文档库 最新最全的文档下载
当前位置:文档库 › 可转位镗刀刀片槽参数优化的数值方法

可转位镗刀刀片槽参数优化的数值方法

可转位镗刀刀片槽参数优化的数值方法
可转位镗刀刀片槽参数优化的数值方法

断屑槽型PCBN和PCD刀片及断屑效果图收藏

断屑槽型PCBN/PCD刀片及断屑效果图收藏! (一)不带断屑槽的PCD/PCBN刀片的切削效果图 一般情况下,车削加工是单刃连续切削加工,如果不采取断屑措施,切削不会自然折断。如下图所示,用不带断屑槽刀片的切削效果。 这样,不仅影响切削质量与生产率,还比较容易发生安全事故。因此,断屑对车削加工十分重要。 (二)带断屑槽的PCD/PCBN刀片的切削效果图

使用断屑槽可以消除切屑缠绕问题,实现高效率、无故障的切削加工,断屑效果如下图。 随着工业技术的发展,难加工材料的应用越来越多,加工中断屑的问题更加突出,诸如现代航空和汽车制造业大量使用轻型铝合金材料,其目的是减轻飞机和汽车的重量,进而降低对驱动功率的需求。由于某些高强度锻造铝合金在切削加工时具有产生有害的缎带形切屑和螺旋形切屑的趋势,因此给加工造成了严重的问题。此类切屑不仅会影响刀具的切削性能,还可能对机床造成损坏,导致在加工过程中不得不频频停机,以清理被切屑堵塞的区域; 铝合金活塞

铝合金型材 铝合金压铸件 铝合金花鼓

铝合金腔体 碳纤维汽车零部件 更多断屑槽型PCBN/PCD刀片可来图/来样加工制造刀具材质也不停的更新换代,而且随着超硬刀具材质的应用,尤其是超硬金刚石和立方氮化硼刀具,普通PCD/PCBN刀片由于没有断屑槽导致切屑过长,给连续加工和工件表面质量带来很大问题,但对于具有超高硬度的PCBN/PCD 刀具,设计和制造断屑槽的难度非常大,目前国内也只有为数不多的企业能够制造PCD/PCBN刀片断屑槽,采用当今世界上较为先进的激光雕琢技术,可在刀具的前刀面上加工立体形状,满足定位、断屑等要求,实现了金刚石刀片的断屑槽制造甚至设计,使得超硬刀具具有真正意义上的三维断屑槽! 华菱超硬PCBN/PCD断屑槽刀片优势:优异的断屑性能,避免切屑缠绕工件或刀具,保证良好的工件表面质量和刀具使用寿命。

刀具断屑原因分析

刀具断屑不可靠的原因分析及解决方法 刀具断屑可靠与否,对正常生产与操作者安全都有着重大影响。在切削加工中,崩碎切屑会飞溅伤人,并易研损机床;而长条带状切屑会缠绕在工件或刀具上,易刮伤工件,引发刀具破损,甚至影响工人安全。对于数控机床(加工中心)等自动化加工机床,由于其刀具数量较多,刀架与刀具联系密切,断屑问题就显得更为重要,只要其中—把刀断屑不可靠,就可能破坏机床的自动循环,甚至破坏整条自动线正常运转,所以在设计、选用或刃磨刀具时,必须考虑刀具断屑的可靠性。而对于数控机床(加工中心)等,并应满足下列要求: 切屑不得缠绕在刀具、工件及其相邻的工具、装备上; 切屑不得飞溅,以保证操作者与观察者的安全; 精加工时,切屑不可划伤工件的已加工表面,影响已加工表面的质量; 保证刀具预定的耐用度,不能过早磨损并竭力防止其破损; 切屑流出时,不妨碍切削液的喷注; 切屑不会划伤机床导轨或其他部件等。 在满足上述要求的基础上,不同刀具对切屑长度还有不同要求。例如一般粗车钢料的最大切屑长度为100mm左右;精车则应稍长。要避免过于细碎的切屑,因为它容易嵌入机床导轨和刀具装置的一些重要部位(如基准面),这样不仅需要附加防护装置,还给清除切屑带来一定的困难。 对于某些不易断屑的刀具,如成形车刀、切槽车刀和切断车刀等,在数控机床(加工中心)等自动化机床上,应保证其稳定的卷屑。 一、切屑形状的分类 根据工件材料、刀具几何参数和切削用量等的具体情况,切屑形状一般有:带状屑、C 形屑、崩碎屑、宝塔状卷屑、发条状卷屑、长紧螺卷屑、螺卷屑等(见图1)。

( l )带状屑(见图1a):高速切削塑性金属材料时,如不采取断屑措施,极易形成带状屑,此形屑连绵不断,常会缠绕在工件或刀具上,易划伤工件表面或打坏刀具的切削刃、甚至伤人,因此应尽量避免形成带状屑。 但有时也希望得到带状屑,以使切屑能顺利排出。例如在立式镗床上镗盲孔时。 (2)C 形屑(见图1 b):车削一般的碳钢、合金钢材料时,如采用带有断屑槽的车刀则易形成C 形屑。C 形屑没有了带状屑的缺点。但C 形屑多数是碰撞在车刀后刀面或工件表面而折断的(见图2)。切屑高频率的碰断和折断会影响切削过程的平稳性,从而影响已加工表面的粗糙度。所以,精加工时一般不希望得到C形屑.而多希望得到长螺卷屑(见图3),使切削过程比较平稳。

刀片的选择

1.影响数控刀具选择的因素 在选择刀具的类型和规格时,主要考虑以下因素的影响: (1)生产性质 在这里生产性质指的是零件的批量大小,主要从加工成本上考虑对刀具选择的影响。 例如在大量生产时采用特殊刀具,可能是合算的,而在单件或小批量生产时,选择标准刀具更适合一些。 (2)机床类型 完成该工序所用的数控机床对选择的刀具类型(钻、车刀或铣刀)的影响。在能够保证工件系统和刀具系统刚性好的条件下,允许采用高生产率的刀具,例如高速切削车刀和大进给量车刀。 (3)数控加工方案 不同的数控加工方案可以采用不同类型的刀具。例如孔的加工可以用钻及扩孔钻,也可用钻和镗刀来进行加工。 (4)工件的尺寸及外形 工件的尺寸及外形也影响刀具类型和规格的选择,例如特型表面要采用特殊的刀具来加工。 (5)加工表面粗糙度 加工表面粗糙度影响刀具的结构形状和切削用量,例如毛坯粗铣加工时,可采用粗齿铣刀,精铣时最好用细齿铣刀。 (6)加工精度 加工精度影响精加工刀具的类型和结构形状,例如孔的最后加工依据孔的精度可用钻、扩孔钻、铰刀或镗刀来加工。 (7)工件材料 工件材料将决定刀具材料和切削部分几何参数的选择,刀具材料与工件的加工精度、材料硬度等有关。 2.数控刀具的性能要求 由于数控机床具有加工精度高、加工效率高、加工工序集中和零件装夹次数少的特点,对所使用的数控刀具提出了更高的要求。从刀具性能上讲,数控刀具应高于普通机床所使用的刀具。 选择数控刀具时,首先要应优先选用标准刀具,必要时才可选用各种高效率的复合刀具及特殊的专用刀具。在选择标准数控刀具时,应结合实际情况,尽可能选用各种先进刀具,如可转位刀具、整体硬质合金刀具、陶瓷刀具等。 在选择数控机床加工刀具时,还应考虑以下几方面的问题: (1)数控刀具的类型、规格和精度等级应能够满足加工要求,刀具材料应与工件材料相适应。 (2)切削性能好。为适应刀具在粗加工或对难加工材料的工件加工时能采用大的背吃刀量和高进给量,刀具应具有能够承受高速切削和强力切削的性能。同时,同一批刀具在切

加工刀片槽型设计

对采用新型断屑槽的几何参数对断屑性能的影响 Ning Fang Department of Mechanical Engineering, Nanjing Uni6ersity of Aeronautics and Astronautics, Jiangsu 210016, People’s Republic of China 摘要 目前,随着柔性制造系统(FMS)的越来越广泛的应用,计算机集成制造系统(CIMS)等现代技术广泛采用可转位刀具刀片与新型断屑槽。刀片的断屑性能被认为是保证加工过程连续性的重要因素之一。因此,当使用的新型断屑槽时,有必要较为系统和全面地研究断屑的规律。在目前的研究中,已经对非对称断屑槽(AGT)和对称断屑槽(SGT)的断屑性能做了详细的比较。实验结果表明,用AGT 来代替SGT并在加工过程中调查断屑的规律是可行的。采用新型断屑槽时,通过大量的切削实验研究断屑槽的几何参数对刀片断屑性能的影响。通过多元线性回归的方法,建立两个数学模型来模拟的新型断屑槽的断屑性能。该理论模拟结果与给定切削条件下的实验结果相吻合。 关键词:不对称断屑槽;对称断屑槽;刀片;断屑

1.引言 如今,生产自动化随着现代技术的出现而日趋复杂,例如,各种的高速机床,组合机床,数控机床,自动生产线,柔性制造系统(FMS)和计算机集成制造系统(CIMS)等。因此可转位刀片得到广泛的应用。刀片的优良断屑性能被视为维持加工过程的连续性的重要因素之一。 可转位刀片的前刀面上设压切屑槽是断屑的有效方法之一。许多研究人员已对断屑槽的几何参数对刀具刀片的断屑性能的影响进行过研究[1-7]。尽管过去的研究对实验做出了显着贡献,但他们还是存在以下这些缺点: (i) 现存在大量分散而不系统的实验数据。例如,在断屑槽的众多几何参数中只有槽宽和槽深,被认为是影响切屑卷曲半径和断屑的主要因素。 (ii)早期的实验数据已经过时。过去的许多研究活动集中于使用断屑槽宽通常超过3毫米的老式的断屑槽。而新型断屑槽与老式相比有许多不同的几何特征,因此,那些珍贵的研究结果对研究新型断屑槽毫无用处。 (iii)新型断屑槽的设计而产生的问题仍待解决。例如,目前仍然不能确定断屑槽的一些几何参数(如槽底面的高度和凹槽的宽深之比)是否有存在对刀片断屑性能的影响。

【结构设计】结构设计时计算模型参数应如何优化

结构设计时计算模型参数应如何优化在建筑工程设计中,结构计算是至关重要的环节.电算时代,很多工程师由于概念不清晰,工期紧张,或造成安全隐患,或造成严重浪费.因此,笔者根据将以目前市场上应用较为广 泛的PKPM软件为依托,阐述结构计算模型参数的优化要点. 一.上部结构 1、地面粗糙度类别 同等条件下类别A、B、C、D对应的风荷载大小依次递减,个别设计人员区分不清A类-近海海面和海岛、海岸、湖岸及沙漠地区;B类-田野、乡村、丛林、丘陵以及房屋比较稀疏的乡镇. 判别有困难时,可依据《荷规》8.2.1条条文说明的半圆影响范围来分类. 2、抗震等级 (1)房屋高度的确定 《抗规》6.1.1注1:房屋高度指室外地面到主要屋面板板顶的高度(不包括局部突出屋顶部分). 《异形柱结构规范》3.2.1条文说明对坡屋顶情况作了 如下说明:

对于结构高度处于临界值上的建筑,准确取用其结构高度,直接影响抗震等级和钢筋用量. (2)框架-剪力墙结构按照倾覆力矩来确定抗震等级 工程中常常出现“少墙”的框架结构和“多柱”的剪力墙结构,《高规》8.1.3及其条文说明明确了框架承担的倾覆力矩决定了其按照何种结构类型进行设计,此时要特别注意框架和剪力墙的抗震等级的选取不当可能会造成浪费或未能形成多到防线的有效设置,影响结构安全. 3、活荷载折减 《荷规》5.1.2-2明确了设计墙、柱和基础时均可以进行活荷载折减,只是要特别注意折减系数的选取要依据规范要求,不能对于所有结构都按照软件默认的参数执行. 4、柱配筋计算原则 普通柱按单偏压计算,双偏压校核,异型柱才按双偏压计算.按双偏压计算时柱钢筋用量显著增加. 5、周期折减系数 周期折减系数主要考虑填充墙对结构周期的影响,填充墙越重越多,周期折减系数越小,地震作用越大,墙柱配筋越大.

数学建模案例之多变量最优化2

数学建模案例之 多变量有约束最优化 问题2[1](续问题1):在问题1中,我们假设公司每年有能力生产任何数量的彩电。现在我们根据允许的生产能力引入限制条件。公司考虑投产者两种新产品是由于计划停止黑白电视记得生产。这样装配厂就有了额外的生产能力。这些额外的生产能力就可以用来提高那些现有产品的产量,但公司认为新产品会带来更高的利润。据估计,现有的生产能力允许每年可以生产10000台电视(约每周200台)。公司有充足的19英寸、21英寸彩色显像管、底盘及其他标准配件。但现在生产立体声电视所需要的电路板供给不足。此外,19英寸彩电所需要的电路板与21英寸彩电的不同,这是由于其内部的结构造成的。只有进行较大的重新设计才能改变这一点,但公司现在不准备做这项工作。电路板的供应商每年可以提供8000块21英寸彩电的电路板和5000块19英寸彩电的电路板。考虑到所有这些情况,彩电公司应该怎样确定其生产量? 清晰问题:问每种彩电应该各生产多少台,使得利润最大化? 1.问题分析、假设与符号说明 这里涉及的变量和问题1相同: s:19英寸彩电的售出数量(台); t:21英寸彩电的售出数量(台); p:19英寸彩电的售出价格(美元/台); q:21英寸彩电的售出价格(美元/台); C:生产彩电的成本(美元); R:彩电销售的收入(美元); P:彩电销售的利润(美元) 这里涉及的常量同问题1: 两种彩电的初始定价分别为:339美元和399美元; 每种彩电的生产成本分别为:195美元和225美元; 每种彩电每多销售一台,平均售价下降系数a=0.01美元(称为价格弹性系数); 种彩电之间的销售相互影响系数分别为0.04美元和0.03美元; 固定成本400000美元。 变量之间的相互关系确定:

最优化计算方法课后习题答案----高等教育出版社。施光燕

习题二包括题目:P36页5(1)(4) 5(4)

习题三 包括题目:P61页1(1)(2); 3; 5; 6; 14;15(1) 1(1)(2)的解如下 3题的解如下

5,6题 14题解如下 14. 设22121212()(6)(233)f x x x x x x x =+++---, 求点在(4,6)T -处的牛顿方向。 解:已知 (1) (4,6)T x =-,由题意得 121212212121212(6)2(233)(3)()2(6)2(233)(3)x x x x x x x f x x x x x x x x +++-----?? ?= ?+++-----?? ∴ (1)1344()56g f x -?? =?= ??? 21212122211212122(3)22(3)(3)2(233)()22(3)(3)2(233)22(3)x x x x x x x f x x x x x x x x +--+--------? ??= ? +--------+--?? ∴ (1)2(1)1656()()564G x f x --?? =?= ?-?? (1)1 1/8007/400()7/4001/200G x --?? = ?--?? ∴ (1)(1)11141/100()574/100d G x g -?? =-= ?-?? 15(1)解如下 15. 用DFP 方法求下列问题的极小点 (1)22 121212min 353x x x x x x ++++ 解:取 (0) (1,1)T x =,0H I =时,DFP 法的第一步与最速下降法相同 2112352()156x x f x x x ++???= ?++??, (0)(1,1)T x =,(0) 10()12f x ???= ??? (1)0.07800.2936x -??= ?-??, (1) 1.3760() 1.1516f x ???= ?-?? 以下作第二次迭代 (1)(0) 1 1.07801.2936x x δ-??=-= ?-??, (1)(0) 18.6240()()13.1516f x f x γ-??=?-?= ?-?? 0110 111011101 T T T T H H H H H γγδδδγγγ=+-

《最优化方法》复习题(含答案)

x zD 天津大学《最优化方法》复习题(含答案) 第一章 概述(包括凸规划) 判断与填空题 arg max f(x)二 arg min 以儿 “ max(x): x D 二 R n 』=-min(x): x D 二 R n ; 设f : D 5 R n > R.若x : R n ,对于一切R n 恒有f(x”)^f(x),则称x”为 设f : D 5 R n >R.若x ” ? D ,存在x ”的某邻域N ;(x”),使得对一切 x ?N .(x)恒有f(x”)::: f (x),则称x”为最优化问题 min f (x)的严格局部最 优解? 给定一个最优化问题,那么它的最优值是一个定值 ? V 非空集合D R n 为凸集当且仅当 D 中任意两点连线段上任一点属于 D . V 非空集合D R n 为凸集当且仅当D 中任意有限个点的凸组合仍属于 D . V 任意两个凸集的并集为凸集? 函数f:D R n >R 为凸集D 上的凸函数当且仅当 -f 为D 上的凹函数? V 设f : D R n >R 为凸集D 上的可微凸函数,X :D ?则对-D ,有 f (x) - f(x )乞 f (x )T (X —X )? 若c(x)是凹函数,则 D={x^R n C(x)启0}是凸集。 V f(x)的算法A 产生的迭代序列,假设算法 A 为下降算法, 则对-k ? 5,1, 2,…匚恒有 ________________ f(x k1)乞 f(x k ) ______________ ? 算法迭代时的终止准则(写出三种) : ___________________________________________________ 凸规划的全体极小点组成的集合是凸集。 V 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

最优化方法(试题+答案)

一、 填空题 1 . 若 ()()??? ? ??+???? ?????? ??=212121 312112)(x x x x x x x f ,则 =?)(x f ,=?)(2x f . 2.设f 连续可微且0)(≠?x f ,若向量d 满足 ,则它是f 在x 处的一个下降方向。 3.向量T ) 3,2,1(关于3阶单位方阵的所有线性无关的共轭向量 有 . 4. 设R R f n →:二次可微,则f 在x 处的牛顿方向为 . 5.举出一个具有二次终止性的无约束二次规划算 法: . 6.以下约束优化问题: )(01)(..)(min 212121 ≥-==+-==x x x g x x x h t s x x f 的K-K-T 条件为: . 7.以下约束优化问题: 1 ..)(min 212 2 21=++=x x t s x x x f 的外点罚函数为(取罚参数为μ) . 二、证明题(7分+8分) 1.设1,2,1,:m i R R g n i =→和m m i R R h n i ,1,:1+=→都是线性函数,证明下 面的约束问题: } ,,1{, 0)(},1{, 0)(..)(min 1112 m m E j x h m I i x g t s x x f j i n k k +=∈==∈≥=∑= 是凸规划问题。

2.设R R f →2 :连续可微,n i R a ∈,R h i ∈,m i ,2,1=,考察如下的约束条件问题: } ,1{,0} 2,1{,0..) (min 11m m E i b x a m I i b x a t s x f i T i i T i +=∈=-=∈≥- 设d 是问题 1 ||||,0,0..)(min ≤∈=∈≥?d E i d a I i d a t s d x f T i T i T 的解,求证:d 是f 在x 处的一个可行方向。 三、计算题(每小题12分) 1.取初始点T x )1,1() 0(=.采用精确线性搜索的最速下降法求解下面的无约束优化问题 (迭代2步): 2 2212)(m in x x x f += 2.采用精确搜索的BFGS 算法求解下面的无约束问题: 212 2212 1)(min x x x x x f -+= 3.用有效集法求解下面的二次规划问题: . 0,001..42)(min 21212 12 221≥≥≥+----+=x x x x t s x x x x x f 4.用可行方向算法(Zoutend ij k算法或Frank Wol fe算法)求解下面的问题(初值设为)0,0() 0(=x ,计算到)2(x 即可): . 0,033..22 1)(min 212112 22121≥≥≤+-+-= x x x x t s x x x x x x f

多目标优化问题

多目标优化方法 基本概述 几个概念 优化方法 一、多目标优化基本概述 现今,多目标优化问题应用越来越广,涉及诸多领域。在日常生活和工程中,经常要求不只一项指标达到最优,往往要求多项指标同时达到最优,大量的问题都可以归结为一类在某种约束条件下使多个目标同时达到最优的多目标优化问题。例如:在机械加工时,在进给切削中,为选择合适的切削速度和进给量,提出目标:1)机械加工成本最低2)生产率低3)刀具寿命最长;同时还要满足进给量小于加工余量、刀具强度等约束条件。 多目标优化的数学模型可以表示为: X=[x1,x2,…,x n ]T----------n维向量 min F(X)=[f1(X),f2(X),…,f n(X)]T----------向量形式的目标函数s.t. g i(X)≤0,(i=1,2,…,m) h j(X)=0,(j=1,2,…,k)--------设计变量应满足的约束条件多目标优化问题是一个比较复杂的问题,相比于单目标优化问题,在多目标优化问题中,约束要求是各自独立的,所以无法直接比较任意两个解的优劣。

二、多目标优化中几个概念:最优解,劣解,非劣解。 最优解X*:就是在X*所在的区间D中其函数值比其他任何点的函数值要小即f(X*)≤f(X),则X*为优化问题的最优解。 劣解X*:在D中存在X使其函数值小于解的函数值,即f(x)≤f(X*), 即存在比解更优的点。 非劣解X*:在区间D中不存在X使f(X)全部小于解的函数值f(X*). 如图:在[0,1]中X*=1为最优解 在[0,2]中X*=a为劣解 在[1,2]中X*=b为非劣解 多目标优化问题中绝对最优解存在可能性一般很小,而劣解没有意义,所以通常去求其非劣解来解决问题。

基于MAAB的多变量优化问题

基于MATLAB 的多变量 优化问题 小组成员:刘浩李莲喜骆开荣刘晓康学号:S1402W011、7 S1402W014、3 S1402M0005、S1402W0246

MATLAB 在多变量优化问题的应用 【摘要】实际生活中我们有许多地方需要用到数学中的一些最值运算,而有些问题我们无法进行计算,因此就有了优化设计理论这门学科,优化理论是一门实践 性很强的学科,广泛应用于生产管理、军事指挥和科学试验等各种领域,为了更好的学习这门课程,为我们所用,MATLAB 优化工具箱提供了对各种优化问题的一个完整的解决方案,可用于解决工程中的最优化问题,包括非线性方程求解、极小值问题、最小二乘问题等。 一、问题的提出 MATLAB 具有强大的科学计算与视化功能、简单易用、开放式的可扩展环境,编写简单,编程效率高,易学易懂,将MATLAB 应用到解决最优化问题的模块中学习,利用客观、视图、计算等功能对最优化问题模块做出最简洁有效的解答。 二、在多变量优化问题的应用 1.问题一:运用MATLAB 软件编写多变量优化问题求解 采用的算法:牛顿法 程序框图: 目标函数图形: MATLAB 程序: clear x=-10:0.5:10; y=x; [X,Y]=meshgrid(x,y); Z=(X-4)A2+(Y+2)A2+1; surf(X,Y,Z) syms t s; f=(t-4)A2+(s+2)A2+1; [x,mf]=minNT(f,[-1 5],[t s]) function [x,minf]=minNT(f,x0,var,eps) format long; if nargin==3 eps=1.0e-6; end tol=1; x0=transpose(x0); while tol>eps

可转位刀片断屑槽的改进设计

可转位刀片断屑槽的改进设计 一、前言 切屑控制是金属切削加工生产中需要研究解决的重要问题。不良的切屑会伤害操作人员,影响已加工零件的表面质量,损坏机床和刀具,增加辅助工时和影响生产率。随着CNC 、FMS 、和CIMS 等各种自动化技术的发展,切屑控制问题变得更加重要,因为不良的切屑将使自动化生产线不能正常运转。切屑控制的基本问题之一是要使切屑可靠折断。目前最常用的方法是用断屑槽断屑。断屑槽断屑是利用材料的加工硬化和受冲击、受挤压而达到破坏强度的原理。由于可转位刀片断屑槽对切屑处理、切削阻力、刀具寿命、加工精度等方面的重要作用,近二十年来断屑槽的槽型也在不断改进之中,相继开发了具有直线刃、折线刃、曲线刃与曲面型、多面型凸起、凹坑型等型面相结合的断屑槽,槽型曲面变得愈来愈复杂,其断屑性能也随之不断改进。研制新型断屑槽型是开发新型刀片,改善刀片切削性能的有效途径之一。 二、断屑槽槽型的改进设计 断屑槽通常可以按用途分为精加工、半精 加工和粗加工用断屑槽。为了改进刀片槽型为M5 的硬质合金可转位刀片在粗车钢、不锈钢、铸铁 时的切削性能,提高刀片使用寿命,对其M5型断屑槽进行了改进设计。图1所示为改进前后的断屑槽槽型。改进设计的要点是采用负倒棱和凹坑组合的断屑槽槽型。因为切削过程中,切屑从刀具前刀面流出时,切屑底层与断屑槽的槽底发生 强烈的摩擦,会产生大量的热量,切削热不断地 从切屑传递到刀片,致使刀片产生磨损。图2所示,在断屑槽底切出一个凹坑可以使刀片与切屑底层的接触面积达到最少,以减少刀片的磨损,提高刀片的使用寿命。5°正前角的负倒棱设计是为了降低切削过程中产生的切削力。 三、改进前后刀片切削性能比较 1. 切削力比较 改进后的M5(New)型断屑槽采用5°正前角的负倒棱,负倒棱的设计是影响切削力的主要因素,其中主要是对轴向力和径向力的影响。图3、图4、图5为改进前后刀片在 V c =150m/min, a p =4mm 车削工件材料为SS1672时切削力分量的对比数据。结果表明:在切削钢、不锈钢时M5(New)和M5比较轴向力和径向力分别降低8%~10 %和12%~14%,切向力基本不变。 (a)M5 (b)M5(New) 图1 (a)M5 (b)M5(New) 图2

加油机器人结构参数优化设计

液压气动与密封/2017年第11期 doi:10.3969/j.issn.1008-0813.2017.11.012 收稿日期:2017-09-07 基金项目:国防科研项目(YX216J021);国家自然科学基金资助项目(51505494) 作者简介:陈雁(1972-),男,重庆人,副教授,博士,主要从事机器人及油料装备理论与技术研究。 0前言 随着科学技术的发展,加油站采用加油机器人作 业将成为未来的发展趋势[1-3]。目前,国外一些公司和学者研发了不同的加油机器人系统[4-7]。国内也有一些学者对加油机器人进行了设计和研究[8-11]。但是,有关对机器人本体结构优化的研究较少,而机器人本体设计和结构参数优化对其工作空间及运动灵活性等都会产生影响,在很大程度上决定了整个机器人性能的优劣,是设计之初必须解决的关键问题。因此,本文设计了一个新型六自由度加油机器人,并对其结构参数优化进行深入研究。 1加油机器人本体结构设计 本文研究的加油机器人为6自由度串联型,包括3 自由度手臂和3自由度手腕两部分,分别用于确定末端执行器的位置和姿态。其结构简图如图1所示。 手臂主要用来完成加油机器人末端执行机构的定位,使得末端执行器可以达到工作空间内的任意位置。确定末端执行器的空间位置,需要直角坐标系中 对应三个坐标轴的3个坐标参数,而手臂的运动不受加油对象的约束,故手臂机构需要3个自由度即可。手腕的主要作用是确定末端执行器的方位,至少需要有俯仰自由度和旋转自由度,但手腕及末端执行器会受到汽车油箱门等的约束,为提高加油机器人的灵巧性,因此,手腕机构采用3 个自由度。 图1加油机器人基本构型 2加油机器人结构参数优化设计 加油机器人的结构参数,主要包括连杆的长度和 转角范围等。其结构参数的优化设计是根据加油作业要求和作业对象分布空间,利用优化方法进行尺寸分析与计算。2.1任务空间 任务空间是指根据作业需求加油机器人末端应到达的位置所形成的空间。根据常见汽车加油口位置、 加油机器人结构参数优化设计 陈雁,阎思达,陈文卓,马振利,黎波 (陆军勤务学院油料系,重庆401331) 摘要:加油机器人结构和控制比一般工业机器人要求更高,其结构尺寸的确定,直接影响到作业任务的可行性、安全性和完成质量。为了使加油机器人能够灵活高效地进行作业,根据汽车加油站加油作业要求以及汽车油箱口分布空间,以工作空间为约束条件,建立优化设计的数学模型,并利用Matlab 优化工具箱进行了机器人本体结构参数优化设计。关键词:加油机器人;优化设计;工作空间;Matlab 中图分类号:TP24 文献标志码:A 文章编号:1008-0813(2017)11-0038-04 Optimization Design on Structure Parameter of Refueling Robot CHEN Yan ,YAN Si-da ,CHEN Wen-zhuo ,MA Zhen-li ,LI Bo (Department of Petroleum,Army Logistics University of PLA,Chongqing 401331,China) Abstract :The structure and control of the refueling robot is more complex than that of the general industrial robot.Its structural size influ-ence the size of the robot's working space directly.Its structural size is directly affected by the feasibility,safety and quality of the task.In or-der to refuel flexibly and efficiently,according to the requirements of the refueling operation of the automobile gas station and the distribu-tion space of the automobile fuel tank,the mathematical model of the optimized design is established with the working space as the con-straint condition,and the optimization design of the robot structure parameters is carried out by using the Matlab optimization toolbox.Key words :refueling robot;optimized design;working space;Matlab 38 万方数据

多目标优化的求解方法

多目标优化的求解方法 多目标优化(MOP)就是数学规划的一个重要分支,就是多于一个的数值目标函数在给定区域上的最优化问题。 多目标优化问题的数学形式可以描述为如下: 多目标优化方法本质就是将多目标优化中的各分目标函数,经处理或数学变换,转变成一个单目标函数,然后采用单目标优化技术求解。目前主要有以下方法: (1)评价函数法。常用的方法有:线性加权与法、极大极小法、理想点法。评价函数法的实质就是通过构造评价函数式把多目标转化为单目标。 (2)交互规划法。不直接使用评价函数的表达式,而就是使决策者参与到求解过程,控制优化的进行过程,使分析与决策交替进行,这种方法称为交互规划法。常用的方法有:逐步宽容法、权衡比替代法,逐次线性加权与法等。 (3)分层求解法。按目标函数的重要程度进行排序,然后按这个排序依次进行单目标的优化求解,以最终得到的解作为多目标优化的最优解。 而这些主要就是通过算法来实现的, 一直以来很多专家学者采用不同算法解决多目标优化问题, 如多目标进化算法、多目标粒子群算法与蚁群算法、模拟退火算法及人工免疫系统等。 在工程应用、生产管理以及国防建设等实际问题中很多优化问题都就是多目标优化问题, 它的应用很广泛。 1)物资调运车辆路径问题 某部门要将几个仓库里的物资调拨到其她若干个销售点去, 在制定调拨计划时一般就要考虑两个目标, 即在运输过程中所要走的公里数最少与总的运输费用最低, 这就是含有两个目标的优化问题。利用首次适配递减算法与标准蚁群算法对救灾物资运输问题求解, 求得完成运输任务的最少时间, 将所得结果进行了比较。 2)设计 如工厂在设计某种新产品的生产工艺过程时, 通常都要求产量高、质量好、成本低、消耗少及利润高等, 这就就是一个含有五个目标的最优化问题; 国防部门在设计导弹时, 要考虑导弹的射程要远、精度要最高、重量要最轻以及消耗燃料要最省等,这就就是一个含有四个目标的最优化问题。Jo等人将遗传算法与有限元模拟软件结合

多目标最优化模型

第六章 最优化数学模型 §1 最优化问题 1.1 最优化问题概念 1.2 最优化问题分类 1.3 最优化问题数学模型 §2 经典最优化方法 2.1 无约束条件极值 2.2 等式约束条件极值 2.3 不等式约束条件极值 §3 线性规划 3.1 线性规划 3.2 整数规划 §4 最优化问题数值算法 4.1 直接搜索法 4.2 梯度法 4.3 罚函数法 §5 多目标优化问题 5.1 多目标优化问题 5.2 单目标化解法 5.3 多重优化解法 5.4 目标关联函数解法 5.5 投资收益风险问题 第六章 最优化问题数学模型 §1 最优化问题 1.1 最优化问题概念 (1)最优化问题 在工业、农业、交通运输、商业、国防、建筑、通信、政府机关等各部门各领域的实际工作中,我们经常会遇到求函数的极值或最大值最小值问题,这一类问题我们称之为最优化问题。而求解最优化问题的数学方法被称为最优化方法。它主要解决最优生产计划、最优分配、最佳设计、最优决策、最优管理等求函数最大值最小值问题。 最优化问题的目的有两个:①求出满足一定条件下,函数的极值或最大值最小值;②求出取得极值时变量的取值。 最优化问题所涉及的内容种类繁多,有的十分复杂,但是它们都有共同的关键因素:变量,约束条件和目标函数。 (2)变量 变量是指最优化问题中所涉及的与约束条件和目标函数有关的待确定的量。一般来说,它们都有一些限制条件(约束条件),与目标函数紧密关联。 设问题中涉及的变量为n x x x ,,,21 ;我们常常也用),,,(21n x x x X 表示。 (3)约束条件 在最优化问题中,求目标函数的极值时,变量必须满足的限制称为约束条件。 例如,许多实际问题变量要求必须非负,这是一种限制;在研究电路优化设

最优化方法(试题+答案)

一、 填空题 1.若()()??? ? ??+???? ?????? ??=212121 312112)(x x x x x x x f , 则=?)(x f ,=?)(2x f . 2.设f 连续可微且0)(≠?x f ,若向量d 满足 ,则它是f 在x 处的一个下降方向。 3.向量T )3,2,1(关于3阶单位方阵的所有线性无关的共轭向量有 . 4. 设R R f n →:二次可微,则f 在x 处的牛顿方向为 . 5.举出一个具有二次终止性的无约束二次规划算法: . 6.以下约束优化问题: )(01)(..)(min 212121 ≥-==+-==x x x g x x x h t s x x f 的K-K-T 条件为: . 7.以下约束优化问题: 1 ..)(min 212 2 21=++=x x t s x x x f 的外点罚函数为(取罚参数为μ) . 二、证明题(7分+8分) 1.设1,2,1,:m i R R g n i =→和m m i R R h n i ,1,:1+=→都是线性函数,证明下 面的约束问题: } ,,1{, 0)(},1{, 0)(..)(min 1112 m m E j x h m I i x g t s x x f j i n k k +=∈==∈≥=∑= 是凸规划问题。

2.设R R f →2 :连续可微,n i R a ∈,R h i ∈,m i ,2,1=,考察如下的约束条件问题: } ,1{,0} 2,1{,0..) (min 11m m E i b x a m I i b x a t s x f i T i i T i +=∈=-=∈≥- 设d 是问题 1 ||||,0,0..)(min ≤∈=∈≥?d E i d a I i d a t s d x f T i T i T 的解,求证:d 是f 在x 处的一个可行方向。 三、计算题(每小题12分) 1.取初始点T x )1,1() 0(=.采用精确线性搜索的最速下降法求解下面的无约束优化问题 (迭代2步): 2 2212)(m in x x x f += 2.采用精确搜索的BFGS 算法求解下面的无约束问题: 212 2212 1)(min x x x x x f -+= 3.用有效集法求解下面的二次规划问题: . 0,001..42)(min 21212 12 221≥≥≥+----+=x x x x t s x x x x x f 4.用可行方向算法(Zoutendijk 算法或Frank Wolfe 算法)求解下面的问题(初值设为)0,0() 0(=x ,计算到)2(x 即可): . 0,033..22 1)(min 21211222121≥≥≤+-+-= x x x x t s x x x x x x f

结构参数优化设计(新)

腿部机械结构参数的优化设计 腿节长度的确定 根据最后出来的总体机构,该四足仿生机器人每条腿都有肩、大腿、小腿部分的 腿节,为方便表达,进行了如图的标示: L 1、L 2、L 3——分别为腿部中肩部分、大腿部分、小腿部分的腿节长度 α、β、γ——肩关节、大腿关节、小腿关节的转角 为实现腿部机构运动时具有一定的灵活性,只具有一定的腿节数是不够的,其中各腿节的长度对总体的运动性能影响是很大的,在确定腿部总体尺寸后,对每个腿节的合理的比例分配的是相当的重要的。以下通过分析腿节长度对腿部跨度的影响、对抬腿高度的影响、对腿部足端运动空间的影响、对腿部运动灵活性的影响来确定各腿节的长度尺寸。 1. 腿节长度对腿部跨度的影响 Θ

图中为仿生机器人腿部运动的某一瞬间,机构在空间中处于某一个位置,以坐标方程记录足端的运动轨迹: x 跨度、y 跨度、z 跨度分别表示足端在已设坐标系中沿x 轴、y 轴、z 轴方向的跨度 x 跨度=U;(1) y 跨度=H cos θ;(2) z 跨度=H sin θ。(3) 根据三角函数变形,用上L 1、L 2、L 3的腿节长度来表达U 和H U= L 1cos α+ L 2cos (α+β)+ L 3cos (α+β-γ)(4) H= L 1sin α+ L 2sin (α+β)+ L 3sin (α+β-γ)(5) 1.1各腿节长度对腿部在X 方向上的跨度的影响 根据(1)(4)得到 x 跨度=U= L 1cos α+ L 2cos (α+β)+ L 3cos (α+β-γ) 再用x 跨度分别对L 1、 L 2 、L 3进行求导,即可得到跨度对不同腿节长度的敏感程度,得: 1 x L ??跨度= cos α, 2 x L ??跨度= cos (α+β), 3 x L ??跨度= cos (α+β-γ) 根据以上三个式子,比较大小可知,敏感程度由转角幅度的要求来确定,首先确定α、β、γ的变化范围: α=20度~60度 β=40度~110度 γ=30度~100度 腿部足端跨度最值可根据各关节的转角来实现(只要转角在满足要求的范围内),

《最优化方法》复习题(含答案)

附录5 《最优化方法》复习题 1、设n n A R ?∈是对称矩阵,,n b R c R ∈∈,求1()2 T T f x x Ax b x c =++在任意点x 处的梯度和Hesse 矩阵. 解 2(),()f x Ax b f x A ?=+?=. 2、设()()t f x td ?=+,其中:n f R R →二阶可导,,,n n x R d R t R ∈∈∈,试求()t ?''. 解 2()(),()()T T t f x td d t d f x td d ??'''=?+=?+. 3、设方向n d R ∈是函数()f x 在点x 处的下降方向,令 ()()()()() T T T T dd f x f x H I d f x f x f x ??=--???, 其中I 为单位矩阵,证明方向()p H f x =-?也是函数()f x 在点x 处的下降方向. 证明 由于方向d 是函数()f x 在点x 处的下降方向,因此()0T f x d ?<,从而 ()()()T T f x p f x H f x ?=-?? ()()()()()()()() T T T T T dd f x f x f x I f x d f x f x f x ??=-?--???? ()()()0T T f x f x f x d =-??+?<, 所以,方向p 是函数()f x 在点x 处的下降方向. 4、n S R ?是凸集的充分必要条件是12122,,,,,,,,m m m x x x S x x x ?≥?∈L L 的一切凸组合都属于S . 证明 充分性显然.下证必要性.设S 是凸集,对m 用归纳法证明.当2m =时,由凸集的定义知结论成立,下面考虑1m k =+时的情形.令1 1k i i i x x λ+==∑, 其中,0,1,2,,1i i x S i k λ∈≥=+L ,且1 1 1k i i λ+==∑.不妨设11k λ+≠(不然1k x x S +=∈, 结论成立),记11 1k i i i k y x λλ=+=-∑ ,有111(1)k k k x y x λλ+++=-+,

多目标最优化模型

第六章最优化数学模型 §1最优化问题 1.1最优化问题概念 1.2最优化问题分类 1.3最优化问题数学模型 §2经典最优化方法 2.1无约束条件极值 2.2等式约束条件极值 2.3不等式约束条件极值 §3线性规划 3.1线性规划 3.2整数规划 §4最优化问题数值算法 4.1直接搜索法 4.2梯度法 4.3罚函数法 §5多目标优化问题 5.1多目标优化问题 5.2单目标化解法 5.3多重优化解法 5.4目标关联函数解法 5.5投资收益风险问题 第六章最优化问题数学模 §1最优化问题 1.1最优化问题概念 (1)最优化问题在工业、农业、交通运输、商业、国防、建筑、通信、政府机关等各部门各领域的实际工作中,我们经常会遇到求函数的极值或最大值最小值问题,这一类问题我们称之为最优化问题。而求解最优化问题的数学方法被称为最优化方法。它主要解决最优生产计划、最优分配、最佳设计、最优决策、最优管理等求函数最大值最小值问题。 最优化问题的目的有两个:①求出满足一定条件下,函数的极值或最大值最小值; ②求出取得极值时变量的取值。 最优化问题所涉及的内容种类繁多,有的十分复杂,但是它们都有共同的关键因素:变量,约束条件和目标函数。 (2)变量变量是指最优化问题中所涉及的与约束条件和目标函数有关的待确定的量。 一般来说,它们都有一些限制条件(约束条件),与目标函数紧密关联。 设问题中涉及的变量为x1,x2, , x n ;我们常常也用X (x1,x2, ,x n)表示。 3)约束条件 在最优化问题中,求目标函数的极值时,变量必须满足的限制称为约束条件例如,许多实际问题变量要求必须非负,这是一种限制;在研究电路优化设

相关文档