文档库 最新最全的文档下载
当前位置:文档库 › 一种晚点地铁列车实时调整策略及其动态速控模式

一种晚点地铁列车实时调整策略及其动态速控模式

一种晚点地铁列车实时调整策略及其动态速控模式
一种晚点地铁列车实时调整策略及其动态速控模式

地铁列车控制模式

摘要:随着全国各大城市开始大力建设公共交通系统,尤其是具有大容量、高速度和高效率特点的城市轨道交通系统得到了充分的重视和长足的发展。地铁列车控制系统以安全为核心,以保证和提高列车运行效率为目标。系统在保证列车和乘客安全的前提下,通过调节列车运行间隔和运行时分,实现列车运行的高效和指挥管理的有序。 关键词:地铁列车控制系统;地铁列车控制模式 1.正常控制模式 1.1 列车进路控制 列车进路控制的原则:以联锁表为依据,输出进路控制命令。正常情况下atc系统根据列车运行时刻表进行正线进路的中心ats自动控制或设备集中站车站储存了当日时刻表的车站ats自动控制。必要时中心调度员可介入进行人工控制。在运营需要时中心与设备集中站经过一定的授与权和接受权手续后实现车站人工控制。当车站发现有危及行车安全的情况时,车站值班员可以采取措施,强行进入车站人工控制。运行需要或ats通道设备故障或中心故障时可降级为车站自动控制。 车站ats分机可以根据时刻表或接近列车的车次号及目的地号等信息进行列车进路的车站自动控制。通过联锁设备可以办理列车自动进路和自动折返进路。车辆段值班员人工办理进路因轨道空闲检测设备故障而不能办理进路时,可由车站值班员办理引导进路控制列车运行,此时的列车运行安全由司机来保证。 1.2 列车运行调整 ats子系统根据列车运行状态及车地通信设备提供的信息,实时对在线列车进行车次号更新、加车、减车等操作。列车运行偏离运行图时,应能自动对列车进行运行调整或提示调度员对在线列车实施运行调整,其中自动调整的主要手段为ato站间运行时分及atp/ato模式下的站停时分的调整。当因列车发生故障等原因造成运行大规模紊乱时,ats子系统应能提示调度员进行人工调整。人工调整主要包括:站停时分调整;增、减列车;列车始发、终到站变更等。ats子系统故障后,在恢复行车指挥功能的过程中,系统具有自动或辅助调度员使系统尽快投入运用的能力,包括在线列车检测与恢复、时刻表建立、列车跟踪恢复及进路控制恢复等处理。 1.3 列车站间运行及车站定点停车 系统根据线路条件、道岔状态、前方列车位置,控制列车以系统确定的安全速度运行或在必须停车的地点前方停车。由于系统判断列车在区间运行,因此由atp限制不能打开车门。若车门误打开,则atp报警并强迫列车停车。ato的停车控制功能可保证列车停在区间分界点前方一定位置或在前方列车或目标地点前方的安全防护距离以外停车。区间停车后,在atp 允许列车运行时,ato自动控制列车启动。列车依靠车站定位装置精确测定运行停车位置,ato控制列车制动,使其精确、平稳地停在设定的停车位置。在atc系统控制列车运行的情况下,列车在站台停稳、并进入规定的停车范围、欲开启车门的方位正确时,atp子系统发送开安全门和允许ato子系统向列车发送开左或右侧车门指令,ato子系统控制允许相应的车门自动打开或向司机提示应该开启的车门。无论是区间停车还是进站定点停车,ato均应保证控制的舒适度、停车过程的快速性。 1.4 车站发车 车站停车时间结束时,发车表示器显示0秒,指示司机发车。此时,可由司机控制关闭车门,车门、安全门全部关闭后,ato发车指示灯点亮,司机按压ato启动按钮后,列车自动由车站出发,列车进入区间后,发车表示器熄灭。若车门或安全门没有关闭,按压ato启动按钮动作无效,列车不能启动,发车命令无效。 1.5 行车交路折返站折返

城市轨道交通列车驾驶 模块8 习题答案

模块8 课后习题参考答案 1.简述非正常情况下行车的基本原则和方法 答:非正常情况下行车组织是相对于正常情况行车组织而言的,主要是由于设备故障、火灾、接触网停电、恶劣天气等原因不能继续采用正常情况下行车组织方法组织轨道交通行车。城市轨道交通一般都采用先进的设备,自动化程度较高,正常情况时行车组织作业主要是利用设备监控列车运行。目前的城市轨道交通系统广泛的投入使用先进的设备,故障的概率很小,因此一旦出现故障,就是考验各级行车人员的事故处理能力及应变能力的时刻。 城市轨道交通列车在非正常情况行车的基本原则主要有以下两点: ①车辆设备故障时,驾驶员应在第一时间了解判明故障,及时处理并报行车调度员。如需到客室处理故障,驾驶员离开驾驶室前应报行车调度员,得到同意后再到客室处理。 ②其他设备情况影响列车运行时,驾驶员应立即报告行车调度员,听从行车调度员指挥,列车在区间应尽量维持进站,在车站应及时打开屏蔽门、车门,必要时要求车站协助。在非正常情况下,驾驶员要保持沉着冷静,按照操作流程处理,防止事态的进一步扩大2.简述城市轨道交通列车在非正常情况下行车时应注意的薄弱环节。 答: 城市轨道交通列车驾驶员在非正常情况下行车时应注意的薄弱环节主要有以下几个 1.正线采用降级模式:SM-C、SM-I、RM、或NRM驾驶列车 2.车辆段调车及转线作业 3.试车线调试 4.驾驶员协助工程车驾驶员调动列车作业 5.旁路开关使用措施 6.终点站折返作业 7.站台作业 8.开关屏蔽门、车门作业 9.人工折返 3.简述特殊情况下行车应注意的事项。 答:列车反方向运行。正常情况下,列车按正方向运行,但在特殊情况下,可组织列车反方向运行。所谓列车反方向运行是指下行列车在上行线运行或上行列车在下行线运行的情形。列车反方向运行,应按规定程序进行审批,以行车调度员的调度命令下达执行。行车调度员应对反方向运行列车重点监控,确保行车安全。 切除ATP采用URM模式运行 ATP设备故障需切除ATP采用URM模式(或NRM模式)运营时司机必须得到行调命令后方可切除ATP,严禁自行切除ATP。 检修施工时列车运行 除了必须中断列车运行的设备抢修和必须利用列车间隔来排除设备故障外,城市轨道交通的检修施工作业原则上安排在非运营时间进行。在确认进行夜间检修施工时,行车调度员既要根据检修施工计划的安排,保证检修施工作业能顺利完成,又要确保次日运营能正常进行。 封锁区间的列车开行 所谓的封锁区间是指由于施工原因或者其他原因在指定的区间,指定的时间内禁止列车

地铁列车门控系统动作原理

门控系统动作原理2011 预备知识 信号设备: ATC设备 轨旁ATC设备 1.STIB信标Static Train Initial Beaconing 静态列车初始化信标: 位于线路中间,长4米,黄色,位于每个站台正方向的头部 和折返信号机前方以及自出入库线上从停车场进入正线的信号 机前方,STIB信标主要用来对车载SACEM系统进行初始化。 2.MTIB信标Mobile Train Initial Beaconing 动态列车初始化信标:是由两个RB组成,相隔21米, 只有区间有。MTIB信标有三个作用: 对车载SACEM系统进行初始化;定 位列车;标准编码里程器。 3.S-BOND: 安装在区间内,用于向列车发送轨旁信息。 4.RB信标Relocate Beaconing 重定位信标: 位于线路中间,长53厘米,黄色,站台和区间都有。

RB信标主要为车载SACEM系统进行定位所用。 5.PEP紧急停车按钮Platform Emergency Pushbutton 站台紧急 (停车)按钮: 位于车站站台上,每侧站台都有2个:头部和尾部各一个。 当发生危及行车安全时,由车站站务员敲碎玻璃,将按钮按下, 列车紧急停车,确保行车安全。(切除ATC状态下列车不停车) 车载ATC初始化 在STIB信标上的初始化: 当列车停在STIB上方,列车会自动读取STIB信息,此时DDU上的ATP,RMO,ATO三灯会同时闪烁,提示司机等待,2到3秒后,一旦STIB上的初始化步骤完成,DDU上的ATP 灯、ATO灯稳定绿色。这时如果信号机开放,司机可以根据速度表上的目标速度以ATO模式驾驶列车。但如果在车站STIB上初始化时ATO方式发车无效,此时司机须以ATP手动方式驾驶到下站后才能将模式开关拨到ATO档,按压启动控制按钮,列车自动驾驶。 在MTIB信标上的初始化: 列车的初始化还可以在MTIB信标上进行。列车以RMO模式越过第一个MTIB信标。几秒后,一旦初始化步骤完成,DDU上的ATP灯亮稳定绿色,ATO灯绿闪,这时候司机继续以RMO方式运行,当列车越过前方的S-Bond后,DDU上的ATO灯亮稳定绿色,RMO灯灭灯。司机可以ATP模式继续驾驶列车。到下一站后将模式开关拨到ATO档,按压启动控制按钮,列车自动驾驶。 开关门作业及发车 当列车对准位后(其精度为士0.5m)相对应站台侧的开左门或开右门灯点亮,此时司机可以按下该侧的开门按钮开门。如允许开左/右门灯不亮司机可以使用洗车模式开门。 当车站发车表示器白色灯光闪烁时,司机可以关门,同时DDU面板发车灯也绿色闪烁。当列车门关好后,DDU面板发车灯变成绿色稳定,此时司机可以以ATO或ATP手动发车。 当车站发车表示器不亮,同时DDU面板发车灯也红色,则代表列车扣车,此时司机不能发车,须等到车站发车表示器白色灯光闪烁时,司机才可以关门动车。

城市轨道交通列车运行控制研究

城市轨道交通列车运行控制研究 学生姓名:畅龙 专业班级:城市轨道交通控制 学号:08301942 指导老师:孙鑫

列车运行控制系统是保证城市轨道交通列车和乘客安全的,是实现列车快速、高密度、有序运行的关键系统,是整个系统中的重中之重。本文文介绍了国、内外基于通信的列车运行控制在我国地铁的应用,从列车的运行模式,到列车的定位停车,列车速度调整、自动折返等几个方面进行了阐述。 【关键词】:

城市轨道交通的诞生和发展已经有一百多年的历史了,城市轨道交通在当今城市交通中已经占据了重要的作用,城市轨道交通是现代化都市的重要基础设施,它安全、快速、舒适、便利地在城市范围内运送乘客,最大限度的满足城市市民的出行需要。在城市各种公共交通工具中,具有运量大、速度快、安全可靠、污染低、受其他交通方式的干扰小,对改变城市拥挤、乘车困难、行车速度慢行之有效的。 随着城市轨道交通行车间隔的缩短,依靠人工控制车速的传统运行方式已经不能满足城市客运的要求了,于是,以列车速度自动控制为中心的列车运行控制系统(Automatic Train Control,简称A TC)应运而生,随着计算机技术(Computer)、通信技术(Communication)和控制技术(Control)的飞跃发展,综合利用3C技术给列车的控制带来了很好的发展机遇,形成了基于无线双向大容量的车地通信模式,使对车辆的控制更加安全可靠。城市轨道交通列车运行控制主要包括列车运行中的驾驶模式、列车运行中的超速防护、列车的制动模式、列车定位停车、列车的折返、运行速度控制等来实现对列车整个运行过程中的控制。这样使列车更加安全可靠、高速有效的运行。

晚点情况下地铁列车间隔的实时调整方法

万方数据

万方数据

万方数据

晚点情况下地铁列车间隔的实时调整方法 作者:吴洋, 王月明, 曾理 作者单位:西南交通大学牵引动力研究中心,四川,成都,610031 刊名: 电力机车与城轨车辆 英文刊名:ELECTRIC LOCOMOTIVES & MASS TRANSIT VEHICLES 年,卷(期):2003,26(5) 被引用次数:3次 参考文献(4条) 1.SandidzadehM;李鹏;Bmenhaj M;Ghadrdani S一种用于地铁轻轨的智能行车控制方法[期刊论文]-中国铁道科学2000(02) 2.毛保华城市轨道交通 2001 3.饶忠列车牵引计算 1996 4.朱世麟;蒋影斐电牵引计算 1990 本文读者也读过(10条) 1.吴洋.罗霞.WU Yang.LUO Xia一种晚点地铁列车实时调整策略及其动态速控模式[期刊论文]-中国铁道科学2005,26(6) 2.吴洋.罗霞.王月明.曾理.WU Yang.LU Xia.WANG Yue-ming.ZENG Li地铁列车在出站晚点情况下的"压赶结合"运行调整方法[期刊论文]-交通运输工程与信息学报2004,2(2) 3.孙林祥.Sun Linxiang地铁运行发车间隔和旅行速度指标下降的分析[期刊论文]-都市快轨交通2007,20(2) 4.张星臣.杨浩.胡思继京沪高速铁路高中速列车共线混行模式下中速列车晚点影响的仿真分析[期刊论文]-铁道学报1998(5) 5.李兰波关于提高旅客列车正点率的思考与分析[期刊论文]-铁道运输与经济2002,24(3) 6.路飞.宋沐民.李晓磊.田国会.LU Fei.SONG Mu-min.LI Xiao-lei.TIAN Guo-hui基于事件的控制技术在地铁列车运行中的应用[期刊论文]-中国铁道科学2006,27(4) 7.陆越.张德明.LU Yue.ZHANG De-ming基于模糊神经网络的列车运行调整模型[期刊论文]-铁道运输与经济2007,29(8) 8.路飞.宋沐民.田国会.李晓磊基于Multi-agent的地铁列车智能控制集成框架[会议论文]-2007 9.沈洪波.吴方平.Shen Hongbo.Wu Fangping关于CTCS-2级列控系统应急预案的探讨[期刊论文]-铁道通信信号2007,43(12) 10.李国斌.Li Guobin铁路建设中信号设计方案的选择及系统集成的考虑[期刊论文]-铁道通信信号2007,43(1)引证文献(3条) 1.徐瑞华.江志彬.邵伟中.朱效洁城市轨道交通列车运行延误及其传播特点的仿真研究[期刊论文]-铁道学报2006(2) 2.肖鹏城市轨道交通列车自动调整模型算法研究[学位论文]硕士 2006 3.吴洋.罗霞.王月明.曾理地铁列车在出站晚点情况下的"压赶结合"运行调整方法[期刊论文]-交通运输工程与信息学报 2004(2) 本文链接:https://www.wendangku.net/doc/9c6975893.html,/Periodical_dljcjs200305007.aspx

城市轨道交通列车驾驶基本操作

城市轨道交通列车驾驶基本操作 列车司机在出乘前应按照相关管理办法、操作指南、司机手册等要求做好运行前的准备工作,在作业中应注意如下事项: 1、找到对应列车后,先做到“库内动车四确认”。 2、按《列车检查作业标准》做好列车静态检查和动态测试,并控制作业时间。 3、检车时遇到列车因故障而无法进行出库作业时,及时跟车场调度员联系。 4、在车站出乘与交班司机交接时,要清楚列车的技术状态及线路限速与施工情况。 一、投入蓄电池 按下司机操纵台上的蓄电池合按钮,蓄电池即投入使用,通过司机室右侧屏上的蓄电池表可观察到蓄电池电压应该为DC 110 V。 如果蓄电池亏电,即蓄电池电压低于DC 80 V,将司机室继电器柜中的蓄电池欠压强投开关转换到“强制”位,蓄电池即可强制投入使用,当蓄电池电压高于DC 89 V时欠压继电器恢复,蓄电池可以正常投入使用。 二、激活头车 根据实际运行方向,将运行方向前端司控器钥匙开关转换到“开”位,尾端保持在“关”位,通过司机操纵台上TMS显示屏观察到列车有司机室占用显示,表示4016车司机室被占用。 三、控制受电弓 观察司机操纵台上的风压表,如果总风压力高于450 kPa,按下司机室右侧屏上的升弓按钮并持续2 s后松开,车顶上受电弓在8 s内升弓到位,通过司机操纵台上TMS显示屏观察到Mp车受电弓升弓显示,并且电压显示为1 500 V,同时右侧屏的网压表显示为1.5 kV。 如果总风压力低于450 kPa,可以通过控制动车客室下部的受电弓电动气泵来打风。具体操作为:按下司机室右侧屏上的升弓泵按钮,两个动车的电动气泵开始工作;当风压力高于750 kPa时电动气泵停止工作,这时辅助风缸的压力值

地铁列车自动驾驶系统分析与设计

文章编号:100021506(2002)0320036204 地铁列车自动驾驶系统分析与设计 黄良骥,唐 涛 (北方交通大学电子信息工程学院,北京100044) 摘 要:对地铁列车自动驾驶系统进行分析,并对列车自动驾驶系统的车载设备进行设计. 关键词:列车自动控制系统;列车自动驾驶系统;自动控制 中图分类号:U284.48 文献标识码:B System Analysis and Design of Autom atic T rain Operation on Metro HUA N G L iang-ji ,TA N G Tao (College of Electronics and Information Engineering ,Northern Jiaotong University ,Beijing 100044,China ) Abstract :In this paper ,the existing metro Automatic Train Operation (A TO )systems have been analyzed in China and the design of an onboard A TO system is proposed. K ey w ords :Automatic Train Control (A TC );Automatic Train Operation (A TO );Automatic Con 2 trol 对于城市轨道交通系统高效率高密度的要求来说,列车自动控制系统(A TC )是必不可少的.A TC 系统包括:列车超速防护子系统(A TP :Automatic Train Protection )、列车自动驾驶子系统(A TO :Automatic Train Operation )、列车自动监控子系统(A TS :Automatic Train Supervision ). A TS 子系统可以实现对列车运行的监督和控制,辅助行车调度人员对全线列车运行进行管理.A TP 子系统则根据地面传递的信息计算出列车运行的允许安全速度,保证列车间隔,实现超速防护.A TO 子系统根据A TS 提供的信息,在A TP 正常工作的基础上,实现最优驾驶,提高舒适度、降低能耗、减少磨损. 国外已研制了适用于高密度城市轨道交通的列车自动驾驶系统,并在城市轨道交通系统中广泛应用.我国在此项技术上研究较少,20世纪80年代以来,北京地铁、上海地铁、广州地铁均以巨额代价引进了国外的设备,近年来,为缓解市内交通紧张、减少空气污染发挥巨大作用.地铁的发展建设受到国家及各大中城市的普遍重视,许多城市的地铁正在设计建设,为降低地铁投资,迫切需要国内研究具有自主产权的适于城市轨道交通的列车自动驾驶设备. 1 ATO 系统分析 1.1 AT O 工作原理[1,2] A TO 子系统能保证运行时间与定点停车,还能提高运行效率,提高舒适度,减少能耗.但作为A TC 的一个子系统,它的功能是要依靠A TC 各子系统协调工作共同完成的,缺少A TP 与A TS 子系统,A TO 将无法正常工作. 从运行中所起作用来说,A TO 主要实现驾驶列车的功能,能进行车速的正常调整,给旅客传送信息,进行车门的开关作业,但这只是执行操作命令,不能确保安全,这就需要A TP 来进行防护.A TP 起监督功 收稿日期:2001209218作者简介:黄良骥(1978— ),男,广东普宁人,硕士生.em ail :hliangji @https://www.wendangku.net/doc/9c6975893.html, 第26卷第3期2002年6月 北 方 交 通 大 学 学 报JOURNAL OF NORTHERN J IAO TON G UN IV ERSIT Y Vol.26No.3J un.2002

铁路列车运行图基础知识

铁路列车运行图基础知识 一、列车运行图的作用与表示方法 列车运行图是列车在区间运行及在车站到达、出发和通过时刻的图解形式,是全路客货列车的运行计划。列车运行图规定了各区间列车运行的列数、各次列车占用区间的次序、列车在每一车站到达、出发或通过的时刻、在区间的运行速度与时分、在车站的站停时间、列车的重量与长度标准等;规定了车站线路的使用程序、旅客乘降和行李包裹装卸的作业时间;规定了机车整备和出入段时间,机车运用台数,列车技术检查的作业时间以及线路、桥隧、信联闭等设备的检修、施工时间等等。这样,列车运行图不仅规定了列车的运行要求,而且规定了铁路技术设备(线路、站场、机车、车辆、信号等)的运用。同时,还规定了与列车运行有关的各个单位(车站、列车段、客运段、机务段、供电段、工务段、电务段、车辆段及其他有关单位)的工作。因此,列车运行图是铁路行车组织的基础,也是铁路运输经营管理工作的综合计划。凡与铁路运输有关的各个部门,都必须根据列车运行图的要求,正确组织本部门的工作,保证列车按运行图运行。 1.列车运行方向和车次 为了便于行车工作的管理和指挥,铁道部对列车运行方

向作了统一规定:原则上凡开往北京方向的列车为上行列车,反之,则为下行列车;个别线路不易确认时,由铁道部规定,枢纽地区的列车运行方向,由各铁路局规定。 为了区别列车运行方向,列车须按有关规定编定车次,上行列车按双数编号,下行列车按单数编号。在列车运行经路中有不同的运行方向或个别区间与整个运行方向不符时,准许使用原车次。 列车按列车种类、性质和运行方向的不同分别编定车次(详见附表五)。 2.列车运行图的格式和表示方法 列车运行图是运用直角坐标的原理来表示列车运行的一种图解形式。其横轴表示时间的推移,纵轴表示距离的延伸。以垂直线等分横轴,每一等份代表不同的时间;将纵轴按一定比例用横线加以划分,每一横线代表一个车站的中心线;在列车运行图中,以斜线表示列车运行线,其中由左下方至右上方的斜线为上行运行线,由左上方至右下方的斜线为下行运行线。为了适应使用上的需要,列车运行图分为以下三种格式: (1)二分格运行图 二分格运行图,如图2-1所示。每竖格表示2min,其10min线和小时线都用粗实线表示,2min线用细实线表示。在二分格运行图上不用数字来表示时间,而是用规定的符号

城市轨道交通列车驾驶模式

城市轨道交通列车驾驶模式 一、全自动驾驶模式——ATO模式 1、司机将模式开关1转换至“ATO”位置,在此模式下,列车的起动、加速、巡航、惰行、制动、精确停车、开门及折返等由车载信号设备自动控制,不需要司机操作。 2、列车在站台停稳,车载信号设备给出门允许信号后,车门及安全门自动打开。 3、停站时间结束后,需要人工关闭车门,门关好后,按下ATO发车按钮,列车启动。 4、车载信号设备连续监控列车的速度,并在超过规定速度时自动实施常用制动,在超过最大允许速度时自动实施紧急制动。 5、所有必要的驾驶信息将在司机室TOD屏上显示。 二、速度监控下的人工驾驶模式——ATP模式 1、司机将模式开关1转换至“ATP”位置,在此模式下,列车的速度、监控、运行及制动在车载信号设备限制下由司机操作。 2、开关车门由司机人工控制,但开车门仅在车载信号设备给出门允许信号时才允许操作。 3、车载信号设备连续监控列车速度,并在超过规定速度时实施常用制动。在超过最大允许速度时实施紧急制动。 4、所有必要的驾驶信息将在司机室TOD屏上显示。 三、限速人工驾驶模式——RM模式 1、司机将模式开关1转换至“RM”位置,在此模式下,列车的速度、监控、运行及制动由司机人工控制。 2、车载信号设备不提供门允许信号,开关车门时需转至NRM模式。 3、车载信号设备仅对列车特定速度(25 km/h)进行超速防护,列车超速(大于25 km/h)时自动施加紧急制动。 4、所有必要的驾驶信息将在司机室TOD屏上显示。

四、点式ATP模式——IATP模式 点式ATP模式作为最常用的后备模式在CBTC系统无法启用的条件下使用,此时车载通信系统不能实现连续数据传输,依靠固定点式设备进行车地间的点式通信。 1、司机将模式开关1转换至“IATP”位置,司机得到行车调度员可以动车的指令后,按下驾驶台上的IATP释放按钮。在此模式下,列车的速度、监控、运行及制动由司机人工控制。 2、开关车门由司机人工控制,但开车门仅在车载信号设备给出门允许信号时才允许操作。 3、司机应根据操作规程注意控制进站对位时间及出站速度,防止出现紧急制动。 4、所有必要的驾驶信息将在司机室TOD屏上显示。 五、非限制人工驾驶模式——NRM模式 1、司机将电气柜内模式开关转换到“NRM”位置,司机操纵台模式开关处于“OFF”模式位置。此模式下信号被切除,列车的速度、监控、运行及制动由司机人工控制,列车没有信号防护。 2、此模式在车载信号设备故障或有特殊运行需要时使用。列车安全完全由司机人工控制。 六、无人自动折返模式——ATB模式 1、司机将模式开关1转换至“ATB”位置,车载信号系统设备处于上电等待状态,不再接收司机室内的驾驶操作命令。 2、当列车两端模式开关处于该模式时,两端车载信号设备处于工作状态;当一端车载信号设备完成自动折返时,它发送一个安全信息给另一端的车载信号设备以实现换端功能;另一端车载信号设备被激活后与轨旁通信,之前的车载信号设备断开。一旦所有条件都满足CBTC系统运行条件,CBTC驾驶模式将被授权允许新的车载信号设备控车。 3、列车无人自动折返时,司机须按压自动折返按钮,将驾驶模式转换为ATB,拔出钥匙锁好车门下车。

地铁运营的特点及调度调整的作用

地铁运营的特点及调度调整的作用 摘要:行车调度指挥是地铁运营的一项核心工作,调度指挥的安全、高校以及及时性是对地铁运营安全的有效保障。本文围绕地铁运营的特点以及调度调整的作用这一中心,来对地铁运营的特点以及调度调整在地铁运营中的作用进行了具体的分析,包括了地铁运营的规模、模式以及管理方式等方面,最后根据列车的不同状态来采取相应的调度调整策略,具有一定的现实意义。 关键词:地铁运营;特点;调度调整的作用 一、地铁运营的特点 地铁运营的特点就是按照不同时段的断面客流,来合理安排一定数量的列车,并是这些列车按照固定的交路间隔来均匀的进行循环运行。在对行车间隔和客运服务水平进行考虑时,某一个单方向的运能必须要和该时段的最大断面客流的需求相符合,也就是动能要和运量互相满足。 (一)运营的规模 地铁的设计运输能力要和预测的远期单向高峰小时最大的断面客流量的需求相满足;地铁车辆的数目,要按照初期运营需要进行配置,在运营后的远期要按照客流量增长的需要进行适当的增加和调配;地铁列车的速度通常情况下都是在每小时35千米以上,在每小时80千米以下;地铁各设计年限的列车运行间隔,要依照各个设计年限的预测客流量、列车编组以及列车定员、系统服务水平等因素进行综合考虑,并加以确定。高峰时段初期列车运行间隔要在六分钟以下,这是为了保证地铁的服务水平。 (二)运营的模式 地铁的线路必须要是安全封闭的,并且列车的运行必须要在安全防护系统的监控下来进行;通常列车要配置一名司机来驾驶;在客流量分布不均匀的线路上,要组织区段运行,列车运行交路要依照个设计年限客流量断面的分布情况来进行确定;列车在曲线上运行时,其速度要按照曲线半径的大小来计算,其离心加速度应该小于O.4m/s2;地铁要设有运营控制中心,并依照城市轨道交通线网的分布情况,每个中心可以控制一条或者数条线路。并且这一控制中心要有能力对列车的运行和供电系统进行监控;在各个地铁的车站都应该设置车站监控室,从而来监控列车的运行以及车站的设备;地铁应该采用计程票价制,并且要有对客流数据以及票务收入进行自动控制的能力。 (三)运营管理的方式 列车运营管理机构必须要和系统运营管理的任务要求相符合,通过对组织机构的合理安排,来进行管理;在安排运营机构以及人员数量时,要把依靠科技进

城市轨道交通列车驾驶 模块5 习题答案

模块5 思考与练习 1.简述列车司机的岗位职责。 答:1.正司机 (1)按时出勤,认真记录行车注意事项,领取及确认行车备品 (2)在列车正式投入运营前,负责列车的静态检查和动态检查; (3)驾驶列车过程中,是列车上的主要负责人,负责列车故障及信号故障的应急处理,负责突发事件的前期指挥和处理工作; (4)值乘过程中,负责与行车调度员、车场调度员、信号楼值班员、行车值班员、站台安全员等联控与沟通; (5)站台作业过程中,负责开关客室门,并做好客室门开关状态、客室门与安全门缝隙、门关好灯及司机室侧门的确认工作; (6)严格执行确认呼唤(应答)的标准化作业制度; (7)列车运行过程中,严格确认隧道、接触网、线路区间状态,发现异常情况,及时采取措施,并报行车调度员或车场调度员; (8)列车运行过程中,发现有危及行车安全的情况,立即采取紧急停车措施; (9)负责通过车辆显示屏监视列车状态,监视列车上的按钮、各显示灯、风压表、网压表的状态; (10)负责《司机报单》的填写及列车故障的记录; (11)正线交接过程中,确认接车时间,负责告知接车司机注意事项,列车技术状态和行车调度员命令等。 2.副司机 (1)协助正司机驾驶列车; (2)在开关门作业过程中负责开关安全门,负责安全门开关状态、客室门与安全门缝隙、门关好灯及司机室侧门的确认工作; (3)负责开关司机室侧门,尾端司机室门及间壁门的锁闭,并确认锁闭状态; (4)负责使用对讲机与站务人员联控确认后三节车安全门和车门的开关状态及安全门与车门间缝隙安全; (5)正司机驾驶过程中,可协助正司机与行车调度员等进行联控; (6)负责协助正司机确认隧道、接触网、线路区间状态,发现异常及时提醒正司机,如果提醒来不及,须立即按压紧急停车按钮; (7)负责确认运营时刻表,向正司机报列车到站及发车时间; (8)负责监听自动广播是否错报或漏报,发现错误及时更正,负责人工广播; (9)负责驾驶过程中列车故障的记录及《司机报单》的填写; (10)负责行车备品的保管; (11)负责动态地图的设定,并对动态地图显示情况进行监控; (12)负责对客室的LCD状态和客室温度进行监控,并负责座椅电加热的操作; (13)负责监督正司机精神状态和操作,发现异常,要立即采取紧急停车措施,并报告行车调度员或车场调度员。 2.简述列车检查时的走行顺序。

铁路运行图编制系统的现状与思考

铁路运行图编制系统的现状与思考 摘要:铁路运行图是保证铁路运输高效、安全的有效手段,而目前的铁路运行图编制系统还有部分缺陷,例如数据的精确性、动态更新、数据互联等方面存在瑕疵。为提升铁路运行图编制系统的工作效率,优化系统配置,文章对铁路运行图编制系统的现状进行了分析与思考,为铁路部门优化系统提供了参考资料。 关键词:铁路运行图;编制系统;铁路运输;系统配置;动态更新;数据互联文献标识码:A 中图分类号:U292 文章编号:1009-2374(2017) 07-0154-02 DOI:10.13535/https://www.wendangku.net/doc/9c6975893.html,ki.11-4406/n.2017.07.073 铁路运行图是火车在运行过程中,从始发站一直到终点站,通过发送相关数据给铁路中心,保证铁路交通安全?利运行的手段。其中运行图中涉及到铁路运输调度、机务、车辆、工务、电务、供电、客货运等多个部门,部门之间通过运行图协调合作,让列车高效快速运行,所以铁路运行图的编制是整个铁路交通部门最重要、最严谨的工作,运行图编制的好与坏直接反映了铁路运输的真实质量,还有铁路运输整体的安全稳定。因此,铁路运行图编制系统需要不断提高其编制能力与管理质量,这样才能真正保障铁路运输的经济

效益、社会效益以及公共交通安全。 1 铁路运行图编制系统的现状 1.1 铁路运行图编制系统 当前,我国的铁路运行图的编制系统内容非常复杂,其中包括列车时刻表、运行图绘制、车站股道应用、客图管理、车辆分配、牵引计算等。这些系统共同组成运行图编制系统,保证铁路交通运输安全稳定,为广大旅客带来舒适的服务。 1.2 计算机编制系统 铁路运行图编制系统主要由计算机编制系统完成,主要的编制方法有模拟法、数学模型法、人工智能法三种。模拟法采用人工绘编的方式,由工作人员按照经验编制的计算机判断与执行程序,以此实现编图。数学模型法主要使用多种数学工具对铁路运行图进行建模,优化计算机算法,实现运行图的顺利运行。人工智能法,将人的经验作为计算机运行规则,构建列车运行图编制专家系统,并将列车运行图看作各区间列车顺序的一个组合,从而将列车运行图的编制作为一个搜索问题来解决。通过计算机编制系统,运行图可以在本地、服务器、客户端上运行,实现对全部铁路交通线的动态管理。在这个系统上,铁路运输工作人员可以对车辆、站点、客运等同时进行编制运行图工作。例如运输部门对运行图进行调整、客运部门对旅客与列车时刻表进行管理编制。通过计算机编制系统大大提高了铁路运行图的利用效率,实

列车调度调整方式

1调度调整在地铁行车组织中的作用 地铁运营是一个动态的、变化的过程,运营中的各种情况都具有随机性、复杂性。客流的增减、列车的晚点、运营秩序的紊乱、突发事件及设备故障等的影响,都要求行车调度在日常的运营组织工作中根据情况的变化,及时合理地采取调整措施,使列车尽可能按运行图行车。 应急情况下的行车调度指挥工作,是对全局性的行车组织进行安全、科学、灵活的调整,最大限度地发挥地铁设备、设施的潜能,维持一定限度内的地铁降级运输能力,把突发事件对运营的影响降到最低。 2调度调整的基本原则 在地铁行车组织中,调度调整的基本原则是:安全、快速、全面、服务。 安全———是运营企业生存与发展的生命线。任何情况下的运营调整都必须把安全工作放在首位,确保行车安全、设备安全及乘客生命财产的安全。 快速———在调度调整时,要做到反应快、报告快、处置快,把握事发初期的关键时间,将影响控制在最小范围。 全面———在运营调整时,行车调度要有全局观,不能只关注突发事件及设备故障,而忽略了其他因素和影响。 服务———运营是服务的基础,运营调整必须要考虑对服务及乘客的影响,并将相关信息告知乘客,最大限度地减少损失、降低影响 3 调度调整方式: 地铁运营组织中,行车调度应严格按照列车运行图指挥行车。当列车不能按图行车需要进行调整时,必须考虑列车运行的安全以及对服务的影响,做到恢复正点运营和行车安全兼顾。主要的调度调整方式有以下几种: (1) 列车停运、下线。对有故障并影响服务的列车,要组织停运或下线,使该列车退出服务。该方式主要在始发站、终点站使用。对中途运行的列车也可组织进入中间站存车线或回车厂检修。此种调整方式在列车运行图上的表示即为“抽线”,就是实际运行图的列车运行线条比计划运行图少。 (2) 列车加开、替开。由于客流的增加或故障列车下线的影响,可以组织加开列车,一般使用备用车或出厂列车。对在终点站退出服务的列车,可以使用备用列车替开,仍按原交路运行。加开、替开的目的是为了保证列车服务的数量,即运能满足运量。 (3) 列车在车站扣车及区间临时停车。当前方列车或车站设备故障时,要对后续列车进行扣车或区间临时停车。扣车是将列车扣停在后方车站,基本原则是“谁扣谁放”。在区间临时停车是通知司机将列车临时停在区间,司机必须做好乘客安抚工作。扣车及临时停车是调度调整的重要手段之一,目的是保证前方列车或车站有充分的时间处理故障。 (4) 列车减速运行并增加停站时间。为了保证故障列车或车站有充分的处理时间,使行车间隔均匀,应该对相关列车进行限速并增加停站时间,控制运营节奏。 (5) 列车越站通过或加速运行。为了使晚点列车正点终到,可以要求司机加速运行,也可以组织列车不停站通过,即越站(也称跳停) 。采取越站方式时,必须充分考虑对乘客的影响,相关车站及司机必须做好服务工作。原则上客流较大车站及首末班车不安排跳停。还要避免一列车连续越站及多列车在同一车站连续越站。列车上客流拥挤或前方站出现意外情况时,也可以采用此方式。如“十运会”开幕当天,南京地铁为及时疏散奥体中心的大客流,就对客流量很小的元通、中胜车站采取了越站方式,取得了较好的效果。 (6) 列车救援。列车在运行中发生故障,运行速度极其缓慢或停滞,势必会造成线路堵塞,给全

地铁列车应急牵引允许控制电路的设计

1 车辆概况 南京地铁采用A 型车辆,其牵引、制动分别系统采用阿尔斯通和克诺尔公司的产品。 车辆单元分为带驾驶室的控制车A、带受电弓的动车B 和不带受电弓的动车C 三种类型。6车编组,每一列车由2个单元构成,即为A—B —C —C —B —A,A 车头采用自动车钩,两单元之间采用半自动车钩,单元内部车钩用半永久性连接杆连接。 2 影响车辆正常牵引的故障 2006年3月9日,2122列车在奥体中心站启动时,车辆不能正常牵引,制动缓解指示灯无显示(不亮),司机显示单元DD U 显示22A车制动缓解故障,降下受电弓推牵引,制动缓解指示灯无显示,仍不能正常牵引。下车查看发现,22A车的制动闸瓦实际已经缓解,因此,分析此车为制动缓解控制电路故障,现场无法处理,只能按特殊情况下应急低速牵引(3 km/h)回库。回库后更换制动压力控制开关触点BCPS ,试车线试验正常。 此种故障运营1年以来已发生多次,此种故障的偶然性、突发性特别强,有时能自动恢复,在运行中不易找到故障的原因,从而,导致车辆不能正常牵引。3 控制原理 根据牵引允许控制原理分析(图1),牵引允许时要激活1个牵引允许继电器MA R,通过M A R 接点可以激活牵引指令列车线并启动牵引逆变器电源,列车可正常牵引。在正常情况下激活M A R 得电通路条件是: (1)110 V 供电正常且钥匙闭合,司机室激活继电器COR3 常开点闭合; (2)所有的门都关闭,车门互锁继电器DIR_A1 和DIR_A2 常开点闭合; (3)所有停放制动都缓解,所有停放制动缓解继电器A P BR R 常开点闭合; (4)所有常用空气制动缓解,所有常用空气制动缓解继电器ABRR或制动未缓解延时继电器BNRDYR常开点闭合; (5)没有常用制动指令,制动需求继电器BDR 在常开点位置,接通回路; (6 )紧急制动接触器E B K 1 、EBK2是得电状态(没有紧急制动),EBK1 和EBK2 的常开触点均闭合。 这样,MAR 就得电激活了,牵引指令列车线也就可以激活,列车就可以正常牵引。 在列车没有开动之前,所有制动缓解继电器A B R R 是不得电的,M A R 不能靠A B R R 来激活。而是需要制动未缓解继电器B N R D Y R的常开触点临时激活一段时间。 4 致车辆不能正常牵引的原因 空气制动的制动“施加”与“缓解”2根列车线串入每辆车制动缓解控制器BRG 中的压力开关触点BCPS(图2),其中空气制动施加列车线(Brake applied trainline)串入的是常开触点,当它闭合时,则激活所有空气制动施加继电器ABAR ;空气制动缓解列车线(Brake re-leased trainline)串入的是常闭触点,要激活的所有空气制动缓解继电器(ABRR)。在BRG 开关内,若施加了空气制动,则开关压力会高于0.7 bar,然后开关触点动作,BRG状态发生翻转,制动施加指示列车线导通,

铁路调车作业方法

铁路调车作业方法 一、挂车作业方法 挂车作业有两种方法,一是单机挂车,二是带车连挂。挂车作业中易发生的问题:一是挂重钩(即撞大响),其后果轻则车门弹开或货物窜出,重则酿成事故;二是挂车挂不上会将车顶跑溜逸,挤坏道岔溜人区间或者造成车辆冲突;再就是挂车人员在接近挂车时,进人线路内调整钩位易造成人身伤亡。主要原因在于未执行作业程序和未采取必要的措施。易连挂前正确调整钩位;连挂时认真执行“十、五、三”车距离信号,连挂后确认连挂妥当。 1.连挂车辆 (1)调整钩舌、钩位: ①在车辆连挂之前,先检查车钩钩位是否位于中心(在 曲线上钩位有偏移),同时两车钩应是一个在关闭状态,一 个在全开状态。须使机车车辆停车后进行调整,再进行连挂。如两车钩均在关闭状态,则连挂时两钩舌互相冲撞而损坏车钩;如两车钩都在全开状态,又容易损坏钩舌或钩锁铁,且不易正确连挂。严禁在运行中调整钩位。

②在曲线上调整钩位的方法:在曲线上连挂车辆与在直线上连挂车辆不同,其情况如图2~5所示。 两车纵中心线相错,车身愈长,曲线半径愈小,则相错的差度愈大。要使两车钩正确连挂好,必须使两车钩的纵中心线相近,如差度过大,则不易连挂。如勉强进行连挂,可能使两钩头相错,甚至撞坏端梁。因此,在曲线上挂车时,应正确调整钩位,将两钩头向弯道内侧扳动,使两车钩纵中心线相近,并将两车钩各开六、七成位置,以加大两车钩接触面;或以小型连挂大型车。如经几次连挂不上时,在符合手推调车的条件下,将车辆推到直线上再连挂。 (2)正确及时地显示信号: ①推进车辆去连挂车辆时,调车长先向扳道员要道,得到扳道员道岔开通信号或调车信号机显示进行信号后,向司机显示连结信号和起动信号,司机鸣笛回示起动后再根据停留车位置,显示十、五、三车距离信号(距被连挂车辆十车约110m时,显示十车信号;距离五车约55m时,显示五车信号;距离三车约33m时,显示三车信号;距离11m时,显示稍行移动信号。如距离不足十车时,仅显示五车和三车距

地铁闭塞模式

闭塞模式 固定闭塞、移动闭塞和准移动闭塞 两站之间的线路成为区间。列车在区间运行,必须区间空闲,而且必须杜绝其对向和同向同时有列车运行的可能,即必须从列车的头部和尾部进行防护。这种为确保列车在区间运行安全而采取一定措施的方法为行车闭塞法,简称闭塞。 城市轨道交通,列车间隔控制(及闭塞)均由列车运行自动完成,故为自动闭塞。闭塞设备由ATP系统完成。 城轨交通闭塞分为:固定闭塞、移动闭塞和准移动闭塞。 移动闭塞和准移动闭塞可实现较大通过能力,技术水平高,有较大发展前景;固定闭塞技术水平相对较低,但可满足2分钟通过能力要求,价格低廉,较为实用。 准移动闭塞式和移动闭塞式ATC系统可以实现较大的通过能力,对于客运量变化具有较强的适应性,可以提高线路利用率,具有高效运行节能等作用。 (1)固定闭塞将线路划分为固定的区段,前后列车的位置、间距均由地面设备检测和表示,速度控制模式为分级控制(台阶式)。采用轨道电路来实现。 (2)准移动闭塞(也可称为半固定闭塞)是预先设定列车的安全追踪间隔距离,根据前方目标状态设定列车的可行车距离和运行速度、介于固定闭塞和移动闭塞之间的一种闭塞方式。它前、后列车的定位方式不同的。前行列车的定位采用固定闭塞方式,而后续列车的定位则采用连续的或称为移动的方式。采用轨道电路辅以环线或应答器来实现。 准移动闭塞速度模式既有无级特点,又有分级性质。在控制安全间隔上比固定闭塞进步,但其后续列车的最大目标制动点仍必须在先行列车占用区间的外方,并没有完全突破轨道电路的限制。

(3)移动闭塞是一种新型的闭塞制式。列车安全追踪间隔距离不预先设定,而随着列车的移动不断移动并变化的闭塞方式。它不设固定闭塞区段,前、后两列车都采用移动式的定位方式。借助感应环线或无线通信的方式实现。

轨道交通列车司机控制器的功能及故障模式

轨道交通列车司机控制器的功能及故障模式 发表时间:2019-08-27T14:09:19.457Z 来源:《当代电力文化》2019年第7期作者:边少佳,陈腾 [导读] 对轨道交通车辆司机控制器设备的形式,功能,输入输出类型,进行了详细介绍。 天津凯发电气股份有限公司天津 300392 摘要:对轨道交通车辆司机控制器设备的形式,功能,输入输出类型,进行了详细介绍。同时对司机控制器在运营过程中容易出现的故障现象进行归纳分析,针对故障原因提出预防和解决的措施,对列车车辆功能选型,运营维护有借鉴及参考意义。 关键词:司机控制器,主控手柄 司机控制器是一种手动电气设备,用于机车唤醒、换向、调速的控制命令输入及输出,是控制车辆驾驶的核心设备,类似于汽车的钥匙启动,方向盘和挡位控制器。常见的高铁,普铁列车,司机控制器常安装于控制台面,部分有轨电车为便于司机频繁操作,会将其小型化,安装于驾驶座椅扶手,使司机在坐姿下便于操作。 司机控制器的钥匙开关,其主要作用为给列车控制回路通电,同时闭锁对侧司机控制器开启。列车两端的驾驶系统,只允许一端处于激活状态。常用的闭锁方式有两种,电磁机械闭锁或通过电气节点进行软件闭锁。钥匙开关常有两个位置:“开位”和“关位”。在锁具选型上,锁的可靠性是主要要求,锁直接影响到车辆的激活启动。目前大部分司机控制器均为合资品牌,采用IKON或KABA品牌的安全锁。这类锁具其特点是强度高,精度好,缺点是锁具精密,当频繁使用钥匙插拔发生钥匙磨损或形变,则开启不畅。为解决这一矛盾,衍生出两种解决思路,1)定制锁具和钥匙;2)将常规锁具进行改造,尽保留2—3个弹簧弹子。经验证,两种方式均有较好效果,在国内列车上均有使用。 司机控制器的另一核心设备为“方向开关“,其主要功能是控制列车的行进方向,有“向前”,“向后”,和“0挡”共三个位置。其输出信号为节点信号。司机控制器的,钥匙开关,方向手柄,和调速手柄三者之间存在闭锁关系。其闭锁关系如下。 1)当且仅当方向开关位于“0档”,方可操作调速主控手柄。 2)当且仅当钥匙开关位于“开位”,方可操作方向手柄。 3)当且仅当主控手柄位于“0档“,方可操作方向手柄。 司机控制器的另一个核心设备为“主控手柄“,主控手柄的有4个输出区域:“牵引区“、”惰行区“、”制动区“、”快速制动区“。 1)牵引区:有极输出,手柄在不同位置对应不同的牵引力。最大角度对应最大牵引力,最小角度对应最小牵引力。 2)惰行区:无级输出,在该位置输出型号唯一。 3)制动区:有极输出,手柄在不同位置对应不同的制动力。最大角度对应最大制动力,最小角度对应最小制动力。 4)快速制动区:无极输出,为节点信号,用于紧急情况下的快速制动,启动车辆最大的制动能力。 主控手柄的输出信号模式有2种。一种是通过主控手柄带动滑动变阻器,通过滑动变阻器的分压原理输出3——8V(项目不同有差异)的直流电压。另一种是通过角度传感器,输出电压或电流信号。角度传感器是一种新型的电子模拟量输出设备。其原理是通过磁场感应并通过程序控制方式输出模拟信号,其特点是有源器件,带载能力强,其输出曲线通过软件编程设置,其输出特性可进行定制化设计。根据器件选型不同,其输出模式有电压输出,也有电流输出。 随着自动化程度的提高,牵制制动系统对输入信号的类型有不同需求,出现输出占空比的方波信号,以及格雷码的数值输出信号。占空比及格雷码均为多级可平滑过渡的数字信号。其优点是可降低模拟信号输出受外部干扰的影响。 在输出占空比信号及格雷码信号时,有两种方案,其一在司机控制器就近位置安装编码器,司机控制器依旧输出电压或电流的模拟信号,通过编码器的转换功能进行信号的转换。另一种方案是选用集成式的格雷码传感器或占空比信号输出的传感器。

相关文档
相关文档 最新文档