题 考虑一种耐用新商品在某地区的推销问题。最初,商家依靠宣传、免费试用等方式打开销路,若该商品确实受欢迎,则消费者会一传十、十传百,购买的人会逐渐增加,使该商品迅速成为热销商品,销售速率逐渐增大。但由于该地区潜在消费者总量是有限的,所以当已购买者占到潜在消费者总量的相当比例时,销售速率又会逐渐下降,且该比例越接近于1,销售速率越低,这时商家就该更新商品了。试求能描述上述规律的函数。 解 设在该地区已售出的新商品总量为)(t x ,潜在的消费者总量是N ,则在销售初期或当N 很大时,该商品的销售速率主要受已购者数量)(t x 的影响,即每一个已购者在一定时间内吸引若干个欲购者,所以销售速率近似正比于已购者的数量)(t x 。 但在销售后期或N 很小时,该商品的销售速率将主要受未购者数量))((t x N -的影响,即销售速率近似正比于未购者的数量))((t x N -。综合考虑上述因素,可认为产品销售速率正比于与)(t x ))((t x N -的乘积,即)(x N kx dt dx -= (1) 其中k 是比例常数。(1)式已在很多情况下被统计资料证实与实际情况相符得很好。这一模型常被称作Logistic 模型或阻滞增长模型。

微分方程型建模实例题

一个数学问题都可以用不同的方法来求解的,不同的方法做出来效果不同,效率也不同。下面就微分方程模型建模展开建模。下面给出些微分方程建立模型的实例,供大家参考。 1.一个半球状雪堆,其体积融化的速率与半球面面积S成正比,比例系数k > 0。设融化中雪堆始终保持半球状,初始半径为R且3小时中融化了总体积的7/8,问雪堆全部融化还需要多长时间? 2.从致冰厂购买了一块立方体的冰块,在运输途中发现,第一小时大约融化了1/4 (1)求冰块全部融化要多长时间(设气温不变)(2)如运输时间需要2.5小时,问:运输途中冰块大约会融化掉多少? 3.一展开角为α的圆锥形漏斗内盛着高度为H的水,设漏斗底部的孔足够大(表面张力不计),试求漏斗中的水流光需要多少时间? 4.容器甲的温度为60度,将其内的温度计移入容器乙内,设十分钟后温度计读数为70度,又过十分钟后温度计读数为76度,试求容器乙内的温度。 5.一块加过热的金属块初始时比室温高70度,20分钟测得它比室温高60度,问:(1)2小时后金属块比室温高多少?(2)多少时间后,金属块比室温高10度? 6.设初始时容器里盛放着含净盐10千克的盐水100升,现对其以每分钟3升的速率注入清水,容器内装有搅拌器能将溶液迅时搅拌均匀,并同时以每分钟2升的速率放出盐水,求1小时后容器里的盐水中还含有多少净盐?7.某伞降兵跳伞时的总质量为100公斤(含武器装备),降落伞张开前的空气阻力为0.5v,该伞降兵的初始下落速度为0,经8秒钟后降落伞打开,降落伞打开后的空气阻力约为0.6 试球给伞降兵下落的速度v(t),并求其下落的极限速度。 8.1988年8月5日英国人Mike McCarthy创建了一项最低开伞的跳伞纪录,它从比萨斜塔上跳下,到离地179英尺时才打开降落伞,试求他落地时的速度。 9.证明对数螺线r=A 上任一处的切线与极径的夹角的正切为一常数,() 10.实验证明,当速度远低于音速时,空气阻力正比与速度,阻力系数大约为0.005。现有一包裹从离地150米高的飞机上落下,(1)求其落地时的速度(2)如果飞机高度更大些,结果会如何,包裹的速度会随高度而任意增大吗? 11.生态学家估计人的内禀增长率约为0.029,已知1961年世界人口数为30.6亿(3.06×)而当时的人口增长率则为0.02。试根据Logistic模型计算:(1)世界人口数的上限约为多少(2)何时将是世界人口增长最快的时候? 12.早期肿瘤的体积增长满足Malthus模型(=λV,其中λ为常数),(1)求肿瘤的增倍时间σ。根据统计资料,一般有σ (7,465)(单位为天),肺部恶性肿瘤的增倍时间大多大于70天而小于465天(发展太快与太慢一般都不是恶性肿瘤),故σ是确定肿瘤性质的重要参数之一(2)为方便起见,医生通常用肿瘤直径来表示肿瘤的大小,试推出医生用来预测病人肿瘤直径增大速度的公式 D = 13.正常人身上也有癌细胞,一个癌细胞直径约为10μm,重约0.001μg.,(1)当患者被查出患有癌症时,通常直径已有1cm以上(即已增大1000倍),由此容易算出癌细胞转入活动期已有30σ天,故如何在早期发现癌症是攻克癌症的关键之一(2)手术治疗常不能割去所有癌细胞,故有时需进行放射疗法。射线强度太小无法杀死癌细胞,太强病人身体又吃不消且会使病人免疫功能下降。一次照射不可能杀死全部癌细胞,请设计一个可行的治疗方案(医生认为当体内癌细胞数小于个时即可凭借体内免疫系统杀灭。 14.设药物吸收系数(k为药物的分解系数),对口服或肌注治疗求体内药物浓度的峰值(峰浓度)级达峰时间。 15.医生给病人开药时需告诉病人服药的剂量和两次服药的间隔时间,服用的剂量过大会

浅谈微分方程模型在经济学中的应用

浅谈微分方程模型在经济学中的应用 摘要:从实际问题出发,研究如何应用数学工具来分析具体的经济问题,并进而影响决策。 关键字:经济问题;处理决策;数学模型 前言:当今社会,随着经济的全球化和世界金融市场的不断发展,各国越来越意识到在经济的腾飞中产生的问题的严重性。前不久的英国石油公司在墨西哥湾的原油泄漏,导致附近海域的生态直线下降。最近美国出台的第二轮量化宽松的货币政策引来各国的一直声讨。再比如最近中国股市的疯狂和十一月十二日股市的跳水。各种经济问题的处理,或者决策的产生,都越来越离不开一种工具——数学经济模型。 一、数学经济模型及其重要性 数学经济模型可以按变量的性质分成两类,即概率型和确定型。概率型的模型处理具有随机性情况的模型,确定型的模型则能基于一定的假设和法则,精确地对一种特定情况的结果做出判断。由于数学分支很多,加之相互交叉渗透,又派生出许多分支,所以一个给定的经济问题有时能用一种以上的数学方法去对它进行描述和解释。具体建立什么类型的模型,既要视问题而定,又要因人而异。要看自己比较熟悉精通哪门学科,充分发挥自己的特长。 数学并不能直接处理经济领域的客观情况。为了能用数学解决经济领域中的问题,就必须建立数学模型。数学建模是为了解决经济领域中的问题而作的一个抽象的、简化的结构的数学刻划。或者说,数学经济建模就是为了经济目的,用字母、数字及其他数学符号建立起来的等式或不等式以及图表、图象、框图等描述客观事物的特征及其内在联系的数学结构的刻划。而现代世界发展史证实其经济发展速度与数学经济建模的密切关系。数学经济建模促进经济学的发展;带来了现实的生产效率。在经济决策科学化、定量化呼声日渐高涨的今天,数学经济建模更是无处不在。如生产厂家可根据客户提出的产品数量、质量、交货期、交货方式、交货地点等要求,根据快速报价系统与客户进行商业谈判。 二、构建经济数学模型的一般步骤 1.了解熟悉实际问题,以及与问题有关的背景知识。 2.通过假设把所要研究的实际问题简化、抽象,明确模型中诸多的影响因素,用数量和参数来表示这些因素。运用数学知识和技巧来描述问题中变量参数之问的关系。一般情况下用数学表达式来表示,构架出一个初步的数学模型。然后,再通过不断地调整假设使建立的模型尽可能地接近实际,从而得到比较满意的结论。 3.使用已知数据,观测数据或者实际问题的有关背景知识对所建模型中的参数给出估计值。 4.运行所得到的模型。把模型的结果与实际观测进行分析比较。如果模型结果与实际情况基本一致,表明模型是符合实际问题的。我们可以将它用于对实际问题进一步的分析或者预测;如果模型的结果与实际观测不一致,不能将所得的模型应用于所研究的实际问题。此时需要回头检查模型的组建是否有问题。问题的假使是否恰当,是否忽略了不应该忽略的因素或者还保留着不应该保留的因素。并对模型进行必要的调整修正。重复前面的建模过程,直到建立出一个经检验符合实际问题的模型为止。一个较好的数学模型是从实际中得来,又能够应用到实际问题中去的。 三、应用实例 如果研究的问题具有动态演化特点,即任一个时刻的状态与前一个时刻的状态有关,则可通过前后状态关系建立数学模型。如果模型是研究状态本身演化特性,称为动态分析模型.

扩散问题的偏微分方程模型_数学建模

实验一SDH网元基本配置 一、实验目的: 通过本实验,了解SDH光传输的原理和系统组成,了解ZXMP S325设备的硬件构成和单板功能,学习ZXONM 300 网管软件的使用方法,掌握SDH 网元配置的基本操作。 二、实验器材: 1、SDH 设备:3 套ZXMP 325; 2、实验用维护终端。 三、实验原理 1、SDH 原理 同步数字体制(SDH)是为高速同步通信网络制定的一个国际标准,其基础在于直接同步复用。按照SDH 组建的网络是一个高度统一的、标准化的、智能化的网络,采用全球统一的接口以实现多环境的兼容,管理操作协调一致,组网与业务调度灵活方便,并且具有网络自愈功能,能够传输所有常见的支路信号,应用于多种领域(如光纤传输,微波和卫星传输等)。 SDH 具有以下特点: (1)接口:接口的规范化是设备互联的关键。SDH对网络节点接口(NNI)作了统一的规范,内容包括数字信号数率等级、帧结构、复接方法、线路接口、监控管理等。 电接口:STM-1是SDH的第一个等级,又叫基本同步传送模块,比特率为155.520Mb/s;STM-N是SDH第N个等级的同步传送模块,比特率是STM-1的N 倍(N=4n=1,4,16,- - -)。 光接口:采用国际统一标准规范。SDH仅对电信号扰码,光口信号码型是加扰的NRZ 码,信号数率与SDH 电口标准信号数率相一致。 (2)复用方式 a)低速SDH----高速SDH,字节间插; b) 低速PDH-----SDH,同步复用和灵活的映射。 (3)运行维护:用于运行维护(OAM)的开销多,OAM功能强——这也是线路编码不用加冗余的原因. (4)兼容性:SDH 具有很强的兼容性,可传送PDH 业务,异步转移模式信号(ATM)及其他体制的信号。 (5)SDH 复用映射示意图

(完整版)扩散问题的偏微分方程模型,数学建模

第七节 扩散问题的偏微分方程模型 物质的扩散问题,在石油开采、环境污染、疾病流行、化学反应、新闻传播、煤矿瓦斯爆炸、农田墒情、水利工程、生态问题、房屋基建、神经传导、药物在人体内分布以及超导、液晶、燃烧等诸多自然科学与工程技术领域,十分普遍地存在着. 显然,对这些问题的研究是十分必要的,其中的数学含量极大. 事实上,凡与反应扩散有关的现象,大都能由线性或非线性抛物型偏微分方程作为数学模型来定量或定性地加以解决. MCM的试题来自实际,是“真问题⊕数学建模⊕计算机处理”的“三合一”准科研性质的一种竞赛,对上述这种有普遍意义和数学含量高,必须用计算机处理才能得到数值解的扩散问题,当然成为试题的重要来源,例如,AMCM-90A,就是这类试题;AMCM-90A要研究治疗帕金森症的多巴胺(dopamine )在人脑中的分布,此药液注射后在脑子里经历的是扩散衰减过程,可以由线性抛物型方程这一数学模型来刻划. AMCM-90A要研究单层住宅混凝土地板中的温度变化,也属扩散(热传导)问题,其数学模型与AMCM-90A一样,也是线性抛物型方程. 本文交代扩散问题建模的思路以及如何推导出相应的抛物型方程,如何利用积分变换求解、如何确定方程与解的表达式中的参数等关键数学过程,且以AMCM-90A题为例,显示一个较细致的分析、建模、求解过程. §1 抛物型方程的导出 设(,,,)u x y z t 是t 时刻点(,,)x y z 处一种物质的浓度. 任取一个闭曲面S ,它所围的区域是Ω,由于扩散,从t 到t t +?时刻这段时间内,通过S 流入Ω的质量为 2 221(cos cos cos )dSd t t t S u u u M a b c t x y z αβγ+????=++???? ??. 由高斯公式得 2222 221222()d d d d t t t u u u M a b c x y z t x y z +?Ω ???=++???? ???. (1) 其中,2 2 2 ,,a b c 分别是沿,,x y z 方向的扩散系数. 由于衰减(例如吸收、代谢等),Ω内的质量减少为 2 2d d d d t t t M k u x y z t +?Ω =? ???, (2) 其中2 k 是衰减系数. 由物质不灭定律,在Ω内由于扩散与衰减的合作用,积存于Ω内的质量为12M M -. 换一种角度看,Ω内由于深度之变化引起的质量增加为 3[(,,,)(,,,)]d d d d d d d . (3)t t t M u x y z t t u x y z t x y z u x y z t t Ω +?Ω =+?-?=????? ??? 显然312M M M =-,即

相关文档
相关文档 最新文档