文档库 最新最全的文档下载
当前位置:文档库 › (完整word版)立体几何大题训练及答案

(完整word版)立体几何大题训练及答案

(完整word版)立体几何大题训练及答案
(完整word版)立体几何大题训练及答案

1、如图,正方形ABCD 所在平面与平面四边形ABEF 所在平面互相垂直,△ABE 是等腰

直角三角形,2,,45AB AE FA FE AEF ?

===∠= (1)线段CD 的中点为P ,线段AE 的中点为M ,

求证://PM BCE 平面;

(2)求直线CF 与平面BCE 所成角的正切值.

解:(1)取AB 的中点为N ,连MN ,PN ,则//MN EB ,//PN BC

∴面PMN //面EBC ,∴//PM BCE 平面

………………………5分

(2)先证出FE ⊥面EBC , ………………………8分

FCE ∴∠为直线CF 与平面BCE 所成角, ………………………11分

6tan FE

FCE EC

∠=

= ………………………14分

2、己知多面体ABCDE 中,DE ⊥平面ACD ,//AB DE ,AC=AD=CD=DE=2,AB =1,O 为CD 的中点.

(1)求证:AO ⊥平面CDE ;

(2)求直线BD 与平面CBE 所成角的正弦值

A

B

C

D

E F

P

M .

.

A

B

C

D

E

O

3、如图,在△ABC 中,?=∠90C ,a BC AC 3==,点P 在AB 上,BC PE //交AC 于

E ,AC P

F //交BC 于F .沿PE 将△APE 翻折成△PE A ',使平面⊥PE A '平面ABC ;沿PF 将△BPF 翻折成△PF B ',使平面⊥PF B '平面ABC . (1)求证://'C B 平面PE A ';

(2)若PB AP 2=,求二面角E PC A --'的平面角的正切值.

解:(1)因为PE FC //,?FC 平面PE A ',所以//FC 平面PE A '.

因为平面⊥PE A '平面PEC ,且PE E A ⊥',所以⊥E A '平面ABC . …2分 同理,⊥F B '平面ABC ,所以E A F B '//',从而//'F B 平面PE A '. …4分 所以平面//'CF B 平面PE A ',从而//'C B 平面PE A '.

…6分 (2)因为a BC AC 3==,BP AP 2=,

所以a CE =,a A E 2=',a PE 2=,a PC 5=.

…8分

过E 作PC EM ⊥,垂足为M ,连结M A '.

由(1)知ABC E A 平面⊥',可得PC E A ⊥', 所以EM A PC '⊥面,所以PC M A ⊥'.

所以ME A '∠即为所求二面角E PC A --'的平面角,可记为θ. …12分

在Rt △PCE 中,求得a EM 5

5

2=

, B P

P

A

B

F

C

'B '

A E

P

A

B

F C

'B '

A E

(第20题)

M

A B

C

D

E

P M

所以555

2

2tan =='=a a

EM E A θ. …15分

4、如图,⊥DA 平面ABC ,⊥ED 平面BCD ,DE=DA=AB=AC.0120=∠BAC ,M 为BC 中点.

(1)求直线EM 与平面BCD 所成角的正弦值;

(2)P 为线段DM 上一点,且⊥AP DM ,求证:AP//DE. 解:(1) ΘED ⊥平面BCD ,∴DM 为EM 在平面BCD

上的射影, ∴EMD ∠为EM 与平面BCD 所成角.

(2)

DA ⊥Q 平面ABC ,AC DA AB DA ⊥⊥∴,, 设a AB =,又=Q DA AB =AC ,

a DB DC

2==∴.

在△ABC 中,Q ?=∠120BAC

,a BC

3=∴,

又Q M 为BC

中点,∴⊥DM BC ,

12=

=BM BC ,∴a DM 2

5=

.…5分

在Rt △EDM 中,EM =3

2

a =

∴sin EMD ∠=32

DE a

EM a =

23=. ………………………7分 (2)Θ=AB AC ,M 为BC 中点,∴⊥BC AM .又⊥DA 平面ABC , ∴⊥BC DA ,⊥∴BC 平面DAM .

……………………9分 又?AP

平面DAM

,AP BC ⊥∴, ……………………11分 又ΘDM AP ⊥,⊥∴AP 平面BCD . ……………………13分 又ΘED ⊥平面BCD ,DE AP //∴. ……………………14分 5、如图,已知ABCD 是边长为1的正方形,AF ⊥平面ABCD ,CE ∥AF ,)1(>=λλAF CE . (1)证明:BD ⊥EF ;

(2)若AF =1,且直线BE 与平面ACE

M

P

E

D

C

B A

A B

C D

E

A 1

C 1

为10

2

3,求λ的值.

解:(1)连结BD 、AC ,交点为O.∵ABCD 是正方形 ∴BD ⊥AC ……2分

∵AF ⊥平面ABCD ∴AF ⊥BD ……4分 ∴BD ⊥平面ACEF ……6分 ∴BD ⊥EF ……7分

(2)连结OE ,由(1)知,BD ⊥平面ACEF ,

所以∠BEO 即为直线BE 与平面ACE 所成的角. ……10分 ∵AF ⊥平面ABCD ,CE ∥AF ,∴CE ⊥平面ABCD ,CE ⊥BC , ∵BC =1,AF =1,则CE =λ,BE =21λ+,BO =2

2

, ∴Rt △BEO 中, 10

2

3122sin 2=λ+==∠BE BO BEO , …13分 因为1>λ,解得3

4

=λ. ……15分

6、如图,在几何体中,⊥1AA 平面ABC ,,2,//,111===⊥AA BC AB AA CC BC AB E D CC ,,11=分别是1,AA AB 的中点. (1)求证://1BC 平面CDE ;

(2)求二面角A DC E --的平面角的正切值.

解:(1)连接ACR 1R 交EC 于点F ,由题意知四边形ACCR 1RE 是矩形,则F 是ACR 1R 的中点,

连接DF ,∵D 是AB 的中点,∴DF 是△ABCR 1R 的中位线,

∴ BCR 1R//DF , 4分

∵ BCR 1R ?平面EDC ,DF ?平面EDC ,

∴BCR 1R//平面CDE. 7分

(2) 作AH ⊥直线CD ,垂足为H ,连接HE , ∵ AAR 1R ⊥平面ABC ,∴ AAR 1R ⊥DC ,

∴ CD ⊥平面AHE , ∴ CD ⊥EH ,

∴ ∠AHE 是二面角E – CD – A 的平面角. 11分 ∵ D 是AB 的中点,

∴ AH 等于点B 到CD 的距离,

在△BCD 中,求得:AH =

5

5

2, 在△AEH 中, 2

5

tan =

=∠AH AE AHE 即所求二面角的正切值为2

5

.

7、如图,已知平面QBC 与直线PA 均垂直于Rt ABC ?所在平面,且PA AB AC ==, (1)求证:PA //平面QBC ;

(2)若PQ QBC ⊥平面,求CQ 与平面PBC 所成角的正弦值.

解:(1)证明:过点Q 作QD BC ⊥于点D ,

∵平面QBC ⊥平面ABC ,∴QD ⊥平面ABC ……2分 又∵PA ⊥平面ABC

∴QD ∥PA , ………………2分 又∵QD ?平面QBC

∴PA ∥平面QBC ………………6分

(2)∵PQ ⊥平面QBC

∴90PQB PQC ∠=∠=o

,又∵,PB PC PQ PQ ==

∴PQB PQC ??? ∴BQ CQ = ………………8分 ∴点D 是BC 的中点,连结AD ,则AD BC ⊥ ∴AD ⊥平面QBC ∴PQ ∥AD ,AD QD ⊥

∴四边形PADQ 是矩形 ………………10分 设2PA AB AC a === 得:2PQ AD a ==

,6PD a =

又∵,BC PA BC PQ ⊥⊥,∴BC PADQ ⊥平面,

Q

P

A

B

C

A

B

C

A 1

B

1

C 1

D

E 从而PBC PADQ ⊥平面平面,过Q 作QH PD ⊥于点H ,则:QH PBC ⊥平面 ∴QCH ∠是CQ 与平面PBC 所成角 ………………………………………………12分

∴2223

36

a QH a ?=

=,6CQ BQ a ==

2312

sin 336

QH QCH CQ ∠=

=?=

∴CQ 与平面PBC 所成角的正弦值为2

3

…………………………14分

8、如图,在直三棱柱111C B A ABC -中,ABC ?是等腰直角三角形,090=∠ACB ,侧棱AA 1=2,D ,E 分别为CC 1与A 1B 的中点,点E 在平面ABD 上的射影是ABD ?的重心. (1)求证:DE//平面ACB ;

(2)求A 1B 与平面ABD 所成角的正弦值.

9、如图,在侧棱垂直于底面的三棱柱ABC —A 1B 1C 1中,底面△ABC 为等腰直角三角形,∠B=90°,

D 为棱BB 1的中点。

(1)求证:面DA 1C ⊥面AA 1C 1C ; (2)若1

2AA AB

,求二面角A —A 1D —C 的大小。

A

B

C

A 1

B 1

C 1

D

10、如图,在四棱锥P-ABCD 中,PA ⊥平面ABCD , AB//CD ,∠DAB=90°,PA=AD=DC=1,

AB=2,M 为PB 的中点. (1)证明:MC//平面PAD ;

(2)求直线MC 与平面PAC 所成角的余弦值.

11、如图在梯形ABCD 中,DC AB //,E 、F 是线段AB 上的两点,且

AB DE ⊥,AB CF ⊥,2,3===FB EF CF ,G 为FB 的中点,设t AE =,现将

BCF ADE ??,分别沿CF DE ,折起,使A 、B 两点重合于点P ,得到多面体PEFCD . (1)求证://PD 平面EGC ;

(2)当⊥EG 面PFC 时,求DG 与平面

PED 所成角的正切值.

P

A D

M

A

B

C

D

E

F

G

E

F

C

D

G

P

(1)证明:连接DF 交EC 于点M ,连接MG

G M ,Θ为中点 MG PD //∴ 又EGC PD 面?Θ EGC MG 面? ∴//PD 平面EGC ———5分

(2)当⊥EG 面PFC 时, PF EG ⊥ 又ΘG 为FB 的中点,

2==∴EP EF ,2=∴t —————7分

过点G 在平面PEF 中作EP 的垂线,垂足为N ,连接DN . ⊥DE Θ面PEF ∴面⊥PED 面PEF ⊥∴GN 面PED GDN ∠∴即为DG 与平面PED 所成角.——————11分

易求得221,23=

=DN GN ,所以DG 与平面PED 所成角的正切值为7

7

.——14分

12、如图,在四边形ABCD 中,4==AD AB ,7==CD BC ,点E 为线段AD 上的

一点.现将DCE ?沿线段EC 翻折到PAC ,使得平面PAC ⊥平面ABCE ,连接PA ,PB . (1)证明:⊥BD 平面PAC ;

(2)若?=∠60BAD ,且点E 为线段AD 的中点,求直线PE 与平面ABCE 所成角的正弦值.

解:(1)连接AC ,BD 交于点O ,在四边形ABCD 中, ∵4==AD AB ,7=

=CD BC

∴ADC ABC ???,∴BAC DAC ∠=∠,∴BD AC ⊥

又∵平面PAC ⊥平面ABCE ,且平面PAC I 平面ABCE =AC ∴⊥BD 平面PAC ………… 6分

(2)如图,过点P 作AC 的垂线,垂足为H ,连接EH ,EC

并取AO 中点F ,连接EF ,

∵平面PAC ⊥平面ABCE ,且平面PAC I 平面ABCE =AC ,AC PH ⊥ ∴⊥PH 平面ABCE ,∴PEH ∠即为直线PE 与平面ABCE 的所成角, 由(Ⅰ)可知,BD AC ⊥,且32=AO ,3=CO ,

又2=PE ,7=

PC ,设x CH =,则有

27x PH -=,3222-=-=x PH PE EH

又∵F 为AO 的中点,在EFH Rt ?中,x FH -=32,1=EF

由勾股定理得,31)32(2

2-=+-x x ,解得33

4

=

x , B

A

C

D

E

P

A

B

C

A 1

1

C 1

O

∴332=

EH ,33

5=PH ∴直线PE 与平面ABCE 的所成角的正弦值即3

3

sin ==∠PE EH PEH .

13、在三棱柱ABC —A 1B 1C 1中,AB=AC=AA 1 =2,平面ABC 1⊥平面AA 1C 1C ,

∠AA 1C 1=∠BAC 1=60°,设AC 1与AC 相交于点O ,如图. (1)求证:BO ⊥平面AA 1C 1C ; (2)求二面角B 1—AC 1—A 1的大小。

P

P

P

1

A

A B

B

C

C

M

14、如图1,四面体PABC 中,BC=BP=1,AC=AP=3,AB=2,将PAB ?沿直线AB 翻折至AB P 1?,使点C B P A ,,,1在同一平面内(如图2),点M 为PC 中点. (1)求证:直线//1PP 平面MAB ; (2) 求证:AB PC ⊥;

(3)求直线PA 与平面P 1PC 所成角的大小.

答案:(3)、

3

高一数学立体几何练习题及部分答案大全

立 体几何试题 一.选择题(每题4分,共40分) 1.已知AB 0300300150空间,下列命题正确的个数为( ) (1)有两组对边相等的四边形是平行四边形,(2)四边相等的四边形是菱形 (3)平行于同一条直线的两条直线平行 ;(4)有两边及其夹角对应相等的两个三角形全等 A 1 B 2 C 3 D 4 3.如果一条直线与两个平行平面中的一个平行,那么这条直线与另一个平面的位置关系是( ) A 平行 B 相交 C 在平面内 D 平行或在平面内 4.已知直线m αα过平面α外一点,作与α平行的平面,则这样的平面可作( ) A 1个 或2个 B 0个或1个 C 1个 D 0个 6.如图,如果MC ⊥菱形ABCD 所在平面,那么MA 与BD 的位置关系是( ) A 平行 B 垂直相交 C 异面 D 相交但不垂直 7.经过平面α外一点和平面α内一点与平面α垂直的平面有( ) A 0个 B 1个 C 无数个 D 1个或无数个 8.下列条件中,能判断两个平面平行的是( ) A 一个平面内的一条直线平行于另一个平面; B 一个平面内的两条直线平行于另一个平面 C 一个平面内有无数条直线平行于另一个平面 D 一个平面内任何一条直线都平行于另一个平面 9.对于直线m ,n 和平面,αβ,使αβ⊥成立的一个条件是( ) A //,,m n n m βα⊥? B //,,m n n m βα⊥⊥ C ,,m n m n αβα⊥=?I D ,//,//m n m n αβ⊥ 10 .已知四棱锥,则中,直角三角形最多可以有( ) A 1个 B 2个 C 3个 D 4个 二.填空题(每题4分,共16分) 11.已知?ABC 的两边AC,BC 分别交平面α于点M,N ,设直线AB 与平面α交于点O ,则点O 与直线MN 的位置关系为_________ 12.过直线外一点与该直线平行的平面有___________个,过平面外一点与该平面平行的直线有 _____________条 13.一块西瓜切3刀最多能切_________块

立体几何大题专题(基础)

练习1:如图:四棱锥P —ABCD 中,底面ABCD 是平行四边形,E 为侧棱PD 的中点,证明:PB ∥平面EAC 练习2:如图:三棱柱ABC —111C B A 中,M 为AB 的中点,证明:1BC ∥平面CM A 1 练习3:如图:三棱柱ABC —111C B A 中,M 为BC 的中点,证明:C A 1∥平面M AB 1 练习4:如图:四棱锥P —ABCD 中,底面ABCD 是平行四边形,E 、F 分别为PA 、BC 的中点,证明:EF ∥平面PCD 练习5:如图:三棱柱ABC —111C B A 中,M 、N 分别为AC 、11C B 的中点,证明:MN ∥平面

11A ABB 练习6:如图:四棱锥P —ABCD 中,底面ABCD 是平行四边形,M 、N 分别为PC 、AD 的中点,证明:MN ∥平面PAB 练习7:如图:三棱柱ABC —111C B A 中,M 为1CC 的中点,N 为AB 的中点,证明:CN ∥平面M AB 1 练习8:如图:四棱锥P —ABCD 中,PA ⊥平面ABCD ,底面ABCD 是梯形,AD ∥BC , 090=∠BAD ,BC AB AD 22==,AB PA 2=,E 为PC 的中点,证明:AE ⊥DE

练习9:如图:直三棱柱ABC —111C B A 中,0 90=∠ACB ,1112C A AA =,E 、F 分别为1CC 、 1BB 的中点,Q 为E A 1的中点,证明:Q C 1⊥FQ 练习10:如图:四棱锥P —ABCD 中,PA ⊥平面ABCD ,AB ⊥ AD ,BC AB PA ==, 060=∠ABC ,DC ⊥AC ,AF ⊥PD ,E 为PC 的中点,证明:EF ⊥PD 练习11:如图:四棱锥P —ABCD 中,底面ABCD 是矩形,平面PAB ⊥平面ABCD ,证明:平面PBC ⊥平面PAB

立体几何经典大题(各个类型的典型题目)

1.如图,已知△ABC 是正三角形,EA ,CD 都垂直于平面ABC ,且EA =AB =2a ,DC =a ,F 是BE 的中点. (1)FD ∥平面ABC ;(2)AF ⊥平面EDB . 2.已知线段PA ⊥矩形ABCD 所在平面,M 、N 分别是AB 、PC 的中点。 (1)求证:MN //平面PAD ;(2)当∠PDA =45°时,求证:MN ⊥平面PCD ; F C B A E D

A B C D E F 3.如图,在四面体ABCD 中,CB=CD,BD AD ⊥,点E ,F 分别是AB,BD 的中点.求证: (1)直线EF// 面ACD ;(2)平面⊥EFC 面BCD . 4.在斜三棱柱A 1B 1C 1—ABC 中,底面是等腰三角形,AB =AC ,侧面BB 1C 1C ⊥底面ABC (1)若D 是BC 的中点,求证AD ⊥CC 1; (2)过侧面BB 1C 1C 的对角线BC 1的平面交侧棱于M ,若AM =MA 1, 求证截面MBC 1⊥侧面BB 1C 1C ; (3)AM =MA 1是截面MBC 1⊥平面BB 1C 1C 的充要条件吗?请你叙述判断理由 ] 立体几何大题训练(3) C 1

5. 如图,在正方体ABCD —A 1B 1C 1D 1中,M 、N 、G 分别是A 1A ,D 1C ,AD 的中点. 求证:(1)MN//平面ABCD ;(2)MN ⊥平面B 1BG . 6.如图,在正方体ABCD -A 1B 1C 1D 1中,E 、F 为棱AD 、AB 的中点. (1)求证:EF ∥平面CB 1D 1; (2)求证:平面CAA 1C 1⊥平面CB 1D 1. 立体几何大题训练(4) 7、如图,在直四棱柱ABCD-A 1B 1C 1D 1中,底面ABCD 为等腰梯形,AB ∥CD ,AB=4,BC=CD=2,AA 1=2,_ G _ M _ D _1 _ C _1 _ B _1 _ A _1 _ N _ D _ C _ B _ A B A 1 F

立体几何大题练习题答案

立体几何大题专练 1、如图,已知PA ⊥矩形ABCD 所在平面,M 、N 分别为AB 、PC 的中点; (1)求证:MN//平面PAD (2)若∠PDA=45°,求证:MN ⊥平面PCD 2(本小题满分12分) 如图,在三棱锥P ABC -中,,E F 分别为,AC BC 的中点. (1)求证://EF 平面PAB ; (2)若平面PAC ⊥平面ABC ,且PA PC =,90ABC ∠=?, 求证:平面PEF ⊥平面PBC . P A C E F

(1)证明:连结EF , E 、F 分别为AC 、BC 的中点, //EF AB ∴. ……………………2分 又?EF 平面PAB ,?AB 平面PAB , ∴ EF ∥平面P AB . ……………………5分 (2)PA PC =,E 为AC 的中点, PE AC ∴⊥ ……………………6分 又平面PAC ⊥平面ABC PE ∴⊥面ABC ……………………8分 PE BC ∴⊥……………………9分 又因为F 为BC 的中点, //EF AB ∴ 090,BC EF ABC ⊥∠=∴……………………10分 EF PE E = BC ∴⊥面PEF ……………………11分 又BC ?面PBC ∴面PBC ⊥面PEF ……………………12分 3. 如图,在直三棱柱ABC —A 1B 1C 1中,AC=BC ,点D 是AB 的中点。 (1)求证:BC 1//平面CA 1D ; (2)求证:平面CA 1D⊥平面AA 1B 1B 。 4.已知矩形ABCD 所在平面外一点P ,PA ⊥平面ABCD ,E 、F 分别是 AB 、PC 的中点. (1) 求证:EF ∥平面PAD ; (2) 求证:EF ⊥CD ; (3) 若∠PDA =45°,求EF 与平面ABCD 所成的角的大小.

高中数学立体几何测试题及答案一)

高中数学必修2立体几何测试题及答案(一)一,选择(共80分,每小题4分) 1,三个平面可将空间分成n个部分,n的取值为() A,4;B,4,6;C,4,6,7 ;D,4,6,7,8。 2,两条不相交的空间直线a、b,必存在平面α,使得() A,a?α、b?α;B,a?α、b∥α;C,a⊥α、b⊥α;D,a?α、b⊥α。 3,若p是两条异面直线a、b外的任意一点,则() A,过点p有且只有一条直线与a、b都平行;B,过点p有且只有一条直线与a、b都垂直;C,过点p有且只有一条直线与a、b都相交;D,过点p有且只有一条直线与a、b都异面。 4,与空间不共面四点距离相等的平面有()个 A,3 ;B,5 ;C,7;D,4。 5,有空间四点共面但不共线,那么这四点中() A,必有三点共线;B,至少有三点共线;C,必有三点不共线;D,不可能有三点共线。 6,过直线外两点,作与该直线平行的平面,这样的平面可有()个 A,0;B,1;C,无数;D,涵盖上三种情况。 7,用一个平面去截一个立方体得到的截面为n边形,则() A,3≤n≤6 ;B,2≤n≤5 ;C,n=4;D,上三种情况都不对。 8,a、b为异面直线,那么() A,必然存在唯一的一个平面同时平行于a、b;B,过直线b 存在唯一的一个平面与a平行;C,必然存在唯一的一个平面同时垂直于a、b;D,过直线b 存在唯一的一个平面与a垂直。 9,a、b为异面直线,p为空间不在a、b上的一点,下列命题正确的个数是() ①过点p总可以作一条直线与a、b都垂直;②过点p总可以作一条直线与a、b都相交;③

过点p 总可以作一条直线与a 、b 都平行;④过点p 总可以作一条直线与一条平行与另一条垂直;⑤过点p 总可以作一个平面与一条平行与另一条垂直。 A ,1; B ,2; C ,3; D ,4。 10,异面直线a 、b 所成的角为80°,p 为空间中的一定点,过点p 作与a 、b 所成角为40° 的直线有( )条 A ,2; B ,3; C ,4; D ,6。 11,P 是△ABC 外的一点,PA 、PB 、PC 两两互相垂直,PA=1、PB=2、PC=3,则△ABC 的 面积为( )平方单位 A ,25; B ,611; C ,27; D ,2 9。 12,空间四个排名两两相交,以其交线的个数为元素构成的集合是( ) A ,{2,3,4}; B ,{1,2,3,}; C ,{1,3,5}; D ,{1,4,6}。 13,空间四边形ABCD 的各边与对角线的长都是1,点P 在AB 上移动 ,点Q 在CD 上移 动,点P 到点Q 的最短距离是( ) A ,21; B ,22; C ,23; D ,4 3。 14,在△ABC 中,AB=AC=5,BC=6,PA ⊥平面ABC ,PA=8,则P 到BC 的距离是( ) A ,45; B ,43; C ,25; D ,23。 15,已知m ,n 是两条直线,α,β是两个平面,下列命题正确的是( ) ①若m 垂直于α内的无数条直线,则m ⊥α;②若m 垂直于梯形的两腰,则m 垂直于梯形所 在的平面;③若n ∥α,m ?α,则n ∥m ;④若α∥β,m ?α,n ⊥β,则n ⊥m 。 A ,①②③; B ,②③④; C ,②④; D ,①③。 16,有一棱长为1的立方体,按任意方向正投影,其投影最大面积为( )

立体几何专题训练

专题一 立体几何 班级: _____ 姓名: _____ 学号: _____ 一、选择题(4分×10=40分) 1.直线12,l l 和α,12//l l ,a 与1l 平行,则a 与2l 的关系是 A .平行 B .相交 C .垂直 D .以上都可能 2.若线段AB 的长等于它在平面内射影长的3倍,则这条斜线与平面所成角的余弦值为 A .1 3 B . 3 C .2 D .23 3.在正方体ABCD-A 1B 1C 1D 1中,B 1C 与平面DD 1B 1B 所成的角的大小为 A .15o B .30o C .45o D .60o 4.有下列命题:①空间四点共面,则其中必有三点共线;②空间四点不共面,则其中任何三点不共线;③空间四点中有三点共线,则此四点共面;④空间四点中任何三点不共线,则此四点不共面.其中正确的命题是 A .②③ B .①②③ C .①③ D .②③④ 5.有一山坡,倾斜度为300,若在斜坡平面上沿着一条与斜坡底线成450角的直线前进1公里,则升高了 A .米 B . 米 C .米 D . 500米 6.已知三条直线,,a b l 及平面,αβ,则下列命题中正确的是 A .,//,//b a b a αα?若则 B .若,a b αα⊥⊥,则//a b C . 若,a b ααβ?=I ,则//a b D .若,,,,a b l a l b αα??⊥⊥则l α⊥ 7.已知P 是△EFG 所在平面外一点,且PE=PG ,则点P 在平面EFG 内的射影一定在△EFG 的 A .∠FEG 的平分线上 B .边EG 的垂直平分线上 C .边EG 的中线上 D .边EG 的高上 8 .若一正四面体的体积是3,则该四面体的棱长是 A . 6cm B . C .12cm D .9.P 是△ABC 所在平面α外一点,PA ,PB ,PC 与α所成的角都相等,且PA ⊥BC ,则 △ABC 是 A .等边三角形 B .直角三角形 C .等腰三角形 D .等腰直角三角形 10.如图,在多面体ABCDEF 中,已知ABCD 是边长为3的正方形,EF//AB ,EF= 32 ,C D E F

高考立体几何大题经典例题.

N M P C B A <一 >常用结论 1.证明直线与直线的平行的思考途径:(1转化为判定共面二直线无交点; (2转化为二直 线同与第三条直线平行; (3转化为线面平行; (4转化为线面垂直; (5转化为面面平行 . 2.证明直线与平面的平行的思考途径:(1转化为直线与平面无公共点; (2转化为线线平 行; (3转化为面面平行 . 3. 证明平面与平面平行的思考途径:(1 转化为判定二平面无公共点; (2 转化为线面平行; (3转化为线面垂直 . 4.证明直线与直线的垂直的思考途径:(1转化为相交垂直; (2转化为线面垂直; (3转 化为线与另一线的射影垂直; (4转化为线与形成射影的斜线垂直 . 5.证明直线与平面垂直的思考途径:(1转化为该直线与平面内任一直线垂直; (2转化为该直线

与平面内相交二直线垂直; (3转化为该直线与平面的一条垂线平行; (4转化为该直线垂直于另一个平行平面; (5转化为该直线与两个垂直平面的交线垂直 . 6.证明平面与平面的垂直的思考途径:(1转化为判断二面角是直二面角; (2转化为线面垂直 . 3、如图,在正方体 1111ABCD A B C D -中, E 是 1AA 的中点, 求证: 1//AC 平面BDE 。 5、已知正方体 1111ABCD A B C D -, O 是底 ABCD 对角线的交点 . 求证:(1 C1O ∥面 11AB D ; (21 AC ⊥面 11AB D . 9、如图 P 是ABC ?所在平面外一点, , PA PB CB =⊥平面 PAB , M 是 PC 的中点, N 是 AB 上的点, 3AN NB = A D 1 C B D C D D B A C 1

立体几何练习题

数学立体几何练习题 一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一个是符合题目要求的. 1.如图,在正方体ABCD -A 1B 1C 1D 1中,棱长为a ,M 、N 分别为A 1B 和AC 上 的点,A 1M =AN = 2a 3 ,则MN 与平面BB 1C 1C 的位置关系是( ) A .相交 B .平行 C .垂直 D .不能确定 2.将正方形ABCD 沿对角线BD 折起,使平面ABD ⊥平面CBD ,E 是CD 中点,则AED ∠的大小为( ) A.45 B.30 C.60 D.90 3.PA ,PB ,PC 是从P 引出的三条射线,每两条的夹角都是60o,则直线PC 与平面PAB 所成的角的余弦值为( ) A . 12 B C D 4.正方体ABCD —A 1B 1C 1D 1中,E 、F 分别是AA 1与CC 1的中点,则直线ED 与D 1F 所成角的余弦值是 A . 15 B 。13 C 。 12 D 5. 在棱长为2的正方体1111D C B A ABCD -中,O 是底面ABCD 的中心,E 、F 分别是1CC 、 AD 的中点,那么异面直线OE 和1FD 所成的角的余弦值等于( ) A .510 B .3 2 C .55 D .515 6.在正三棱柱ABC-A 1B 1C 1中,若AB=2,A A 1=1,则点A 到平面A 1BC 的距离为( ) A . 4 3 B . 2 3 C . 4 3 3 D .3 7.在正三棱柱ABC-A 1B 1C 1中,若AB=2BB 1,则AB 1与C 1B 所成的角的大小为 ( ) A.60o B. 90o C.105o D. 75o 8.设E ,F 是正方体AC 1的棱AB 和D 1C 1的中点,在正方体的12条面对角线中,与截面 A 1ECF 成60°角的对角线的数目是( ) A .0 B .2 C .4 D .6 二、填空题:本大题共6小题,每小题5分,共30分. 9.在正方体ABCD -A 1B 1C 1D 1中,M 、N 分别为棱AA 1和BB 1的中点,则 sin 〈CM ,1D N 〉的值为_________. 10.如图,正方体的棱长为1,C 、D 分别是两条棱的中点, A 、B 、M 是顶点, 那么点M 到截面ABCD 的距离是 . A B M D C

高考立体几何大题20题汇总

(2012XX省)(本小题满分12分) 如图,在梯形ABCD中,AB∥CD,E,F是线段AB上的两点,且DE⊥AB,CF⊥AB,AB=12,AD=5,BC=42,DE=4.现将△ADE ,△CFB分别沿DE,CF折起,使A,B两点重合与点G,得到多面体CDEFG. (1)求证:平面DEG⊥平面CFG; (2)求多面体CDEFG的体积。 2012,(19)(本小题满分12分) 如图,几何体EABCD是四棱锥,△ABD为正三角形, CBCD,ECBD. (Ⅰ)求证:BEDE; (Ⅱ)若∠BCD120,M为线段AE的中点,求证:DM∥平面 BEC. BC 2012XX20.(本题满分15 分)如图,在侧棱锥垂直 A D 底面的四棱锥ABCDA1B1C1D1中,AD//BC,AD FE AB,AB2,AD2,BC4,AA2,E是DD的中点,F 11 是平面B C E 与直线AA1 的交点。 1 1 A1 B1 D1 ( 第20题图) C1 (Ⅰ)证明:(i )E F//A1D1;(ii)BA1平面B1C1EF; (Ⅱ)求BC与平面B1C1EF所成的角的正弦值。 1 (2010)18、(本小题满分12分)已知正方体ABCDA'B'C'D'中,点M是棱AA' 的中点,点O是对角线BD'的中点, (Ⅰ)求证:OM为异面直线AA'与BD'的公垂线;

(Ⅱ)求二面角MBC'B'的大小; 2010XX文(19)(本小题满分12分) 如图,棱柱 ABCA1B1C1的侧面BCC1B1是菱形,B1CA1B (Ⅰ)证明:平面A B C平面A1BC1; 11 (Ⅱ)设D 是A C上的点,且 11 AB1//平面BCD,求 1 A1D :DC1的值。 2012(18)(本小题满分12分) 如图,直三棱柱/// ABCABC,BAC90, ABAC2,AA′=1,点M,N分别为/ AB和// BC的中点。 (Ⅰ)证明:MN∥平面// AACC;

空间立体几何练习题(含答案)

第一章 空间几何体 [基础训练A 组] 一、选择题 1.有一个几何体的三视图如下图所示,这个几何体应是一个( ) A.棱台 B.棱锥 C.棱柱 D.都不对 2.棱长都是1的三棱锥的表面积为( ) 3.长方体的一个顶点上三条棱长分别是3,4,5,且它的8个顶点都在 同一球面上,则这个球的表面积是( ) A .25π B .50π C .125π D .都不对 4.正方体的内切球和外接球的半径之比为( ) A B 2 C . 5.在△ABC 中,02, 1.5,120AB BC ABC ==∠=,若使绕直线BC 旋转一周, 则所形成的几何体的体积是( ) A. 92π B. 72π C. 52π D. 32 π 6.底面是菱形的棱柱其侧棱垂直于底面,且侧棱长为5,它的对角线的长 分别是9和15,则这个棱柱的侧面积是( ) A .130 B .140 C .150 D .160 二、填空题 1.一个棱柱至少有 _____个面,面数最少的一个棱锥有 ________个顶点, 顶点最少的一个棱台有 ________条侧棱。 2.若三个球的表面积之比是1:2:3,则它们的体积之比是_____________。 3.正方体1111ABCD A BC D - 中,O 是上底面ABCD 中心,若正方体的棱长为a , 则三棱锥11O AB D -的体积为_____________。 4.如图,,E F 分别为正方体的面11A ADD 、面11B BCC 的中心,则四边形 E BFD 1在该正方体的面上的射影可能是____________。 5.已知一个长方体共一顶点的三个面的面积分别是2、3、6,这个 长 方体的对角线长是___________;若长方体的共顶点的三个侧面面积分别为3,5,15,则它的体积为___________. 三、解答题 1.养路处建造圆锥形仓库用于贮藏食盐(供融化高速公路上的积雪之用) ,已建的仓库的 主视图 左视图 俯视图

专题一立体几何经典练习题

2 专题一 立体几何 班级: _____ 姓名: _____ 学号: _____ 一、选择题(4 分×10=40 分) 1.直线 l , l 和 α , l // l , a 与 l 平行,则 a 与 l 的关系是 1 2 1 2 1 2 A .平行 B .相交 C .垂直 D .以上都可能 2.若线段 AB 的长等于它在平面内射影长的 3 倍,则这条斜线与平面所成角的余弦值为 A . 1 3 B . 2 2 2 2 C . D . 3 3 3.在正方体 ABCD-A 1B 1C 1D 1 中,B 1C 与平面 DD 1B 1B 所成的角的大小为 A .15 B . 30 C . 45 D . 60 4.有下列命题:①空间四点共面,则其中必有三点共线;②空间四点不共面,则其中 任何三点不共线;③空间四点中有三点共线,则此四点共面;④空间四点中任何三点 不共线,则此四点不共面.其中正确的命题是 A .②③ B .①②③ C .①③ D .②③④ 5.有一山坡,倾斜度为 300,若在斜坡平面上沿着一条与斜坡底线成 450 角的直线前进 1 公里,则升高了 A . 250 2 米 B . 250 3 米 C . 250 6 米 D . 500 米 6.已知三条直线 a , b , l 及平面 α , β ,则下列命题中正确的是 A . 若b ? α , a // b , 则a // α B .若 a ⊥ α , b ⊥ α ,则 a // b C . 若 a ? α ,α β = b ,则 a // b D .若 a ? α , b ? α , l ⊥ a , l ⊥ b , 则 l ⊥ α 7.已知 P 是△EFG 所在平面外一点,且 PE=PG ,则点 P 在平面 EFG 内的射影一定在△EFG 的 A .∠FEG 的平分线上 B .边 EG 的垂直平分线上 C .边 EG 的中线上 D .边 EG 的高上 8.若一正四面体的体积是18 2 cm 3,则该四面体的棱长是 A . 6cm B . 6 3 cm C .12cm D . 3 3 cm 9.P 是△ABC 所在平面α 外一点,PA ,PB ,PC 与α 所成的角都相等,且 PA ⊥BC ,则 △ABC 是 A .等边三角形 B .直角三角形 C .等腰三角形 D .等腰直角三角形 3 10.如图,在多面体 ABCDEF 中,已知 ABCD 是边长为 3 的正方形,EF//AB ,EF= ,EF 2 与面 AC 的距离为 2,则该多面体的体积为 E F A .2 B .4 C . 2 2 D . 4 2 D C 二、填空题(4 分×4=16 分) A B 11.空间四边形 ABCD 中,AB=6,CD=8,E 、F 、G 分别是 BD ,AC ,BC 的中点,若异面直

立体几何典型例题精选(含答案)

F E D C B A 立体几何专题复习 热点一:直线与平面所成的角 例1.(2014,广二模理 18) 如图,在五面体ABCDEF 中,四边形ABCD 是边长为2的正方形, EF ∥平面ABCD , 1EF =,,90FB FC BFC ?=∠=,3AE =. (1)求证:AB ⊥平面BCF ; (2)求直线AE 与平面BDE 所成角的正切值. 变式1:(2013湖北8校联考)如左图,四边形ABCD 中,E 是BC 的中点,2,1,5,DB DC BC === 2.AB AD ==将左图沿直线BD 折起,使得二面角A BD C --为60,?如右图. (1)求证:AE ⊥平面;BDC (2)求直线AC 与平面ABD 所成角的余弦值. 变式2:[2014·福建卷] 在平面四边形ABCD 中,AB =BD =CD =1,AB ⊥BD ,CD ⊥BD .将△ABD 沿BD 折起,使得平面ABD ⊥平面BCD ,如图1-5所示. (1)求证:AB ⊥CD ; (2)若M 为AD 中点,求直线AD 与平面MBC 所成角的正弦值.

热点二:二面角 例2.[2014·广东卷] 如图1-4,四边形ABCD为正方形,PD⊥平面ABCD,∠DPC=30°,AF⊥PC于点F,FE∥CD,交PD于点E. (1)证明:CF⊥平面ADF;(2)求二面角D-AF-E的余弦值. 变式3:[2014·浙江卷] 如图1-5,在四棱锥A-BCDE中,平面ABC⊥平面BCDE,∠CDE=∠BED=90°,AB=CD=2,DE=BE=1,AC= 2. (1)证明:DE⊥平面ACD;(2)求二面角B-AD-E的大小. 变式4:[2014·全国19] 如图1-1所示,三棱柱ABC-A1B1C1中,点A1在平面ABC内的射影D在AC 上,∠ACB=90°,BC=1,AC=CC1=2. (1)证明:AC1⊥A1B; (2)设直线AA1与平面BCC1B1的距离为3,求二面角A1 -AB -C的大小.

立体几何大题练习题答案

立体几何大题专练 1、如图,已知PA丄矩形ABCD所在平面,M、N分别为AB、PC的中点; ⑴求证: 2Q.证明江1〉取FD的中点AE,NE t 丁Nft PC 的中点.A NEX^CD . 又四边形ABCU为矩形且M星BA中点' MN :* 寺CD垒MA , £ :■ NEXMA.KP四边形MAEN是平行四也形, 昇 MN〃AE* 由于AEU罕面PAD,MN(Z^ffi PAD? A MN"平廊PAD, (2>V FA 丄平ABCD,ZPDA-45\ 代APAD是等 B?三肃形?桩AE」PH 由题意,CD丄AD,CD丄叭 :.CD丄平面PAD. 从而AE_LCD, 代AE丄平面PCD,故VIN丄平而PCH . Ml、If :< 1)「1 {' 的方程为(x —a)* + (y 一h J —pf (2a+ b?0* ... IQ* V ■ ■ ■ V ■] ... 12* ……r ABC PA PC ABC 90 PEF PBC EF Q E F AC BC EF // AB....2 分又EF 平面PAB,AB 平面PAB, EF //平面PAB. ? (5) (2)Q PA PC,E为AC的中点, PE AC (6) P ABC E,F AC, BC EF // PAB PAC 又Q平面PAC 平面ABC PE 面ABC ................. 8 分 PE BC ............... 9 分 又因为F为BC的中点, Q ABC 900, BC EF .................... 10 分BC 面PEF ............... 11 分 又Q BC 面PBC 面PBC 面PEF ............... 12分 3.如图,在直三棱柱ABC-ABQ中,AC=BC点D是AB的中点

立体几何大题训练及答案

1、如图,正方形所在平面与平面四边形所在平面互相垂直,△是等腰直角三角形, (1)线段的中点为,线段的中点为, 求证:; (2)求直线与平面所成角的正切值. 解:(1)取AB 的中点为N ,连MN ,PN ,则//MN EB ,//PN BC ∴ PMN EBC ∴//PM BCE 平面FE ⊥EBC FCE ∴∠ ⊥//AB DE (1)求证:AO ⊥平面CDE ; (2)求直线BD 与平面CBE 所成角的正弦值 3、如图,在△ABC 中,?=∠90C ,a BC AC 3==,点P 在AB 上,BC PE //交AC 于 E ,AC P F //交BC 于F .沿PE 将△APE 翻折成△PE A ',使平面⊥PE A '平面 ABC ;沿PF 将△BPF 翻折成△PF B ',使平面⊥PF B '平面ABC . (1)求证://'C B 平面PE A '; (2)若PB AP 2=,求二面角E PC A --'的平面角的正切值. 解:(1)因为PE FC //,?FC 平面PE A ',所以//FC 平面PE A '. 因为平面⊥PE A '平面PEC ,且PE E A ⊥',所以⊥E A '平面ABC . …2分 同理,⊥F B '平面ABC ,所以E A F B '//',从而//'F B 平面PE A '. …4分 所以平面//'CF B 平面PE A ',从而//'C B 平面PE A '. …6分 (2)因为a BC AC 3==,BP AP 2=, 所以a CE =,a A E 2=',a PE 2=,a PC 5=. …8分 A B C D E F M . . C B F P A F C ' B ' A E

立体几何大题训练与答案解析

1、如图,正方形ABCD 所在平面与平面四边形ABEF 所在平面互相垂直,△ABE 是等腰 直角三角形,2,,45AB AE FA FE AEF ? ===∠= (1)线段CD 的中点为P ,线段AE 的中点为M , 求证://PM BCE 平面; (2)求直线CF 与平面BCE 所成角的正切值. 解:(1)取AB 的中点为N ,连MN ,PN ,则//MN EB ,//PN BC ∴面PMN //面EBC ,∴//PM BCE 平面 ………………………5分 (2)先证出FE ⊥面EBC , ………………………8分 FCE ∴∠为直线CF 与平面BCE 所成角, ………………………11分 tan FE FCE EC ∠= = ………………………14分 2、己知多面体ABCDE 中,DE ⊥平面ACD ,//AB DE ,AC=AD=CD=DE=2,AB =1,O 为CD 的中点. (1)求证:AO ⊥平面CDE ; (2)求直线BD 与平面CBE 所成角的正弦值 A B C D E F P M . . A B C E O

3、如图,在△ABC 中,?=∠90C ,a BC AC 3==,点P 在AB 上,BC PE //交AC 于E ,AC PF //交BC 于F . 沿PE 将△APE 翻折成△PE A ',使平面⊥PE A '平面ABC ;沿PF 将△BPF 翻折成△PF B ',使平面⊥PF B '平面ABC . (1)求证://'C B 平面PE A '; (2)若PB AP 2=,求二面角E PC A --'的平面角的正切值. 解:(1)因为PE FC //,?FC 平面PE A ',所以//FC 平面PE A '. B P F P A B F C ' B ' A E

立体几何练习题(含答案)

《立体几何 》练习题 一、 选择题 1、一条直线和三角形的两边同时垂直,则这条直线和三角形的第三边的位置关系是( ) A 、垂直 B 、平行 C 、相交不垂直 D 、不确定 2. 在正方体1111ABCD A B C D -中, 与1A C 垂直的是( ) A. BD B. CD C. BC D. 1CC 3、线n m ,和平面βα、,能得出βα⊥的一个条件是( ) A.βα//n ,//m ,n m ⊥ B.m ⊥n ,α∩β=m ,n ?α C.αβ?⊥m n n m ,,// D.βα⊥⊥n m n m ,,// 4、平面α与平面β平行的条件可以是( ) A.α内有无穷多条直线与β平行; B.直线a//α,a//β C.直线a α?,直线b β?,且a//β,b//α D.α内的任何直线都与β平行 5、设m 、n 是两条不同的直线,,,αβγ是三个不同的平面,给出下列四个命题: ①若m ⊥α,n //α,则m n ⊥ ②若αβ//,βγ//,m ⊥α,则m ⊥γ ③若m //α,n //α,则m n // ④若αγ⊥,βγ⊥,则//αβ 其中正确命题的序号是( ) A.①和② B.②和③ C.③和④ D.①和④ 6.点P 为ΔABC 所在平面外一点,PO ⊥平面ABC ,垂足为O,若PA=PB=PC , 则点O 是ΔABC 的( ) A.内心 B.外心 C.重心 D.垂心 7. 若l 、m 、n 是互不相同的空间直线,α、β是不重合的平面, 则下列命题中为真命题的是( ) A .若//,,l n αβαβ??,则//l n B .若,l αβα⊥?,则l β⊥ C. 若,//l l αβ⊥,则αβ⊥ D .若,l n m n ⊥⊥,则//l m 8. 已知两个平面垂直,下列命题中正确的个数是( ) ①一个平面内的已知直线必垂直于另一个平面的任意一条直线; ②一个平面内的已知直线必垂直于另一个平面的无数条直线; ③一个平面内的任一条直线必垂直于另一个平面; ④过一个平面内任意一点作交线的垂线,则垂线必垂直于另一个平面. A.3 B.2 C.1 D.0 9. 设m.n 是两条不同的直线,α.β是两个不同的平面, ( ) A .若m∥α,n∥α,则m∥n B .若m∥α,m∥β,则α∥β C .若m∥n,m⊥α,则n ⊥α D .若m∥α,α⊥β,则m⊥β

2019-2020年高考数学大题专题练习——立体几何

2019-2020年高考数学大题专题练习——立体几何(一) 1.如图所示,四棱锥P ABCD -中,底面ABCD 为正方形,⊥PD 平面ABCD , 2PD AB ==,点,,E F G 分别为,,PC PD BC 的中点. (1)求证:EF PA ⊥; (2)求二面角D FG E --的余弦值. 2.如图所示,该几何体是由一个直角三棱柱ADE BCF -和一个正四棱锥P ABCD -组合而成,AF AD ⊥,2AE AD ==. (1)证明:平面⊥PAD 平面ABFE ; (2)求正四棱锥P ABCD -的高h ,使得二面角C AF P --的余弦值是 22 .

3.四棱锥P ABCD -中,侧面PDC是边长为2的正三角形,且与底面垂直,底面ABCD是 面积为ADC ∠为锐角,M为PB的中点. (Ⅰ)求证:PD∥面ACM. (Ⅱ)求证:PA⊥CD. (Ⅲ)求三棱锥P ABCD -的体积. 4.如图,四棱锥S ABCD -满足SA⊥面ABCD,90 DAB ABC ∠=∠=?.SA AB BC a ===,2 AD a =. (Ⅰ)求证:面SAB⊥面SAD. (Ⅱ)求证:CD⊥面SAC. S B A D M C B A P D

5.在四棱锥P ABCD -中,底面ABCD 为矩形,测棱PD ⊥底面ABCD ,PD DC =,点E 是 BC 的中点,作EF PB ⊥交PB 于F . (Ⅰ)求证:平面PCD ⊥平面PBC . (Ⅱ)求证:PB ⊥平面EFD . 6.在直棱柱111ABC A B C -中,已知AB AC ⊥,设1AB 中点为D ,1A C 中点为E . (Ⅰ)求证:DE ∥平面11BCC B . (Ⅱ)求证:平面11ABB A ⊥平面11ACC A . E D A B C C 1 B 1 A 1 D A B C E F P

历年高考立体几何大题试题(卷)

2015年高考立体几何大题试卷 1. 【2015高考新课标2,理19】 如图,长方体ABCD -A1B1C1D1中,AB=16, BC=10, AA = 8,点E , F 分别在AB , C1D1上,A1E =4 .过点E , F的平面:-与此长方体的面相交,交线围成一个正方形. (1题图) (I )在图中画出这个正方形(不必说出画法和理由) (n )求直线AF与平面〉所成角的正弦值. 2. 【2015江苏高考,16】如图,在直三棱柱ABC—中,已知AC丄BC ,

BC =CC 1,设 AB 1 的中点为 D , BQ BC^ E .求证:(1) DE // 平面 AA 1C 1C ; (2) BC 1 _ AB 1 . (2题图) (3题图) C C 第的题图

3. 【2015高考安徽,理19】如图所示,在多面体 AEDQCBA ,四边形AABB , ADD 1A 1 ,ABCD 均为正方形,E 为Bp 的中点,过 A,D,E 的平面交CD ,于F. (I)证明:EF //BQ ; (□)求二面角E - A ,D - B i 余弦值. 4. 【2015江苏高考,22】如图,在四棱锥P-ABCD 中,已知PA _平面ABCD ,且 四边形 ABCD 为直角梯 形,.ABC =/BAD = —,PA 二 AD =2,AB 二 BC =1 2 (1)求平面PAB 与平面PCD 所成二面角的余弦值; (2)点Q 是线段BP 上的动点,当直线 CQ 与DP 所成角最小时,求线段 BQ 的长 (4题图) 5 .【2015高考福建,理17】如图,在几何体 ABCDE 中,四边形ABCD 是矩形,AB A 平面BEC , BE A EC , AB=BE=EC=2 , G , F 分别是线段 BE , DC 的中点. (I 求证:GF //平面ADE ; (^)求平面AEF 与平面BEC 所成锐二面角的余弦值. 6. 【2015高考浙江,理17】如图,在三棱柱 AB^A 1B 1C 1-中,.BAC =90;, AB = AC=2 , AA = 4 , A 在底面ABC 的射影为BC 的中点,D 为B 1C 1的中点. (5题图) D

2016高考文科立体几何大题

立体几何综合训练 1、证明平行垂直 1.(2013?辽宁)如图,AB是圆O的直径,PA⊥圆O所在的平面,C是圆O上的点. (1)求证:BC⊥平面PAC; (2)若Q为PA的中点,G为△AOC的重心,求证:QG∥平面PBC. 2.(2013?北京)如图,在四棱锥P﹣ABCD中,AB∥CD,AB⊥AD,CD=2AB,平面PAD⊥底面ABCD,PA⊥AD.E和F分别是CD和PC的中点,求证: (Ⅰ)PA⊥底面ABCD; (Ⅱ)BE∥平面PAD; (Ⅲ)平面BEF⊥平面PCD. 3.(2011?福建)如图,四棱锥P﹣ABCD中,PA⊥底面ABCD,AB⊥AD,点E在线段AD上,且CE∥AB. (Ⅰ)求证:CE⊥平面PAD; (Ⅱ)若PA=AB=1,AD=3,CD=,∠CDA=45°,求四棱锥P﹣ABCD的体积.

4.如图,在四棱锥P﹣ABCD中,底面ABCD是矩形.已知 .M是PD的中点. (Ⅰ)证明PB∥平面MAC (Ⅱ)证明平面PAB⊥平面ABCD (Ⅲ)求四棱锥p﹣ABCD的体积. 2、求体积问题 5.如图,已知四棱锥P﹣ABCD中,底面ABCD是直角梯形,AB∥DC,∠ABC=45°,DC=1,AB=2,PA⊥平面ABCD,PA=1. (Ⅰ)求证:AB∥平面PCD; (Ⅱ)求证:BC⊥平面PAC; (Ⅲ)若M是PC的中点,求三棱锥M﹣ACD的体积. 6.(2011?辽宁)如图,四边形ABCD为正方形,QA⊥平面ABCD,PD∥QA,OA=AB=PD. (Ⅰ)证明PQ⊥平面DCQ; (Ⅱ)求棱锥Q﹣ABCD的体积与棱锥P﹣DCQ的体积的比值.

7.(2013?安徽)如图,四棱锥P﹣ABCD的底面ABCD是边长为2的菱形,∠BAD=60°,已知PB=PD=2,PA=. (Ⅰ)证明:PC⊥BD (Ⅱ)若E为PA的中点,求三棱锥P﹣BCE的体积. 8.(2008?山东)如图,在四棱锥P﹣ABCD中,平面PAD⊥平面ABCD,AB∥DC,△PAD是等边三角形,已知BD=2AD=8,. (Ⅰ)设M是PC上的一点,证明:平面MBD⊥平面PAD; (Ⅱ)求四棱锥P﹣ABCD的体积. 3、三视图 9.已知某几何体的直观图与它的三视图,其中俯视图为正三角形,其它两个视图是矩形.已知D是这个几何体的棱A1C1上的中点. (Ⅰ)求出该几何体的体积; (Ⅱ)求证:直线BC1∥平面AB1D;

立体几何、解析几何综合10题(含答案)

城北中学高二上期第八周20班周末双休数学练笔 题目及参考答案 1、已知双曲线与椭圆x 29+y 225=1共焦点,它们的离心率之和为14 5 ,求双曲线方程. 解: 由椭圆方程可得椭圆的焦点为F (0,±4),离心率e =4 5 , 所以双曲线的焦点为F (0,±4),离心率为2, 从而c =4,a =2,b =2 3.所以双曲线方程为y 24-x 2 12 =1. 2、如图4所示,矩形ABCD 中,AD ⊥平面ABE ,AE =EB =BC =2,F 为 CE 上的点,且BF ⊥平面ACE . (1)求证:AE ⊥平面BCE ; (2)求证:AE ∥平面BFD ; (1)证明 ∵AD ⊥平面ABE ,AD ∥BC , ∴BC ⊥平面ABE ,则AE ⊥BC . 又∵BF ⊥平面ACE ,则AE ⊥BF , 又BC ∩BF =B ,∴AE ⊥平面BCE . (2)证明 由题意可得G 是AC 的中点,连结FG , ∵BF ⊥平面ACE ,∴CE ⊥BF . 而BC =BE ,∴F 是EC 的中点, 在△AEC 中,FG ∥AE ,∴AE ∥平面BFD . 3、设椭圆的中心在原点,焦点在x 轴上,离心率e = 3 2 .已知点P ????0,32到这个椭圆上的点的最远距离为7,求这个椭圆的方程. 解: 设椭圆方程为x 2a 2+y 2b 2=1(a >b >0),M (x ,y )为椭圆上的点,由c a =3 2 得a =2b . |PM |2=x 2+????y -322=-3????y +1 22+4b 2+3(-b ≤y ≤b ), 若b <1 2,则当y =-b 时,|PM |2最大,即????b +322=7, 则b =7-32>1 2 ,故舍去. 若b ≥12时,则当y =-1 2时,|PM |2最大,即4b 2+3=7, 解得b 2=1. ∴所求方程为x 24 +y 2 =1. 4、矩形ABCD ,AB =2,AD =3,沿BD 把ΔBCD 折起,使C 点在平面ABD 上的射影E 恰好落在AD 上. (1)求证:CD ⊥AB

相关文档
相关文档 最新文档