文档库 最新最全的文档下载
当前位置:文档库 › 乳化剂的作用机理

乳化剂的作用机理

乳化剂的作用机理
乳化剂的作用机理

乳化剂的作用机理

牛乳饮品一般是由蛋白质、脂肪、糖类、食用纤维(水溶性或水不溶性)、淀粉类、维生素类(水溶性或油溶性)、矿物质类等物质组成的营养性饮料,是一种客观不稳定分散体系,既有蛋白质及果汁微粒形成的悬浮液、脂肪的乳浊液,又有以糖类、盐类形成的真溶液。这一复杂体系即使采用最先进的加工机械和加工工艺,也很难达到饮料的质量要求,会发生油层上浮、蛋白质沉淀、色素凝聚等产品质量问题。要解决这一问题,需要加入适量的乳化剂、增稠剂、品质改良剂等食品添加剂,以使饮料保持稳定。

1 乳化剂的作用机理

食品乳化剂的基本物理化学性质是表面活性和乳化增溶性。因为乳化剂的分子内具有亲水基和亲油基,易在水和油的界面形成吸附层,属于表面活性剂的一种。其余油基如烷基(碳氢化合物长链)与油脂中的烷烃结构相似,因此与油脂能互溶。其亲水基一般是溶于水或能被水所润湿的原子团,如羟基。牛乳饮品中主要的不稳定物质是油脂(易上浮)和蛋白质(易沉淀),我们主要从这两方面来探讨乳化剂在牛乳饮品中的作用机理。

1.1 乳化剂对牛乳饮品中油脂的作用机理

牛乳中的油脂和其它部分经机械搅拌混合均匀后,放置一段时间,油脂又会重新析出,在牛牛乳饮品表面形成一层乳白色油层。在该体系中加入一种乳化剂后,它就在两种物质间的界面发生吸附,形成界面膜。在这种界面膜中,乳化剂分子按其分子内极性发生定向排列。即亲油部分伸向油,而亲水部分朝水定向排列。其结果是油分子和乳化剂的亲油部分为一方,与水分子和乳化剂的亲水部分为另一方的相互作用。这种相互作用使界面张力发生变化。界面张力的变化可以使一种液体以液滴形式分散于另一种液体中,即形成乳状液。界面膜具有一定的强度,对分散相液滴起保护作用,使液滴在相互碰撞中不易聚结。

1.2 乳化剂对牛乳饮品中蛋白质的作用机理

蛋白质是一种表面具有极性结构基团的亲水粒子,经水分子的加成后形成水合物层,从而防止这些悬浮粒子聚结。在这种体系中加入乳化剂时,亲水的固体表面与乳化剂的亲水部分相互作用,而乳化剂的疏水部分朝着水定向排队列。从热力学的观点来看,这种状态是不稳定的因此会发生絮凝作用。乳化剂分子连续嵌入,形成具有外亲水结构的固体-乳化剂双层,生成可再溶剂化的粒子,从而使悬浮液稳定性增强。

但由于蛋白质的颗粒较大,同时牛乳中所含的蛋白质较高,因此牛乳饮品中的蛋白质单*乳化剂的乳化作用还不足以完全稳定,一般还需与具悬浮作用的物质(主要是各种食用胶体)配合使用,方能达到完全稳定的效果。

2 影响牛乳饮品乳状液稳定的因素

(1)乳化剂的结构

溶剂化形成的势垒对乳状液的稳定性有很大影响。例如,w-o型乳状液体系,当水粒子相接触时,水通过界面层中乳化剂的亲油基而结合起来。因此,乳化剂碳氢链为水润湿所需的能量成为聚合势垒。而在o-w 型乳状液体系中,乳化剂为非离子表面活性剂,油润湿水和聚氧乙烯链的能量构成聚合势垒。因此,以采用长链的乳化剂为宜。

一般地说,为使w-o型乳状液稳定,应采用亲油基和亲水基均大的乳化剂。为得到低温下稳定的w-o型乳状液,应采用易溶于油的乳化剂。为此,最好选用含支链烃基和双链的乳化剂。对于o-w型乳状液来说,宜选用分子大的乳化剂。当以甘油脂肪酸酯做乳化剂制备w-o型乳状液时,添加降低相转变温度的物质,如山梨醇、氨基酸及盐等,可提高稳定性。

(2)乳化剂的添加量

为使乳化剂在界面上饱和吸附,需要的乳化剂量应大于临界胶束浓度。在w-o型乳状液的情况下,油相中形成胶束时临界胶束浓度圈较大,并且随温度升高,其增大的幅度也大。因此,为使w-o乳液稳定,必须加入较多的乳化剂。当油为极性的时,其加入量还要更大些。

由于非离子乳化剂在水相中的临界胶束浓度非常小,所以不必担心乳化剂的链长和温度的变化是否会影响覆盖o-w型乳状液粒子表面所需的乳化剂的充足性。

(3)乳化剂的分散情况

为使乳化剂能充分发挥其乳化作用,乳化剂的分散一定要充分,否则非但难以起作用,而且乳化剂本身可能浮于牛牛乳饮品的表面,大大影响牛牛乳饮品的稳定性。一般来说,w-o型的乳化剂(如单甘酯等),其分散温度不宜过高,以70-85℃为宜,若超过90℃,则很难分散,即使再降温,由于其本身的结构已发生变化,因此也难以分散了。在乳化剂分散时,需加以适度的搅拌,同时还可以加入助分散剂,来促进其分散。

(4)牛乳饮品用水的质量

硬度太大的水,会严重影响乳化剂的乳化效果。因此,用来生产牛牛乳饮品的用水都应经软化处理,让其硬度降到8个德国度以下。同时,还可以在牛乳饮品中适量的络合剂如三聚磷酸盐来络合水中的阳离子,避免其对牛乳饮品的稳定性产生影响。

(5)油脂液滴或蛋白质颗粒的直径大小

要得到稳定的乳状液,分散相的粒子必须具有适度的直径大小。因此,在生产牛牛乳饮品时一般都需高压均质,一方面适度细化粒子大小;同时,也可以促进乳化剂的乳化作用。对于中性牛乳饮品来说一般较适宜的均质条件为:75-80℃,25-30mpa。而对于酸性牛乳饮品,其较适宜的均质条件为:60℃,20-25mpa。(6)液滴的电荷

乳状液的液滴电荷对乳状液的稳定性有明显的影响。大部分稳定的乳状液的液滴都带有电荷,当使用离子型乳化剂时,吸附在界面上的乳化剂离子的非极性基团插入油相,极性基团处于水相,从而使液滴带上电荷。由于乳状液的液滴带有同种电荷,当它们接近时就会相互排斥而制止液滴聚合,使乳状液的稳定性增高。可见,液滴上吸附的离子乳化剂分子越多,其带电量越大,制止液滴聚合的能力也越大,乳状液体系就越稳定。

(7)分散介质的粘度

乳状液分散介质的粘度对乳状液的稳定性有一定的影响。一般地说,分散介质的粘度越大,乳状液的稳定性越高。通常能溶于乳状液的高分子物质均能增高体系的粘度,使乳状液的稳定性增高。此外,高分子还能形成坚固的界面膜,使乳状液体系更加稳定。因此,在生产牛乳饮品时,乳化剂还需与食用胶体复配使用,以提高乳状液的稳定性。

3 牛乳饮品中常用的乳化剂及其hlb值

食品生产中使用的乳化剂品种繁多,总数在65种以上,按其亲水亲油性可分为:亲水型、亲油型和中间型;按其存在状态可分为:液体状、粘稠状和固体状;按其来源可分为天然乳化剂和人工合成乳化剂;按其在水中是否解离成离子可分为:离子型和非离子型。离子型的乳化剂按其在水中电离形成离子所带的电性又可分为:阴离子型乳化剂、阳离子型乳剂和两性离子型乳化剂。

在乳化作用中,对乳化剂的最关键的要求是:1.乳化剂必须吸附或富集在两相之间的界面上,使界面张力降低;2.乳化剂必须赋于粒子以电荷,使粒子间产生静电排斥力,或者在粒子周围形成一种稳定的、粘度特别高的甚至是固体的保护层。因此,作为乳化剂的物质必须具有两亲基团,才能起乳化作用。

在制备乳状液时选择适当的浮化剂是一个关键问题,而选择乳化剂的基本依据是hlb值。hlb值的意义是表示乳化剂分子是亲油的还是亲水的,及亲和程度。乳化剂的hlb值可表示如下:

hlb=[亲水基重量/(憎水基重亲水基重量)]*100/5

因此,在选择乳化剂,应对各种常用乳化剂的hlb值及其基本性质有一定的了解。下面是一些常用乳化剂的hlb值。

表1.常用乳化剂的hlb值

乳化剂名称hlb值

甘油单油酸酯3.4

单甘酯3.0-5.0

亲水性单甘酯9.0-11.0

甘油单月桂酸酯5.2

聚甘油脂肪酸酯6.0-15.0

蔗糖脂肪酸酯2.0-16.0

蔗糖甘油脂肪酸酯3.0-18.0

大豆磷脂3.0-11.0

乙酰化甘油单硬脂酸酯3.8

二乙酰化酒石酸甘油酯8.0

聚氧乙烯(20)甘油单硬脂酸酯13.1

山梨醇单油酸酯(span80)4.3

山梨醇酐单硬脂酸酯(span60)4.7

山梨醇酐单月桂酸酯(span20)8.9

聚氧乙烯山梨醇单油酸酯(20)(tween80)14.9

聚氧乙烯(20)山梨醇酐单硬脂酸酯(tween60)15.0

聚氧乙烯(20)山梨醇酐单月桂酸酯(tween20)16.9

丙二醇酯2.0-3.0

下面介绍几种最常用的牛乳饮品乳化剂及其基本性质。

(1)甘油酯(glycerin monostearate)及其衍生物

同硬脂酸和过量的甘油在催化剂存在下加热酯化而制得甘油酯。酯化生成物有单酯、双酯和三酯三种。三酯就是油脂,完全没有乳化能力。双酯的乳化性质也较差,表面张力下降能仅为单酯的1%以下。目前工业产品分为单酯含量40%~50%的单双混合酯(mdg),以及经分子蒸馏的单酯含量60%~70%(一次蒸馏)和单酯含量大于90%(二次蒸馏)的分子蒸馏单甘酯。

单甘酯是乳化剂中应用面最广、用量最大的品种。它具有优良的乳化能力和耐高温性能,添加于含油脂或蛋白质的饮料中,可提高溶解度和稳定性。为了改善甘油酯的性能,甘油酯可与其他有机酸反应生成甘油的衍生物聚甘油酯、二乙酰酒石酸甘油酯、乳酸甘油酯等。到目前已有13种衍生物被批准使用。这些衍生物的特点是改善了甘油酯的亲水性,提高了乳化性能和与淀粉的复合性能等,在蛋白饮料加工中有独特的用途。

(2)蔗糖脂肪酸酯(sucrose fatty acid ester)

蔗糖脂肪酸酯简称蔗糖酯(se),由脂肪酸的低碳醇酯和蔗糖进行酯交换而得。蔗糖分子内的8个羟基中有3个羟基化学性质与伯醇类似,酯化反应主要发生在这3个羟基上。因此控制酯化程度可以得到单酯含量不同的产品。产品hlb值可以为1~16。国内已有多家厂生产。se1~se16即代表hlb值1~16的蔗糖酯。蔗糖脂肪酸酯的乳化能力不及聚氧乙烯型非离子乳化剂,但它对人体无害,为无毒、无味、无臭的物质,进入人体后经过消化转变为脂肪酸和蔗糖,为营养物质,故使用安全。与甘油酯及山梨糖醇酯乳化剂相比,其亲水性最大。适于o-w型饮料的乳化稳定,因此在蛋白饮料中应用较多。

(3)山梨醇酐脂肪酸酯

山梨醇酐脂肪酸酯商品名司盘(span),一般由山梨醇加热失水成酐后再与脂肪酸酯化而得。这类乳化剂的产品分类是以脂肪酸构成划分的,如span20(月桂酸12c),span40(棕榈酸14c),span60(硬脂酸18c),span80(油酸18烯酸)等。蛋白饮料中最常用的是span60(hlb4.7)和span80(hlb4.3)。司盘呈白色至黄棕色的液体、粉末、薄片、颗粒或蜡块状。性质因构成的脂肪酸种类而异。hlb值1.8~8.6。常用于乳化蛋白饮料的司盘类hlb值为4~8。司盘不溶于冷水,能分散于热水。司盘的乳化能力优于其他乳化剂,但有特殊气味,风味较差,因此,很少单独使用,一般与其他乳化剂复配使用。(4)聚山梨酸酯

聚山梨酸酯商品名吐温(tween),由山梨糖醇与各种脂肪酸部分酯化而得的混合物。蛋白饮料中使用的有tween60(hlb14.9)和tween80(hlb15.0),为黄色至橙色油状液体(25℃)。有轻微特殊臭味,略带苦味。极易溶于水,形成无嗅及几乎无色的溶液。不溶于矿物油和植物油。由于其hlb值较高,价格又远低于等hlb 值的蔗糖酯等乳化剂,。通常与低hlb值的单甘酯、司盘、蔗糖酯复配使用,以适应各类蛋白饮料的需要。(5)大豆磷脂

大豆磷脂又称卵磷脂、磷脂,其主要成分有磷酸胆碱、磷酸胆胺、磷脂酸和磷酸肌醇。为浅黄色至棕色透

明的粘稠状液态物质,或白色至浅棕色粉末或颗粒。无嗅或略带坚果类气味及滋味。纯品不稳定,遇空气或光线则颜色加深,成为不透明。部分溶于水,但易形成水合物而成胶体乳状液。大豆磷脂为两性离子表面活性剂,乳化能力较强,在热水中或ph在8以上时乳化作用更强。若添加乙醇或乙二醇,则它们会与大豆磷脂形成加成物,乳化性能提高。酸式盐可破坏乳化而析出沉淀。大豆磷脂不仅是一种乳化剂,同时还是一种营养强化剂,可增加磷酸胆碱、胆胺、肌醇及有机磷。食用磷脂还可降低人体的胆固醇。但一般大豆磷脂的价格较高,一般在高档的乳制品中使用。

(6)酪蛋白酸钠(sodium caseinate)

酪蛋白酸钠又称酪朊酸钠,商品酪蛋白酸钠含蛋白质(干基)大于90%,为白色至淡黄色粘状、粉末或片状。无臭、无味或稍有特异香气和味道。易溶于水。ph中性,其水溶液加酸产生酪蛋白沉淀。酪蛋白酸钠具有良好的乳化作用和稳定作用,能增进脂肪和水分的亲和性,使各成分均匀混合分散。在蛋白饮料中常作乳化剂、增稠剂和蛋白质强化剂。

4 牛乳饮品中乳化剂的选择和使用原则

对于简单的油-水体系而言,对乳化剂的选择和应用的判定根据其是w-o,o-w乳状液,再根据各种乳化剂的hlb值来选择就可以了。然而,对于复杂体系如牛乳饮品这样含有碳水化合物和蛋白质的食品,hlb值就只能作为一个选择乳化剂的重要依据,而不是唯一的依据。在牛牛乳饮品中选择乳化剂还需考虑以下几方面的情况:

(1)牛乳饮品的含乳量

一般来说,牛乳饮品中的含乳量越高,所需使用的乳化剂的量越大,同时对所用乳化剂的种类及其配比的要求也愈为严格。

(2)饮料的ph值

中性牛乳饮品和酸性饮料应根据不同乳化剂在不同条件下的作用效果,区别选择。

(3)牛乳饮品中添加的其它物质对乳状液体系的影响

如在生产特浓纯奶时,有时需添加奶油或其它油脂,此时,乳化剂的使用量需增加。同时,对其种类及配比也应作相应调整。

(4)牛乳饮品的热处理情况

对于采用不同条件进行灭菌的牛乳饮品其乳化剂使用的种类、配比及其量都会有所不同。一般说来,灭菌的温度越高,时间越长,所需添加的乳化剂的量越大。

总而言之,一个理想的牛乳饮品乳化剂配方,应与水相和油相均有较强的亲和力,能够对牛乳饮品中的各种不稳定因子(主要是油脂和蛋白质)都有较好的乳化稳定作用。而单一的乳化剂很难达到这种理想状态。一般都应将hlb值大的乳化剂与hlb值小的乳化剂复配使用,同时还要与适当的胶体同时使用,方能取得最佳的乳化效果。

乳化剂性质及应用

食品乳化剂的性质及应用 一、乳化剂的简介: 1. 乳化剂是一种双亲分子,是有一个亲油端及一个亲水端在体系中,分散 相称为不连续相,在食品中,亲油基常是食品级油或脂的长链脂肪酸,亲水 基可以是非离子型,如甘油,亲水基可以是阴离子型(带负电如乳酸盐),亲 水基可以是两性(如卵磷脂),亲水基可以是阳离子型,具有毒性,一般不 用。 2.乳化液: 常有O/W与W/O型分散液,总的说来,连续相是乳化剂的溶解度较大的一相。 3、HLB 亲水性与亲油性平衡值,理论上,HLB=(亲水性分子量/总分子量)×20=a/b ×20 由此可见,HLB在0~20 较小值代表乳化剂在油相中更易溶解,较大值则相反,常见乳化剂的HLB值:

两种乳化剂混合物的HLB=A×HLBa+B×HLBb 其中A、B表示质量百分数。 经研究: HLB在3~6范围内有利于形成W/O型乳化液 HLB在11~15范围内,有利于形成O/W型乳化液 HLB在6~11范围内,无良好乳化性,只有湿润性能 O/W型乳化液在HLB=12最稳定, W/O型乳化液在HLB=3.5最稳定。 二、乳化剂的作用: 1、乳化剂最重要的作用是使互不相溶的水、油两相得以乳化形成均匀、稳定的乳状液,保持油和水的两相稳定。 2、与淀粉作用: 淀粉在水中形成@螺旋结构,内部有疏水作用,乳化剂疏水基进入淀粉@螺旋结构,通过疏水键与之结合,形成复合物或络合物,降低淀粉分子的结晶程度,乳化剂进入淀粉颗粒内部会阻止支链淀粉的结晶程度,防止淀粉老化,使面包、糕点等淀粉类制品柔软,具有保鲜作用。 3、与蛋白络合,改善食品结构及流变特性增强面团强度。蛋白质因氨基酸极性不同具有亲水和疏水性,在面筋中,极性脂类分子以疏水键与麦谷蛋白结合,以氢键与

食品乳化剂的特性及在油脂乳化中的应用

食品乳化剂的特性及在油脂乳化中的应用 一、前言 随着人们生活水平的提高及饮食结构的变化,在传统追求色、香、味的同时,更加重视食品的功能化、特性化和多样性,无论怎样更新,食品的营养性和安全性是保障和提高人类健康最重要的前提。所以要达到上述目标,正确和科学使用食品乳化剂尤为重要,基于此,我们技术工作者严格按照《中华人民共和国食品卫生法》和《食品添加剂卫生管理办法》研发、生产、推荐使用优质、规范的食品乳化剂,勇担食品安全之重任。 二、食品乳化剂的特性及乳化机理 食品乳化剂是一类能使两种或两种互不相容构成相(如:油和水)均匀地形成分散或乳状(乳浊)体的活性物质。其特性取决于乳化剂的HLB值(亲水亲油平衡值),而HLB值的大小取决于乳化剂的分子构成,乳化剂分子亲水基团数量多(如:-OH基),表现出强的亲水性,即HLB值偏高,形成水包油(O/W)型乳化剂;若乳化剂分子中碳氢链越长(如:CH3—CH2—CH2—……),亲油基团大,则亲油性强,HLB值偏低,形成油包水(W/O)型乳化剂,人们规定亲水性100%乳化剂,HLB值为20(以油酸钾为代表),亲油性100%,HLB 值为零(以石蜡为代表)期间分成20等分,如图一所示: HLB值1~6易形成W/O型乳化体系,其中1~3为消泡剂,3.5~6为油包水型乳化剂。6~20易形成O/W型乳化体系,其中7~8为润湿剂,8~18为油/水型乳化剂,13~15为洗涤剂,15~18为去污、加溶剂。截止2006年《中华人民共和国卫生部公告》我国已批准使用的食品乳化剂为36种,主要为阴离子和非离子,极少量两性离子,据相关资料报道,我国目前年用量4万吨左右,其中单甘酯2万吨左右。现将主要品种及特性列于表一。 表一乳化剂主要品种及特性 单甘酯(GMS DGMS)特性: 乳化、分散、抗淀粉老化 硬脂酰乳酸钠(SSL)特性: 增筋、乳化、防老化、保鲜、增大面包、馒头体积、改善组织结构 硬脂酰乳酸钙-钠(CSL-SSL) 特性: 增筋、乳化、防老化、保鲜、增大面包、馒头体积、改善组织结构. 三聚甘油单硬脂酸酯(PGFE)特性: 较强的乳化性,保湿、柔软性、防止淀粉回生老化 双乙酰酒石酸单(双)甘油酯(DATEM)特性: 乳化、增加面团弹性、韧性和持气性,增大面包、馒头体积,防止老化. 月桂酸/辛酸单甘酯(GML/GMC)特性: 乳化、分散、防腐、保鲜. 斯盘、吐温系列(S-60 、T-60等)特性: 良好乳化、稳定、分散、

道路沥青用乳化剂

道路沥青用乳化剂 乳化剂是乳化沥青生产的关键原材料。乳化剂一般占乳液总量的0.3﹪~2.0﹪.虽然乳化剂量并不多,但它所起的作用却是十分重要的。众所周知,沥青与水是互不相溶的两种物质,是不能形成相对稳定的平衡体系的。如果没有乳化剂就不能生产乳化沥青产品来。 根据乳化剂溶解于水中乳化剂分子亲水基是否带有电荷,把乳化剂分为离子型和非离子型。离子型乳化剂由于在水中电离后亲水基所带电荷的不同,又分为阳离子型和阴离子型。此外还有两性离子型。这里仅对常用乳化剂做概括介绍。 阳离子乳化剂 阳离子乳化剂根据破乳速度的快慢分为快裂、中裂、慢裂三种。慢裂乳化剂根据混合料凝结时间的长短分为慢凝和快凝两种。 用中裂和快裂乳化剂生产的乳化沥青主要用于喷洒,铺筑表面处治路面和贯入式路面,其中以中裂型使用较多,快裂型使用很少,快裂型特别适合较低温度条件下喷洒使用。用慢裂乳化剂生产的乳化沥青主要用于稀浆封层,其中慢裂快凝型适合用于高等级公路的养护,慢裂慢凝型适合用于普通道路的养护。 1.快裂乳化剂 N—十六到十八烷基丙稀二胺是常用的快裂乳化剂,外观为白色固体。也称为N—十六到十八烷基丙撑二胺,或N—十六到十八烷基丙二胺。 2、中裂乳化剂

中裂乳化剂在国内有很多家生产,外观为黄色半固态,其中使用最多最普遍的是十八烷基双(氮)季铵盐,简称18331,标准名称为;N—(3—十八胺基—2—羟基)—丙基—三甲基氯化铵。这种乳化剂合成生产工艺技术成熟,质量稳定,乳化能力强,乳液稳定性好。 中裂乳化剂还有烷基季铵盐类好烷基双(氮)季铵盐类。烷基季铵盐类主要有;十六烷基三甲基溴化胺(1631),十八烷基三级基氯化胺(1831 OT,),十六到十九烷基三甲基氯化铵(NOT 1831). 3.慢裂乳化剂 我国最先使用的慢裂乳化剂是木素胺类,也被称之为木质素胺或木质胺。这类乳化剂的最大特点是价格低。用木素胺生产的乳化沥青用于稀浆封层是能达到拌合摊铺所需时间的要求。但他的缺点是凝结成型时间长,一般要一到几小时以上时间,属于慢裂慢凝型。外观为深棕色粘稠液态,有强烈氨味。木素胺类乳化剂有二胺、三铵和季胺盐等几种,最常用的为季铵盐,即木素三甲胺,标准命名为;3—木素(苯基丙烷结构单元)—2—羟基—1—三甲氯化胺。 另一类慢裂乳化剂是酰胺类。我国生产的这类乳化剂主要有烷基酰胺基多胺。如果使用得当,它也是慢裂快凝乳化剂。慢裂乳化剂还有阳离子咪唑啉类。同时它也是慢裂快凝乳化剂。 4. 慢裂快凝乳化剂 慢裂快凝型阳离子沥青乳化剂是适用于高等级公路稀浆封层和改性稀浆封层的优质乳化剂。由于用于高等级公路,对乳化剂本身的要求较高。要由乳化剂自身的作用即达到慢裂又达到快凝;对重交沥青

食品中常用乳化剂的优缺点及使用范围

食品中常见乳化剂的优缺点和适用范围 一、硬脂酰乳酸钠/钙(ssl/csl) 1.优点: 具有强筋的保鲜的作用。一方面与蛋白质发生强烈的相互作用,形成面筋蛋白复合物,使面筋网络更加细致而有弹性,改善酵母发酵面团持气性,使烘烤出来的面包体积增大;另一方面,与直链淀粉相互作用,形成不溶性复合物,从而抑直链淀粉的老化,保持烘烤面包的新鲜度。ssl/csl在增大面包体积的同时,能提高面包的柔软度。 2.缺点:与其他乳化剂复配使用,其优良作用效果会减弱。 3.适用范围:根据《食品添加剂使用卫生标准》GB2760-1996中规定:硬脂酰乳酸钠可用于面包、糕点,最大用量为2.0g/kg。 二、双乙酰酒石酸单甘油酯(datem) 1.优点: 能与蛋白质发生强烈的相互作用,改进发酵面团的持气性,从而增大面包的体积和弹性,这种作用在调制软质面粉时更为明显。如果单从增大面包体积的角度考虑,datem在众多的乳化剂当中的效果是最好的,也是溴酸钾替代物一种理想途径。 2.缺点:吸湿性大,细粉在夏季高温潮湿(或储存不当)时特别容易结块 3.适用范围: 用于植脂性粉末,5.0g/kg。氢化植物油、搅打过的奶油、面包、糕点,10g/kg。 三、蔗糖脂肪酸酯(se) 1.优点: 在面包品质改良剂中使用最多的是蔗糖单脂肪酸酯,它能提高面包的酥脆性,改善淀粉糊黏度以及面包体积和蜂窝结构,并有防止老化的作用。采用冷藏面团制作面包时,添加蔗糖酯可以有效防止面团冷藏变性。 2.缺点:

由于乳化剂的协同效应,单独使用蔗糖酯远不如与其他乳化剂合用,适当复配后乳化效果更佳。在酸性或碱性时加热可被皂化。 3.适用范围: 可用于肉制品、香肠、乳化香精、水果及鸡蛋保鲜、冰淇淋、糖果、面包, 1.5g/kg;乳化天然色素,10g/kg。 四、松香甘油酯 1.优点: 质脆,无臭或微有味。不溶于水、低分子醇,溶于芳香族溶剂、烃、萜烯、酯、酮、橘油及大多数精油。具有稳定饮料的作用。 2..适用范围: 可用于胶姆糖基础剂,最大量1.0g/kg。乳化香精,最大量100g/kg。可用作饮料的稳定剂,用量在成品中不超过0.05%,在口香糖基础剂用量不超过01% 五、改性大豆磷脂 1.优点: 用于人造黄油(氢化油),起乳化、防溅、分散等作用;用于油脂乳化剂,起油水乳化作用,乳化油可以代替纯油脂,有改进食品质量、节约食品加工用油的效果。在巧克力中起保形、润湿作用,能防止因糖分的再结晶而引起的发花现象。糖果中特别是对含有坚果及蜂蜜的糖果,能防止渗油及渗液作用,对口香糖能起留香作用。 2.缺点: 在水中很容易形成乳浊液,比一般的磷脂更容易分散和水合。极易吸潮,易溶于动植物油,部分溶于乙醇。 3.适用范围: 用于人造黄油、巧克力,0.2%~0.3%;糖果,0.5%;口香糖,0.2~0.3%、蛋制品等。 六、木糖醇酐单硬脂酸酯

化妆品中常用的表面活性剂综述

题目:综述化妆品中常用的表面活性剂 阴离子AAS

名称简称用途安全性 N-酰胺基及其盐香波、皮肤清洁剂、口腔制 品、含药化妆品、香皂和添 加剂等…没有刺激性,非常安全 羧酸(酯)盐很广泛,用于制备O/W型膏 霜或乳液。主要用作皂基、 各种乳液和膏霜基体。呈碱性,稍微有刺激的感觉 硫酸(酯)盐 烷基硫酸酯盐AS很广泛,O/W型乳化剂、润 湿剂和悬浮剂,常在香波和 皮肤清洁制品使用。一般与 其它AAS复配来增加泡沫 的稳定性和粘度,并降低对 皮肤的脱脂能力。高浓度时有刺激性。但在化妆品的使用条件下是安全的

N-酰胺基及其盐 由α-氨基酸的氨基酰化后制得。氨基酸属于两性,但酰化后变成阴离子AAS。

用途: 香波:增泡和稳泡,头发亲合性强,改善梳理性,减少静电; 皮肤清洁剂:治疗面部粉刺,可与水杨酸和过氧化苯甲酰等匹配而不影响其活性; 口腔制品:口腔清洗剂,抑制己糖激酶的生长,防止牙齿腐烂; 含药化妆品:去屑香波、治疗粉刺膏霜等。 香皂和添加剂等… 安全性: 已在化妆品和洗涤用品应用几十年,非常温和,对皮肤不会产生过敏和刺激,安全性非常高。 羧酸(酯)盐

一般指单价羧酸(酯)盐型。 用途:很广泛,用于制备O/W型膏霜或乳液。主要用作皂基、各种乳液和膏霜基体。 安全性:呈碱性,稍微有刺激的感觉。 硫酸(酯)盐 用途:O/W型乳化剂、润湿剂和悬浮剂,是香波和皮肤清洁使用较广泛的AAS之一。一般与其它AAS复配来增加泡沫的稳定性和粘度,并降低对皮肤的脱脂能力。 安全性:高浓度时有刺激性。但在化妆品的使用条件下是安全的。 用途:香波的主要表面活性剂,也用于皮肤清洁和沐浴制品,较少用

乳化剂在食品中的作用原理

○食品添加剂○ 乳化剂在食品中的作用原理 张佳程 周浩 摘要:本文简要介绍了乳化剂在食品中的三方面作用:降低界面张力;与淀粉和蛋白质相互作用;改进脂肪和油的结晶。阐述了乳剂与食品中各成分的相互作用的基本原理。 关键词:乳化剂作用原理 一、引言 早在1921年,在人造黄油工业中,就应用了单双甘油酯,不过直到15—20年后,食品乳化剂的生产才有较大的工业规模。随着食品生产的工业化发展,对食品乳化剂提出了新的要求。 食品乳化剂的世界总需求量约25万吨,其中单甘油酯约占总消费量的2 3,其次是蔗糖酯。我国单甘油酯产量约2200吨,也已开发了乳化能力强的高纯度(90%以上)的分子蒸馏单甘酯。蔗糖酯我国从80年代开始开发,近来发展很快。大豆磷酯是使用很普遍的乳化剂,兼有一定的营养价值。但目前由于纯度不够,利用价值不高,有较大应用潜力。 二、食品乳化剂的概念 乳化剂一词,仅仅指凭借界面作用,能够促进乳状液或泡沫的乳化作用或稳定作用。不过,表面活性剂一词也常用在这些产品上。在食品中,乳化剂一词有时易产生误解,因为有些产品中所谓乳化剂的实际功能,只能与淀粉蛋白质等成分相互作用,完全与乳化作用无关。但是根据传统习惯,我们仍称它们为乳化剂。 通常食品乳化剂必须具有两种性质:表面活性和可食性。因而,通常食品乳化剂定义为能改善乳化体中各种构成相互之间的表面张力,使之形成均匀的分散体或乳化体,从而改进食品组织结构、口感、外观,以提高食品保存性的一类可食性的具有亲水和亲油双重性的化学物质。乳化剂一般分为油包水型和水包油型两类,以亲水亲油平衡值(H ydroph ilty and L i poph ilyty Balance,简称HLB)表示其特性。规定100%亲油性的乳化剂HLB为0,100%亲水性的HLB为20,其间分20等分,以表示其亲水亲油性的强弱情况和不同的作用(如图1)。在食品乳化剂中,一般亲油性占上风,但根据化学成分的不同,HLB值有相当大的变化。按Griffin 提出的公式可以计算出HLB值。 HLB 值 各乳化剂的适用性 各主要单酯的适用范围图1、HLB值与乳化剂的关系 HLB=20(1-S A) S=酯的皂化值 A=脂肪酸的酸值 三、食品乳化剂的作用 食品乳化剂的作用主要分三方面: 11乳化剂降低油—水界面的张力,促进乳化作用,在油—水、乳化剂界面上形成相平衡稳定乳状液。 油水两相之所以不相容,是由于两相间存在界面张力(或称表面张力),即油和水的接触面上有相互排斥和各自尽量缩小彼此接触面积的两种作用力。只有当油浮于水面分为两层时,其接触面积最小,最稳定。 牛奶是奶油及水的乳化体系,一般奶油表现为细微的小滴分散于水中,但长期静置后由于界面张力关系,奶油小滴便聚集成小球,并长大成凝聚团块,浮于水面,若加入乳化剂,其亲油基与奶油结合,在奶油微滴表面形成一层物理膜,可以防止油滴相互聚集。此时

乳化沥青生产流程

一、沥青乳化的生产流程 乳化沥青主要由以下五种主要的材料组成:沥青、水、乳化剂、酸和改性剂,为了储存稳定或者是为了满足其他的特殊用途,还会惨加少量的添加剂。 乳化沥青的生产流程可以分为以下四个过程:沥青准备,皂液准备,沥青乳化,乳液储存。 1. 沥青的准备 沥青是乳化沥青中的最主要组成部分,一般占到乳化沥青总质量的50%-65%。当 乳化沥青喷洒或者拌和完成后,乳化沥青破乳,其中的水分蒸发后真正留在路面上的是沥青。因此,沥青的准备至关重要。 根据乳化沥青的用途,选择适宜的沥青品牌和标号后,沥青的准备过程主要就是将沥青加热并保持在适宜的温度的过程。 沥青准备过程中温度的控制十分重要,如果沥青温度过低,会造成沥青黏度大,流动困难,从而乳化困难;如果沥青温度过高,一方面会造成沥青老化,同时也会使乳化沥青的出口温度过高,影响乳化剂的稳定性和乳化沥青的质量。 2. 皂液的准备根据所需的乳化沥青的不同,选择适宜的乳化剂种类和剂量以及添加剂种类和剂量,配置乳化剂水溶液(皂液)。 根据乳化沥青设备和乳化剂种类的不同,乳化剂的水溶液(皂液)的制备过程也有差异。对于全自动连续式的乳化沥青生产设备,皂液的各个组分(水、酸、乳化剂等)都是由生产设备本身设置的程序自动完成的,只要保证各材料的供给即可;对于半连续式或间歇式的生产设备,则需要按照配方要求手工配置皂液。有的乳化剂水溶液需要加酸调节PH 值,有的(如季铵盐类)则不需要。有些常温下呈固态的乳化剂还需要在配置皂液前首先将其加热熔化。 皂液在进入乳化设备前的温度一般控制在55-75 E之间。 3.沥青的乳化将合理配比的沥青和皂液一起放入乳化机,经过增压、剪切、研磨等机械作用,使沥青形成均匀、细小的颗粒,稳定而均匀的分散在皂液中,形成水包油的沥青乳状液。合适的乳化沥青出口温度应在85C左右。 4.乳化沥青的储存乳化沥青从乳化机中出来,经冷却后进入储罐。大型的储罐中应配置搅拌装置,定期进行搅拌。以减缓乳化沥青的离析。 二、乳化沥青生产设备的分类 1.按照生产流程分类乳化沥青设备按照工艺流程分类,可以分为间歇作业式、半连续作业式、连续作业式三种。其工艺流程分别如图1-1 和图1-2 所示。 如图1-1 所示间歇式改性乳化沥青生产设备,生产时将乳化剂、酸、水、和胶乳改性剂等在皂液掺配罐中掺配,然后将其于沥青泵送到胶体磨中。一罐皂液用完后再配置皂液,然后再进行下一罐的生产。当用于改性乳化沥青生产时,根据改性工艺的不同,胶乳管道既可以连接在胶体磨前也可以连接到胶体磨后,或者没有专用的胶乳管道,而是手工将规定剂量的胶乳惨加到皂液罐中。

化妆品中常用的表面活性剂综述

题目:综述化妆品中常用的表面活性剂 AAS 类型 特点代表性产品应用 阴离 子 去污能力强,主要用于清洁 洗涤 脂肪酸皂(肥皂)、 十二烷基硫酸钠 清洁洗涤产品 阳离 子 较好的杀菌性与抗静电性, 应用于柔软去静电 高碳烷基的伯仲叔 季盐 洗发水、护发素 两性良好的洗涤作用,很温和,常与 阴或阳离子AAS搭配 椰油酰胺丙基甜菜 碱、咪唑啉 洗发水、洁面品 非离 子 安全温和,无刺激性,具有 良好的乳化、增溶等作用 失水山梨醇脂肪酸 酯(Span)和其环氧乙 烷加成物(Tween) 应用最广,常用于膏 霜、乳液中阴离子AAS 名称简 称 用途安全性 N-酰胺基及其盐香波、皮肤清洁剂、口腔制品、 含药化妆品、香皂和添加剂等… 没有刺激性,非常安全 羧酸(酯)盐很广泛,用于制备O/W型膏霜 或乳液。主要用作皂基、各种乳液 和膏霜基体。 呈碱性,稍微有刺激的 感觉 硫酸(酯)盐 烷基硫酸酯盐A S 很广泛,O/W型乳化剂、润湿剂 和悬浮剂,常在香波和皮肤清洁制 品使用。一般与其它AAS复配来增 加泡沫的稳定性和粘度,并降低对 皮肤的脱脂能力。 高浓度时有刺激性。但在化 妆品的使用条件下是安全 的 烷基聚氧乙烯醚硫酸 酯盐 A ES 香波的主要表面活性剂,也用 于皮肤清洁和沐浴制品,较少用作 乳化剂。一般与其它AAS(阴、两性、 非离子)复配 与AS相近,但刺激性 略低于AS 磺酸盐 烷基苯磺酸盐L AS-Na 去污力太强,因此在化妆品中 应用不广泛,主要用于洗衣粉 对皮肤中等刺激,容易 脱脂而变得干燥粗糙,用三 乙醇胺盐复配可降低刺激

性。 烷基磺酸盐S AS 低成本,稳定性好,刺激性低, 去污能力好,很有前途的AAS 对皮肤无致敏作用 N-酰胺基及其盐 由α-氨基酸的氨基酰化后制得。氨基酸属于两性,但酰化后变成阴离子AAS。 用途: 香波:增泡和稳泡,头发亲合性强,改善梳理性,减少静电; 皮肤清洁剂:治疗面部粉刺,可与水杨酸和过氧化苯甲酰等匹配而不影响其活性; 口腔制品:口腔清洗剂,抑制己糖激酶的生长,防止牙齿腐烂; 含药化妆品:去屑香波、治疗粉刺膏霜等。 香皂和添加剂等… 安全性: 已在化妆品和洗涤用品应用几十年,非常温和,对皮肤不会产生过敏和刺激,安全性非常高。 羧酸(酯)盐 一般指单价羧酸(酯)盐型。 用途:很广泛,用于制备O/W型膏霜或乳液。主要用作皂基、各种乳液和膏霜基体。 安全性:呈碱性,稍微有刺激的感觉。 硫酸(酯)盐 用途:O/W型乳化剂、润湿剂和悬浮剂,是香波和皮肤清洁使用较广泛的AAS之一。一般与其它AAS复配来增加泡沫的稳定性和粘度,并降低对皮肤的脱脂能力。 安全性:高浓度时有刺激性。但在化妆品的使用条件下是安全的。

表面活性剂作用机理

表面活性剂作用机理 表面活性剂具有湿润、乳化、去污、分散等作用,主要是因为: 1、表面活性剂能降低接触界面的表面张力 纯液体的表面张力在恒温下是定值,而溶液的表面张力则随溶液的组成不同而不同。通过实验人们发现,各种物质的水溶液的表面张力与浓度的关系主要有以下三种情况: 1、稍有上升,无机盐(氯化钠、硫酸钠)及多羟基有机物(蔗糖、甘露醇) 2、逐渐降低,低分子极性有机物(醇、醛、酮、脂、醚等) 3、低浓度时,显著降低,后变化不大(含有8个碳以上的碳氢链的羧酸盐、磺酸盐等) 通常把2、3类物质称为表面活性物质,而把第1类物质称为非表面活性物质。而第3类称为表面活性剂,即加入少量即能大幅降低溶液的表面张力,而随着浓度继续增大表面张力降低不再明显的物质。 表面活性剂能够降低溶液的表面张力主要是由其结构的特殊性决定的。它具有两性基团:亲水性基团和亲脂性基团,它能显著降低接触界面的表面张力,增加污染物特别是憎水性有机污染物在水相的溶解性。 2、表面活性剂能形成胶束 当表面活性剂达到一定浓度时,其单体急剧 聚集,形成球状、棒状或层状的“胶束”,该浓 度称为临界胶束浓度(critical micelle concentration,CMC),胶束是由水溶性基团包裹 憎水性基团核心构成的集合体,当胶束溶液达 到热力学稳定时可以形成微乳溶液。 根据“相似相容”原理,憎水性有机物有进 入与它极性相同胶束内部的趋势,因此将表面 活性剂达到或超过CMC时,污染物分配进入 胶束核心,大量胶束的形成,增加了污染物的溶解性,同时NAPLs从含水层介质上大量解析,溶解于表面活性剂胶束内,表面活性剂对NAPLs溶解性增加的程度可以由胶束——水分配系数和摩尔增溶比(MSR)来表示。

沥青乳化剂乳化原理

沥青乳化剂乳化原理 武城县博斯特筑路机械有限公司 沥青乳化剂定义:沥青乳化剂是表面活性剂的一种类型。它是能吸附在沥青颗粒与水界面,从而显著降低沥青与水界面的自由能,使其构成均匀而稳定的乳浊液的一种表面活性剂。 在水中加入沥青乳化剂以后,乳化剂的亲水基与水分子之间有很强的吸引力,乳化剂分子在液体表面上基本是无一定方向的,多处于平躺状态。由于溶液中乳化剂的浓度由小变大,亲油基的烃基部分,因憎水性排斥于水体系之外,产生疏水效应。这样就使乳化剂产生了一个方向性,水面上溶解的是亲水基,水面最远方向为亲油基,形成了乳化剂定向排列于界面上,使自由能趋于最小,保持了最稳定位置。这样乳化剂与空气界面上形成了一层单分子膜。这种有规则的分子排列现象称作分子定向排列或配位。这种单分子定向排列现象称为单分子吸附膜。 沥青乳化剂分子在水溶液中定向排列的吸附现象,不仅在空气和水相之间,也可发生在空气以外的沥青相中。这种吸附现象有物理吸附和化学吸附,以化学吸附为主,随着亲油基碳链长度增加吸附速度加快,分子定向排列的吸附速度加快,最后水的表面形成单分子层,使水的表面张力下降。 在乳化剂水溶液中加入过量的乳化剂,不仅可以形成单分子定向的吸附膜,而且能形成复杂的多层吸附膜和乳化剂分子集束,以尽量保持最小的自由能。如果沥青液经高速剪切成细小微粒(0.01mm-0.001mm)而均匀的分散在水中,溶入水中的乳化液分子会立即在沥青微粒界面被吸附,从而产生新的吸附排列,亲油基一段吸附于沥青内部,亲水基一端吸附于水中,以钳形固定于界面上,从而降低了沥

青与水的界面张力。当吸附的乳化剂分子达到饱和状态时,在沥青微粒表面形成一层被乳化剂分子包封的有一定机械强度的坚固的分子薄膜,使沥青微粒具有亲水性,而均匀稳定地分散在水中,形成乳化沥青。 沥青乳液是一个多相分相体系,沥青是以微粒形式均匀分散于水中的稳定乳状液,其稳定度因乳化剂大大加强。其中沥青为分散相,为不连续相或称内相;水为分散介质,为连续相或称外相,为水包油(O/W)型乳化沥青。也就是我们平时使用的乳化沥青。 阴离子乳化剂 阴离子乳化剂在水中溶解后,其活性部分倾向离解成负电离子的表面活性物质,其特征表现为具有一个大的有机阴离子,能与碱作用生成盐。根据带负电离子部分的结构不同,可分为羧酸盐型、磺酸盐型及硫酸盐型三大类。 阴离子乳化剂的缺点是抗硬水能力较差;优点是来源广、种类多、价格便宜。可用于碱性矿物集料。 一、羧酸盐型乳化剂,它是由大分子链的羧酸与碱作用而生成的阴离子沥青乳化剂。常用的有脂肪酸盐和环烷酸盐。其化学结构为:RCOOM R为憎水烃基,为长烃脂肪烃或环烷烃基,碳原子个数为9-21. M为金属离子,包括K+Na+ 在羧酸盐型沥青乳化剂中应用最多的为油酸钠、松香酸钠、月桂酸钠、环烷酸钠等。脂肪酸的碳链越长,亲油性越强,凝固点越高,制成的脂肪酸皂越硬,在水中的溶解性越差。脂肪酸的碳链越短在水中的溶解性越好,亲油性越差,对沥青的乳化效果越差。选择脂肪酸盐乳化剂一般选择碳数为12-20之间,其中应用最多的碳原子为12-18. 环烷酸存在于很多沥青中,可以从沥青中提取。用作沥青乳化剂的环烷酸的酸值应在75-175之间,沥青酸值在0.75KOH/g左右或更高的环烷酸沥青,可简单的用碱性乳化剂所乳化,可获得较满意的环烷皂乳化沥青。 (一)油酸皂 油酸皂是用天然油脂与氢氧化钠进行化学反应而生成的一种阴离子型乳化剂,学名为顺-9-十八碳烯酸盐,是含一个双键的不饱和脂肪皂。其化学式为:CH3(CH2)7-CH=CH-(CH2)7COONa 油酸是橄榄油、牛脂的主要成分,碳数均为18,由于分子中含有双键,增加了亲水性,在水中溶解性增强,具有极强的表面活性,是乳化沥青中常用的沥青乳化剂。但在硬水中与铝、镁等离子形成不溶性的铝皂、镁皂,影响乳化效果。 (二)硬脂酸钠 硬脂酸钠是由硬脂酸和碱作用而生成的硬脂酸皂。其化学式为CH3(CH2)16Na 硬脂酸钠多数是含有十八碳的饱和脂肪酸皂。其碳链越长,憎水性越强,亲水性羧酸基仅为一个,亲水性不足,顾在冷水中溶解性较差,易溶于热水。

食品添加剂

第十章食品添加剂 一、概述: 1.食品添加剂的定义 食品添加剂是为改善食品色、香、味等品质,以及为防腐和加工工艺的需要而加入食品中的化学合成物质或者天然物质。 2.食品添加剂的分类 目前我国食品添加剂有22个类别,2000多个品种,包括酸度调节剂、抗结剂、消泡剂、抗氧化剂、漂白剂、膨松剂、着色剂、护色剂、乳化剂、酶制剂、增味剂、营养强化剂、防腐剂、甜味剂、增稠剂、香料等。 3.食品添加剂的使用要求 1)在规定使用限量范围内对人体无害; 2)严格的质量标准,有害杂质不得检出或不能超过容许限量; 3)对食品的营养成分不能有破坏作用,也不应影响食品的质量与品质。 4)用量小、功效明显; 5)使用安全、方便; 6)添加于食品后能分析鉴定出来。 4.食品添加剂的使用标准 日允许摄入量(ADI);安全系数;半致死量(LD50); 5.食品添加剂的毒性学评价 目的:确定安全性或毒性;确定准用量,提出对有害物质禁用或放弃

的理由,为制定食品添加剂使用的卫生标准及有关法规提供依据。主要内容: 1)食品添加剂的化学结构、理化性质、纯度、及其存在形式、降解过程和降解产物。 2)食品添加剂进入机体后,在组织器官内的储存分布、代谢转变及排泄情况。 3)食品添加剂及其代谢产物在机体内引起的生物学变化,即对机体可能造成的毒害及其机理。包括急性毒性、慢性毒性、对生育繁殖的影响、胚胎毒性、致畸性、致突变性、致癌性、致敏性等。 6. 食品添加剂的管理 二、乳化剂、增稠剂、膨松剂 1.乳化剂的定义及分类 定义:是指添加于食品后可显著降低油水两相界面张力,使互不相溶的油(疏水性物质)和水(亲水性物质)形成稳定乳浊液的食品添加剂。 分类: 按来源分 天然乳化剂(磷脂、蛋白、胶质、藻类) 合成乳化剂(酯类、环糊精、甾类、卤代油) 按离子的类型结构分 1 、离子型乳化剂(阴、阳、两性) 2 、非离子型乳化剂 根据亲水、亲油相对强弱分为

沥青乳化剂的发展现状及应用展望

沥青乳化剂的发展现状及应用展望 沥青乳化剂是表面活性剂的一种类型,它具有表面活性剂的基本特性。由于带有亲油基与亲水基,在这两个基团作用下,使它能够吸附在沥青和水的相互排斥的界面上,从而降低它们之间的界面张力。 所谓乳化沥青就是将沥青热熔,经过机械的作用,以细小的微滴状分散于含有乳化剂的水溶液中,形成水包油状的沥青乳液。使用这种沥青乳液修路时,不需加热,可以在常温状态进行喷洒,贯入或拌和摊铺,铺筑各种结构路面的面层及基层,也可用作透层油、粘层油以及用于各种稳定基层的养护。 在世界性的能源危机影响下,在筑路工程中要求节省能源、节省资源、减少污染的呼声越来越高,已引起人们的高度重视。在这种形势下,人们经过长期筑路实践,发展应用阳离子乳化沥青铺筑路面是达到上述要求的可取途径。 采用乳化沥青铺路,现场施工简化,不需将沥青加热到170~180℃高温后再去使用,砂石等矿料也不需烘干加热,可以节省大量的燃料与热能。由于沥青乳液具有良好的工作度,可以均匀地分布在骨料表面上,并与其产生较好的粘附性,因而可节省沥青用量,简化施工程序,改善施工条件,也减少对周围环境的污染。由于这些优点,乳化沥青不仅适用于铺筑路面,而且在填方路堤的边坡保护,建筑屋面及洞库防水,金属材料表面防腐,农业土壤改良及植物养生,铁路的整体道床,沙漠固沙等许多工程中得到广泛的应用。由于乳化沥青既能改善热沥青的施工技术,又使沥青的应用范围得到不断扩大,因此乳化沥青得到迅速的发展。 一、乳化沥青的发展历程

从本世纪初就进行乳化沥青的研究,自商品化的乳化沥青生产以来,至今已有60多年的历史。在前40年的发展中主要是阴离子乳化沥青,但这种阴离子乳化沥青的微粒带有阴离子电荷,当乳液与骨料表面接触时,由于湿润骨料表面也带有因离子电荷,同性相斥的原因,致使沥青微粒不能尽快地粘附到骨料表面上。若使沥青微粒裹覆到骨料表面必须待乳液中水分的蒸发。 随着近代界面与胶体化学的进展,近20年来,阳离子乳化沥青发展速度很快。这种沥青乳液是使沥青微粒带有阳离子电荷,当与骨料表面接触时,异性相吸的作用,使沥青微粒吸附在骨料表面上。 日本使用沥青乳化剂是在1925年东京大地震恢复时期。1930年开始有商品提供市场,战后有得到迅速恢复与发展。 1951年法国开始研制阳离子乳化剂。1957年美国把阳离子乳化剂应用在道路施工上,并于1959年开始商业化。 60年代苏联仅应用阴离子乳化剂,随着化学工业的发展开始试制某些类型的阳离子表面活性剂,并发现了它作为道路沥青乳化剂是可行的。于1972年试制阳离子乳化剂烷基三甲基氯化铵,利用它作为沥青乳化剂。 80年代以后,阳离子沥青乳化剂又有新应用,它可防止原子铀尾渣的放射性污染,采用阳离子沥青乳化剂和水泥砂浆混合物制成的密封剂,可减少99.9%氡放射物密封的长期稳定性试验正在进行中。 我国阳离子沥青乳化剂的研制和应用起步较晚,1977年研制成功,1978年由交通部组织完成了“阳离子乳化沥青及其路用性能研究”课题协作组。为发展我国阳离子乳化沥青做了大量工作。1981年列为交通部重点科研项目,1983年列为国家计委与经委的节能应用项目。1985年由交通部进行了技术鉴定。并决定“七五”期间

乳化剂的作用机理

乳化剂的作用机理 牛乳饮品一般是由蛋白质、脂肪、糖类、食用纤维(水溶性或水不溶性)、淀粉类、维生素类(水溶性或油 溶性)、矿物质类等物质组成的营养性饮料,是一种客观不稳定分散体系,既有蛋白质及果汁微粒形成的悬 浮液、脂肪的乳浊液,又有以糖类、盐类形成的真溶液。这一复杂体系即使采用最先进的加工机械和加工工艺,也很难达到饮料的质量要求,会发生油层上浮、蛋白质沉淀、色素凝聚等产品质量问题。要解决这一问题,需要加入适量的乳化剂、增稠剂、品质改良剂等食品添加剂,以使饮料保持稳定。 1乳化剂的作用机理 食品乳化剂的基本物理化学性质是表面活性和乳化增溶性。因为乳化剂的分子内具有亲水基和亲油基,易在水和油的界面形成吸附层,属于表面活性剂的一种。其余油基如烷基(碳氢化合物长链)与油脂中的烷烃结构相似,因此与油脂能互溶。其亲水基一般是溶于水或能被水所润湿的原子团,如羟基。牛乳饮品中主要的不稳定物质是油脂(易上浮)和蛋白质(易沉淀),我们主要从这两方面来探讨乳化剂在牛乳饮品中 的作用机理。 1.1乳化剂对牛乳饮品中油脂的作用机理 牛乳中的油脂和其它部分经机械搅拌混合均匀后,放置一段时间,油脂又会重新析岀,在牛牛乳饮品表面形成一层乳白色油层。在该体系中加入一种乳化剂后,它就在两种物质间的界面发生吸附,形成界面膜。 在这种界面膜中,乳化剂分子按其分子内极性发生定向排列。即亲油部分伸向油,而亲水部分朝水定向排列。其结果是油分子和乳化剂的亲油部分为一方,与水分子和乳化剂的亲水部分为另一方的相互作用。这种相互作用使界面张力发生变化。界面张力的变化可以使一种液体以液滴形式分散于另一种液体中,即形成乳状液。界面膜具有一定的强度,对分散相液滴起保护作用,使液滴在相互碰撞中不易聚结。 1 . 2乳化剂对牛乳饮品中蛋白质的作用机理 蛋白质是一种表面具有极性结构基团的亲水粒子,经水分子的加成后形成水合物层,从而防止这些悬浮粒子聚结。在这种体系中加入乳化剂时,亲水的固体表面与乳化剂的亲水部分相互作用,而乳化剂的疏水部分朝着水定向排队列。从热力学的观点来看,这种状态是不稳定的因此会发生絮凝作用。乳化剂分子连续嵌入,形成具有外亲水结构的固体-乳化剂双层,生成可再溶剂化的粒子,从而使悬浮液稳定性增强。 但由于蛋白质的颗粒较大,同时牛乳中所含的蛋白质较高,因此牛乳饮品中的蛋白质单*乳化剂的乳化作用 还不足以完全稳定,一般还需与具悬浮作用的物质(主要是各种食用胶体)配合使用,方能达到完全稳定的效果。 2影响牛乳饮品乳状液稳定的因素 (1)乳化剂的结构 溶剂化形成的势垒对乳状液的稳定性有很大影响。例如,w-o型乳状液体系,当水粒子相接触时,水通过 界面层中乳化剂的亲油基而结合起来。因此,乳化剂碳氢链为水润湿所需的能量成为聚合势垒。而在o-w 型乳状液体系中,乳化剂为非离子表面活性剂,油润湿水和聚氧乙烯链的能量构成聚合势垒。因此,以采用长链的乳化剂为宜。 一般地说,为使w-o型乳状液稳定,应采用亲油基和亲水基均大的乳化剂。为得到低温下稳定的w-o型乳状液,应采用易溶于油的乳化剂。为此,最好选用含支链烃基和双链的乳化剂。对于o-w型乳状液来说, 宜选用分子大的乳化剂。当以甘油脂肪酸酯做乳化剂制备w-o型乳状液时,添加降低相转变温度的物质, 如山梨醇、氨基酸及盐等,可提高稳定性。 (2 )乳化剂的添加量 为使乳化剂在界面上饱和吸附,需要的乳化剂量应大于临界胶束浓度。在w-o型乳状液的情况下,油相中 形成胶束时临界胶束浓度圈较大,并且随温度升高,其增大的幅度也大。因此,为使w-o乳液稳定,必须 加入较多的乳化剂。当油为极性的时,其加入量还要更大些。 由于非离子乳化剂在水相中的临界胶束浓度非常小,所以不必担心乳化剂的链长和温度的变化是否会影响覆盖o-w型乳状液粒子表面所需的乳化剂的充足性。

化妆品中的乳化剂

化妆品乳化剂的选择方法 乳状化妆品是化妆品中最广的一种剂型,从稀薄的流体到粘稠的膏霜。因此,乳状化妆品的乳化剂的选用对于化妆品的研究与生产以及保存和使用都有着极其重要的意义。 两个不相混溶的纯液体不能形成稳定的乳状液,必须要加入第三组分(起稳定作用),才能形成乳状液。例如,将菜籽油和水放在烧杯里,无论怎样用力摇荡,静止后菜籽油和水很快就会分离。但是,如果将烧杯里加一点洗洁精,再摇荡时就会形成象牛奶一样的乳白液体,而且这种乳状液可在相当长时间内保持稳定。这里称形成乳状液的过程为乳化。而制备稳定的乳状液(乳状化妆品)的一个关键问题就是如何选择一种合适的乳化剂,使产品(化妆品)符合要求,这是本文所要讨论的问题。 制备乳状液时,通常乳状液的一相是水,另一相是极性小的有机液体,习惯上统称为“油”。根据内相外相的性质,乳状液主要有两种类型,一类是油分散在水中,简称为水包油型乳状液,用O/W 表示;另一类是水分散在油中,简称为油包水型乳状液,用W/O 表示。这里要指出的是,上述的油、水两相不一定是单一的组分,经常是每一相都可能包含有多种成分。除了上述两种基本乳状液外,还有两种复合乳状液,其分散相本身就是乳状液,如将一个O/W 的乳状液分散到连续的油相中,形成一种复合(O/W)/O 型的乳状液;或者将一个W/O 的乳状液分散到连续的水相中,形成一种复合的(W/O)/W 的乳状液。 在油相、水相的性质确定后,制备较稳定(比如放置三年)的乳状液最重要的条件是乳化剂的选择。在诸多类型的乳化剂中,以表面活性剂的应用最为广泛。

一、乳化剂选择的一般原则 因油、水相成分的诸多变化性(如赋予不同功效诉求),以及要求形成乳状液的类型的多样性和特殊性[如是透明啫喱型(油水两相折光率相同时)还是白色乳霜型,是油包水型还是水包油型等],实际上不可能找到一种通用的“万能”乳化剂。因此,只能在指定油相、水相组成与性质及所要求的乳状液类型后通过适当的方法选择相对最优良的乳化剂。具体选择原则如下: (1)界面张力越大,两种液体越 不相溶,所以乳化剂要具有良好的表面活性和降低表面张力的能力。 (2)乳化剂分子或与其他添加物 在界面上能形成紧密排列的凝聚膜,在这种膜中分子有强烈的定向吸附性。(3)乳化剂的乳化能力与其和油 相或水相的亲合能力有关。亲油性越强的乳化剂越易得到W/O 型乳状液,亲水性越强的乳化剂越易得到O/W 型乳状液。亲油性强的乳化剂和亲水性强的乳化剂混合使用时可以达到更佳的乳化效果。与此相应,油相极性越大,要求乳化剂的亲水性越大;油相极性越小,要求乳化剂的疏水性越强。 (4)适当的外相粘度以减小液滴 的聚集速度。V=2r2(ρ1 -ρ2)g/9η这里v 为液滴的沉降速度,r 为分散相液滴的半径,ρ1 、ρ2 为分散相和分散介质(连续相)的密度,η 为分散介质(连续相)的粘度。由此公式可以得出,乳状液分散相和分散介质(连续相)的粘度越大,则分散相液滴运动的速度愈慢,这有利于乳液的稳定。因此往往在连续相中加入增稠剂(一般常以能溶于分散介质的高分子物质),以此来提高乳状液的稳定性。

化妆品中常用的表面活性剂综述知识分享

化妆品中常用的表面活性剂综述

题目:综述化妆品中常用的表面活性剂 AAS类 型 特点代表性产品应用 阴离子去污能力强,主要用于清洁 洗涤 脂肪酸皂(肥 皂)、十二烷基硫 酸钠 清洁洗涤产品 阳离子较好的杀菌性与抗静电性, 应用于柔软去静电 高碳烷基的伯仲叔 季盐 洗发水、护发素 两性良好的洗涤作用,很温和, 常与阴或阳离子AAS搭配 椰油酰胺丙基甜菜 碱、咪唑啉 洗发水、洁面品 非离子安全温和,无刺激性,具有 良好的乳化、增溶等作用 失水山梨醇脂肪酸 酯(Span)和其环 氧乙烷加成物 (Tween) 应用最广,常用于膏 霜、乳液中阴离子AAS 名称简称用途安全性 N-酰胺基及其盐香波、皮肤清洁剂、口腔制 品、含药化妆品、香皂和添加 剂等… 没有刺激性,非常安全 羧酸(酯)盐很广泛,用于制备O/W型膏霜 或乳液。主要用作皂基、各种 乳液和膏霜基体。 呈碱性,稍微有刺激的 感觉 硫酸(酯)盐 烷基硫酸酯盐AS 很广泛,O/W型乳化剂、润湿 剂和悬浮剂,常在香波和皮肤 清洁制品使用。一般与其它 AAS复配来增加泡沫的稳定性 和粘度,并降低对皮肤的脱脂 能力。 高浓度时有刺激性。但 在化妆品的使用条件下 是安全的 烷基聚氧乙烯醚硫酸 酯盐 AES 香波的主要表面活性剂,也用 于皮肤清洁和沐浴制品,较少 与AS相近,但刺激性 略低于AS

用作乳化剂。一般与其它AAS (阴、两性、非离子)复配 磺酸盐 烷基苯磺酸盐LAS- Na 去污力太强,因此在化妆品中 应用不广泛,主要用于洗衣粉 对皮肤中等刺激,容易 脱脂而变得干燥粗糙, 用三乙醇胺盐复配可降 低刺激性。 烷基磺酸盐SAS 低成本,稳定性好,刺激性 低,去污能力好,很有前途的 AAS 对皮肤无致敏作用N-酰胺基及其盐 由α-氨基酸的氨基酰化后制得。氨基酸属于两性,但酰化后变成阴离子AAS。 用途: 香波:增泡和稳泡,头发亲合性强,改善梳理性,减少静电; 皮肤清洁剂:治疗面部粉刺,可与水杨酸和过氧化苯甲酰等匹配而不影响其活 性; 口腔制品:口腔清洗剂,抑制己糖激酶的生长,防止牙齿腐烂; 含药化妆品:去屑香波、治疗粉刺膏霜等。 香皂和添加剂等… 安全性: 已在化妆品和洗涤用品应用几十年,非常温和,对皮肤不会产生过敏和刺激, 安全性非常高。

化妆品常用表面活性剂

化妆品中常用的表面活性剂 表面活性剂的各种功能主要表现在改变液体的表面、液一液界面和液一固界面的性质,而其中液体的表(界)面性能是最主要的。将物质加到溶剂中会大大降低溶剂的表面张力,能够使体系的表面状态发生明显的变化,这些物质都称之为表面活性剂。按表面活性剂在水溶液中能否解离及解离后所带电荷类型分为阴离子型、阳离子型、两性离子型和非离子型表面活性剂。 1)阴离子表面活性剂化妆品中常用的阴离子表面活性 剂包括:脂肪酸皂、十二烷基硫酸钠、月桂醇聚氧乙烯醚硫酸钠、十六烷基聚氧乙烯醚磷酸钠和大豆磷脂(卵磷脂)等,其特点是洗净、去污能力强,在化妆品中主要起清洁、润湿、乳化和发泡的作用。 2)阳离子表面活性剂 阳离子表面活性剂主要为高碳烷基的伯、仲、叔胺和季铵盐,如十八烷基三甲基氯化铵、C12~14烷基二甲基苄基氯化铵、双十八烷基二甲基氯化钠等,其特点是具有较好的杀菌性与抗静电性,在化妆品中起柔软、抗静电、防水和固色的作用。 3)两性离子表面活性剂化妆品中常用的两性表面活性剂包括:椰油酰胺基丙基甜菜碱、咪唑啉等,两性表面活性剂的特点是具有良好的洗涤性能,且比较温和,低毒性和对皮肤、眼睛的低刺激性,以及良好的生物降解性。两性表面活性剂常与阴离子或阳离子表面活

性剂复配使用,有良好的配伍性,在一般情况下会产生协同增效效应。在化妆品中起柔软、抗静电、乳化、分散和杀菌的作用。 4)非离子表面活性剂化妆品中常用的非离子表面活性剂主要有:失水山梨醇单月桂酸酯(司盘一20、司盘一40、司盘一6 0和司盘一80)、环氧乙烷加成物(吐温一20、吐温一40、吐温一60和吐温一80)、月桂醇聚氧乙烯醚、椰油酸二乙醇酰胺、油酸单甘油酯、聚氧乙烯蓖麻油和聚氧乙烯羊毛脂等,其特点是安全,对皮肤温和、无刺激性,具有良好的乳化、增溶以及稳定性高,与其他类型表面活性剂相容性好等特点,在化妆品中应用最广。 除了上面几种表面活性剂外,最近迅速发展起来的还有天然表面活性剂(如羊毛脂和卵磷脂)、生物表面活性剂以及有机硅表面活性剂。

表面活性剂的应用原理

第四章表面活性剂在叶面肥中的应用 由于作物叶片最外侧的蜡质层具有疏水性,不利于喷施液在叶表的铺展与附着,喷施液难以润湿叶面;且蜡质层一般非常粗糙,而且分布不均匀,致使喷施液于叶片界面的接触角进一步增大,导致喷施液在叶面上形成易滚落的水珠,喷施液对叶面的润湿性更差,而喷施液在作物叶面的润湿是养分向叶片内部渗透的重要前提,可见,叶面蜡质层是影响叶面养分吸收的关键因素之一,极大地影响了叶面施肥的效果,因此必须克服蜡质层造成的施肥的障碍,减少喷施液于作物叶片之间的界面接触角,使喷施液在叶面上得以铺展、润湿,才可以提高养分的吸收率及叶面施肥的效果。 人们在进行叶面施肥的研究中,发现在喷施液内加入一定量的表面活性剂后可以明显改变喷施液的表面性质,降低喷施液的表面张力,增加喷施液在叶面的润湿作用;另外,表面活性剂还具有保湿、黏着、助渗的作用,因而极大地促进了养分的叶面吸收效果。正因如此,表面活性剂成为叶面肥中不可缺的重要组分之一。 第一节表面活性剂的应用原理 一、概述 表面活性剂是一类重要的精细化学品,其应用单位几乎涵盖了精细化工的所有领域,与人们日常生活密不可分,在工、农业各个领域中也有重要的作用。 自19世纪发现磺化油的表面活性以后,人们已经成功研制出大量的表面活性剂。 表面活性物质的生产。最初是以动、植物油脂作原料制肥皂。目前表面活性剂的种类繁多,有进口的,也有国产的,常见种类有吐温-20、吐温-40、吐温-80、土耳其黄油、山梨醇、十二烷基苯磺酸钠、曲拉通等。除了用化学方法合成的表面活性剂外,还有用为微生物发酵的方法生产无毒、对环境无污染的生物表面活性剂。 随着对表面活性剂研究的深入,表面活性剂的作用也引起了国内外学者的重视。大多数表面活性剂用于纤维工业,其次就是洗涤工业。随着农业科学技术的迅猛发展,表面活性剂在农业生产上液逐渐得到广泛的应用。农工业中对表面活性剂的应用主要是作为农药的助剂,种类有渗透剂、黏着剂、分散湿润剂、展着剂和增效剂等,它的作用是可使农药稀释液稳定,溶液雾滴小,药业能均匀地与叶面接触,增加吸附,减少药业被雨水冲刷,延长药液在叶面的湿润时间,增加叶面对药液的吸收。对充分发挥农药效果起重要的作用。 研究表明,表面活性剂作为农药、除草剂、生长调节剂和叶面肥等的助剂,之所以能够提高药效和养分的活性,其作用大致有以下几方面:①降低溶液的表面张力,增加溶液与叶表皮的亲和力,从而增加吸收量;②提高溶液中有效成分在水中的溶解度,促进有效成分的叶面吸收和在植物体内的运输;③起叶面湿润作用,延长溶液在叶面的附着时间,房主液滴迅速干燥,从而延长叶面吸收时间;④改变叶表面的结构,表面活性剂与植物叶表皮作用,引起植物叶片的生理生化变化,促进溶液中有效成分进入植物体内而发挥作用。 由于其具有良好的叶面润湿作用,目前表面活性剂已成为农药、叶面施肥中不可缺少的重要组成成分,对提高农药的药效和养分的叶面吸收效率具有明显的促进效果,表面活性剂的使用已经成为农药和叶面肥研制与应用中的一项关键技术。但是不同的表面活性剂对不同药肥液的效果是不同的,因而在使用前必须了解表面活性剂的特性,以选择和利用适当的表面活性剂,才能收到好的效果。 二、表面活性剂的类型及其作用原理 (一)表面活性剂的类型及特性 表面活性剂是指一类在低浓度下即可明显地降低水和其他液体系表面张力或界面张力

相关文档
相关文档 最新文档