文档库 最新最全的文档下载
当前位置:文档库 › 自动控制原理实验报告

自动控制原理实验报告

自动控制原理实验报告
自动控制原理实验报告

实验一典型环节的模拟研究及阶跃响应分析

1、比例环节

可知比例环节的传递函数为一个常数:

当Kp 分别为0.5,1,2时,输入幅值为1.84的正向阶跃信号,理论上依次输出幅值为0.92,1.84,3.68的反向阶跃信号。实验中,输出信号依次为幅值为0.94,1.88,3.70的反向阶跃信号, 相对误差分别为1.8%,2.2%,0.2%. 在误差允许范围内可认为实际输出满足理论值。 2、 积分环节

积分环节传递函数为:

(1)T=0.1(0.033)时,C=1μf (0.33μf ),利用MATLAB ,模拟阶跃信号输入下的输出信号如图: T=0.1 T=0.033

与实验测得波形比较可知,实际与理论值较为吻合,理论上T=0.033时的波形斜率近似为T=0.1时的三倍,实际上为8/2.6=3.08,在误差允许范围内可认为满足理论条件。 3、 惯性环节

惯性环节传递函数为:

i

f i o R R

U U -=TS

1

CS R 1Z Z U U i i f i 0-=-=-=1

TS K

)s (R )s (C +-=

K=R f /R 1,T=R f C,

(1) 保持K=R f /R 1=1不变,观测T= 0.1秒,0.01秒(既R 1=100K,C=1μf ,0.1μf )时

的输出波形。利用matlab 仿真得到理论波形如下: T=0.1时 t s (5%)理论值为300ms,实际测得t s =400ms 相对误差为:(400-300)/300=33.3%,读数误差较大。

K 理论值为1,实验值2.12/2.28,

相对误差为(2.28-2.12)/2.28=7%与理论值

较为接近。

T=0.01时

t s (5%)理论值为30ms,实际测得t s =40ms 相对误差为:(40-30)/30=33.3%

由于ts 较小,所以读数时误差较大。 K 理论值为1,实验值2.12/2.28,

相对误差为(2.28-2.12)/2.28=7%与理论值较为接近

(2) 保持T=R f C= 0.1s 不变,分别观测K=1,2时的输出波形。

K=1时波形即为(1)中T0.1时波形

K=2时,利用matlab 仿真得到如下结果: t s

(5%)理论值为300ms,实际测得t s =400ms 相对误差为:(400-300)/300=33.3% 读数误差较大

K 理论值为2,实验值4.30/2.28,

相对误差为(2-4.30/2.28)/2=5.7%

与理论值较为接近。

4、 二阶振荡环节

令R 3=R 1,C 2=C 1

1

K

TS

S T 1

)

s (R )

s (C 2

2

++=

T=R 1C 1,K=R 2/R 1

n ω=1/T=1/R 1C 1

ξ=1/2K=R 1/2R 2

(1) 取R 1=R 3=100K,C 1=C 2=1μf 既令T=0.1秒,调节R 2分别置阻尼 比ξ= 0.1,0.5,1

○1R2=500k,ξ=0.1时,n

ω=10;matlab 仿真结果如下:

超调量M p 理论值为e^(-ξ*π/(1-ξ^2)^0.5)=73%,实验值为(3.8-2.28)/2.28=66.7%与理论值较为接近.

过渡过程时间理论值(计算时的估计公式)t s =4/(ξ*n ω)=4s ,由matlab 仿真得t s =2.89s ,实验值为3.1s,与仿真得到的理论值相对误差为(3.1-2.89)

/2.89=7.2%较为接近。

○2R2=100k,ξ=0.5,n

ω=10;matlab 仿真结果如下: 超调量M p 理论值为e^(-ξ*π/(1-ξ^2)^0.5)=16%,实验值为(2.8-2.28)/2.28=22.8%与理论值较为接近

过渡过程时间理论值(计算时的估计公式)t s =4/(ξ*n ω)=0.8s ,由matlab 仿真得t s =0.525s ,实验值为0.59,与仿真得到的理论

值相对误差为(0.59-0.525)/0.525=12.4%较为接近。

○3R2=50k,ξ=1,n

ω=10;matlab 仿真结果如下:

超调量M p 理论值为0,实验值为(2.28-2)/2.28=12.3%,与理论值吻合。

过渡过程时间理论值,由matlab 仿真得t s =0.48s ,实验值为0.40,与仿真得到的理论值相对误差为(0.48-0.40)/0.48=20%较为接近。

(2)取R 1=R 3=100K,C 1=C 2=0.1μf 既令T=0.01秒,重复进行上述测试。

○1R2=500k,ξ=0.1时,n

ω=100;matlab 仿真结果如下: 超调量M p 理论值为e^(-ξ*π/(1-ξ^2)^0.5)=73%,实验值为(3.8-2.28)/2.28=66.7%与理论值较为接近.

过渡过程时间理论值(计算时的估计公式)t s =4/(ξ*n ω)=0.4s ,由matlab 仿真得t s =0.29s ,实验值为0.30,与理论值相对误差为(0.30-0.29)/0.29=3.4%较为接近。

○2R2=100k,ξ=0.5时,n

ω=100;matlab 仿真结果如下: 超调量M p 理论值为e^(-ξ*π/(1-ξ^2)^0.5)=16%,实验值为(2.8-2.28)/2.28=22.8%与理论值较为接近

过渡过程时间理论值(计算时的估计公式)t s =4/(ξ*n ω)=0.08s ,由matlab 仿真得t s =0.0525s ,实验值为0.05,与仿真得到的理论值相对误差为

(0.0525-0.05)/0.0525=4.8%较为接近。

○3R2=50k,ξ=1,n

ω=10;matlab 仿真结果如下:

超调量M p 理论值为0,实验值为(2.28-2)/2.28=12.3%,与理论值吻合。

过渡过程时间理论值,由matlab 仿真得t s =0.048s ,实验值为0.04,与仿真得到的理论值相对误差为(0.048-0.04)/0.048=16.7%较为接近。

六、思考题

1、根据实验结果,分析一阶系统t s 与T,K 之间的关系。参数T 的物理意义? T 越大,ts 越大,ts 与K 无关。T 反映了系统的瞬态响应速度。

2、根据实验结果,分析二阶系统t s ,M p ,与n ω,ξ之间的关系。参数n ω,ξ的物理意义? 超调量只与ξ有关,ξ越小,超调量越大;调节时间与n ω*ξ有关,乘积越大,调节时间越小;n ω*ξ反映了系统阶跃响应的衰减程度,n ω反映了阶跃响应的振荡快慢程度。

3、对于图1-5所示系统,若将其反馈极性改为正反馈;或将其反馈回路断开,这时的阶跃响应应有什么特点?试从理论上进行分析(也可在实验中进行观察)

变成正反馈或将其反馈回路断开,理论上阶跃响应的大小不断增加,实际中受制于运放的最大输出电压的影响,阶跃响应快速上升,最后达到一个很大的幅值。 4、根据所学习的电模拟方法,画出开环传递函数为

)

1S T 2S T )(1S T (K

)s (G 22

2

21+ξ++=

的单位反馈系统的模拟线路图,并注明线路图中各元件参数(用R 、C 等字符表示)和传递函数中参数的关系。

易知将一个一阶惯性环节与图1-5所示电路串联起来后,再加一个单位反相比例环节即可实现,电路图如下

其中应有R3=R1,C2=C1,于是K=Rf/R1,T1=Rf*C,T2=R1*C1,ζ=R1/(2*R2)。

实验二开环零点及闭环零点作用的研究

实验电路图见附件

(a)选择T=3.14s,K=3.14,

T(S)=L(S)/1+L(S)=3.14/3.14S^2+S+3.14

利用MATLAB仿真如下

Mp:理论值1.6 实际值1.7相对误差6.25%

tp:理论值3.26实际值 2.9相对误差11.0%

ts:理论值23 实际值24.2 相对误差5.2%

(b)Td=0.033

T(S)=L(S)/1+L(S)=1.0362S+3.14/3.14S^2+4.1762S+3.14 利用MATLAB仿真

Mp:理论值1.065 实际值1.15相对误差8.0%

tp:理论值3.68实际值3.6相对误差2.2%

ts:理论值5.77实际值6.0 相对误差4.0%

(c)T(S)=L(S)/1+L(S)=3.14/3.14S^2+4.1762S+3.14

利用MATLAB仿真

Mp:理论值1.06 实际值1.08相对误差2.0%

tp:理论值4.12实际值4.3相对误差4.4%

ts:理论值6.09实际值6.2 相对误差1.8%

比较实验二、三,知开环零点加快了瞬态响应;比较实验一、三,知闭环零点改善了整体的闭环性能,其主要原因是改变了阻尼比。

由实验结果可知,增加比例微分环节后系统的瞬态响应改善了,其根本在于增大了阻尼比。而第二个实验中由于引进了开环零点,所以其性能与第三个不一样。

实验心得及体会

提前预习,熟悉电路图,设计好参数对完成实验有很大的帮助,可以起到事半功倍的效果,要养成提前预习的习惯。

思考题

为什么说系统的动态性能是由闭环零点,极点共同决定的?

从时域和频域的关系来看,极点的位置决定了系统的响应模态,而零点的位置决定了每个模态函数的相对权重。

实验三控制系统稳定性研究

一、实验数据

本实验的线路图如下,其中R11=R12=R21=R31=100K,

1.对于方案一,取R13=R22=1M,C1=1μ,C2=10μ,R3=100K,C3=1μ,由实验现象

得知,对任意α∈(0,1),系统均稳定,且α越大,响应速度越快,幅值也越大。

对于方案二,C3=1μ,知对于任意α系统仍稳定,且α越大,响应速度越快,幅值

也越大。

方案三中R32=1M,C3=1μ,当输出呈现等幅振荡时,α=0.019

2.对于第一组,由实验可知对任意α∈(0,1)系统均稳定,且α越大,响应速度越快,

幅值也越大。

第二组中,当输出呈现等幅振荡时,α=0.510

3. 仍选择以上电路,要使T=RC=0.5s,可选取R=500K,C=1μ。而由以上传

a=1时,R13=R22=R32=500K,C1=C2=C3=1μ。实验测得当输出开始呈现缓慢衰减,

K=809.1Hz。

a=2时,R13=1M,R22=500K,R32=250K,C1=C2=C3=1μ。实验测得当输出开始呈

现缓慢衰减,K=924.1Hz。

a=5时,R13=250K,C1=10μ,R22=500K,C2=1μ,R32=100K,C3=1μ。此时发现

对任意α∈(0,1)系统均稳定。

二、数据处理

1.对于前三个方案,由Hurwitz判据易知α=1.22,11.1,0.0242时系统临界稳定。而实验

中α不可能大于1,故前两个实验中系统均稳定,而第三个实验中测得α=0.019,

与理论值相对误差为(0.0242-0.019)/0.0242=21.4%。

对于后两组实验,由Hurwitz判据易知α=1.993,0.42时系统临界稳定。而实验中α

不可能大于1,故第一个实验中系统稳定,而第二个实验中测得α=0.51,与理论值

相对误差为(0.51-0.42)/0.42=21.4%

上述两个实验误差较大可能原因是接触电阻的影响。

2.由Hurwitz判据易知(K临=9,12.25,38.44)时系统临界稳定。而

K=α*R13*R22*R32/(R12*R21*R31),

实验1中,K=10和与理论值相对误差为(10-9)/9=11.1%

实验2中,K=13.5,和理论值得相对误差为(13.5-12.5)/12.5=8%

而第三个实验中K<1*2.5*5*1=12.5不可能大于38.44,故第三个实验中系统稳定。

总结:闭环系统虽然改善了系统的响应性能,但同时也带来了不稳定的可能,设计系统时一定要考虑到保持系统的稳定性。虽然如此,我们仍可以利用系统的不稳定性,比如制作信号发生器等。

体会:本次实验由于连线之前没有对线路进行检测,有一条导线坏了查了很久都没查出来,浪费了很多时间,以后应该注意,进行连线前对仪器及导线进行简单的检查,最好连好一个版块检查一个版块,避免不必要的时间浪费。

三、思考题

1.三阶系统的各时间常数怎样组合系统稳定性最好?何种组合最差?

由第二个实验知三阶系统的各级时间常数相差越大,系统越稳定,事实上当系数按

倍数关系递增时且倍数越大时系统的稳定性越好;各级时间常数一致时稳定性最差。

2.已知三阶系统各时间常数,如何估计其自然振荡频率?

写出闭环传递函数,求解分母三阶方程,若有主导极点,则可利用该主导极点估计

三阶系统的自然震荡频率,若无则需要用MATLAB进行仿真计算。

实验四控制系统频率特性的测试

一、实验数据

1.电路图

G(s) = R11/R1/((1+s*R11*C1)*(1+s*R1^2*C3/R22+s^2*R1^2*C2*C3))

其中所有的电阻都取100K,C=1μ,C1=C2=0.1μ,于是T1=0.1s,T2=0.01s,ζ=0.,K=1,G(s) = 1/((1+0.01*s)*(1+s+0.0001*s^2))。

一阶转折频率10rad/s=1.6HZ

二阶转折频率100rad/s=16HZ

理论bode 图如下

实际bode图如下

转折频率约为10rad/s,斜率约为40db/sec

放大倍数为1倍

转折频率约为10rad/s,斜率约为135°/sec

阻尼比约为0.5

结论:结论:李沙育图形可以方便地用于分析系统的频率响应,从而获得系统的传递函数,但由于幅频响应和相频响应非线性较大,所以仍存在一定误差。尤其当输出电压较小的时候,李沙育图线条不清晰,读数误差较大。

自动控制原理实验报告

《自动控制原理》 实验报告 姓名: 学号: 专业: 班级: 时段: 成绩: 工学院自动化系

实验一 典型环节的MATLAB 仿真 一、实验目的 1.熟悉MATLAB 桌面和命令窗口,初步了解SIMULINK 功能模块的使用方法。 2.通过观察典型环节在单位阶跃信号作用下的动态特性,加深对各典型环节响应曲线的理解。 3.定性了解各参数变化对典型环节动态特性的影响。 二、实验原理 1.比例环节的传递函数为 K R K R R R Z Z s G 200,1002)(211 212==-=-=- = 其对应的模拟电路及SIMULINK 图形如图1-3所示。 三、实验内容 按下列各典型环节的传递函数,建立相应的SIMULINK 仿真模型,观察并记录其单位阶跃响应波形。 ① 比例环节1)(1=s G 和2)(1=s G ; ② 惯性环节11)(1+= s s G 和1 5.01 )(2+=s s G ③ 积分环节s s G 1)(1= ④ 微分环节s s G =)(1 ⑤ 比例+微分环节(PD )2)(1+=s s G 和1)(2+=s s G ⑥ 比例+积分环节(PI )s s G 11)(1+=和s s G 211)(2+= 四、实验结果及分析 图1-3 比例环节的模拟电路及SIMULINK 图形

① 仿真模型及波形图1)(1=s G 和2)(1=s G ② 仿真模型及波形图11)(1+= s s G 和1 5.01)(2+=s s G 11)(1+= s s G 1 5.01 )(2+=s s G ③ 积分环节s s G 1)(1= ④ 微分环节

《自动控制原理》典型考试试题

《 自动控制原理 》典型考试试题 (时间120分钟) 院/系 专业 姓名 学号 第二章:主要是化简系统结构图求系统的传递函数,可以用化简,也可以用梅逊公式来求 一、(共15分)已知系统的结构图如图所示。请写出系统在输入r(t)和扰动n(t)同时作用下的输出C(s)的表达式。 G4 H1G3 G1 G 2 N(s)C(s) R(s) - -+ + + 二 、(共15分)已知系统的结构图如图所示。 试求传递函数 )()(s R s C ,) () (s N s C 。 三、(共15分)已知系统的结构图如图所示。 试确定系统的闭环传递函数C(s)/R(s)。 G1 G2 R(s) - + + C(s) - + 四、(共15分)系统结构图如图所示,求X(s)的表达式

G4(s)G6(s) G5(s)G1(s) G2(s) N(s) C(s) R(s) -- G3(s) X(s) 五、(共15分)已知系统的结构图如图所示。 试确定系统的闭环传递函数C(s)/R(s)和C(s)/D(s)。 G1 G2 R(s) - + + C(s) -+ D(s) G3G4 六、(共15分)系统的结构图如图所示,试求该系统的闭环传递函数 ) () (s R s C 。 七、(15分)试用结构图等效化简求题图所示各系统的传递函数 ) () (s R s C

一、(共15分)某控制系统的方框图如图所示,欲保证阻尼比ξ=0.7和响应单位斜坡函数的稳态误差为ss e =0.25,试确定系统参数K 、τ。 二、(共10分)设图(a )所示系统的单位阶跃响应如图(b )所示。试确定系统参数,1K 2K 和a 。 三、(共15分)已知系统结构图如下所示。求系统在输入r(t)=t 和扰动信号d(t)=1(t)作用下的稳态误差和稳态输出)(∞C 2/(1+0.1s) R(s) - C(s) 4/s(s+2) E(s) D(s) 四、(共10分)已知单位负反馈系统的开环传递函数为: 2()(2)(4)(625) K G s s s s s = ++++ 试确定引起闭环系统等幅振荡时的K 值和相应的振荡频率ω 五、(15分)设单位反馈系统的开环传递函数为 1 2 ) 1()(23++++=s s s s K s G α 若系统以2rad/s 频率持续振荡,试确定相应的K 和α值 第三章:主要包括稳、准、快3个方面 稳定性有2题,绝对稳定性判断,主要是用劳斯判据,特别是临界稳定中出现全零行问题。 相对稳定性判断,主要是稳定度问题,就是要求所有极点均在s=-a 垂线左测问题,就是将s=w-a 代入D(s)=0中,再判断稳定 快速性主要是要记住二阶系统在0<ξ<1时的单位阶跃响应公式以及指标求取的公式。 准确性主要是稳态误差的公式以及动态误差级数两方面

自动控制原理教学大纲

《自动控制原理》教学大纲 课程类别:专业必修课课程名称:自动控制原理 开课单位:飞行器设计与工程专业建设组课程编号:N02010102 总学时:64学分:4 适用专业:飞行器设计与工程 先修课程:高等数学、大学物理、理论力学、机械原理、电工技术等 一、课程在教学计划中的地位、作用 《自动控制原理》是飞行器设计与工程专业的一门必修课,通过本课程的学习,使学生掌握自动控制的基本原理和概念,并具备对自动控制系统进行分析,计算,实验的初步能力,为专业课的学习和参加控制工程实践提供必要的理论基础。通过对本课程的学习,要求学生掌握自动控制的基本理论和基本分析方法,能应用控制理论对自动控制系统进行性能分析,能对系统进行校正和提出改善系统性能的途径和方法。 二、课程内容、基本要求 1、掌握常规控制器和自动控制系统的组成及其相互关系。 2、了解对自动控制系统的性能要求及分析系统性能的方法。 3、掌握用传递函数,方框图,信号流图及状态空间描述建立系统数学模型的方法。 4、掌握常规控制器的基本控制规律、动态特性和对控制系统的作用。 5、掌握对控制系统进行分析和综合的方法:时域分析法、频域分析法、根轨迹法及状态空间分析法。 6、初步掌握控制系统的校正和设计方法,为解决实际问题打好基础。 第一章自动控制的一般概念(3学时) 教学要求: (1)明确什么是自动控制;正确理解被控对象、被控量、控制装置和自控系统等概念;

(2)正确理解三种控制方式,特别是闭环控制; (3)初步掌握由系统工作原理画方框图的方法,并能正确判别系统的控制方式; (4)明确系统常用的分类方式,掌握各类别的含义和信息特征,特别是按数学模型分类的方式; (5)明确对自控系统的基本要求,正确理解三大性能指标的含义。 重点和难点重点:掌握线性与非线性系统的分类,特别是对线性系统的定义、性质、判别方法要准确理解。难点:线性系统的准确理解。 教学方式本章采用课堂讲授、多媒体教学相结合的教学形式。 教学内容 1-1自动控制的基本原理与方式 1-2自动控制系统示例 1-3自动控制系统的分类 1-4对自动控制系统的基本要求 1-5自动控制系统的分析与设计工具 第二章控制系统的数学模型(12学时) 教学要求 (1)正确理解数学模型的特点,对系统的相似性、动态模型、静态模型、输入变量、输出变量、中间变量等概念,要准确掌握,掌握动态微分方程建立的一般方法; (2)掌握运用拉氏变换解微分方程的方法,并对解的结构、运动模态与特征根的关系、零输入响应有清楚的理解; (3)正确理解传递函数的定义、性质和意义,特别对传递函数微观结构的分析要准确掌握; (4)正确理解由传递函数派生出来的系统的开环传递函数、闭环传递函数、前向通道传递函数的定义,并对重要传递函数如:控制输入下闭环传递函数、扰动输入下闭环传递函数、误差传递函数、典型环节传递函数,能够熟练掌握。 (5)掌握系统结构图和信号流图两种数学图形的定义和组成方法,熟练掌握等效变换代数法则,简化图形结构,并能用梅逊公式求系统传递函数。

自动控制原理实验报告

实验报告 课程名称:自动控制原理 实验项目:典型环节的时域相应 实验地点:自动控制实验室 实验日期:2017 年 3 月22 日 指导教师:乔学工 实验一典型环节的时域特性 一、实验目的 1.熟悉并掌握TDN-ACC+设备的使用方法及各典型环节模拟电路的构成方法。

2.熟悉各种典型环节的理想阶跃相应曲线和实际阶跃响应曲线。对比差异,分析原因。 3.了解参数变化对典型环节动态特性的影响。 二、实验设备 PC 机一台,TD-ACC+(或TD-ACS)实验系统一套。 三、实验原理及内容 下面列出各典型环节的方框图、传递函数、模拟电路图、阶跃响应,实验前应熟悉了解。 1.比例环节 (P) (1)方框图 (2)传递函数: K S Ui S Uo =) () ( (3)阶跃响应:) 0()(≥=t K t U O 其中 01/R R K = (4)模拟电路图: (5) 理想与实际阶跃响应对照曲线: ① 取R0 = 200K ;R1 = 100K 。 ② 取R0 = 200K ;R1 = 200K 。

2.积分环节 (I) (1)方框图 (2)传递函数: TS S Ui S Uo 1 )()(= (3)阶跃响应: ) 0(1)(≥= t t T t Uo 其中 C R T 0= (4)模拟电路图 (5) 理想与实际阶跃响应曲线对照: ① 取R0 = 200K ;C = 1uF 。 ② 取R0 = 200K ;C = 2uF 。

1 Uo 0t Ui(t) Uo(t) 理想阶跃响应曲线 0.4s 1 Uo 0t Ui(t) Uo(t) 实测阶跃响应曲线 0.4s 10V 无穷 3.比例积分环节 (PI) (1)方框图: (2)传递函数: (3)阶跃响应: (4)模拟电路图: (5)理想与实际阶跃响应曲线对照: ①取 R0 = R1 = 200K;C = 1uF。 理想阶跃响应曲线实测阶跃响应曲线 ②取 R0=R1=200K;C=2uF。 K 1 + U i(S)+ U o(S) + Uo 10V U o(t) 2 U i(t ) 0 0 .2s t Uo 无穷 U o(t) 2 U i(t ) 0 0 .2s t

自动控制原理期末考试复习题及答案

一、 填空题 1、线性定常连续控制系统按其输入量的变化规律特性可分为_恒值控制_系统、随动系统和_程序控制_系统。 2、传递函数为 [12(s+10)] / {(s+2)[(s/3)+1](s+30)} 的系统的零点为_-10_, 极点为_-2__, 增益为_____2_______。 3、构成方框图的四种基本符号是: 信号线、比较点、传递环节的方框和引出点 。 4、我们将 一对靠得很近的闭环零、极点 称为偶极子。 5、自动控制系统的基本控制方式有反馈控制方式、_开环控制方式和_复合控制方式_。 6、已知一系统单位脉冲响应为t e t g 5.16)(-=,则该系统的传递函数为 。 7、自动控制系统包含_被控对象_和自动控制装置两大部分。 8、线性系统数学模型的其中五种形式是微分方程、传递函数、__差分方程_、脉冲传递函数_、__方框图和信号流图_。 9、_相角条件_是确定平面上根轨迹的充分必要条件,而用_幅值条件__确定根轨迹上各 点的根轨迹增益k*的值。当n-m ≥_2_时, 开环n 个极点之和等于闭环n 个极点之和。 10、已知一系统单位脉冲响应为 t e t g 25.13)(-=,则系统的传递函数为_ _。 11、当∞→ω时比例微分环节的相位是: A.90 A.ο 90 B.ο 90- C.ο45 D.ο 45- 12、对自动控制的性能要求可归纳为_稳定性__、_快速性_和准确性三个方面, 在阶跃 响应性能指标中,调节时间体现的是这三个方面中的_快速性___,而稳态误差体现的是_稳定性和准确性_。 13、当且仅当离散特征方程的全部特征根均分布在Z 平面上的_单位圆 _内,即所有特征根的模均小于___1____,相应的线性定常离散系统才是稳定的。 14、下列系统中属于开环控制系统的是 D.普通数控加工系统

自动控制原理教学大纲-2017版

《自动控制原理》课程教学大纲 课程代码:060131003 课程英文名称:Automatic Control Principle 课程总学时:64 讲课:56 实验:8 上机:0 适用专业:自动化专业 大纲编写(修订)时间:2017.11 一、大纲使用说明 (一)课程的地位及教学目标 自动控制原理是高等工业学校自动化专业开设的一门培养学生自动控制系统分析设计能力的主干技术基础课,主要讲授自动控制系统基本知识、基本理论和基本方法,在自动化专业培养计划中,它起到由基础理论课向专业课过渡的承上启下的作用。本课程在教学内容方面除基本知识、基本理论和基本方法的教学外,还通过实验学时,来培养学生的设计思维和设计能力。 通过本课程的学习,学生将达到以下要求: 1.掌握自动控制系统的分析原理、设计方法和系统稳定性的一般规律 2.具有设计闭环控制系统的初步能力; 3.了解典型控制系统的实验方法,获得实验技能的基本训练; (二)知识、能力及技能方面的基本要求 1.基本知识:掌握控制系统的一般知识,控制系统的主要类型、性能、结构特点、应用等。 2.基本理论和方法:掌握控制系统设计的基本原则,系统稳定的工作原理、简化的物理模型与数学模型、时域分析、根轨迹分析、频域分析、系统校正、非线性分析等。 3.基本技能:掌握设计计算、结构设计,实验技能等。 (三)实施说明 1.教学方法:课堂讲授中要重点对基本概念、基本方法和解题思路的讲解;采用启发式教学,培养学生思考问题、分析问题和解决问题的能力;引导和鼓励学生通过实践和自学获取知识,培养学生的自学能力;增加讨论课,调动学生学习的主观能动性。讲课要联系实际并注重培养学生的创新能力。 2.教学手段:本课程属于技术基础课,在教学中采用电子教案、CAI课件及多媒体教学系统等先进教学手段,以确保在有限的学时内,全面、高质量地完成课程教学任务。 3.计算机辅助学习:提醒学生使用matlab软件,要求学生使用VB编写程序来完成某些计算和绘制。 (四)对先修课的要求 本课程的教学必须在完成先修课程之后进行。本课程主要的先修课程有高等数学、信号变换等。 (五)对习题课、实践环节的要求 1.对重点、难点章节(如:系统校正、非线性计算等)应安排习题课,例题的选择以培养学生消化和巩固所学知识,用以解决实际问题为目的。 2.课后作业要少而精,内容要多样化,作业题内容必须包括基本概念、基本理论及设计计算方面的内容,作业要能起到巩固理论,掌握计算方法和技巧,提高分析问题、解决问题能力,熟悉标准、规范等的作用,对作业中的重点、难点,课上应做必要的提示,并适当安排课内讲评作业。学生必须独立、按时完成课外习题和作业,作业的完成情况应作为评定课程成绩的一部分。 3.每个学生要完成大纲中规定的必修实验,通过实验环节,学生应掌握典型系统的频率特

自动控制原理MATLAB仿真实验报告

实验一 MATLAB 及仿真实验(控制系统的时域分析) 一、实验目的 学习利用MATLAB 进行控制系统时域分析,包括典型响应、判断系统稳定性和分析系统的动态特性; 二、预习要点 1、 系统的典型响应有哪些? 2、 如何判断系统稳定性? 3、 系统的动态性能指标有哪些? 三、实验方法 (一) 四种典型响应 1、 阶跃响应: 阶跃响应常用格式: 1、)(sys step ;其中sys 可以为连续系统,也可为离散系统。 2、),(Tn sys step ;表示时间范围0---Tn 。 3、),(T sys step ;表示时间范围向量T 指定。 4、),(T sys step Y =;可详细了解某段时间的输入、输出情况。 2、 脉冲响应: 脉冲函数在数学上的精确定义:0 ,0)(1)(0 ?==?∞ t x f dx x f 其拉氏变换为:) ()()()(1)(s G s f s G s Y s f === 所以脉冲响应即为传函的反拉氏变换。 脉冲响应函数常用格式: ① )(sys impulse ; ② ); ,();,(T sys impulse Tn sys impulse ③ ),(T sys impulse Y = (二) 分析系统稳定性 有以下三种方法: 1、 利用pzmap 绘制连续系统的零极点图; 2、 利用tf2zp 求出系统零极点; 3、 利用roots 求分母多项式的根来确定系统的极点 (三) 系统的动态特性分析 Matlab 提供了求取连续系统的单位阶跃响应函数step 、单位脉冲响应函数impulse 、零输入响应函数initial 以及任意输入下的仿真函数lsim.

自动控制原理实验1-6

实验一MATLAB 仿真基础 一、实验目的: (1)熟悉MATLAB 实验环境,掌握MATLAB 命令窗口的基本操作。 (2)掌握MATLAB 建立控制系统数学模型的命令及模型相互转换的方法。 (3)掌握使用MATLAB 命令化简模型基本连接的方法。 (4)学会使用Simulink 模型结构图化简复杂控制系统模型的方法。 二、实验设备和仪器 1.计算机;2. MATLAB 软件 三、实验原理 函数tf ( ) 来建立控制系统的传递函数模型,用函数printsys ( ) 来输出控制系统的函数,用函数命令zpk ( ) 来建立系统的零极点增益模型,其函数调用格式为:sys = zpk ( z, p, k )零极点模型转换为多项式模型[num , den] = zp2tf ( z, p, k ) 多项式模型转化为零极点模型 [z , p , k] = tf2zp ( num, den ) 两个环节反馈连接后,其等效传递函数可用feedback ( ) 函数求得。 则feedback ()函数调用格式为: sys = feedback (sys1, sys2, sign ) 其中sign 是反馈极性,sign 缺省时,默认为负反馈,sign =-1;正反馈时,sign =1;单位反馈时,sys2=1,且不能省略。 四、实验内容: 1.已知系统传递函数,建立传递函数模型 2.已知系统传递函数,建立零极点增益模型 3.将多项式模型转化为零极点模型 1 2s 2s s 3s (s)23++++=G )12()1()76()2(5)(332 2++++++= s s s s s s s s G 12s 2s s 3s (s)23++++= G )12()1()76()2(5)(3322++++++=s s s s s s s s G

自动控制原理-期末考试试题卷

洛阳理工学院 2010/2011 学年第二学期自动控制原理期末考试试题卷(B) 适用班级:B 考试日期时间:适用班级: 一、判断题。正确的打√,错误的打×。(每小题1分,共10分) 1.传递函数是线性定常系统的一种内部描述模型。() 2.劳斯判据是判断线性定常系统稳定性的一种代数判据。() 3.频域分析法是根据闭环系统的频率特性研究闭环系统性能的一种图解方法。( ) 4.频率响应是系统在正弦输入信号下的全部响应。() 5.绘制系统Bode图时,低频段曲线由系统中的比例环节(放大环节)和微积分环节决定( ) 6.对于线性定常系统,若开环传递函数不包括积分和微分环节,则当0 ω=时,开环幅相特性曲线(Nyquist图)从正虚轴开始。() 7.开环控制系统的控制器和控制对象之间只有正向作用,系统输出量不会对控制器产生任何影响。() 8.Ⅰ型系统,当过渡过程结束后,系统对斜坡输入信号的跟踪误差为零。() 9.控制系统分析方法中,经典控制理论的分析方法有频域分析法、根轨迹分析法、时域分析法。() 10.已知某校正网络传递函数为 1 () 1 s G s as + = + ,当满足a>1条件时,则该校正网络为滞后校正网络。() 二、单选题(每小题2分,共20分) 1.下述()属于对闭环控制系统的基本要求。 (A)稳定性(B)准确性(C)快速性(D)前面三个都是 2.分析线性控制系统动态性能时,最常用的典型输入信号是()。 (A)单位脉冲函数(B)单位阶跃函数 (C)单位斜坡函数(D)单位加速度函数 3.典型二阶系统阻尼比等于1时,称该系统处于()状态。 (A)无阻尼(B)欠阻尼(C)临界阻尼(D)系统不稳定或临界稳定 4.稳定最小相位系统的Nyquist图,其增益(幅值)裕度()。 (A)0 hdB<(B)0 hdB>(C)1 hdB<(D)1 hdB> 5.单位反馈控制系统的开环传递函数为 4 () (5) G s s s = + ,则系统在()2 r t t =输入作用下,其稳态误差为()。 (A)10 4 (B) 5 4 (C) 4 5 (D)0 6.一个线性系统的稳定性取决于()。 (A)系统的输入(B)系统本身的结构和参数

自动控制原理大纲

自动控制原理教学大纲 自动控制原理 课程性质:专业技术基础课程 开设学期学时分配:第5学期 适用专业及层次:自动化、测控技术及仪器等工科类大学本科 先行、后继课程情况:先行课:工程数学1、2,电工、电子技术基础等 后继课:过程控制工程,运动控制系统等 推荐参考书: 1.《现代控制工程》绪方胜彦著(卢伯英佟明安罗维铭译)科学出版社 2.《自动控制原理与系统》上、下册清华大学吴麒等国防工业出版社 3.《自动控制原理》孙德宝主编化学工业出版社 4.《自动控制原理》天津大学李光泉主编机械工业出版社 5.《自动控制理论》侯夔龙主编西安交通大学出版社 6.《现代控制工程》第三版 [美] Katsuhiko Ogata 著 卢伯英于海勋等译电子工业出版 一、课程目的及要求: 本课程是自动化专业及其相关专业的一门主要技术基础课,是与后续专业课紧密相关的一门理论性较强的课程。重点在于学习反馈控制系统的基本理论及基本方法,掌握控制系统的分析,设计方法和技能,并能在后续专业课中应用其理论及方法进行分析和设计控制系统的任务。 本课程重点是线性、连续系统的基本理论,以掌握时域法、根轨迹法和频域法三大经典方法为基本要求。又本着适当扩充现代控制理论的思想,要求掌握状态空间分析法的基本方法和简单应用。对于非线性系统和离散时间系统的分析方法有一定程度的了解。 本课程教学学时数为90学时。 二、课程内容及学时分配: 第一章概述(3学时)介绍本课程研究的课题及方法,明确本课程的目的,介绍自动控制系统的基本原理与方式,控制系统的组成及系统的分类。 1.本课程研究课题及方法 1)自动控制系统的概念及在国民经济中的作用 2)研究对象及课题 3)自动控制理论的发展概况,经典理论与现代理论及其关系 4)课程的内容及特点 2.控制系统简介 1)控制系统的基本组成 2)控制系统的常用术语 3)自动控制系统示例 4)自动控制系统的分类 5)对自动控制系统的基本要求 第二章控制系统的数学模型(10 学时)介绍数学模型的概念,数学模型在分析、研究系统中的重要性,讲解常用的建模方法。1.系统的静态和动态特性 静态、动态特性的概念,动态特性在系统分析研究的作用以及数学描述

北航自动控制原理实验报告(完整版)

自动控制原理实验报告 一、实验名称:一、二阶系统的电子模拟及时域响应的动态测试 二、实验目的 1、了解一、二阶系统阶跃响应及其性能指标与系统参数之间的关系 2、学习在电子模拟机上建立典型环节系统模型的方法 3、学习阶跃响应的测试方法 三、实验内容 1、建立一阶系统的电子模型,观测并记录在不同时间常数T时的响应曲线,测定过渡过程时间T s 2、建立二阶系统电子模型,观测并记录不同阻尼比的响应曲线,并测定超调量及过渡过程时间T s 四、实验原理及实验数据 一阶系统 系统传递函数: 由电路图可得,取则K=1,T分别取:0.25, 0.5, 1 T 0.25 0.50 1.00 R2 0.25MΩ0.5M Ω1MΩ C 1μ1μ1μ T S 实测0.7930 1.5160 3.1050 T S 理论0.7473 1.4962 2.9927 阶跃响应曲线图1.1 图1.2 图1.3 误差计算与分析 (1)当T=0.25时,误差==6.12%; (2)当T=0.5时,误差==1.32%; (3)当T=1时,误差==3.58% 误差分析:由于T决定响应参数,而,在实验中R、C的取值上可能存在一定误差,另外,导线的连接上也存在一些误差以及干扰,使实验结果与理论值之间存在一定误差。但是本实验误差在较小范围内,响应曲线也反映了预期要求,所以本实验基本得到了预期结果。 实验结果说明 由本实验结果可看出,一阶系统阶跃响应是单调上升的指数曲线,特征有T确定,T越小,过度过程进行得越快,系统的快速性越好。 二阶系统 图1.1 图1.2 图1.3

系统传递函数: 令 二阶系统模拟线路 0.25 0.50 1.00 R4 210.5 C2 111 实测45.8% 16.9% 0.6% 理论44.5% 16.3% 0% T S实测13.9860 5.4895 4.8480 T S理论14.0065 5.3066 4.8243 阶跃响应曲线图2.1 图2.2 图2.3 注:T s理论根据matlab命令[os,ts,tr]=stepspecs(time,output,output(end),5)得出,否则误差较大。 误差计算及分析 1)当ξ=0.25时,超调量的相对误差= 调节时间的相对误差= 2)当ξ=0.5时,超调量的相对误差==3.7% 调节时间的相对误差==3.4% 4)当ξ=1时,超调量的绝对误差= 调节时间的相对误差==3.46% 误差分析:由于本试验中,用的参量比较多,有R1,R2,R3,R4;C1,C2;在它们的取值的实际调节中不免出现一些误差,误差再累加,导致最终结果出现了比较大的误差,另外,此实验用的导线要多一点,干扰和导线的传到误差也给实验结果造成了一定误差。但是在观察响应曲线方面,这些误差并不影响,这些曲线仍旧体现了它们本身应具有的特点,通过比较它们完全能够了解阶跃响应及其性能指标与系统参数之间的关系,不影响预期的效果。 实验结果说明 由本实验可以看出,当ωn一定时,超调量随着ξ的增加而减小,直到ξ达到某个值时没有了超调;而调节时间随ξ的增大,先减小,直到ξ达到某个值后又增大了。 经理论计算可知,当ξ=0.707时,调节时间最短,而此时的超调量也小于5%,此时的ξ为最佳阻尼比。此实验的ξ分布在0.707两侧,体现了超调量和调节时间随ξ的变化而变化的过程,达到了预期的效果。 图2.2 图2.1 图2.3

自动控制原理实验1-6

实验一 MATLAB 仿真基础 、实验目的: (1) 熟悉MATLAB 实验环境,掌握MATLAB 命令窗口的基本操作。 (2) 掌握MATLAB 建立控制系统数学模型的命令及模型相互转换的方法。 (3) 掌握使用MATLAB 命令化简模型基本连接的方法。 (4) 学会使用Simulink 模型结构图化简复杂控制系统模型的方法。 二、实验设备和仪器 1 ?计算机;2. MATLAB 软件 三、实验原理 函数tf ()来建立控制系统的传递函数模型,用函数printsys ()来输出控制系 统的函数,用函数命令zpk ()来建立系统的零极点增益模型,其函数调用格式 为:sys = zpk ( z, p, k 零极点模型转换为多项式模型[num , den] = zp2tf ( z, p, k ) 多项式模型转化为零极点模型 [z , p , k] = tf2zp ( num, den ) 两个环节反馈连接后,其等效传递函数可用 feedback ()函数求得。 则 feedback ()函数调用格式为: sys = feedback (sysl, sys2, sigh 其中sign 是反馈极性,sign 缺省时,默认为负反馈,sign = -1;正反馈时, sig n = 1;单位反馈时,sys2= 1,且不能省略。 四、实验内容: 1. 已知系统传递函数,建立传递函数模型 2 2 5(s 2) (s 6s 7) 3 3 s(s 1) (s 2s 1) 2. 已知系统传递函数,建立零极点增益模型 s 3 飞 2~ s 2s 2s 1 3 ?将多项式模型转化为零极点模型 5(s 2)2(s 2 6s 7) G(s) s 3 s 3 2s 2 2s 1 G(s) G(s)

自动控制原理期末考试题A卷

A 卷 一、填空题(每空 1 分,共10分) 1、 在水箱水温控制系统中,受控对象为 ,被控量为 。 2、 对自动控制的性能要求可归纳为___________、快速性和准确性三个方面, 在阶跃响应性能指标中,调节时间体现的是这三个方面中的______________,而稳态误差体现的是______________。 3、 闭环系统的根轨迹起始于开环传递函数的 ,终止于开环传递函数的 或无穷远。 4、 PID 控制器的输入-输出关系的时域表达式是 ,其相应的传递函数为 。 5、 香农采样定理指出:如采样器的输入信号e(t)具有有限宽带,且有直到ωh 的频率分量,则使信号e(t) 完满地从采样信号e*(t) 中恢复过来的采样周期T 要满足下列条件:________________。 二、选择题(每题 2 分,共10分) 1、 设系统的传递函数为G (S )=1 52512++s s ,则系统的阻尼比为( )。 A .21 B .1 C .51 D .25 1 2、 非单位负反馈系统,其前向通道传递函数为G(S),反馈通道传递函数为H(S),当输入信号为R(S),则从输入端定义的误差E(S)为 ( ) A 、 ()()()E S R S G S =? B 、()()()()E S R S G S H S =?? C 、()()()()E S R S G S H S =?- D 、()()()() E S R S G S H S =- 3、 伯德图中的低频段反映了系统的( )。 A .稳态性能 B .动态性能 C .抗高频干扰能力 D ..以上都不是 4、 已知某些系统的开环传递函数如下,属于最小相位系统的是( )。 A 、 (2)(1)K s s s -+ B 、(1)(5K s s s +-+) C 、2(1)K s s s +- D 、(1)(2) K s s s -- 5、 已知系统的开环传递函数为 100(0.11)(5)s s ++,则该系统的开环增益为 ( )。 A 、 100 B 、1000 C 、20 D 、不能确定

自动控制原理课程教学大纲

物理电子工程学院《自动控制原理》课程教学大纲课程编号:04210164 课程性质:专业必修课 先修课程:高等数学、函数变换、模拟电路、电路分析 总学时数:76 学分:4 适合专业:电子信息工程、机械与电子工程、机械自动化、电器自动化、通信、包装工程等专业 (一) 课程教学目标 自动控制理论是电子信息科学与技术专业的一门重要的专业基础课程。它侧重于理论角度,系统地阐述了自动控制科学和技术领域的基本概念和基本规律,介绍了自动控制技术从建模分析到应用设计的各种思想和方法,内容十分丰富。通过自动控制理论的教学,应使学生全面系统地掌握自动控制技术领域的基本概念、基本规律和基本分析与设计方法,以便将来胜任实际工作,具有从事相关工程和技术工作的基本素质,同时具有一定的分析和解决有关自动控制实际问题的能力。 (二) 课程的目的与任务 本课程是电子通信工程、机电一体化、包装工程等专业、工科及相关理科的必修基础课程。通过本课程的学习,使学生掌握自动控制的基础理论,并具有对简单连续系统进行定性分析、定量估算和初步设计的能力,为专业课学习和参加控制工程实践打下必要的基础。学生将掌握自动控制系统分析与设计等方面的基

本方法,如控制系统的时域分析法、根轨迹分析法、频域分析法、状态空间分析法、采样控制系统的分析等基本方法等。为各类计算机控制系统设计打好基础。 (三) 理论教学的基本要求 1、熟练掌握自动控制的概念、基本控制方式及特点、对控制系统性能的基本要求。 2、熟练掌握典型环节的传递函数、结构图化简或梅森公式以及控制系统传递函数的建立和表示方法,初步掌握小偏差线性化方法和通过机理分析建立数学模型的方法。 3、熟练掌握暂态性能指标、劳思判据、稳态误差、终值定理和稳定性的概念以及利用这些概念对二阶系统性能的分析,初步掌握高阶系统分析方法、主导极点的概念。 4、熟练掌握根轨迹的概念和绘制法则,并能利用根轨迹对系统性能进行分析,初步掌握偶极子的概念以及添加零极点对系统性能的影响。 5、熟练掌握频率特性的概念、开环系统频率特性Nyquist图和Bode图的画法和奈氏判据,掌握绝对稳定系统、条件稳定系统、最小相位系统、非最小相位系统、稳定裕量、频域性能指标的概念,以及频率特性与系统性能的关系。 6、熟练掌握校正的基本概念、基本校正方式和反馈校正的作用,初步掌握复合校正的概念和以串联校正为主的频率响应综合法,了解以串联校正为主的根轨迹综合法,掌握常用校正装置及其作用。 (四) 教学学时分配数

自动控制原理期末考试题

《 自动控制原理B 》 试题A 卷答案 一、单项选择题(本大题共5小题,每小题2分,共10分) 1.若某负反馈控制系统的开环传递函数为 5 (1) s s +,则该系统的闭环特征方程为 ( D )。 A .(1)0s s += B. (1)50s s ++= C.(1)10s s ++= D.与是否为单位反馈系统有关 2.梅逊公式主要用来( C )。 A.判断稳定性 B.计算输入误差 C.求系统的传递函数 D.求系统的根轨迹 3.关于传递函数,错误的说法是 ( B )。 A.传递函数只适用于线性定常系统; B.传递函数不仅取决于系统的结构参数,给定输入和扰动对传递函数也有影响; C.传递函数一般是为复变量s 的真分式; D.闭环传递函数的极点决定了系统的稳定性。 4.一阶系统的阶跃响应( C )。 A .当时间常数较大时有超调 B .有超调 C .无超调 D .当时间常数较小时有超调 5. 如果输入信号为单位斜坡函数时,系统的稳态误差为无穷大,则此系统为( A ) A . 0型系统 B. I 型系统 C. II 型系统 D. III 型系统 二、填空题(本大题共7小题,每空1分,共10分) 1.一个自动控制系统的性能要求可以概括为三个方面:___稳定性、快速性、__准确性___。 2.对控制系统建模而言,同一个控制系统可以用不同的 数学模型 来描述。 3. 控制系统的基本控制方式为 开环控制 和 闭环控制 。 4. 某负反馈控制系统前向通路的传递函数为()G s ,反馈通路的传递函数为()H s ,则系统 的开环传递函数为()()G s H s ,系统的闭环传递函数为 () 1()() G s G s H s + 。 5 开环传递函数为2(2)(1) ()()(4)(22) K s s G s H s s s s s ++= +++,其根轨迹的起点为0,4,1j --±。 6. 当欠阻尼二阶系统的阻尼比减小时,在单位阶跃输入信号作用下,最大超调量将 增大 。 7.串联方框图的等效传递函数等于各串联传递函数之 积 。 三、简答题(本题10分) 图1为水温控制系统示意图。冷水在热交换器中由通入的蒸汽加热,从而得到一定温度的热水。冷水流量变化用流量计测量。试绘制系统方框图,并说明为了保持热水温度为期望值,系统是如何工作的?系统的被控对象和控制装置各是什么?

自动控制原理教学大纲-胡寿松

自动控制原理课程教学大纲 ◆层次:?本科?专科 ◆课程英文名称:Automatical control principle ◆课程类别:本科选?通识必修?通识选修?专业必修?专业选修 专科选?公共必修?公共选修?职业技术必修?职业技术选修 ◆适用专业:自动化 ◆配套教学计划:2011级教学计划 ◆开课系部:自动化系 ◆学分:5 ◆学时:80 其中:实验(实践)学时:10 ;课外学时:0 ◆执笔人:张海燕教研室审核人:张海燕系部审核人: 一、课程性质和教学目标 《自动控制原理》是自动化专业的一门必修课,通过本课程的学习,使学生掌握自动控制的基本原理和概念,并具备对自动控制系统进行分析,计算,实验的初步能力,为专业课的学习和参加控制工程实践提供必要的理论基础。 通过对本课程的学习,要求学生掌握自动控制的基本理论和基本分析方法,能应用控制理论对自动控制系统进行性能分析,能对系统进行校正和提出改善系统性能的途径和方法,具体要求如下: 1.掌握常规控制器和自动控制系统的组成及其相互关系。 2.了解对自动控制系统的性能要求及分析系统性能的方法。 3.掌握用传递函数,方框图,信号流图及状态空间描述建立系统数学模型的方法。 4.掌握常规控制器的基本控制规律、动态特性和对控制系统的作用。 5.掌握对控制系统进行分析和综合的方法:时域分析法、频域分析法、根轨迹法及状态空间分析法。6.初步掌握控制系统的校正和设计方法,为解决实际问题打好基础。 7.掌握脉冲传递函数的概念,了解离散控制系统的一般分析方法。 8.初步了解非线性系统的基本知识。 二、本课程与其他课程的联系与分工 本课程在自动化专业教学计划中被列为专业基础课,本课程以工程数学、电路、电机拖动等为前序课程,也是过程控制系统等课程必需的理论基础,因此本课程的学习对全面掌握各门专业课程起着重要的作用。本课程的重点是第三、第四、第五章章,次重点是第一、第二章,一般章节为六章。 三、教学内容和教学方式 第一章自动控制的一般概念(4学时) (一)教学要求

自动控制原理实验

自动控制原理实验 实验报告 实验三闭环电压控制系统研究 学号姓名 时间 2014年10月21日 评定成绩审阅教师

实验三闭环电压控制系统研究 一、实验目的: (1)通过实例展示,认识自动控制系统的组成、功能及自动控制原理课程所要解决的问题。 (2)会正确实现闭环负反馈。 (3)通过开、闭环实验数据说明闭环控制效果。 二、预习与回答: (1)在实际控制系统调试时,如何正确实现负反馈闭环? 答:负反馈闭环,不是单纯的加减问题,它是通过增量法实现的,具体如下: 1.系统开环; 2.输入一个增或减的变化量; 3.相应的,反馈变化量会有增减; 4.若增大,也增大,则需用减法器; 5.若增大,减小,则需用加法器,即。 (2)你认为表格中加1KΩ载后,开环的电压值与闭环的电压值,哪个更接近2V? 答:闭环更接近。因为在开环系统下出现扰动时,系统前部分不会产生变化。故而系统不具有调节能力,对扰动的反应很大,也就会与2V相去甚远。 但在闭环系统下出现扰动时,由于有反馈的存在,扰动产生的影响会被反馈到输入端,系统就从输入部分产生了调整,经过调整后的电压值会与2V相差更小些。 因此,闭环的电压值更接近2V。 (3)学自动控制原理课程,在控制系统设计中主要设计哪一部份? 答:应当是系统的整体框架及误差调节部分。对于一个系统,功能部分是“被控对象”部分,这部分可由对应专业设计,反馈部分大多是传感器,因此可由传感器的专业设计,而自控原理关注的是系统整体的稳定性,因此,控制系统设计中心就要集中在整个系统的协调和误差调节环节。 二、实验原理: (1)利用各种实际物理装置(如电子装置、机械装置、化工装置等)在数学上的“相似性”,将各种实际物理装置从感兴趣的角度经过简化、并抽象成相同的数学形式。我们在设计控制系统时,不必研究每一种实际装置,而用几种“等价”的数学形式来表达、研究和设计。又由于人本身的自然属性,人对数学而言,不能直接感受它的自然物理属性,这给我们分析和设计带来了困难。所以,我们又用替代、模拟、仿真的形式把数学形式再变成“模拟实物”来研究。这样,就可以“秀才不出门,遍知天下事”。实际上,在后面的课程里,不同专业的学生将面对不同的实际物理对象,而“模拟实物”的实验方式可以做到举一反三,我们就是用下列“模拟实物”——电路系统,替代各种实际物理对象。

自动控制原理试题库(含参考答案)

一、填空题(每空1分,共15分) 1、反馈控制又称偏差控制,其控制作用是通过给定值与反馈量的差值进行的。 2、复合控制有两种基本形式:即按输入的前馈复合控制和按扰动的前馈复合控制。 3、两个传递函数分别为G1(s)与G2(s)的环节,以并联方式连接,其等效传递函数为() G s,则G(s) 为G1(s)+G2(s)(用G1(s)与G2(s)表示)。 4、典型二阶系统极点分布如图1所示, ω, 则无阻尼自然频率= n 7 其相应的传递函数为,由于积分环节的引入,可以改善系统的稳态性能。 1、在水箱水温控制系统中,受控对象为水箱,被控量为水温。 2、自动控制系统有两种基本控制方式,当控制装置与受控对象之间只有顺向作用而无反向联系时,称为开环控制系统;当控制装置与受控对象之间不但有顺向作用而且还有反向联系时,称为闭环控制系统;含有测速发电机的电动机速度控制系统,属于闭环控制系统。 3、稳定是对控制系统最基本的要求,若一个控制系统的响应曲线为衰减振荡,则该系统稳定。判断一个闭环线性控制系统是否稳定,在时域分析中采用劳斯判据;在频域分析中采用奈奎斯特判据。 4、传递函数是指在零初始条件下、线性定常控制系统的输出拉氏变换与输入拉氏变换之比。

5、设系统的开环传递函数为2(1)(1) K s s Ts τ++ arctan 180arctan T τωω--。 6、频域性能指标与时域性能指标有着对应关系,开环频域性能指标中的幅值穿越频率c ω对应时域性能指标调整时间s t ,它们反映了系统动态过程的。 1、对自动控制系统的基本要求可以概括为三个方面,即:稳定性、快速性和准确性。 是指闭环传系统的性能要求可以概括为三个方面,即:稳定性、准确性和快速性,其中最基本的要求是稳定性。 2、若某单位负反馈控制系统的前向传递函数为()G s ,则该系统的开环传递函数为()G s 。 3、能表达控制系统各变量之间关系的数学表达式或表示方法,叫系统的数学模型,在古典控制理 论中系统数学模型有微分方程、传递函数等。 4、判断一个闭环线性控制系统是否稳定,可采用劳思判据、根轨迹、奈奎斯特判据等方法。

自动控制原理教学大纲

自动控制原理教学大纲 课程编号:0701101 自动控制原理总学时:104 The Principles of Automatic Control 总学分:6 课程性质:专业技术基础课程 开设学期学时分配:第5学期 适用专业及层次:自动化、测控技术及仪器等工科类大学本科 先行、后继课程情况:先行课:工程数学1、2,电工、电子技术基础等 后继课:过程控制工程,运动控制系统等 推荐参考书: 1.《现代控制工程》绪方胜彦著(卢伯英佟明安罗维铭译)科学出版社 2.《自动控制原理与系统》上、下册清华大学吴麒等国防工业出版社 3.《自动控制原理》孙德宝主编化学工业出版社 4.《自动控制原理》天津大学李光泉主编机械工业出版社 5.《自动控制理论》侯夔龙主编西安交通大学出版社 6.《现代控制工程》第三版 [美] Katsuhiko Ogata 著 卢伯英于海勋等译电子工业出版 一、课程目的及要求: 本课程是自动化专业及其相关专业的一门主要技术基础课,是与后续专业课紧密相关的一门理论性较强的课程。重点在于学习反馈控制系统的基本理论及基本方法,掌握控制系统的分析,设计方法和技能,并能在后续专业课中应用其理论及方法进行分析和设计控制系统的任务。 本课程重点是线性、连续系统的基本理论,以掌握时域法、根轨迹法和频域法三大经典方法为基本要求。又本着适当扩充现代控制理论的思想,要求掌握状态空间分析法的基本方法和简单应用。对于非线性系统和离散时间系统的分析方法有一定程度的了解。 本课程教学学时数为90学时。 二、课程内容及学时分配: 第一章概述(3学时)介绍本课程研究的课题及方法,明确本课程的目的,介绍自动控制系统的基本原理与方式,控制系统的组成及系统的分类。 1.本课程研究课题及方法 1)自动控制系统的概念及在国民经济中的作用 2)研究对象及课题 3)自动控制理论的发展概况,经典理论与现代理论及其关系 4)课程的内容及特点 2.控制系统简介 1)控制系统的基本组成 2)控制系统的常用术语 3)自动控制系统示例 4)自动控制系统的分类 5)对自动控制系统的基本要求 第二章控制系统的数学模型(10 学时)介绍数学模型的概念,数学模型在分析、研究系统中的重要性,讲解常用的建模方法。1.系统的静态和动态特性

相关文档
相关文档 最新文档