文档库 最新最全的文档下载
当前位置:文档库 › 动态分级的并行约束优化进化算法

动态分级的并行约束优化进化算法

动态分级的并行约束优化进化算法
动态分级的并行约束优化进化算法

第四章 非线性规划1-约束极值问题

第四章 非线性规划 ???? ???? 无约束最优化问题线性规划约束最优化问题非线性规划 ?? ?凸规划约束最优化问题非凸规划 ?? ?直接解法约束最优化问题求解方法间接解法 间接解法是将约束优化问题转化为一系列无约束优化问题来解的一种方法。由于这类方法可以选用有效的无约束优化方法,且易于处理同时具有不等式约束和等式约束的问题,因而在工程优化中得到了广泛的应用。 直接解法是在满足不等式约束的可行设汁区域内直接按索问题的约束最优解。 第一节 目标函数的约束极值问题 所谓约束优化设计问题的最优性条件.就是指在满足等式和不等式约束条件下,其目标函数值最小的点必须满足的条件,须注意的是,这只是对约束的局部最优解而言。 对于带有约束条件的目标函数,其求最优解的过程可归结为: 一、约束与方向的定义 一)起作用约束与松弛约束 对于一个不等式约束()0g X ≤来说,如果所讨论的设计点() k X 使该约束()0g X =(或 者说() k X 当时正处在该约束的边界上)时,则称这个约束是() k X 点的一个起作用约束或紧约 束,而其他满足()0g X <的约束称为松弛约束。

冗余约束 40g ≤ 当一个设计点同时有几个约束起作用时,即可定义起作用约束集合为 {}()()()|()0,1,2, ,k k u I X u g X u m === 其意义是对() k X 点此时所有起作用约束下标的集合。 二)冗余约束 如果一个不等式约束条件的约束面(即()0g X =)对可行域的大小不发生影 响,或是约束面不与可行域D 相交,即此约束称为冗余约束。 三)可行方向 可行方向:一个设计点()k X 在可行域内,沿某一个方向S 移动,仍可得到一个属于可行域的新点,则称该方向为可行方向。 1)设计点为自由点 设计点() k X 在可行域内是一个自由点,在各个方 向上都可以作出移动得到新点仍属于可行域,如图所示。 2)设计点为约束边界点 当设计点()k X 处于起作用约束i g 上时,它的移动就会受到可行性的限制。此时,()k X 点的可行方向S 必满足条件: ()0T k i S g X ?≤ (解释:()()cos ,()T k k T k i i i S g X S g X S g X ?=??,,()90T k i S g X ?≥?)) 当,()90T k i S g X ?=?时,方向S 是约束函数i g 在()k X 点处的切线方向,即()0T k i S g X ?=。 当某个设计点x 同时有几个约束起作用时(如

进化计算综述

进化计算综述 1.什么是进化计算 在计算机科学领域,进化计算(Evolutionary Computation)是人工智能(Artificial Intelligence),进一步说是智能计算(Computational Intelligence)中涉及到组合优化问题的一个子域。其算法是受生物进化过程中“优胜劣汰”的自然选择机制和遗传信息的传递规律的影响,通过程序迭代模拟这一过程,把要解决的问题看作环境,在一些可能的解组成的种群中,通过自然演化寻求最优解。 2.进化计算的起源 运用达尔文理论解决问题的思想起源于20世纪50年代。 20世纪60年代,这一想法在三个地方分别被发展起来。美国的Lawrence J. Fogel提出了进化编程(Evolutionary programming),而来自美国Michigan 大学的John Henry Holland则借鉴了达尔文的生物进化论和孟德尔的遗传定律的基本思想,并将其进行提取、简化与抽象提出了遗传算法(Genetic algorithms)。在德国,Ingo Rechenberg 和Hans-Paul Schwefel提出了进化策略(Evolution strategies)。 这些理论大约独自发展了15年。在80年代之前,并没有引起人们太大的关注,因为它本身还不够成熟,而且受到了当时计算机容量小、运算速度慢的限制,并没有发展出实际的应用成果。

到了20世纪90年代初,遗传编程(Genetic programming)这一分支也被提出,进化计算作为一个学科开始正式出现。四个分支交流频繁,取长补短,并融合出了新的进化算法,促进了进化计算的巨大发展。 Nils Aall Barricelli在20世纪六十年代开始进行用进化算法和人工生命模拟进化的工作。Alex Fraser发表的一系列关于模拟人工选择的论文大大发展了这一工作。 [1]Ingo Rechenberg在上世纪60 年代和70 年代初用进化策略来解决复杂的工程问题的工作使人工进化成为广泛认可的优化方法。[2]特别是John Holland的作品让遗传算法变得流行起来。[3]随着学术研究兴趣的增长,计算机能力的急剧增加使包括自动演化的计算机程序等实际的应用程序成为现实。[4]比起人类设计的软件,进化算法可以更有效地解决多维的问题,优化系统的设计。[5] 3.进化计算的分支 进化计算的主要分支有:遗传算法GA ,遗传编程GP、进化策略ES、进化编程EP。下面将对这4个分支依次做简要的介绍。 1遗传算法(Genetic Algorithms): 遗传算法是一类通过模拟生物界自然选择和自然遗传机制的随机化搜索算法,由美国John HenryHoland教授于1975年在他的专著《Adaptation in Natural and Artificial Systems》中首次提出。[6]它是利用某种编码技术作用于称为染色体的二进制数串,其基本思想是模拟由这些串组成的种群的进化过程,通过有组织地然而是随机地信息交换来重新组合那些适应性好的串。遗传算法对求解问题的本身一无所知,它所需要的仅是对算法所产生的每个染

基本差分进化算法

基本差分进化算法 基本模拟退火算法概述 DE 算法是一种基于群体进化的算法,其本质是一种基于实数编码的具有保优思想的贪婪遗传算法。由于DE 算法操作简单,寻优能力强,自提出以来引起了国内外学者的高度关注,目前已在电力系统优化调度、配网重构等领域得到了应用。 1、算法原理 DE 算法首先在N 维可行解空间随机生成初始种群P 0001[,,]N =X x x L ,其中000T 1[,,]i i iN x x =x L ,p N 为DE 种群规模。DE 算法的核心思想在于采取变异和交叉操 作生成试验种群,然后对试验种群进行适应度评估,再通过贪婪思想的选择机制,将原种群和试验种群进行一对一比较,择优进入下一代。 基本DE 算法主要包括变异、交叉和选择三个操作。首先,在种群中随机选取三个个体,进行变异操作: 1123()t t t t i r r r F +=+-v x x x 其中1t i +v 表示变异后得到的种群,t 表示种群代数,F 为缩放因子,一般取(0,2],它的大小可以决定种群分布情况,使种群在全局范围内进行搜索;1t r x 、2t r x 、3t r x 为从种群中随机抽取的三个不同的个体。 然后,将变异种群和原种群进行交叉操作: 1,R 1 ,,R () or () () and ()t i j t i j t i j v rand j C j randn i u x rand j C j randn i ++?≤=?=?>≠?? 其中t 1,i j u +表示交叉后得到的种群,()rand j 为[0,1]之间的随机数,j 表示个体的第j 个分量,R C 为交叉概率,()randn i 为[1,,]N L 之间的随机量,用于保证新个体至少有一维分量由变异个体贡献。 最后,DE 算法通过贪婪选择模式,从原种群和试验种群中选择适应度更高的个体进入下一代: 11t 11 ()() ()()t t t i i i i t t t i i i f f f f ++++?<=?≥?u u x x x u x 1()t i f +u 、()t i f x 分别为1t i +u 和t i x 的适应度。当试验个体1t i +u 的适应度优于t i x 时,

约束最优化问题

约束最优化问题 一实习目的 1.熟练掌握科学与工程计算中常用的基本算法; 2.掌握分析问题,设计算法的能力; 3.掌握模块化程序设计的基本思想,注重模块的“高内聚,低耦合”; 4.采用自顶向下,逐步细化的编程思想完成程序书写; 5.牢固建立“清晰第一,效率第二”的软件设计观念; 6.掌握软件调试,测试的基本技能和方法; 7.提高科技报告的书写质量; 8.在掌握无约束最优化问题求解方法的前提下,对一般情形下的约束最优化问题进行研究,通过实习掌握外点罚函数法、内点罚函数法、乘子法、线性近似规划法和序列二次规划法在求解一般情形下的约束最优化问题的应用。 二问题定义及题目分析 问题1: 要求用外点罚函数法和内点罚函数法解决约束问题: Min f(x)=错误!未找到引用源。 s.t. 错误!未找到引用源。 错误!未找到引用源。 错误!未找到引用源。 问题2: 要求用乘子法解决约束问题: Min 错误!未找到引用源。 s.t. 错误!未找到引用源。 错误!未找到引用源。 (错误!未找到引用源。) 问题3: 要求用线性近似规划法和序列二次规划法解决约束问题: Min 错误!未找到引用源。 s.t. 错误!未找到引用源。 错误!未找到引用源。 错误!未找到引用源。 错误!未找到引用源。 三程序概要设计 1.外点罚函数法 Step1. 给定初始点错误!未找到引用源。,罚参数序列{错误!未找到引用源。}(常取错误!未找到引用源。),精度错误!未找到引用源。,并令k=0;

Step2. 构造增广目标函数错误!未找到引用源。; Step3. 求解无约束优化问题min 错误!未找到引用源。,x错误!未找到引用源。,其解记为错误!未找到引用源。; Step4. (终止准则:惩罚项充分小,或等价地错误!未找到引用源。近似可行)若错误!未找到引用源。,或者错误!未找到引用源。,错误! 未找到引用源。,则得解错误!未找到引用源。,否则令k=k+1,转 Step2. 2.内点罚函数法: Step1. 给定初始可行解错误!未找到引用源。,罚参数序列{错误!未找到引用源。}(常取错误!未找到引用源。),精度错误!未找到引用源。,并令 k=0; Step2. 构造增广目标函数错误!未找到引用源。; Step3. 求解无约束优化问题min 错误!未找到引用源。,x错误!未找到引用源。,其解记为错误!未找到引用源。; Step4. (终止准则)若错误!未找到引用源。,则得解错误!未找到引用源。,否则令k=k+1,转 Step2. 3.乘子法: Step1. 给定初始点错误!未找到引用源。,初始lagrange乘子错误!未找到引用源。,i错误!未找到引用源。罚参数序列{错误!未找到引用源。}, 精度错误!未找到引用源。,并令k=0; Step2. 构造增广目标函数错误!未找到引用源。 Step3. 求解无约束优化问题min 错误!未找到引用源。,x错误!未找到引用源。,其解记为错误!未找到引用源。; Step4. (终止准则)若错误!未找到引用源。,则得解错误!未找到引用源。,否则令 K=k+1,转Step2. 4.线性近似规划法: Step1. 给定初始点错误!未找到引用源。,步长限制错误!未找到引用源。,缩小系数错误!未找到引用源。。精度错误!未找到引用源。,并令k=0;Step2. 求解线性规划问题:min 错误!未找到引用源。

用于约束多目标优化问题的双群体差分进化算法

用于约束多目标优化问题的双群体差分进化算法 孟红云1 张小华2 刘三阳1 (1.西安电子科技大学 应用数学系,西安,710071; 2.西安电子科技大学 智能信息处理研究所,西安,710071) 摘 要:首先给出一种改进的差分进化算法,然后提出一种基于双群体搜索机制的求解约束多目标优化问题的差分进化算法.该算法同时使用两个群体,其中一个用于保存搜索过程中找到的可行解,另一个用于记录在搜索过程中得到的部分具有某些优良特性的不可行解,避免了构造罚函数和直接删除不可行解.此外,将本文算法、N SGA-Ⅱ和SPEA 的时间复杂度进行比较表明,NS GA-Ⅱ最优,本文算法与SPE A相当.对经典测试函数的仿真结果表明,与NSGA-Ⅱ相比较,本文算法在均匀性及逼近性方面均具有一定的优势. 关键字: 差分进化算法;约束优化问题;多目标优化问题; 中图分类号:TP18 1 引言 达尔文的自然选择机理和个体的学习能力推动进化算法的出现和发展,用进化算法求解优化问题已成为一个研究的热点[1-3].但目前研究最多的却是无约束优化问题.然而,在科学研究和工程实践中,许多实际问题最终都归结为求解一个带有约束条件的函数优化问题,因此研究基于进化算法求解约束优化问题是非常有必要的.不失一般性,以最小化问题为例,约束优化问题(Constrai ned Opti mizatio n Prob lem ,COP )可定义如下: )(COP ()()()()q j x h p i x g t s x f x f x f x F j i k R x n ,,1,0)( ,,1,0)( ..,,,)(min 21 ===≤=∈ (1) 其中)(x F 为目标函数,)(),(x h x g j i 称为约束条件,n n R x x x x ∈=),,,(21 称为n 维决策 向量.将满足所有约束条件的解空间S 称为(1)的可行域.特别的,当1=k 时,(1)为单目标优化问题;当1>k 时,(1)为多目标优化问题.)(x g i 为第i 个不等式约束,)(x h j 是第j 个等式约束.另一方面,对于等式约束0)(=x h j 可通过容许误差(也称容忍度)0>δ将它转化为两个不等式约束: ?????≤--≤-0 )(0)(δδx h x h j j (2) 故在以后讨论问题时,仅考虑带不等式约束的优化问题.进一步,如果x 使得不等式约束0)(=x g i ,则称约束()x g i 在x 处是积极的.在搜索空间S 中,满足约束条件的决策变量x 称为可行解,否则称为不可行解. 定义1(全局最优解)() **2*1*,,,n x x x x =是COP 的全局最优解,是指S x ∈*且)(*x F 不劣于可行域内任意解y 所对应的目标函数)(y F ,表示为)( )(* y F x F . 对于单目标优化问题,)( )(*y F x F 等价为)()(*y F x F ≤,而对于多目标优化问题是指不存在y ,使得)(y F Pa re to 优于)(*x F . 目前,进化算法用于无约束优化问题的文献居多,与之比较,对约束优化问题的研究相对

五种最优化方法

五种最优化方法 1.最优化方法概述 1.1最优化问题的分类 1)无约束和有约束条件; 2)确定性和随机性最优问题(变量是否确定); 3)线性优化与非线性优化(目标函数和约束条件是否线性); 4)静态规划和动态规划(解是否随时间变化)。 1.2最优化问题的一般形式(有约束条件): 式中f(X)称为目标函数(或求它的极小,或求它的极大),si(X)称为不等式约束,hj(X)称为等式约束。化过程就是优选X,使目标函数达到最优值。 2.牛顿法 2.1简介 1)解决的是无约束非线性规划问题; 2)是求解函数极值的一种方法; 3)是一种函数逼近法。 2.2原理和步骤

3.最速下降法(梯度法) 3.1最速下降法简介 1)解决的是无约束非线性规划问题; 2)是求解函数极值的一种方法; 3)沿函数在该点处目标函数下降最快的方向作为搜索方向; 3.2最速下降法算法原理和步骤

4.模式搜索法(步长加速法) 4.1简介 1)解决的是无约束非线性规划问题; 2)不需要求目标函数的导数,所以在解决不可导的函数或者求导异常麻烦的函数的优化问题时非常有效。 3)模式搜索法每一次迭代都是交替进行轴向移动和模式移动。轴向移动的目的是探测有利的下降方向,而模式移动的目的则是沿着有利方向加速移动。 4.2模式搜索法步骤

5.评价函数法 5.1简介 评价函数法是求解多目标优化问题中的一种主要方法。在许多实际问题中,衡量一个方案的好坏标准往往不止一个,多目标最优化的数学描述如下:min (f_1(x),f_2(x),...,f_k(x)) s.t. g(x)<=0 传统的多目标优化方法本质是将多目标优化中的各分目标函数,经处理或数学变换,转变成一个单目标函数,然后采用单目标优化技术求解。常用的方法有“线性加权和法”、“极大极小法”、“理想点法”。选取其中一种线性加权求合法介绍。 5.2线性加权求合法 6.遗传算法 智能优化方法是通过计算机学习和存贮大量的输入-输出模式映射关系,进

常用最优化方法评价准则

常用无约束最优化方法评价准则 方法算法特点适用条件 最速下降法属于间接法之一。方法简便,但要计算一阶偏导 数,可靠性较好,能稳定地使函数下降,但收敛 速度较慢,尤其在极点值附近更为严重 适用于精度要求不高或用于对 复杂函数寻找一个好的初始 点。 Newton法属于间接法之一。需计算一、二阶偏导数和Hesse 矩阵的逆矩阵,准备工作量大,算法复杂,占用 内存量大。此法具有二次收敛性,在一定条件下 其收敛速度快,要求迭代点的Hesse矩阵必须非 奇异且定型(正定或负定)。对初始点要求较高, 可靠性较差。 目标函数存在一阶\二阶偏导 数,且维数不宜太高。 共轭方向法属于间接法之一。具有可靠性好,占用内存少, 收敛速度快的特点。 适用于维数较高的目标函数。 变尺度法属于间接法之一。具有二次收敛性,收敛速度快。 可靠性较好,只需计算一阶偏导数。对初始点要 求不高,优于Newton法。因此,目前认为此法是 最有效的方法之一,但需内存量大。对维数太高 的问题不太适宜。 适用维数较高的目标函数 (n=10~50)且具有一阶偏导 数。 坐标轮换法最简单的直接法之一。只需计算函数值,无需求 导,使用时准备工作量少。占用内存少。但计算 效率低,可靠性差。 用于维数较低(n<5)或目标函 数不易求导的情况。 单纯形法此法简单,直观,属直接法之一。上机计算过程 中占用内存少,规则单纯形法终止条件简单,而 不规则单纯形法终止条件复杂,应注意选择,才 可能保证计算的可靠性。 可用于维数较高的目标函数。

常用约束最优化方法评价标准 方法算法特点适用条件 外点法将约束优化问题转化为一系列无约束优化问题。 初始点可以任选,罚因子应取为单调递增数列。 初始罚因子及递增系数应取适当较大值。 可用于求解含有等式约束或不等 式约束的中等维数的约束最优化 问题。 内点法将约束优化问题转化为一系列无约束优化问题。 初始点应取为严格满足各个不等式约束的内点, 障碍因子应取为单调递减的正数序列。初始障碍 因子选择恰当与否对收敛速度和求解成败有较大 影响。 可用于求解只含有不等式约束的 中等维数约束优化问题。 混合罚函数法将约束优化问题转化为一系列无约束优化问题, 用内点形式的混合罚函数时,初始点及障碍因子 的取法同上;用外点形式的混合罚函数时,初始 点可任选,罚因子取法同外点法相同。 可用于求解既有等式约束又有不 等式约束的中等维数的约束化问 题。 约束坐标轮换法由可行点出发,分别沿各坐标轴方向以加步探索 法进行搜索,使每个搜索点在可行域内,且使目 标函数值下降。 可用于求解只含有不等式约束, 且维数较低(n<5),目标函数的 二次性较强的优化问题。 复合形法在可行域内构造一个具有n个顶点的复合形,然 后对复合形进行映射变化,逐次去掉目标函数值 最大的顶点。 可用于求解含不等式约束和边界 约束的低维优化问题。

常用无约束最优化方法(一)

项目三 常用无约束最优化方法(一) [实验目的] 编写最速下降法、Newton 法(修正Newton 法)的程序。 [实验学时] 2学时 [实验准备] 1.掌握最速下降法的思想及迭代步骤。 2.掌握Newton 法的思想及迭代步骤; 3.掌握修正Newton 法的思想及迭代步骤。 [实验内容及步骤] 编程解决以下问题:【选作一个】 1.用最速下降法求 22120min ()25[22]0.01T f X x x X ε=+==,,,. 2.用Newton 法求 22121212min ()60104f X x x x x x x =--++-, 初始点 0[00]0.01T X ε==,,. 最速下降法 Matlab 程序: clc;clear; syms x1 x2; X=[x1,x2]; fx=X(1)^2+X(2)^2-4*X(1)-6*X(2)+17; fxd1=[diff(fx,x1) diff(fx,x2)]; x=[2 3]; g=0; e=0.0005; a=1; fan=subs(fxd1,[x1 x2],[x(1) x(2)]); g=0; for i=1:length(fan) g=g+fan(i)^2; end g=sqrt(g); step=0; while g>e step=step+1; dk=-fan; %点x(k)处的搜索步长

ak=((2*x(1)-4)*dk(1)+(2*x(2)-6)*dk(2))/(dk(1)*dk(2)-2*dk(1)^2-2*dk(2)^2); xu=x+ak*dk; x=xu; %输出结果 optim_fx=subs(fx,[x1 x2],[x(1) x(2)]); fprintf(' x=[ %d %d ] optim_fx=%d\n',x(1),x(2),optim_fx); %计算目标函数点x(k+1)处一阶导数值 fan=subs(fxd1,[x1 x2],[x(1) x(2)]); g=0; for i=1:length(fan) g=g+fan(i)^2; end g=sqrt(g); end %输出结果 optim_fx=subs(fx,[x1 x2],[x(1) x(2)]); fprintf('\n最速下降法\n结果:\n x=[ %d %d ] optim_fx=%d\n',x(1),x(2),optim_fx); c++程序 #include #include #include #include float goldena(float x[2],float p[2]) {float a; a=-1*(x[0]*p[0]+4*x[1]*p[1])/(p[0]*p[0]+4*p[1]*p[1]); return a; } void main() {float a=0,x[2],p[2],g[2]={0,0},e=0.001,t; int i=0; x[0]=1.0; x[1]=1.0;

用于约束多目标优化问题的双群体差分进化算法精编

用于约束多目标优化问题的双群体差分进化算 法精编 Document number:WTT-LKK-GBB-08921-EIGG-22986

用于约束多目标优化问题的双群体差分进化算法 孟红云 1 张小华2刘三阳1 (1.西安电子科技大学应用数学系,西安,710071; 2.西安电子科技大学智能信息处理研究所,西安,710071)摘要:首先给出一种改进的差分进化算法,然后提出一 种基于双群体搜索机制的求解约束多目标优化问题的差分 进化算法.该算法同时使用两个群体,其中一个用于保存 搜索过程中找到的可行解,另一个用于记录在搜索过程中 得到的部分具有某些优良特性的不可行解,避免了构造罚 函数和直接删除不可行解.此外,将本文算法、NSGA-Ⅱ和SPEA的时间复杂度进行比较表明,NSGA-Ⅱ最优,本文算法与SPEA相当.对经典测试函数的仿真结果表明,与NSGA-Ⅱ相比较,本文算法在均匀性及逼近性方面均具有一定的优势. 关键字:差分进化算法;约束优化问题;多目标优化问题; 中图分类号:TP18 1 引言 达尔文的自然选择机理和个体的学习能力推动进化算 法的出现和发展,用进化算法求解优化问题已成为一个研 究的热点[1-3].但目前研究最多的却是无约束优化问题.然而,在科学研究和工程实践中,许多实际问题最终都归结 为求解一个带有约束条件的函数优化问题,因此研究基于 进化算法求解约束优化问题是非常有必要的.不失一般

性,以最小化问题为例,约束优化问题(Constrained Optimization Problem ,COP )可定义如下: )(COP ()()()()q j x h p i x g t s x f x f x f x F j i k R x n ,,1,0)( ,,1,0)( ..,,,)(min 21 ===≤=∈ (1) 其中)(x F 为目标函数,)(),(x h x g j i 称为约束条件, n n R x x x x ∈=),,,(21 称为n 维决策向量.将满足所有约束条件的 解空间S 称为(1)的可行域.特别的,当1=k 时,(1)为单目 标优化问题;当1>k 时,(1)为多目标优化问题.)(x g i 为 第i 个不等式约束,)(x h j 是第j 个等式约束.另一方面,对于等式约束0)(=x h j 可通过容许误差(也称容忍度)0>δ将它转 化为两个不等式约束: ?????≤--≤-0)(0)(δδx h x h j j (2) 故在以后讨论问题时,仅考虑带不等式约束的优化问题.进一步,如果x 使得不等式约束0)(=x g i ,则称约束() x g i 在x 处是积极的.在搜索空间S 中,满足约束条件的决策变量x 称为可行解,否则称为不可行解. 定义1(全局最优解)()**2 *1*,,,n x x x x =是COP 的全局最优解,是指S x ∈*且)(*x F 不劣于可行域内任意解y 所对应的目标 函数)(y F ,表示为)( )(*y F x F . 对于单目标优化问题, )( )(*y F x F 等价为)()(*y F x F ≤,而对于多目标优化问题是指不 存在y ,使得)(y F Pareto 优于)(*x F . 目前,进化算法用于无约束优化问题的文献居多,与 之比较,对约束优化问题的研究相对较少[4-6]。文[7] 对当前基于进化算法的各种约束处理方法进行了较为详细的综述. 对于约束优化问题的约束处理方法基本上分为两类:基于 罚函数的约束处理技术和基于多目标优化技术的约束处理

差分进化算法介绍

1.差分进化算法背景 差分进化(Differential Evolution,DE)是启发式优化算法的一种,它是基于群体差异的启发式随机搜索算法,该算法是Raincr Stom和Kenneth Price为求解切比雪夫多项式而提出的。差分进化算法具有原理简单、受控参数少、鲁棒性强等特点。近年来,DE在约束优化计算、聚类优化计算、非线性优化控制、神经网络优化、滤波器设计、阵列天线方向图综合及其它方面得到了广泛的应用。 差分算法的研究一直相当活跃,基于优胜劣汰自然选择的思想和简单的差分操作使差分算法在一定程度上具有自组织、自适应、自学习等特征。它的全局寻优能力和易于实施使其在诸多应用中取得成功。 2.差分进化算法简介 差分进化算法采用实数编码方式,其算法原理同遗传算法相似刚,主要包括变异、交叉和选择三个基本进化步骤。DE算法中的选择策略通常为锦标赛选择,而交叉操作方式与遗传算法也大体相同,但在变异操作方面使用了差分策略,即:利用种群中个体间的差分向量对个体进行扰动,实现个体的变异。与进化策略(Es)采用Gauss或Cauchy分布作为扰动向量的概率密度函数不同,DE使用的差分策略可根据种群内个体的分布自动调节差分向量(扰动向量)的大小,自适应好;DE 的变异方式,有效地利用了群体分布特性,提高了算法的搜索能力,避免了遗传算法中变异方式的不足。 3.差分进化算法适用情况 差分进化算法是一种随机的并行直接搜索算法,最初的设想是用于解决切比雪夫多项式问题,后来发现差分进化算法也是解决复杂优化问题的有效技术。它可以对非线性不可微连续空间的函数进行最小化。目前,差分进化算法的应用和研究主要集中于连续、单目标、无约束的确定性优化问题,但是,差分进化算法在多目标、有约束、离散和噪声等复杂环境下的优化也得到了一些进展。 4.基本DE算法 差分进化算法把种群中两个成员之间的加权差向量加到第三个成员上以产生新的参数向量,这一操作称为“变异”。然后,变异向量的参数与另外事先确

差分进化算法-入门

基本差分进化算法 1基本差分进化算法的基本思想 DE 算法是一种基于实数编码的用于优化函数最小值的进化算法,是在求解有关切比雪夫多项式的问题时提出来的,是基于群体差异的进化计算方法。它的整体结构类似于遗传算法,一样都存在变异、交叉和选择操作,但是它又不同于遗传算法。与基本遗传算法的主要区别在于变异操作上,如: 1、传统的遗传算法采用二进制编码,而差分进化算法采用实数编码。 2、在遗传算法过两个父代个体的交叉产生两个子个体,而在差分进化算法过第两个或几个个体的差分矢量做扰动来产生新个体。 3、在传统的遗传算法中,子代个体以一定概率取代其父代个体,而在差分进化中新产生的个体只有当它比种群中的个体优良时才替换种群中的个体。 变异是DE 算法的主要操作,它是基于群体的差异向量来修正各个体的值,其基本原理是通过把种群中两个个体的向量差加权后,按一定的规划与第三个个体求和来产生新个体,然后将新个体与当代种群中某个预先决定的个体相比较,如果新个体的目标值优于与之相比较的个体的目标值,则在下一代中就用新个体取代,否则,旧个体仍保存下来。 差分进化算法其基本思想是:首先由父代个体间的变异操作构成变异个体;接着按一定的概率,父代个体与变异个体之间进行交叉操作,生成一试验个体;然后在父代个体与试验个体之间根据适应度的大小进行贪婪选择操作,保留较优者,实现种群的进化。 2 差分进化算法的基本操作 设当前进化代数为t ,群体规模为NP ,空间维数为D ,当前种群为 {}12(),, ,t t t NP X t x x x =,()12,, ,T t t t t i i i iD x x x x =为种群中的第i 个个体。在进化过程 中,对于每个个体t i x 依次进行下面三种操作。 2.1 变异操作 对于每个个体t i x 按下式产生变异个体12(,, ,)t t t t T i i i iD v v v v =,则 123() 1,2, ,D t t t t ij r j r j r j v x F x x j =+-= (1) 其中111112(,,,)t t t t T r r r r D x x x x =,222212(,,,)t t t t T r r r r D x x x x =和333312(,, ,)t t t t T r r r r D x x x x =是群 体中随机选择的三个个体,并且123r r r i ≠≠≠;1t r j x ,2t r j x 和3t r j x 分别为个体1r ,2r 和3r 的第j 维分量;F 为变异因子,一般取值于[0,2]。这样就得到了变异个体t i v 。

机械优化设计-第04章 多维有约束优化方法

第四章:多维有约束优化方法 4.1概述 一、多维有约束问题的数学模型 机械优化设计问题绝大多数是属于多维有约束非线性规划,其数学模型可表示为 式中a i、b i分别为x i的下界和上界。 在求解约束优化问题时,虽然可以利用第三章的无约束优化方法,再加上约束的逻辑判断,使搜索点保持在可行域内逐步逼近约束最优解,但这样处理太复杂,缺乏严格的科学性。因此,出现了一些直接求解约束优化问题的方法,其基本思路也是数值迭代法。目前,约束优化方法虽然不如无约束优化方法那样多而完善,但对求解工程优化问题已有很多较好的方法。 二、多维有约束优化方法的分类 (1)直接法 直接法包括:网格法、分层降维枚举法、复合形法、随机试验法、随机方向法、可变容差法和可行方向法。 (2)间接法 间接法包括:罚函数法、内点罚函数法、外点罚函数法、混合罚函数法、精确罚函数法、广义乘子法、广义简约梯度法和约束变尺度法。 直接法不需要利用目标函数和约束函数的梯度,就可直接利用迭代点和目标函数值的信息来构造搜索方向。间接法要利用目标、约束函数的梯度,其中也包括利用差分来近似梯度的应用。很多约束优化方法是先转变成无约束优化方法来求解。可见,无约束优化方法也是也是约束优化方法的基础。

4.2复合形法 一、方法概述 基本思路:在可行域中选取K个设计点(n+1≤K≤2n)作为初始复合形的顶点。比较各顶点目标函数值的大小,去掉目标函数值最大的顶点(称最坏点),以坏点以外其余各点的中心为映射中心,用坏点的映射点替换该点,构成新的复合形顶点。 反复迭代计算,使复合形不断向最优点移动和收缩,直至收缩到复合形的顶点与形心非常接近,且满足迭代精度要求为止。 初始复合形产生的全部K个顶点必须都在可行域内。 二、初始复合形的产生 复合形法是一种在可行域内收索最优点大直接解法。 (1)确定可行点作为初始复合形的第一个顶点: 式中: 通过调整随机数,使第一个初始点控制在可行域范围内。 (2)产生其余(K-1)个随机点。 (3)将非可行点调入可行域内。 若从第一个点到第个点均在可行域范围内,但第点不在可行域内,采取下列步骤使其调入可行域范围内: (a)先求出已在可行域范围内的q个点的中心: (b)将点向方向推进:=+0.5(-)若推进的点仍不在可行域范围内,则利用上式,使其继续向中心移动,直至新点成为可行点为止。

差分进化算法-入门

差分进化算法-入门

基本差分进化算法 1基本差分进化算法的基本思想 DE 算法是一种基于实数编码的用于优化函数最小值的进化算法,是在求解有关切比雪夫多项式的问题时提出来的,是基于群体差异的进化计算方法。它的整体结构类似于遗传算法,一样都存在变异、交叉和选择操作,但是它又不同于遗传算法。与基本遗传算法的主要区别在于变异操作上,如: 1、传统的遗传算法采用二进制编码,而差分进化算法采用实数编码。 2、在遗传算法中通过两个父代个体的交叉产生两个子个体,而在差分进化算法中通过第两个或几个个体的差分矢量做扰动来产生新个体。 3、在传统的遗传算法中,子代个体以一定概率取代其父代个体,而在差分进化中新产生的个体只有当它比种群中的个体优良时才替换种群中的个体。 变异是DE 算法的主要操作,它是基于群体的差异向量来修正各个体的值,其基本原理是通过把种群中两个个体的向量差加权后,按一定的规划与第三个个体求和来产生新个体,然后将新个体与当代种群中某个预先决定的个体相比较,如果新个体的目标值优于与之相比较的个体的目标值,则在下一代中就用新个体取代,否则,旧个体仍保存下来。 差分进化算法其基本思想是:首先由父代个体间的变异操作构成变异个体;接着按一定的概率,父代个体与变异个体之间进行交叉操作,生成一试验个体;然后在父代个体与试验个体之间根据适应度的大小进行贪婪选择操作,保留较优者,实现种群的进化。 2 差分进化算法的基本操作 设当前进化代数为t ,群体规模为NP ,空间维数为D ,当前种群为 {}1 2 (),,,t t t NP X t x x x =L ,() 1 2 ,,,T t t t t i i i iD x x x x =L 为种群中的第i 个个体。在进化过程 中,对于每个个体t i x 依次进行下面三种操作。 2.1 变异操作 对于每个个体t i x 按下式产生变异个体12(,,,)t t t t T i i i iD v v v v =L ,则 123() 1,2,,D t t t t ij r j r j r j v x F x x j =+-=L (1) 其中111112(,,,)t t t t T r r r r D x x x x =L ,222212(,,,)t t t t T r r r r D x x x x =L 和333312(,,,)t t t t T r r r r D x x x x =L 是群体中随机选择的三个个体,并且123r r r i ≠≠≠;1t r j x ,2t r j x 和3t r j x 分别为个体1r ,2r 和3r 的第j 维分量;F 为变异因子,一般取值于[0,2]。这样就得到了变异个体t i v 。

差分进化算法综述概况

差分进化算法(DE)[1]是Storn 和Price 在1995 年提出的一种基于种群差异的进化算法,DE是一种随机的并行搜索算法。差分进化计算和其他进化计算算法一样,都是基于群体智能理论的优化算法,利用群体内个体之间的合作与竞争产生的群体智能模式来指导优化搜索的进行。与其他进化计算不同的是,差分进化计算保留了基于种群的全局搜索策略,采用实数编码、基于差分的简单变异操作和一对一的竞争生存策略,降低了进化操作的复杂性。差分进化计算特有的进化操作使得其具有较强的全局收敛能力和鲁棒性,非常适合求解一些复杂环境中的优化问题。 最初试图使用向量差进行向量种群的混洗,以此来解决切比雪夫多项式适应性问题。DE 通过种群内个体间的合作与竞争来实现对优化问题的求解,其本质上是一种基于实数编码的具有保优思想的进化算法。该算法实现技术简单,在对各种测试问题的实验中表现优异,已经成为近年来进化算法研究中的热点之一。 差分进化算法基本原理 基本的差分进化算法是基于候选方案种群的算法,在整个搜索空间内进行方案的搜索,通过使用简单的数学公式对种群中的现有方案进行组合实现的。如果新的方案有所改进,则被接受,否则被丢弃,重复这一过程直到找到满意的方案。 设 f 是最小化适应度函数,适应度函数以实数向量的形式取一个候选方案作为参数,给出一个实数数值作为候选方案的输出适应值。其目的是在搜索空间的所有方案p 中找到m 使得f(m) ≤f(p)。最大化是找到一个m 使得f(m) ≥f(p)。 设X=(x1, x2,…, xn)∈?n是种群中一个个体,基本的差分进化算法如下所述: ?在搜索空间中随机地初始化所有的个体。 ?重复如下操作直到满足终止条件(最大迭代数或者找到满足适应值的个体) o 对于种群中的每个个体: ●随机地从种群中选择三个彼此不同的个体a,b 和c。 ●选择一个随机索引R ∈{1, ..., n},n 是被优化问题的维数。 ●通过对每个i ∈{1, ..., n}进行如下的迭代计算可能的新个体Y = [y1, ..., yn] 生成一 个随机数ri~U(0,1); ●如果(i=R)或者(ri3。差分进化算法作为一种新出现的优化算法在实际应用中表现出了优异的性能,被广泛应用到不同的领域,已经成为近年来优化算法的研究的热点之一。研究差分进化算法,探索提高差分进化算法性能的新方法,并将其应用到具体工程问题的解决中,具有重要的学术意义和应用价值。 差分进化计算的群体智能搜索策略分析 1 个体行为及个体之间信息交互方法分析 差分进化的个体表示方式与其他进化计算相同,是模拟生物进化中的关键因素,即生物的染色体和基因,构造每个解的形式,构成了算法的基础。一切的寻优操作都是在个体的基础上进行的,最优个体是搜寻到的最优的解。 差分进化的个体行为主要体现在差分变异算子和交叉算子上。

多目标优化进化算法比较综述

龙源期刊网 https://www.wendangku.net/doc/9b790889.html, 多目标优化进化算法比较综述 作者:刘玲源 来源:《决策与信息·下旬刊》2013年第07期 摘要多目标优化是最优化领域的一个重要研究方向,本文简要介绍了多目标优化的模型和几种多目标优化的进化算法,并对算法进行了简要比较。 关键词多目标优化粒子群遗传算法蚁群算法人工免疫系统 中图分类号:TP391 文献标识码:A 一、背景 多目标优化(Multiobjective OptimizaTionProblem,MOP)是最优化的一个重要分支,多目标问题中的各目标往往是有着冲突性的,其解不唯一,如何获得最优解成为多目标优化的一个难点,目前还没有绝对成熟与实用性好的理论。近年来,粒子群算法、遗传算法、蚁群算法、人工免疫系统、等现代技术也被应用到多目标优化中,使多目标优化方法取得很大进步。本文将其中四种多目标优化的进化算法进行一个简单的介绍和比较。 二、不同算法介绍 (一)多目标遗传算法。 假定各目标的期望目标值与优先顺序已给定,从优先级最高的子目标向量开始比较两目标向量的优劣性,从目标未满足的子目标元素部分开始每一级子目标向量的优劣性比较,最后一级子目标向量中的各目标分量要全部参与比较。给定一个不可实现的期望目标向量时,向量比较退化至原始的Pareto排序,所有目标元素都必须参与比较。算法运行过程中,适应值图景可由不断改变的期望目标值改变,种群可由此被引导并集中至某一特定折中区域。当前种群中(基于Pareto最优概念)优于该解的其他解的个数决定种群中每一个向量解的排序。 (二)人工免疫系统。 人工免疫算法是自然免疫系统在进化计算中的一个应用,将抗体定义为解,抗原定义为优化问题,抗原个数即为优化子目标的个数。免疫算法具有保持个体多样性、搜索效率高、群体优化、避免过早收敛等优点。其通用的框架是:将优化问题的可行解对应抗体,优化问题的目标函数对应抗原,Pareto最优解被保存在记忆细胞集中,并采取某种机制对记忆集进行不断更新,进而获得分布均匀的Pareto最优解。 (三)多目标PSO约束算法。

基本差分进化算法

基本差分进化算法 (1)初始化。 DE 利用NP 个维数为D 的实数值参数向量作为每一代的种群,每个个体表示为: X i ,G (i=1,2,……,NP) (1) 式中:i —— 个体在种群中的序列;G ——进化代数;NP — —种群规模,在最小化过程中NP 保持不变。 为了建立优化搜索的初始点,种群必须被初始化。通常寻找初始种群的一个方法是从给定边界约束内的值中随机选择。在DE 研究中,一般假定对所有随机初始化种群均符合均匀概率分布。设参数变量的界限为 )( )( U j j L j X X X << ,则: )( )( )( 0,)()`1,0(L j L j U j ji X X X rand X +-?= (i=1,2,……, NP ;j=1,3,……,D ) (2) 式中:rand[0,1]——在[0,1]之间产生的均匀随机数。 如果预先可以得到问题的初步解,初始种群也可以通过对初步解加入正态分布随机偏差来产生,这样可以提高重建效果。 (2)变异。 对于每个目标向量 X i ,G (i=1,2,……,NP),基本DE 算法的变 异向量如下产生: )(,3,2,11,G r G r G r G i x x F X v -?+=+ (3) 其中,随机选择的序号r1,r2和r3互不相同,且r1,r2和r3与目标向

量序号i 也应不同,所以须满足NP ≥4。变异算子F ∈[0,2]是一个实常数因数,控制偏差变量的放大作用。 (3)交叉。 为了增加干扰参数向量的多样性,引入交叉操作。则试验向量变为: ),...,,(1,1,21,11,++++=G Di G i G i G i u u u u (4) ???=+++1 ,1,1,G ji G ji G ji X v u )(rnb CR (j) b rand rnbr(i))(rand i r j j CR j b ≠>=≤且如果或者如果 (i=1,2,……,NP ;j=1,3,……,D ) (5) 式中:randb(j)——产生[0,1]之间随机数发生器的第j 个估计值;rnbr(i)∈ 1,2,? ,D ——一选择的序列,用它来确保1,+G i u 至少从1,+G i u ;获得一个参数;CR ——交叉算子,取值范围为[0,1]。 (4)选择。 为决定试验向量1,+G i u ,是否会成为下一代中的成员,DE 按照贪婪 准则将试验向量与当前种群中的目标向量进行比较。如果目标函数要被最小化,那么具有较小目标函数值的向量将在下一代种群中赢得一席地位。下一代中的所有个体都比当前种群的对应个体更佳或者至少一样好。注意在DE 选择程序中试验向量只与一个个体相比较,而不是与现有种群中的所有个体相比较。 (5)边界条件的处理。 在有边界约束的问题中,确保产生新个体的参数值位于问题的可行域中是必要的,一个简单方法是将不符合边界约束的新个体用在可行域中随机产生的参数向量代替。

相关文档
相关文档 最新文档