文档库 最新最全的文档下载
当前位置:文档库 › 常微分方程练习试卷及答案

常微分方程练习试卷及答案

常微分方程练习试卷及答案
常微分方程练习试卷及答案

常微分方程练习试卷

一、填空题。

1.方程23

210d x

x dt

+=是阶(线性、非线性)微分方程. 2. 方程

()x dy

f xy y dx

=经变换_______,可以化为变量分离方程. 3. 微分方程3230d y

y x dx

--=满足条件(0)1,(0)2y y '==的解有个.

4. 设常系数方程x y y y e αβγ'''++=的一个特解*2()x x x

y x e e xe =++,则此方程的系数α=,

β=,γ=.

5. 朗斯基行列式()0W t ≡是函数组12(),(),,()n x t x t x t 在a x b ≤≤上线性相关的

条件.

6. 方程22(2320)0xydx x y dy ++-=的只与y 有关的积分因子为.

7. 已知()X A t X '=的基解矩阵为()t Φ的,则()A t =.

8. 方程组20'05??

=????

x x 的基解矩阵为. 9.可用变换将伯努利方程 化为线性方程.

10 .是满足方程251y y y y ''''''+++=和初始条件 的唯一解.

11.方程

的待定特解可取 的形式:

12. 三阶常系数齐线性方程20y y y '''''-+=的特征根是

二、计算题

1.求平面上过原点的曲线方程, 该曲线上任一点处的切线与切点和点(1,0)的连线相互垂直.

2.求解方程13

dy x y dx x y +-=-+. 3.求解方程22

2()0d x dx x dt dt

+=。

4.用比较系数法解方程.

.

5.求方程 sin y y x '=+的通解.

6.验证微分方程22

(cos sin )(1)0x x xy dx y x dy -+-=是恰当方程,并求出它的通解.

7.设3124A -??=??-?? , ??????-=11η ,试求方程组X A dt dX =的一个基解基解矩阵)(t Φ,求X A dt dX

=满足初始条件η=)0(x 的解. 8. 求方程

2213dy

x y dx

=-- 通过点(1,0) 的第二次近似解.

9.求的通解

试求方程组x Ax '=的解(),t ?12(0),η?ηη??==????

并求expAt 10.若

三、证明题

1.若(),()t t Φψ是()X A t X '=的基解矩阵,求证:存在一个非奇异的常数矩阵C ,使得()()t t C ψ=Φ.

2. 设),()(0βα?≤≤x x x 是积分方程

]

,[,,

])([)(0200

βαξξξξ∈++=?x x d y y x y x

x

的皮卡逐步逼近函数序列)}({x n ?在],[βα上一致收敛所得的解,而)(x ψ是这积分方程在],[βα上的连续解,试用逐步逼近法证明:在],[βα上)()(x x ?ψ≡.

3. 设都是区间上的连续函数, 且是二阶线性方程

的一个基本解组. 试证明:

(i) 和都只能有简单零点(即函数值与导函数值不能在一点同时为零); (ii) 和没有共同的零点; (iii) 和

没有共同的零点.

4.试证:如果)(t ?是

AX dt

dX

=满足初始条件η?=)(0t 的解,那么η?)(ex p )(0t t A t -= .

2114A ??=??-??32()480dy dy xy y dx dx -+=

答案

一.填空题。 1. 二,非线性 2.u

xy =,

11

(()1)du dx u f u x

=+ 3.无穷多 4.3,2,1αβγ=-==-

5.必要

6.3

y

7.1()()t t -'ΦΦ 8.25 00t At

t e e e ??

=??

??

9.

10. 11.

12.1,

二、计算题

1.求平面上过原点的曲线方程, 该曲线上任一点处的切线与切点和点(1,0)的连线相互垂直. 解: 设曲线方程为, 切点为(x ,y ), 切点到点(1,0)的连线的斜率为

, 则由题意

可得如下初值问题:

.

分离变量, 积分并整理后可得.

代入初始条件可得, 因此得所求曲线为

.

2.求解方程13

dy x y dx x y +-=-+. 解:由10,

30x y x y +-=??-+=?求得1,2x

y =-= 令1,

2,

x y ξη=-??

=+?

则有

.d d ηξηξξη+=-令z ηξ=,解得2(1)1z dz d z ξξ-=+,积分得2

1arctan ln(1)ln ||2

z z C ξ-+=+, 故原方程的解为222

arctan ln (1)(2)1

y x y C x -=++-+.

3.求解方程22

2()0d x dx x dt dt

+=

解 令

,直接计算可得,于是原方程化为

,故有或

,积分后得

,即

,所以

就是

原方程的通解,这里

为任意常数。

4.用比较系数法解方程. .

解:特征方程为, 特征根为

.

对应齐方程的通解为. 设原方程的特解有形如 代如原方程可得 利用对应系数相等可得, 故

.

原方程的通解可以表示为(是任意常数)

.

5.求方程 sin y y x '=+的通解.

解:先解y y '=得通解为x y ce =, 令()x y c x e =为原方程的解, 代入得()()()sin x x x c x e c x e c x e x '+=+, 即有()sin x c x e x -'=,

积分得1()(sin cos )2x c x e x x c -=-++ , 所以1

(sin cos )2

x y ce x x =-+ 为原方程的通解.

6.验证微分方程22

(cos sin )(1)0x x xy dx y x dy -+-=是恰当方程,并求出它的通解.

解:由于22(,)cos sin ,(,)(1)M x y x x xy N x y y x =-=-,因为

2M N

xy y x

??=-=??所以原方程为恰当方程. 把原方程分项组合得22cos sin ()0x xdx xy dx yx dy ydy -++=,

或写成2222111

(sin )()()0222d x d x y d y ++=,故原方程的通解为2222sin x x y y C -+=.

7.设3124A -??=??-?? , ??????-=11η ,试求方程组X A dt dX =的一个基解基解矩阵)(t Φ,求X A dt dX

=满足初始条件η=)0(x 的解. 解:特征方程为31det()(2)(5)0,2

4A E λλλλλ

---=

=++=--

求得特征值122,5λλ=-=-,对应122,5λλ=-=-的特征向量分别为

1211,,(,0).12V V αβαβ????

==≠????-????

可得一个基解矩阵2525().2t

t t

t e e t e

e ----??Φ=??-??,又因为1

211(0)113-??Φ=??-?? ,

于是,所求的解为=ΦΦ=-η?)0()()(1

t t 2525211111132t

t t

t e e e e ----????????????---??????25252134t t t t e e e e ----??

+=??-??

8. 求方程 2213dy

x y dx

=-- 通过点(1,0) 的第二次近似解.

解:令0()0x ?=,于是

221001

()[213()],x

x y x x dx x x ??=+--=-?

223452011

133

()[213()],1025

x

x y x x dx x x x x x ??=+--=

-+-+-? 9.求的通解

解:方程可化为3

2

84dy y dx x dy y

dx ??+ ???=,令dy p dx =则有3284p y x yp +=(*),

(*)两边对y 求导得

322322(4)

(8)4dp

y p y p y p y p dy -+-=,

32(4)(2)0dp p y y

p dy --=,由20dp y p dy -=得12p cy =,即2

()p y c =.

将y 代入(*)得

22

24c p x c =+, 32()480dy dy

xy

y dx dx -+=

即方程的含参数形式的通解为:222

24()c p x c p y c ?=+???

?=??,p 为参数;

又由

32

40p y -=得1

23

(4)p y =代入(*)得

3427y x

=也是方程的解.

试求方程组x Ax '=的解(),t ?12(0),η?ηη??==????并求expAt 10.若

解:特征方程

22

1

()690

1

4p λλλλλ--=

=-+=-,解得1,23λ=,此时 k=1,12n =。

12v ηηη??==????,

111123322120()()(3)()!i

t i t i t t t e A E e t i ηηηη?ηηηη=??+-+????

=-=??????+-+??????∑ 由公式expAt = 10()!i

n t

i

i t

e A E i λλ-=-∑得

[]33310111exp (3)01111t

t

t t t At e E t A E e t e t t ?-?-??????

=+-=+=????????--+?

???????

三、证明题

1. 若(),()t t Φψ是()X A t X '=的基解矩阵,求证:存在一个非奇异的常数矩阵C ,使得()()t t C ψ=Φ. 证:()t Φ是基解矩阵,故1()t -Φ存在,令1()()()X t t t -=Φψ, 则()X t 可微且det ()0X t ≠,易知()()()t t X t ψ=Φ.

所以()()()()()t t X t t X t '''ψ=Φ+Φ()()()()()A t t X t t X t '=Φ+Φ()()()()A t t t X t '=ψ+Φ 而()()()t A t t 'ψ=ψ,所以()()0t X t 'Φ=,

()0,X t '=()X t C =(常数矩阵),故()()t t C ψ=Φ .

2. 设),()(0βα?≤≤x x x 是积分方程

]

,[,,

])([)(0200

βαξξξξ∈++=?x x d y y x y x

x

2114A ??

=??-??

的皮卡逐步逼近函数序列)}({x n ?在],[βα上一致收敛所得的解,而)(x ψ是这积分方程在],[βα上的连续解,试用逐步逼近法证明:在],[βα上)()(x x ?ψ≡.

证明:由题设,有?++≡x

x d y x 0

,])([)(20ξξξψξψ

,)(00y x =??∈++≡-x

x n n x x d y x 0

],[,,])([)(0120βαξξξ?ξ?,),2,1( =n .

下面只就区间β≤≤x x 0上讨论,对于0x x ≤≤α的讨论完全一样。

因为),()|||)(|(|)()(|0200

x x M d x x x

x -≤+≤-?ξξξψξ?ψ其中|}||)(|{max 2]

,[x x x M x +=∈ψβα,

所以0

2

21000|()()|(|()()|)()(),2!

x

x

x x ML

x x d L M x d x x ψ?ξψξ?ξξξξ-≤-≤-=

-?? 其中}{max 2

],[x L x βα∈=, 设对正整数n 有n n n x x n ML x x )(!

|)()(|01

1-≤---?ψ,则有

2

1x

n n x |(x )(x )|(|()()|)d ψφξψξφξξ

--≤-?,)(!)1()(!10010

+--+=-≤?n x

x n n

n x x n ML d x n ML L ξξ,

故由归纳法,对一切正整数k ,有

1110|()()|()()!!

k k k

k k ML ML x x x x k k ψ?βα----≤-≤-.

而上不等式的右边是收敛的正项级数的通项,故当k

→∞时,它0→,

因而函数序列)}({x n ?在β≤≤x x 0上一致收敛于)(x ψ.根据极限的唯一性, 即得

)()(x x ?ψ≡,β≤≤x x 0. 3. 设

都是区间

上的连续函数, 且

是二阶线性方程

的一个基本解组. 试证明:

(i) 和都只能有简单零点(即函数值与导函数值不能在一点同时为零); (ii) 和没有共同的零点; (iii) 和

没有共同的零点. 证明:

和的伏朗斯基行列式为

常微分方程练习题及答案复习题)

常微分方程练习试卷 一、 填空题。 1. 方程23 2 10d x x dt +=是 阶 (线性、非线性)微分方程. 2. 方程 ()x dy f xy y dx =经变换_______,可以化为变量分离方程 . 3. 微分方程 3230d y y x dx --=满足条件(0)1,(0)2y y '==的解有 个. 4. 设常系数方程 x y y y e αβγ'''++=的一个特解*2()x x x y x e e xe =++,则此方程的系数α= ,β= ,γ= . 5. 朗斯基行列式 ()0W t ≡是函数组12(),(),,()n x t x t x t 在a x b ≤≤上线性相关的 条件. 6. 方程 22(2320)0xydx x y dy ++-=的只与y 有关的积分因子为 . 7. 已知 ()X A t X '=的基解矩阵为()t Φ的,则()A t = . 8. 方程组 20'05??=???? x x 的基解矩阵为 . 9.可用变换 将伯努利方程 化为线性方程. 10 .是满足方程 251y y y y ''''''+++= 和初始条件 的唯一解. 11.方程 的待定特解可取 的形式: 12. 三阶常系数齐线性方程 20y y y '''''-+=的特征根是 二、 计算题 1.求平面上过原点的曲线方程, 该曲线上任一点处的切线与切点和点(1,0)的连线相互垂直. 2.求解方程13 dy x y dx x y +-=-+. 3. 求解方程 222()0d x dx x dt dt += 。 4.用比较系数法解方程. . 5.求方程 sin y y x '=+的通解. 6.验证微分方程 22(cos sin )(1)0x x xy dx y x dy -+-=是恰当方程,并求出它的通解.

常微分方程期末试题B答案

2005——2006学年第二学期 常微分方程课程试卷(B) 一、填空题(每空2 分,共16分)。 1.李普希滋条件是初值问题存在唯一解的充分条件. 2. 一阶微分方程的一个特解的图像是二 维空间上的一条曲线. 3.线性齐次微分方程组Y A Y ) ( d d x x =的一个基本解组的个数不能多于n个,其中R ∈ x,n R Y∈. 4.二阶线性齐次微分方程的两个解) ( 1 x y? =,) ( 2 x y? =成为其基本解组的充要条件是线性无关. 5.方程2 sin() y xy y '' =+的通解是 6.变量可分离方程()()()()0= +dy y q x p dx y N x M的积分因子是()() x P y N 1 7.性齐次微分方程组的解组) ( , ), ( ), ( 2 1 x x x n Y Y Y 为基本解组的充分必要条件是它们的朗斯基行列式0 ) (≠ x W. 8.方程540 y y y ''' ++=的基本解组是x x e e4 ,- - 二、选择题(每小题3 分,共15分)。 9.两个不同的线性齐次微分方程组( D )的基本解组. (A) 一定有相同(B) 可能有相同 (C) 一定有相似(D) 没有相同 10.方程组 ? ? ? ?? ? ? + = + = y x t y y x t x 4 3 d d 2 d d 的奇点)0,0(的类型是(D ). (A)稳定焦点(B)不稳定焦点(C)鞍点(D)不稳定结点11.方程x(y2-1)d x+y(x2-1)d y=0的所有常数解是( C ). (A) 1± = x(B)1± = y

(C )1±=y , 1±=x (D )1=y , 1=x 12.n 阶线性非齐次微分方程的所有解( D ). (A )构成一个线性空间 (B )构成一个1-n 维线性空间 (C )构成一个1+n 维线性空间 (D )不能构成一个线性空间 13.方程4d d +-=x y x y ( A )奇解. (A) 无 (B) 有一个 (C) 有两个 (D) 可能有 三、计算题(每小题8分,共48分) 。 14.求方程 x y x y x y tan d d +=的通解 解:令x y u =,则u x u y '+=', u x u x tan d d = 当0tan ≠u 时,等号两边积分 1d tan d C x x u u +=?? C x u ln ln sin ln += 0≠C Cx x y =sin 15.求方程0d d )1(2=+--y x x y x 的通解 解:积分因子21)(x x =μ, 则 0d 1d 122=+--y x x x y x 为全微分方程.取10=x ,00=y ,于是通积分为 1012 2d d 1C y x x y x y x =+--?? 即 C x x x y =++1 16.求方程2221)(x y x y y + '-'=的通解 解:令 p y =',得到2 2 2x xp p y +-= (*) ,两端同时关于求导,

(整理)常微分方程试题及参考答案

常微分方程试题 一、填空题(每小题3分,共39分) 1.常微分方程中的自变量个数是________. 2.路程函数S(t)的加速度是常数a,则此路程函数S(t)的一般形式是________. 3.微分方程=g( )中g(u)为u的连续函数,作变量变换________,方程可化为变 量分离方程. 4.微分方程F(x,y′)=0中令P=y′,若x、P平面上的曲线F(x,P)=0的参数形式 为x= (t),P=ψ(t),t为参数,则方程参数形式的通解为________. 5.方程=(x+1)3的通解为________. 6.如果函数f(x,y)连续,y= (x)是方程=f(x,y)的定义于区间x0≤x≤x0+h上,满 足初始条件 (x0)=y0的解.则y= (x)是积分方程________定义于x0≤x≤x0+h 上的连续解. 7.方程=x2+xy,满足初始条件y(0)=0的第二次近似解是________. 8.方程+a1(t) +…+a n-1(t) +a n(t)x=0 中a i(t) i=1,2,…,n是〔a,b〕上的连续函数,又x1(t),x2(t),…,x n(t)为方程n 个线性无关的解,则其伏朗斯基行列式W(t) 应具有的性质是:________. 9.常系数线性方程x(4)(t)-2x″(t)+x(t)=0的通解为________. 10.设A(t)是区间a≤t≤b上的连续n×n矩阵,x1(t),x2(t),…,x n(t)是方程组 x′=A(t)x的n个线性无关的解向量.则方程组的任一解向量x(t)均可表示为:x(t)=________的形式. 11.初值问题(t)+2x″(t)-tx′(t)+3x(t)=e-t,x(1)=1,x′(1)=2,x″(1)=3 可化为与之 等价的一阶方程组________. 12.如果A是3×3的常数矩阵,-2为A的三重特征值,则方程组x′=Ax的基 解矩阵exp A t=________. 13.方程组 的奇点类型是________. 二、计算题(共45分) 1.(6分)解方程 = . 2.(6分)解方程 x″(t)+ =0. 3.(6分)解方程 (y-1-xy)dx+xdy=0. 4.(6分)解方程

一阶常微分方程解法总结

第 一 章 一阶微分方程的解法的小结 ⑴、可分离变量的方程: ①、形如 )()(y g x f dx dy = 当0)(≠y g 时,得到 dx x f y g dy )() (=,两边积分即可得到结果; 当0)(0=ηg 时,则0)(η=x y 也是方程的解。 例1.1、 xy dx dy = 解:当0≠y 时,有 xdx y dy =,两边积分得到)(2ln 2为常数C C x y += 所以)(112 12 C x e C C e C y ±==为非零常数且 0=y 显然是原方程的解; 综上所述,原方程的解为)(12 12 为常数C e C y x = ②、形如0)()()()(=+dy y Q x P dx y N x M 当0)()(≠y N x P 时,可有 dy y N y Q dx x P x M ) () ()()(=,两边积分可得结果; 当0)(0=y N 时,0y y =为原方程的解,当0(0=) x P 时,0x x =为原方程的解。 例1.2、0)1()1(2 2 =-+-dy x y dx y x 解:当0)1)(1(2 2 ≠--y x 时,有 dx x x dy y y 1 122-=-两边积分得到 )0(ln 1ln 1ln 22≠=-+-C C y x ,所以有)0()1)(1(22≠=--C C y x ; 当0)1)(1(2 2 =--y x 时,也是原方程的解; 综上所述,原方程的解为)()1)(1(2 2 为常数C C y x =--。 ⑵可化为变量可分离方程的方程: ①、形如 )(x y g dx dy = 解法:令x y u =,则udx xdu dy +=,代入得到)(u g u dx du x =+为变量可分离方程,得到

常微分方程习题及答案.[1]

第十二章 常微分方程 (A) 一、是非题 1.任意微分方程都有通解。( ) 2.微分方程的通解中包含了它所有的解。( ) 3.函数x x y cos 4sin 3-=是微分方程0=+''y y 的解。( ) 4.函数x e x y ?=2是微分方程02=+'-''y y y 的解。( ) 5.微分方程0ln =-'x y x 的通解是()C x y += 2 ln 2 1 (C 为任意常数)。( ) 6.y y sin ='是一阶线性微分方程。( ) 7.xy y x y +='33不是一阶线性微分方程。( ) 8.052=+'-''y y y 的特征方程为0522=+-r r 。( ) 9. 2 2 1xy y x dx dy +++=是可分离变量的微分方程。( ) 二、填空题 1.在横线上填上方程的名称 ①()0ln 3=-?-xdy xdx y 是 。 ②()()022=-++dy y x y dx x xy 是 。 ③x y y dx dy x ln ?=是 。 ④x x y y x sin 2+='是 。 ⑤02=-'+''y y y 是 。 2.x x y x y cos sin =-'+'''的通解中应含 个独立常数。 3.x e y 2-=''的通解是 。 4.x x y cos 2sin -=''的通解是 。 5.124322+=+'+'''x y x y x y x 是 阶微分方程。 6.微分方程()06 ='-''?y y y 是 阶微分方程。

7.x y 1 =所满足的微分方程是 。 8.x y y 2='的通解为 。 9. 0=+ x dy y dx 的通解为 。 10. ()25 11 2+=+- x x y dx dy ,其对应的齐次方程的通解为 。 11.方程()012=+-'y x y x 的通解为 。 12.3阶微分方程3x y ='''的通解为 。 三、选择题 1.微分方程()043='-'+''y y y x y xy 的阶数是( )。 A .3 B .4 C .5 D . 2 2.微分方程152=-''-'''x y x y 的通解中应含的独立常数的个数为( )。 A .3 B .5 C .4 D . 2 3.下列函数中,哪个是微分方程02=-xdx dy 的解( )。 A .x y 2= B .2x y = C .x y 2-= D . x y -= 4.微分方程32 3y y ='的一个特解是( )。 A .13+=x y B .()3 2+=x y C .()2 C x y += D . ()3 1x C y += 5.函数x y cos =是下列哪个微分方程的解( )。 A .0=+'y y B .02=+'y y C .0=+y y n D . x y y cos =+'' 6.x x e C e C y -+=21是方程0=-''y y 的( ),其中1C ,2C 为任意常数。 A .通解 B .特解 C .是方程所有的解 D . 上述都不对 7.y y ='满足2|0==x y 的特解是( )。 A .1+=x e y B .x e y 2= C .22x e y ?= D . x e y ?=3 8.微分方程x y y sin =+''的一个特解具有形式( )。 A .x a y sin *= B .x a y cos *?=

常微分方程解题方法总结.doc

常微分方程解题方法总结 来源:文都教育 复习过半, 课本上的知识点相信大部分考生已经学习过一遍 . 接下来, 如何将零散的知 识点有机地结合起来, 而不容易遗忘是大多数考生面临的问题 . 为了加强记忆, 使知识自成 体系,建议将知识点进行分类系统总结 . 著名数学家华罗庚的读书方法值得借鉴, 他强调读 书要“由薄到厚、由厚到薄”,对同学们的复习尤为重要 . 以常微分方程为例, 本部分内容涉及可分离变量、 一阶齐次、 一阶非齐次、 全微分方程、 高阶线性微分方程等内容, 在看完这部分内容会发现要掌握的解题方法太多, 遇到具体的题 目不知该如何下手, 这种情况往往是因为没有很好地总结和归纳解题方法 . 下面以表格的形 式将常微分方程中的解题方法加以总结,一目了然,便于记忆和查询 . 常微分方程 通解公式或解法 ( 名称、形式 ) 当 g( y) 0 时,得到 dy f (x)dx , g( y) 可分离变量的方程 dy f ( x) g( y) 两边积分即可得到结果; dx 当 g( 0 ) 0 时,则 y( x) 0 也是方程的 解 . 解法:令 u y xdu udx ,代入 ,则 dy 齐次微分方程 dy g( y ) x dx x u g (u) 化为可分离变量方程 得到 x du dx 一 阶 线 性 微 分 方 程 P ( x)dx P ( x) dx dy Q(x) y ( e Q( x)dx C )e P( x) y dx

伯努利方程 解法:令 u y1 n,有 du (1 n) y n dy , dy P( x) y Q( x) y n(n≠0,1)代入得到du (1 n) P(x)u (1 n)Q(x) dx dx 求解特征方程:2 pq 三种情况: 二阶常系数齐次线性微分方程 y p x y q x y0 二阶常系数非齐次线性微分方程 y p x y q x y f ( x) (1)两个不等实根:1, 2 通解: y c1 e 1x c2 e 2x (2) 两个相等实根:1 2 通解: y c1 c2 x e x (3) 一对共轭复根:i , 通解: y e x c1 cos x c2 sin x 通解为 y p x y q x y 0 的通解与 y p x y q x y f ( x) 的特解之和. 常见的 f (x) 有两种情况: x ( 1)f ( x)e P m ( x) 若不是特征方程的根,令特解 y Q m ( x)e x;若是特征方程的单根,令特 解 y xQ m ( x)e x;若是特征方程的重根, 令特解 y*x2Q m (x)e x; (2)f (x) e x[ P m ( x) cos x p n ( x)sin x]

2018常微分方程考研复试真题及答案

常微分方程计算题 2.指出下列方程中的阶数,是线性方程还是非线性方程,并说明理由; (1) t 2 2 2dt u d +t dt du +( t 2 -1)u=0 (2) dx dy =x 2+y 2 ; (3)dx dy + 2 x y =0 3.求曲线族y=C 1e x +C 2x e x 所满足的微分方程 4.验证函数y= C 1e x 2+ C 2e x 2-是微分方程y `` -4y=0的解,进一步验证它是通解。 5.试用一阶微分方程形式不变性求解方程dx dy =2x 6.什么叫积分一个微分方程 7.什么是求解常微分方程的初等积分法 8.分离变量一阶方程的特征是什么 9.求下列方程的通解 (1) y ` =sinx (2) x 2 y 2 y ` +1=y (3) tgx dx dy =1+y (4) dx dy =exp(2x-y) (5) dx dy =21y 2- (6) x 2 ydx=(1- y 2 +x-2 x 2 y 2 )dx (7)( x 2 +1)( y 2 -1)dx+xydy=0 10.叙述齐次函数的定义 11.试给出一阶方程y ` =f(x,y)或p(x,y)dx+ q(x,y)dy=0为齐次方程的特征。说明二

个方程的关系。 12.求解齐次方程通常用什么初等变换,新旧函数导数关系如何 13.求解下列方程 dx dy =2 22y x xy - 14.求解下列方程 (1)(x+2y )dx —xdy=0 (2) dx dy =x y +y x 2 15. dx dy =22y x xy + 16(x 2 +y 2 )dx —2xydy=0 17. dx dy =5 242+---y x x y 18―――――19 20―――――――27

常微分方程应用题和答案

应 用 题(每题10分) 1、设()f x 在(,)-∞∞上有定义且不恒为零,又()f x '存在并对任意,x y 恒有 ()()()f x y f x f y +=,求()f x 。 2、设()()()F x f x g x =,其中函数(),()f x g x 在(,)-∞∞内满足以下条件 ()(),()(),(0)0,()()2x f x g x g x f x f f x g x e ''===+= (1)求()F x 所满足的一阶微分方程; (2)求出()F x 的表达式。 3、已知连续函数()f x 满足条件320 ()3x x t f x f dt e ??=+ ??? ?,求()f x 。 4、已知函数()f x 在(0,)+∞内可导,()0,lim ()1x f x f x →+∞ >=,且满足 1 1 0()lim ()h x h f x hx e f x →? ?+ ?= ? ?? ? ,求()f x 。 5、设函数()f x 在(0,)+∞内连续,5 (1)2 f =,且对所有,(0,)x t ∈+∞,满足条件 1 1 1 ()()()xt x t f u du t f u du x f u du =+? ??,求()f x 。 6、求连续函数()f x ,使它满足10 ()()sin f tx dt f x x x =+?? 。 7、已知可微函数()f t 满足 31() ()1()x f t dt f x t f t t =-+?,试求()f x 。 8、设有微分方程 '2()y y x ?-=, 其中21 ()01x x x ?? 。试求在(,)-∞∞内的连续函 数()y y x =使之在(,1)-∞和()1,+∞内部满足所给方程,且满足条件(0)0y =。 9、设位于第一象限的曲线()y f x = 过点122?? ? ? ?? ,其上任一点(,)P x y 处的法线与y 轴的交点为Q ,且线段PQ 被x 轴平分。 (1)求曲线()y f x =的方程; (2)已知曲线sin y x =在[0,]π上的弧长为l ,试用l 表示曲线()y f x =的弧长s 。 10、求微分方程(2)0xdy x y dx +-=的一个解()y y x =,使得由曲线()y y x =与直线 1,2x x ==以及x 轴所围成的平面图形绕x 轴旋转一周的旋转体体积最小。 11、设曲线L 位于xOy 平面的第一象限内,L 上任一点M 处的切线与y 轴总相交,交点记为

常微分方程数值解法的误差分析教材

淮北师范大学 2013届学士学位论文 常微分方程数值解法的误差分析 学院、专业数学科学学院数学与应用数学 研究方向计算数学 学生姓名李娜 学号 20091101070 指导教师姓名陈昊 指导教师职称讲师 年月日

常微分方程数值解法的误差分析 李娜 (淮北师范大学数学科学学院,淮北,235000) 摘要 自然界与工程技术中的很多现象,往往归结为常微分方程定解问题。许多偏微分方程问题也可以化为常微分方程问题来近似求解。因此,研究常微分方程的数值解法是有实际应用意义的。数值解法是一种离散化的数学方法,可以求出函数的精确解在自变量一系列离散点处的近似值。随着计算机计算能力的增强以及数值计算方法的发展,常微分方程的数值求解方法越来越多,比较成熟的有Euler 法、后退Euler法、梯形方法、Runge—Kutta方法、投影法和多步法,等等.本文将对这些解的误差进行分析,以求能够得到求解常微分数值解的精度更好的方法。 关键词:常微分方程, 数值解法, 单步法, 线性多步法, 局部截断误差

Error Analysis of Numerical Method for Solving the Ordinary Differential Equation Li Na (School of Mathematical Science, Huaibei Normal University, Huaibei, 235000) Abstract In nature and engineering have many phenomena , definite solution of the problem often boils down to ordinary differential equations. So study the numerical solution of ordinary differential equations is practical significance. The numerical method is a discrete mathematical methods, and exact solution of the function can be obtained in the approximation of a series of discrete points of the argument.With the enhanced computing power and the development of numerical methods,ordinary differential equations have more and more numerical solution,there are some mature methods. Such as Euler method, backward Euler method, trapezoidal method, Runge-Kutta method, projection method and multi-step method and so on.Therefore, numerical solution of differential equation is of great practical significance. Through this paper, error of these solutions will be analyzed in order to get a the accuracy better way to solve the numerical solution of ordinary differential. Keywords:Ordinary differential equations, numerical solution methods, s ingle ste p methods, l inear multi-step methods, local truncation error

《常微分方程》期末模拟试题

《常微分方程》模拟练习题及参考答案 一、填空题(每个空格4分,共80分) 1、n 阶线性齐次微分方程基本解组中解的个数恰好是 n 个。 2、一阶微分方程 2=dy x dx 的通解为 2=+y x C (C 为任意常数) ,方程与通过点(2,3)的特解为 2 1=-y x ,与直线y=2x+3相切的解是 2 4=+y x ,满足条件3 3ydx =?的解为 22=-y x 。 3、李普希兹条件是保证一阶微分方程初值问题解惟一的 必要 条件。 4、对方程 2()dy x y dx =+作变换 =+u x y ,可将其化为变量可分离方程,其通解为 tan()=+-y x C x 。 5、方程 21d d y x y -=过点)1,2 (π 共有 无数 个解。 6、方程 ''2 1=-y x 的通解为 42 12122=-++x x y C x C ,满足初始条件13|2,|5====x x y y 的特解为 4219 12264 =-++x x y x 。 7、方程 x x y x y +-=d d 无 奇解。 8、微分方程2260--=d y dy y dx dx 可化为一阶线性微分方程组 6?=??? ?=+??dy z dx dz z y dx 。 9、方程 y x y =d d 的奇解是 y=0 。 10、35323+=d y dy x dx dx 是 3 阶常微分方程。 11、方程 22dy x y dx =+满足解得存在唯一性定理条件的区域是 xoy 平面 。 12、微分方程22450d y dy y dx dx --=通解为 512-=+x x y C e C e ,该方程可化为一阶线性微分方程组 45?=??? ?=+??dy z dx dz z y dx 。 13、二阶线性齐次微分方程的两个解12(),()y x y x ??==成为其基本解组的充要条件是 线性无关 。

常微分方程数值解法

i.常微分方程初值问题数值解法 常微分方程初值问题的真解可以看成是从给定初始点出发的一条连续曲线。差分法是常微分方程初值问题的主要数值解法,其目的是得到若干个离散点来逼近这条解曲线。有两个基本途径。一个是用离散点上的差商近似替代微商。另一个是先对微分方程积分得到积分方程,再利用离散点作数值积分。 i.1 常微分方程差分法 考虑常微分方程初值问题:求函数()u t 满足 (,), 0du f t u t T dt =<≤ (i.1a ) 0(0)u u = (i.1b) 其中(,)f t u 是定义在区域G : 0t T ≤≤, u <∞上的连续函数,0u 和T 是给定的常数。我们假设(,)f t u 对u 满足Lipschitz 条件,即存在常数L 使得 121212(,)(,), [0,]; ,(,)f t u f t u L u u t T u u -≤-?∈∈-∞∞ (i.2) 这一条件保证了(i.1)的解是适定的,即存在,唯一,而且连续依赖于初值0u 。 通常情况下,(i.1)的精确解不可能用简单的解析表达式给出,只能求近似解。本章讨论常微分方程最常用的近似数值解法-差分方法。先来讨论最简单的Euler 法。为此,首先将求解区域[0,]T 离散化为若干个离散点: 0110N N t t t t T -=<< <<= (i.3) 其中n t hn =,0h >称为步长。 在微积分课程中我们熟知,微商(即导数)是差商的极限。反过来,差商就是微商的近似。在0t t =处,在(i.1a )中用向前差商 10()()u t u t h -代替微商du dt ,便得 10000()()(,())u t u t hf t u t ε=++ 如果忽略误差项0ε,再换个记号,用i u 代替()i u t 便得到 1000(,)u u hf t u -= 一般地,我们有 1Euler (,), 0,1, ,1n n n n u u hf t u n N +=+=-方法: (i.4) 从(i.1b) 给出的初始值0u 出发,由上式可以依次算出1,,N t t 上的差分解1,,N u u 。

常微分方程练习题及答案(复习题)

常微分方程练习题及答案(复习题)

常微分方程练习试卷 一、 填空题。 1. 方程23 2 10d x x dt +=是 阶 (线性、非线性)微分方程. 2. 方程 ()x dy f xy y dx =经变换_______,可以化为变量分离方程 . 3. 微分方程 3230d y y x dx --=满足条件(0)1,(0)2y y '==的解有 个. 4. 设常系数方程 x y y y e αβγ'''++=的一个特解*2()x x x y x e e xe =++,则此方程的系数α= ,β= ,γ= . 5. 朗斯基行列式 ()0W t ≡是函数组12(),(),,()n x t x t x t L 在a x b ≤≤上线性相关的 条件. 6. 方程 22(2320)0xydx x y dy ++-=的只与y 有关的积分因子为 . 7. 已知 ()X A t X '=的基解矩阵为()t Φ的,则()A t = . 8. 方程组 20'05??=???? x x 的基解矩阵为 . 9.可用变换 将伯努利方程 化为线性方程. 10 .是满足方程 251y y y y ''''''+++= 和初始条件 的唯一解. 11.方程 的待定特解可取 的形式: 12. 三阶常系数齐线性方程 20y y y '''''-+=的特征根是 二、 计算题 1.求平面上过原点的曲线方程, 该曲线上任一点处的切线与切点和点(1,0)的连线相互垂直. 2.求解方程13 dy x y dx x y +-=-+. 3. 求解方程 222()0d x dx x dt dt += 。 4.用比较系数法解方程. . 5.求方程 sin y y x '=+的通解. 6.验证微分方程 22(cos sin )(1)0x x xy dx y x dy -+-=是恰当方程,并求出它的通解.

常微分方程期末考试练习题及答案.

一,常微分方程的基本概念 常微分方程: 含一个白变量x,未知数y及若干阶导数的方程式。一般形式为:F (x, y, y …y(n)) =0 (n 丰0). 1. 常微分方程中包含未知函数最高阶导数的阶数称为该方程的阶。 如:f(x)⑶ +3f(x)+x=f(x) 为 3 阶方程。 2. 若f (x)使常微分方程两端恒等,则f (x)称为常微分方程的解。 3. 含有独立的任意个常数(个数等于方程的阶数)的方程的解称为常微 分方程的通解。如常系数三阶微分方程F (t , x(3)) =0的通解的形式为:x (t) =cx (t) +C2x (t) +C3x (t )。 4. 满足初值条件的解称为它的特解(特解不唯一,亦可能不存在) 。 5. 常微分方程之线性及非线性:对于F (x, y, y…y(n)) =0而言,如果方程之左端是y, y'…y(n)的一次有理式,则次方程为n阶线性微分方程。(方程线性与否与白变量无关)。如:xy⑵-5y +3xy=sinx 为2阶线性微分方程;y⑵+siny=0为非线性微分方程。 注:a.这里主要介绍几个主要的,常用的常微分方程的基本概念。余者如常微分方程之显隐式解,初值条件,初值问题等概念这里予以略去。另外,有兴趣的同学不妨看一下教材23页的雅可比矩阵。 b.教材28页第八题不妨做做。

二.可分离变量的方程

1. 定义:形如dy=f (x) 4 (y)的方程,称为分离变量方程。这里f dx (x), § (x)分别是x, y的连续函数。 2. 解法:分离变量法』芸七=J f (x)dx+c. (*) 说明:a由于(*)是建立在§ (y)乒0的基础上,故而可能漏解。 需视情况补上§ (y) =0的特解。(有时候特解也可以和通解统一于 一式中) b.不需考虑因白变量引起的分母为零的情况。 例 1. ydx (x2-4x)dy =0 解:由题意分离变量得:2dx dy=0 x -4 y 即:1(工-1)dx 业=。 4 x —4 x y 积分之,得:1(ln x—4 —In x)+ln y =c 故原方程通解为:(x-4)y4=cx (c为任意常数),特解y=0 包含在通解中(即两者统一于一式中)。 *例2.若连续函数f (x)满足f(x)T f(:)dt+|n2,则f (x)是? 解:对给定的积分方程两边关于x求导,得: f' (x) = 2 f (x) (变上限求积分求导) 分离变量,解之得:f(x)=Ce2x 由原方程知:f (0) =In2 ,代入上解析式得: C=ln2 ,

常微分方程试卷及答案

2010-2011 学年第 二 学期常微分方程考试 AB 卷答案 理学 院 年级 信息与计算科学 专业 填空题(每题4分,共20分) 1. 形如)()('x Q y x P y += ()(),(x Q x P 连续)的方程是 一阶线性微分 方程,它的通解为?? ? ???+?-? =c dx dx x P e x Q dx x P e y )()()( . 2. 形如0y y '''-=的方程是 3 阶__齐次__(“齐次”还是”非齐次”)___常__系数的微分方程,它的特征方程为310λ-=. 3. 形如1 111110n n n n n n n n d y d y dy x a x a x a y dx dx dx ----++++=L L 的方程为 欧拉 方程, 可通过变换t x e =把它转化成常系数方程. 4. 2 (1)0,y dx x dy ++= 满足初始条件:x =0, y =1的特解1 1ln 1y x = ++ 5.5.微分方程0000(,),(),:,dy f x y y x y R x x a y y b dx ==-≤-≤满足的解存在且唯一的条件是: (,)f x y 在R 上连续且满足利普希茨条件 一、下列微分方程的解(每题5分,共30分) 1. dx dy =2) (1y x + 解:令x+y=u ,则 dx dy =dx du -1 (3) dx du -1=21 u u-arctgu=x+c y-arctg(x+y)=c. (5) 2.()()053243 =+++xdy ydx y xdy ydx x

解:两边同乘以y x 2得: ()() 0532******* =+++ydy x dx y x ydy x dx y x (3) ()() 05324=+y x d y x d 故方程的通解为:c y x y x =+5324 (5) 3.2 ? ? ? ??-=dx dy y x 解:令 p dx dy =,则2p x y +=, 两边对x 求导,得 dx dp p p 21+= p p dx dp 21-=, (3) 解之得 ()c p p x +-+=2 1ln 2, 所以()c p p p y +-++=2 21ln 2, (4) 且y=x+1也是方程的解,但不是奇解. (5) 4. 04)5(='''-x x 解:特征方程0435=-λλ 有三重根0=λ,42λ=,52λ=- ............................3 故通解为54232221c t c t c e c e c x t t ++++=- . (5) 5. 4523x x x t ''''''--=+ 解:特征方程32450λλλ--=有根=1λ0,231,5λλ=-= 齐线性方程的通解为x=5123t t c e c e c t -++ (3) 又因为=λ0是特征根,故可以取特解行如2x At Bt =+%代入原方程解得A=14 25 ,

各类微分方程的解法大全

各类微分方程的解法 1.可分离变量的微分方程解法 一般形式:g(y)dy=f(x)dx 直接解得∫g(y)dy=∫f(x)dx 设g(y)及f(x)的原函数依次为G(y)及F(x),则G(y)=F(x)+C为微分方程的隐式通解 2.齐次方程解法 一般形式:dy/dx=φ(y/x) 令u=y/x则y=xu,dy/dx=u+xdu/dx,所以u+xdu/dx=φ(u),即du/[φ(u)-u]=dx/x 两端积分,得∫du/[φ(u)-u]=∫dx/x 最后用y/x代替u,便得所给齐次方程的通解 3.一阶线性微分方程解法 一般形式:dy/dx+P(x)y=Q(x) 先令Q(x)=0则dy/dx+P(x)y=0解得y=Ce- ∫P(x)dx,再令y=u e-∫P(x)dx代入原方程解得u=∫Q(x) e∫P(x)dx dx+C,所以y=e-∫P(x)dx[∫Q(x)e∫P(x)dx dx+C] 即y=Ce-∫P(x)dx +e- ∫P(x)dx∫Q(x)e∫P(x)dx dx为一阶线性微分方程的通解 4.可降阶的高阶微分方程解法 ①y(n)=f(x)型的微分方程 y(n)=f(x) y(n-1)= ∫f(x)dx+C1 y(n-2)= ∫[∫f(x)dx+C1]dx+C2 依次类推,接连积分n次,便得方程y(n)=f(x)的含有n个任意常数的通解②y”=f(x,y’) 型的微分方程 令y’=p则y”=p’,所以p’=f(x,p),再求解得p=φ(x,C1) 即dy/dx=φ(x,C1),所以y=∫φ(x,C1)dx+C2 ③y”=f(y,y’) 型的微分方程

令y ’=p 则y ”=pdp/dy,所以pdp/dy=f(y,p),再求解得p=φ(y,C 1) 即dy/dx=φ(y,C 1),即dy/φ(y,C 1)=dx,所以∫dy/φ(y,C 1)=x+C 2 5.二阶常系数齐次线性微分方程解法 一般形式:y ”+py ’+qy=0,特征方程r 2+pr+q=0 6.二阶常系数非齐次线性微分方程解法 一般形式: y ”+py ’+qy=f(x) 先求y ”+py ’+qy=0的通解y 0(x),再求y ”+py ’+qy=f(x)的一个特解y*(x) 则y(x)=y 0(x)+y*(x)即为微分方程y ”+py ’+qy=f(x)的通解 求y ”+py ’+qy=f(x)特解的方法: ① f(x)=P m (x)e λx 型 令y*=x k Q m (x)e λx [k 按λ不是特征方程的根,是特征方程的单根或特征方程的重根依次取0,1或2]再代入原方程,确定Q m (x)的m+1个系数 ② f(x)=e λx [P l(x)cos ωx+P n (x)sin ωx ]型 令y*=x k e λx [Q m (x)cos ωx+R m (x)sin ωx ][m=max ﹛l,n ﹜,k 按λ+i ω不是特征方程的根或是特征方程的单根依次取0或1]再代入原方程,分别确定Q m (x)和R m (x)的m+1个系数

常微分方程数值解法

第八章 常微分方程的数值解法 一.内容要点 考虑一阶常微分方程初值问题:?????==0 0)() ,(y x y y x f dx dy 微分方程的数值解:设微分方程的解y (x )的存在区间是[a,b ],在[a,b ]内取一系列节 点a= x 0< x 1<…< x n =b ,其中h k =x k+1-x k ;(一般采用等距节点,h=(b-a)/n 称为步长)。在每个节点x k 求解函数y(x)的近似值:y k ≈y(x k ),这样y 0 , y 1 ,...,y n 称为微分方程的数值解。 用数值方法,求得f(x k )的近似值y k ,再用插值或拟合方法就求得y(x)的近似函数。 (一)常微分方程处置问题解得存在唯一性定理 对于常微分方程初值问题:?????==0 0)() ,(y x y y x f dx dy 如果: (1) 在B y y A x x 00≤-≤≤,的矩形内),(y x f 是一个二元连续函数。 (2) ),(y x f 对于y 满足利普希茨条件,即 2121y y L y x f y x f -≤-),(),(则在C x x 0≤≤上方程?????==0 0)() ,(y x y y x f dx dy 的解存在且唯一,这里C=min((A-x 0),x 0+B/L),L 是利普希茨常数。 定义:任何一个一步方法可以写为),,(h y x h y y k k k 1k Φ+=+,其中),,(h y x k k Φ称为算法的增量函数。 收敛性定理:若一步方法满足: (1)是p 解的. (2) 增量函数),,(h y x k k Φ对于y 满足利普希茨条件. (3) 初始值y 0是精确的。则),()()(p h O x y kh y =-kh =x -x 0,也就是有 0x y y lim k x x kh 0h 0 =--=→)( (一)、主要算法 1.局部截断误差 局部截断误差:当y(x k )是精确解时,由y(x k )按照数值方法计算出来的1~ +k y 的误差y (x k+1)- 1~ +k y 称为局部截断误差。 注意:y k+1和1~ +k y 的区别。因而局部截断误差与误差e k +1=y (x k +1) -y k +1不同。 如果局部截断误差是O (h p+1),我们就说该数值方法具有p 阶精度。

常微分方程数值解法

常微分方程数值解法 【作用】微分方程建模是数学建模的重要方法,因为许多实际问题的数学描述将导致求解微分方程的定解问题。把形形色色的实际问题化成微分方程的定解问题,大体上可以按以下几步: 1. 根据实际要求确定要研究的量(自变量、未知函数、必要的参数等)并确定坐标系。 2. 找出这些量所满足的基本规律(物理的、几何的、化学的或生物学的等等)。 3. 运用这些规律列出方程和定解条件。基本模型 1. 发射卫星为什么用三级火箭 2. 人口模型 3. 战争模型 4. 放射性废料的处理通常需要求出方程的解来说明实际现象,并加以检验。如果能得到解析形式的解固然是便于分析和应用的,但是我们知道,只有线性常系数微分方程,并且自由项是某些特殊类型的函数时,才可以得到这样的解,而绝大多数变系数方程、非线性方程都是所谓“解不出来” 的于是对于用微分方程解决实际问题来说,数值解法就是一个十分重要的手段。 1. 改进Euler 法: 2. 龙格—库塔( Runge—Kutta )方法: 【源程序】 1. 改进Euler 法: function [x,y]=eulerpro(fun,x0,x1,y0,n);%fun 为函数,(xO, x1)为x 区间,yO 为初始值,n 为子 区间个数 if nargin<5,n=5O;end h=(x1-xO)/n; x(1)=xO;y(1)=yO; for i=1:n x(i+1)=x(i)+h; y1=y(i)+h*feval(fun,x(i),y(i)); y2=y(i)+h*feval(fun,x(i+1),y1); y(i+1)=(y1+y2)/2; end 调用command 窗口 f=i nlin e('-2*y+2*x A2+2*x') [x,y]=eulerpro(f,O,,1,1O) 2 x +2x , (0 < x < , y(0) = 1 求解函数y'=-2y+2 2. 龙格—库塔( Runge—Kutta )方法: [t,y]=solver('F',tspan ,y0) 这里solver为ode45, ode23, ode113,输入参数F是用M文件定义的微分方程y'= f (x, y)右端的函数。tspan=[t0,tfinal]是求解区间,y0是初值。 注:ode45和ode23变步长的,采用Runge-Kutta算法。 ode45表示采用四阶-五阶Runge-Kutta算法,它用4阶方法提供候选解,5阶方法控制误差,是一种自适应步长(变步长)的常微分方程数值解法,其整体截断误差为(△ 口人5解 决的是Nonstiff(非刚性)常微分方程。

相关文档
相关文档 最新文档