文档库 最新最全的文档下载
当前位置:文档库 › Grms 加速度平方根值

Grms 加速度平方根值

Grms 加速度平方根值
Grms 加速度平方根值

Calulating G rms

(Root-Mean-Square Acceleration)

It is very easy to describe the G rms (root-mean-square acceleration, sometimes written as GRMS or Grms or grms or g rms) value as just the square root of the area under the ASD vs. frequency curve, which it is. But to physically interpret this value we need to look at G rms a different way. The easiest way to think of the G rms is to first look at the mean square acceleration.

其实是很容易来描述这个G rms(根均方加速)作为只是平方根值下的房间隔缺损与频率曲线。但是,从整体上解释这个值,我们需要以不同的方式认识G rms。最简单的方法是思考G rms加速度均方。

Mean-square acceleration is the average of the square of the acceleration over time. That is, if you were to look at a time history of an accelerometer trace and were to square this time history and then determine the average value for this squared acceleration over the length of the time history, that would be the mean square acceleration. Using the mean square value keeps everything positive.

均方加速是在一段时间内加速平方的平均值。也就是说,如果你要在

一个加速度时间历程看跟踪并正视这段时间的历史,然后确定的平均

值为这个当时的历史长度的平方的加快,这将是均方加速。使用均方

值保持一切积极。

The G rms is the root-mean-square acceleration (or rms acceleration), which is just the square root of the mean square acceleration determined above.

在克这个瑰宝是根均方加速(或有效值加速),这仅仅是对上述决定

的加速度均方的平方根。

If the accelerometer time history is a pure sinusoid with zero mean value, e.g., a steady-state vibration, the rms acceleration would be .707 times the peak value of the sinusoidal acceleration (if just a plain average were used, then the average would be zero). If the accelerometer time history is a stationary Gaussian random time history, the rms acceleration (also called the 1 sigma acceleration) would be related to the statistical properties of the acceleration

time history (you may have to refresh your probability and statistics knowledge for this):

如果加速度时间历程,是一个纯正弦波的平均值为零,例如,一个稳态振动,加速度的RMS将0.707倍的正弦加速度(如果只是一个普通的平均使用了峰值,然后将平均是零)。如果加速度时间历程,是一个平稳高斯随机时间的历史,均方根加速度(也称为1西格马加速)将有关的加速度时程(即统计特性可能需要刷新您的概率和统计知识这一点)

?68.3% of the time, the acceleration time history would have peaks that would not exceed the +/-

1 sigma accelerations.

?68.3%的时间,加速时程会高峰期将不超过+ / - 1西格马加速度。

?95.4% of the time, the acceleration time history would have peaks that would not exceed the +/-

2 sigma accelerations.

?95.4%的时间,加速时程会高峰期将不超过+ / - 2西格玛加速度。

?99.7% of the time, the acceleration time history would have peaks that would not exceed the +/-

3 sigma accelerations.

?99.7%的时间,加速时程会高峰期将不超过+ / - 3西格玛的加速度。

There is no theoretical maximum value for the Gaussian random variable; however, we typically design to 3 sigma since it would only be theoretically exceeded 0.3% of the time. In addition, from a practical point of view, we know that it would be physically impossible to achieve unreasonably high sigma values.

没有高斯随机变量的理论最大值,但是,我们通常设计为3西格玛因为这只是理论上的时间超过0.3%。此外,从实际的角度来看,我们知道,这将是不合理的身体不可能实现高标准差的值。

Below is presented the method to calculating the root-mean-square acceleration (G rms) response from a random vibration ASD curve.

下面给出的方法计算根均方加速度(克这个瑰宝)由建筑署的随机振动响应曲线。

Typical random vibration response curve:

G rms values are determined by the square root of the area under a ASD vs. frequency response curve. The Acceleration Spectral Density values are in

g2/Hz and the frequencies are in Hz.

这个瑰宝价值取决于该地区的平方根下房间隔缺损与频率响应曲线。加速度谱密度值在G2/Hz时和赫兹的频率的。

The figure above shows a bandwidth of 10 Hz, which will be used as an example for calculating G rms.

上面显示了10赫兹,这将作为一个例子,用来计算克这个瑰宝带宽数字。

?First, calculate the number of octaves. From the plot, F L = 20Hz and F H = 30Hz. The equations below gives #octaves = 0.58 .

?首先,计算八度音的数目。从情节,佛罗里达州= 20Hz的和FH = 30Hz的。下面的方程给出#八度= 0.58。

?Second, calculate the dB value. For F L = 20Hz, ASD L = 1.0 g2/Hz, while ASD H = 1.1 g2/Hz. The calculated value is 0.41 dB. (The definition of dB is also provided.)

?其次,计算分贝值。对于佛罗里达州= 20Hz的,ASDL = 1.0 G2/Hz时,而ASDH = 1.1 G2/Hz时。计算出的价值为0.41分贝。(分贝的定义也提供)。

?Third, calculate the slope, m, of the segment between the frequencies F L and F H. Dividing the number of dB by the number of octaves gives m = 0.71 dB/oct.

?第三,计算坡度,之间的频率段米,佛罗里达州和FH。除以八度的分贝数数给米= 0.71分贝/ 10月

?Fourth, calculate the area under the curve between the frequencies F L and F H. In our example,

A = 10.53 g2.

?第四,根据计算的频率曲线之间的面积FL和跳频。在我们的例子中,甲= 10.53 G2的。

NOTE - The above equation is invalid if the slope m = -10log(2)

because you would be dividing by zero.

If m = -10log(2), use the following equation for the area:

注意- 以上方程是无效的斜坡米= - 10log(2),因为你会被zero.If米= - 10log(2),使用面积除以下列公式:

(L'h?pital's Rule is used to solve the equation as the limit of [1 + m/(10log2)] goes to zero -- or some such nonsense.)

洛必达法则是用来解决方程为[1 +极限/(10log2)]转到零或一些这样的废话。)

?Finally, take the square root of the area for the G rms value. To finish our example, the acceleration = 3.24 G rms.

?最后,采取了克这个瑰宝价值该区的平方根。为了完成我们的例子中,加速= 3.24克这个瑰宝。

In order to calculate the G rms value for the entire curve, sum up all the areas (A1 + A2 + A3 + ... + A n = A) and take the square root of the sum.

NOTE: 3dB is a factor of 2 for ASD curves (g2/Hz) while 6dB is a factor of 2 for G rms values. For example, reducing a peak ASD value of 12g2/Hz by -3dB would give you 6g2/Hz; reducing a value of 12G rms -3dB results in a value of

9G rms and reducing it -6dB results in a value of 6G rms. This tends to be confusing for people new to random vibration.

为了计算整个曲线克这个瑰宝的价值,总结了所有的领域(格A1 + A3 +的酶A2 + ... +的= A)和采取的总和的平方根。

注意:3dB的是2房间隔缺损曲线(G2/Hz时),而6dB的是一个2克这个瑰宝价值因素的因素。在一个6Grms价值,例如减少一峰建筑署的12g2/Hz价值的- 3dB会给你6g2/Hz,减少了9Grms价值的12Grms - 3dB的结果的价值,并降低IT - 6dB的结果。这往往是混乱的人们新的随机振动。

An Excel 97 spreadsheet, grms.xls, written by Bob Coladonato that calculates all these values is available for downloading. The only input values necessary are frequencies and their respective ASD levels.

大学物理重力加速度的测定实验报告范文.doc

大学物理重力加速度的测定实验报告范 文 一、实验任务 精确测定银川地区的重力加速度 二、实验要求 测量结果的相对不确定度不超过5% 三、物理模型的建立及比较 初步确定有以下六种模型方案: 方法一、用打点计时器测量 所用仪器为:打点计时器、直尺、带钱夹的铁架台、纸带、夹子、重物、学生电源等. 利用自由落体原理使重物做自由落体运动.选择理想纸带,找出起始点0,数出时间为t的p点,用米尺测出op的距离为h,其中t=0.02秒×两点间隔数.由公式h=gt2/2得g=2h/t2,将所测代入即可求得g. 方法二、用滴水法测重力加速度 调节水龙头阀门,使水滴按相等时间滴下,用秒表测出n个(n 取50—100)水滴所用时间t,则每两水滴相隔时间为t′=t/n,用米尺测出水滴下落距离h,由公式h=gt′2/2可得g=2hn2/t2. 方法三、取半径为r的玻璃杯,内装适当的液体,固定在旋转台上.旋转台绕其对称轴以角速度ω匀速旋转,这时液体相对于玻璃

杯的形状为旋转抛物面 重力加速度的计算公式推导如下: 取液面上任一液元a,它距转轴为x,质量为m,受重力mg、弹力n.由动力学知: ncosα-mg=0 (1) nsinα=mω2x (2) 两式相比得tgα=ω2x/g,又tgα=dy/dx,∴dy=ω2xdx/g, ∴y/x=ω2x/2g. ∴ g=ω2x2/2y. .将某点对于对称轴和垂直于对称轴最低点的直角坐标系的坐标x、y测出,将转台转速ω代入即可求得g. 方法四、光电控制计时法 调节水龙头阀门,使水滴按相等时间滴下,用秒表测出n个(n 取50—100)水滴所用时间t,则每两水滴相隔时间为t′=t/n,用米尺测出水滴下落距离h,由公式h=gt′2/2可得g=2hn2/t2. 方法五、用圆锥摆测量 所用仪器为:米尺、秒表、单摆. 使单摆的摆锤在水平面内作匀速圆周运动,用直尺测量出h(见图1),用秒表测出摆锥n转所用的时间t,则摆锥角速度ω=2πn/t 摆锥作匀速圆周运动的向心力f=mgtgθ,而tgθ=r/h所以mgtgθ=mω2r由以上几式得: g=4π2n2h/t2. 将所测的n、t、h代入即可求得g值.

第三章 一微分方程的解的存在定理

第三章 一阶微分方程的解的存在定理 教学目的 讨论一阶微分方程的解的存在与唯一性定理,解的延拓定理,解对初值的连续性与可微性定理,解对参数的连续性定理 教学要求 掌握存在与唯一性定理及其证明,会用皮卡逼近法求近似解,理解解对初值的连续性与可 微性定理,解对参数的连续性定理,了解奇解及其求法。 教学重点 几个主要定理的条件及其证明 教学难点 逐次逼近法的应用及其思想;应用存在与唯一性定理及解的延拓定理来研究方程的解;奇解及其求法 教学方法 讲练结合教学法、提问式与启发式相结合教学法。 教学手段 传统板书与多媒体课件辅助教学相结合。 课题导入 在上一章我们讨论了一阶方程的解的初等积分法。解决了几个特殊的方程。但是,对许多微分方程,为22'y x y +=,不可能通过初等积分法求解,这就产生了一个问题,一个不能用初等积分法求解的微分方程是否意味着没有解呢?或者说,一个微分方程的初值问题在何种条件下一定有解呢?当有解时,农的解是否是唯一的呢?毫无疑问,这是一个很基本的问题,不解决这个问题对微分方程的进一步研究,就无从谈起,本章将重点讨论一阶微分方程的解存在问题的唯一定理, §3.1解的存在唯一性定理与逐步逼近法 教学目的 讨论Picard 逼近法及一阶微分方程的解的存在与唯一性定理,解的延拓定理,解对初值的连续性与可微性定理。 教学要求 熟练掌握Picard 逼近法,并用它证明一阶微分方程初值问题解的存在与唯一性定理及其证明,会用Picard 逼近法求近似解, 教学重点 Picard 存在唯一性定理及其证明

教学难点 逐次逼近分析法的应用及其思想. 教学方法 讲练结合教学法、提问式与启发式相结合教学法。 教学手段 传统板书与多媒体课件辅助教学相结合。 一. 存在唯一性定理 1.定理1,考虑初值问题 ),(y x f dx dy = (3.1) 00)(y x y = 其中f(x,y)在矩形区域 R : b y y a x x ≤-≤-||,||00 (3.2) 上连续,并且对y 满足Lipsthits 条件:即存在常数L>0,使对所有 R y x y x ∈),(),,(21常存成立, |||),(),(|2121y y L y x f y x f -≤- 则初值问题(cauchy 问题)(3.1)在区间h x x ≤-||0上解存在唯一,这里 |),(|max ),, min(),(y x f M M b a h R y x ∈== 证明思路:1.初值问题(3.1)的解存在等价一动积分方程?+=x x dy y x f y y 0 ),(0(3.5)的连续解。 2.构造( 3.5)所得解函数序列{)(x n ?} 任取一连续函数)(0x ?,b y x ≤-|)(|00?代入(3.5)左端的y ,得 ?+=x x dx x x f y x 0 ))(,()(01??)(x n ?)(x n ? Λ2,1,))(,()(0 01=+=?+n dx x x f y x x x n n ?? 3.函数序列{)(x n ?}在|,|00h x h x +-上一致收敛到)(x ?。这里为3 ?∞→∞ →+x x n n n dx x x f y x 0 ))(,(lim )(lim 0?

加速度设计一些概念

听得非常清楚. 类似的有趣现象也在伦敦圣保罗教堂的耳语回廊(Whispering gallery)被发现, 并且早在1910 年LordRaleigh 就已率先开展相关的研究工作。其原理是声波可以不断地在弯曲光滑的墙面反射而损耗很小,所以声音可以沿着墙壁传播很远的距离。这种效应被称为耳语回廊模式(Whispering Gallery Mode,WGM), 这里我们也将其称为“回音壁模式”。 类似于声波在墙面反射, 当光在从光密向光疏介质入射且入射角足够大时, 也可以在两种介质表面发生全反射, 那么在弯曲的高折射率介质界面也存在光学回音壁模式. 在闭合腔体的边界内, 光则可以一直被囚禁在腔体内部保持稳定的行波传输模式 模式体积越小, 相同能量的光引起的局部电磁场强度越大, 因此光和物质的相互作用就越强 品质因数:衡量谐振腔优劣很重要的参数就是其品质因子(Q值),其定义如下: Q = ωI P =ωτ 其中ω为该模式的频率, I为腔内的光场能量, P是能量损失速率. 谐振腔中的能量随时间指数的变化为,对应模式的光子寿命为τ。明显Q 值越高,光子寿命越长,那么被束缚的光场与物质的相互作用就强,反之相互作用就弱。 力—光耦合原理:当光在谐振腔内传输时,光辐射压力产生的微小力导致微腔腔壁发生微小移动,从而将光学谐振腔的机械本征模耦合到光学本征模,并且改变了谐振腔的光学共振模式。当功率足够大时,该相互作用力导致腔壁再生振荡,再次改变了光学共振模式,从而使得透射谱发生明显变化。通过对透射谱变化的研究,可以得到微腔腔壁的受力情况。 很难通过自由空间直接收集或者利用高斯光束来激发. 因此, 人们一般采用外部的近场耦合器件将光有效地耦合进出微腔,如光纤锥, 光学波导和棱镜 波,衰逝波。由于其幅值随与分界面相垂直的深度的增大而呈指数形式衰减,而随切向方向改变相位,因此也是表面波 微环与光波导的参数设计:为了能够实现光在微环谐振腔和波导内的单模传输。 利用有效折射率法对其单模特性进行仿真计算,设定波导的宽、高相等, 通过Matlab 软件得到了如图2(a)所示的仿真结果。m =0,为基模传输曲线; m = 1,为一阶模传输曲线; m = 2,为二阶模的传输曲线,由图可知,当波导高度介于0.2~0.7 μm 时光波导中只可进行单模传输,当波导高度高于0.7 μm 时,该波导可进行多模传输。图2( b) 为利用beamprop 软件对宽、高均为0.35 μm的波导进行模态传输的仿真结果。可以看出: 该波导对光的局域能力较强,实现了光的单模传输。 由公式( 9) 可以看出: 该器件的灵敏度不仅与悬臂梁参数、环形微腔的位置以及质量块大小有关,实际上很大程度还取决于微环腔的品质因数( Q) 。同时,耦合效率也是影响加速度计性能的另一重要因素。在理想的条件下,根据实验背景要求,设定微环半径为4.6μm,为了满足传感要求,必须使其耦合效率达到最大,即临界耦合。图3 表明耦合效率会随耦合间距的增加而减小,呈线性关系,在0.03 μm处有最大的耦合效率。但当耦合间

逐次逼近式AD转换原理

一、逐次逼近式AD转换器与计数式A/D转换类似,只是数字量由“逐次逼近寄存器SAR” 产生。SAR使用“对分搜索法”产生数字量,以8位数字量为例,SAR首先产生8位数字量的一半,即10000000B,试探模拟量Vi的大小,若Vo>Vi,清除最高位,若VoVi,“控制电路”清除最高位,若Vo

常微分方程考研讲义第三章一阶微分方程解的存在定理

第三章一阶微分方程解的存在定理 [教学目标] 1.理解解的存在唯一性定理的条件、结论及证明思路,掌握逐次逼近法,熟练近似解 的误差估计式。 2.了解解的延拓定理及延拓条件。 3.理解解对初值的连续性、可微性定理的条件和结论。 [教学重难点] 解的存在唯一性定理的证明,解对初值的连续性、可微性定理的证明。 [教学方法] 讲授,实践。 [教学时间] 12学时 [教学内容] 解的存在唯一性定理的条件、结论及证明思路,解的延拓概念及延拓条件,解对初值的连续性、可微性定理及其证明。 [考核目标] 1.理解解的存在唯一性定理的条件、结论,能用逐次逼近法解简单的问题。 2.熟练近似解的误差估计式,解对初值的连续性及可微性公式。 3.利用解的存在唯一性定理、解的延拓定理及延拓条件能证明有关方程的某些性质。 §1 解的存在性唯一性定理和逐步逼近法 微分方程来源于生产实践际,研究微分方程的目的就在于掌握它所反映的客观规律,能动解释所出现的各种现象并预测未来的可能情况。在第二章介绍了一阶微分方程初等解法的几种类型,但是,大量的一阶方程一般是不能用初等解法求出其通解。而实际问题中所需要的往往是要求满足某种初始条件的解。因此初值问题的研究就显得十分重要,从前面我们也了解到初值问题的解不一定是唯一的。他必须满足一定的条件才能保证初值问题解的存在性与唯一性,而讨论初值问题解的存在性与唯一性在常微分方程占有很重要的地位,是近代常微分方程定性理论,稳定性理论以及其他理论的基础。 例如方程

2dy y dx = 过点(0,0)的解就是不唯一,易知0y =是方程过(0,0)的解,此外,容易验证,2y x =或更一般地,函数 2 0 0() c<1 x c y x c x ≤≤?=?-≤? 都是方程过点(0,0)而且定义在区间01x ≤≤上的解,其中c 是满足01c <<的任一数。 解的存在唯一性定理能够很好地解释上述问题,它明确地肯定了方程的解在一定条件下的存在性和唯一性。另外,由于能得到精确解的微分方程为数不多,微分方程的近似解法具有重要的意义,而解的存在唯一性是进行近似计算的前提,如果解本身不存在,而近似求解就失去意义;如果存在不唯一,不能确定所求的是哪个解。而解的存在唯一性定理保证了所求解的存在性和唯一性。 1.存在性与唯一性定理: (1)显式一阶微分方程 ),(y x f dx dy = (3.1) 这里),(y x f 是在矩形域:00:||,||R x x a y y b -≤-≤ (3.2) 上连续。 定理1:如果函数),(y x f 满足以下条件:1)在R 上连续:2)在R 上关于变量y 满足李普希兹(Lipschitz )条件,即存在常数0L >,使对于R 上任何一对点1(,)x y , 2(,)x y 均有不等式1212(,)(,)f x y f x y L y y -≤-成立,则方程(3.1)存在唯一的解()y x ?=,在区间0||x x h -≤上连续,而且满足初始条件 00()x y ?= (3.3)

线性方程组的平方根解法

在求解线性方程组时,直接解法有顺序高斯消元法、列主元高斯消元法、全主元高斯消元法、高斯约当消元法、消元形式的追赶法、LU分解法、矩阵形式的追赶法,当我们遇到对称正定线性方程组时,我们就要用到平方根法(对称LLT 分解法)来求解,为了熟悉和熟练运用平方根法求解线性方程组,下面对运用平方根法求解线性方程组进行解析。 一、运用平方根法求解线性方程组涉及到的定理及定义 我们在运用平方根法求解线性方程组时,要判定线性方程组Ax=b的系数矩阵A是否是对称正定矩阵,那么我们就要了解正定矩阵的性质和如下定理及定义: 1、由线性代数知,正定矩阵具有如下性质: 1) 正定矩阵A是非奇异的 2) 正定矩阵A的任一主子矩阵也必为正定矩阵 3) 正定矩阵A的主对角元素均为正数 4) 正定矩阵 A的特征值均大于零 5) 正定矩阵A的行列式必为正数 定义一线性方程组Ax=b的系数矩阵A是对称正定矩阵,那么Ax=b是对称正定线性方程组。 定义二如果方阵A满足A=AT,那么A是对称阵。 2.1.4 平方根法和改进的平方根法 如果A是n阶对称矩阵,由定理2还可得如下分解定理: 定理2 若A为n阶对称矩阵,且A的各阶顺序主子式都不为零,则A可惟一分解为:A=LDLT,其中L为单位下三角阵,D为对角阵。 证明因为A的各阶顺序主子式都不为零,所以A可惟一分解为:A=LU 因为,所以可将 U分解为: 其中 D为对角矩阵,U1为单位上三角阵.于是:A=LDU1=L(DU1) 因为A为对称矩阵,所以,A=AT=U1TDTLT=U1T(DLT),由 A的 LU分解的惟一性即得:L=U1T,即U1=LT,故A=LDLT。 工程技术中的许多实际问题所归结出的线性方程组,其系数矩阵常有对称正定性,对于具有此类特殊性质的系数矩阵,利用矩阵的三角分解法求解是一种较好的有效方法,这就是对称正定矩阵方程组的平方根法及改进的平方根法,这种方法目前在计算机上已被广泛应用。 定理3 对称矩阵A为正定的充分必要条件是A的各阶顺序主子式大于零。 2 对称正定矩阵的三角分解 定理 (Cholesky分解)设A为n阶对称正定矩阵,则存在惟一的主对角线元素都是正数的下三角阵L,使得:A=LLT。 分解式A=LLT称为正定矩阵的Cholesky分解,利用Cholesky分解来求解系数矩阵为对称正定矩阵的方程组AX=b的方法称为平方根法。 设A为4阶对称正定矩阵,则由定理 4知,A=LLT,即: 将右端矩阵相乘,并令两端矩阵的元素相等,于是不难算得矩阵L的元素的计算公式为:

【典型例题】 第三章 一阶微分方程的解的存在定理

第三章 一阶微分方程的解的存在定理 例3-1 求方程 22y x dx dy += 满足初始条件0)0(=y 的解的逐次逼近)(),(),(321x y x y x y ,并求出h 的最大值,其中h 的意义同解的存在唯一性定理中的h 。 解 函数2 2 ),(y x y x f +=在整个平面上有意义,则在以原点为中心的任一闭矩形区域 b y a x D ≤≤,:上均满足解的存在唯一性定理的条件,初值问题?????=+=0 )0(22y y x dx dy 的解在],[h h -上存在唯一,其中)(max ),, min(22),(y x M M b a h D y x +==∈。 因为逐次逼近函数序列为 ?-+=x x n n dx x y x f y x y 0 ))(,()(10, 此时,2 200),(,0,0y x y x f y x +===,所以 0)(0=x y , ?=+=x x dx x y x x y 03 2 02 13 )]([)(, | 63 3)]([)(7 032 12 2x x dx x y x x y x +=+=?, ?? +++=+=x x dx x x x x dx x y x x y 0 14 1062 2 223)3969 18929()]([)( 59535 20792633151173x x x x +++=。 现在求h 的最大值。 因为 ),, min(2 2b a b a h += 对任给的正数b a ,,ab b a 22 2 ≥+,上式中,当 b a = 时, 2 2b a b +取得最大值

a ab b 21 2= 。 此时,)21,min()2, min(a a ab b a h ==,当且仅当a a 21 = ,即22==b a 时,h 取得最大值为 2 2 。 评注:本题主要考查对初值问题的解的存在唯一定理及其证明过程的基本思想(逐次逼近方法)的理解。特别地,对其中的b y a x D y x f M M b a h D y x ≤≤==∈,:),,(max ),, min(),(等常数意义的理解和对逐次逼近函数列? -+=x x n n dx x y x f y x y 0 ))(,()(10的构造过程的理 解。 例3-2 证明下列初值问题的解在指定区间上存在且唯一。 1) 2 1 0,0)0(cos 2 2≤ ≤=+='x y x y y ,。 2) 32 2 )2 1 (0,0)0(≤≤=+='x y y x y , 。 | 证 1) 以原点为中心作闭矩形区域1,2 1 :≤≤ y x D 。 易验证2 2 cos ),(x y y x f +=在区域D 上满足解的存在唯一性定理的条件,求得 2cos m ax 22),(=+=∈x y M D y x ,则2 1 )21,21min(==h 。 因此初值问题 ?? ?=+='0 )0(cos 2 2y x y y 的解在]21,21[- 上存在唯一,从而在区间]2 1 ,0[上方程 cos 22, x y y +='满足条件0)0( =y 的解存在唯一。 2) 以原点为中心作闭矩形区域b y a x D ≤≤,:。 易验证x y y x f +=2 ),(在D 上满足解的存在唯一性定理的条件,并求得 22),(m ax b a x y M D y x +=+=∈,

人教版高一物理必修1 速度加速度定义与图像知识点

描述运动的物理量 一、质点、参考系 1.参考系:在描述一个物体运动时,选来作为标准的(即假定为不动的)另外的物体,叫做参考系. 对参考系应明确以下几点: (1)对同一运动物体,选取不同的物体作参考系时,对物体的观察结果往往不同的. (2)参考系可以是运动的物体,也可以是静止的物体,但被选为参考系的物体,我们假定它是静止的. (3)因为今后我们主要讨论地面上的物体的运动,所以通常取地面作为参照系. 2.质点 (1)定义:忽略物体的大小和形状,把物体简化为一个有质量的物质点,叫质点. (2)质点是一种科学抽象,一种理想化的模型,实际并不存在。这种忽略次要因素、突出主要因素(质量)的处理方法是一种非常重要的科学研究方法. (3)一个物体能否看成质点,取决于它的形状和大小在所研究问题中是否可以忽略不计,而跟自身体积的大小、质量的多少和运动速度的大小无关. (4)一个物体能否被看成质点,取决于所研究的问题的性质,同一个物体在不同的问题中,有的能被看作质点,有的却不能被看成质点. 二、时间与时刻 1.时刻:指的是某一瞬时,在时间轴上用一个点来表示.对应的是位置、速度、动量、动能等状态量. 2.时间:是两个时刻间的间隔,在时间轴上用一段长度来表示.对应的是位移、路程、冲量、功等过程量. 三、矢量和标量 1.矢量:既有大小又有方向的量叫做矢量.像位移、力、速度都是矢量. 2.标量:只有大小没有方向的量叫做标量,像温度、质量、压强、电流都是标量 注意:矢量和标量的本质区分不是看它们是否有方向,而是在于它们所遵循的运算法则不同,矢量遵循矢量运算法则(矢量运算是一种几何算法),标量遵循代数运算法则. 四、路程和位移 1.路程:物体运动轨迹的长度. 2.位移:描述物体位置变化的物理量,是从物体运动的初位置指向末位置的有向线段.

平方根法追赶法

§5 平方根法 一、教学设计 1.教学内容:对称正定矩阵的Cholesky 分解法、三对角线矩阵分解的追赶法。 2.重点难点:Cholesky 分解法、追赶法。 3.教学目标:掌握对称正定矩阵的Cholesky 分解的计算过程,掌握三对角线矩阵分解的追赶法。 4.教学方法:讲授与讨论。 二、教学过程 §5 平方根法 在工程计算中,常遇到求解解对称再正定线性方程组问题,如应用有限元法解结构力学问题,应用差分方法解椭圆型偏微分方程等,最后都归结为求解系数矩阵为对称正定阵的线性方程组。根据系数矩阵的特殊性,是否有更好的解决方案(在存贮空间上的好处是显而易见的),算法上是否有所简化? 5-0对称正定矩阵及性质复习 定义:设n n R A ?∈,如果A 满足条件 (1)A A T =;(2)对任意非零向量n R ∈x ,有0>x x A T ,则称A 为对称正定矩阵。 定理1 (对称正定矩阵的性质)如果n n R A ?∈为对称正定矩阵,则 (1)A 为非奇异阵,且1-A 亦是对称正定阵; (2)记k A 为A 的顺序主子阵,则k A 亦是对称正定阵),,2,1(n k =; (3)A 的特征值),,2,1(0)(n i A i =>λ; (4)A 的顺序主子式都大于零,即),,2,1(0)det(n k A k =>。 定理2 设n n R A ?∈为对称矩阵(判据)

(1)若A 的特征值),,2,1(0)(n i A i =>λ,则A 为对称正定矩阵; (2)若A 的顺序主子式都大于零,即),,2,1(0)det(n k A k =>,则A 为对称正定阵。 5-1 对称正定矩阵的三角分解 由前述定理 3.1知,若n 阶方阵A 的顺序主子式)1,,2,1 ()d e t (-=n k A k 均不为零,则A 有唯一的三角分解LU A =,其中L 为单位下三角阵,U 为上三角阵。n 阶对称正定阵A 的顺序主子式都大于零,当然有LU 分解,进一步地,此时U L ,之间有什么关系?这对解方程组有用处。由LU A L U A T T T ===及分解的唯一性,想到若U 的主对角元素皆为1,就有可能获得一些结果。为此,再将U 分解 DR u u u u u u u u u u u u u u u U n n nn nn n n ≡??? ?????? ???????? ?????? ??? ? ? ? ?=????????? ?? ?=111222********* 11222 11211 易知),,2,1(0n i u ii => (用k k k U L A ,,分别记矩阵U L A ,,的k 阶 顺序主子阵,容易验证k k k U L A =于是 ii k i i ii k i k k k k k k u a U U L U L A ∏∏ =======1 )(1det det det )det(det ) 于是LDR LU A ==,所以 A DR L LU DL R LDR A T T T T =====)()()(, 即 )()(DR L DL R A T T == 由分解的唯一性知:T R L =,R L T =,于是T LDL A = 自然地,若记

重力加速度测量的十种方法

重力加速度测量的十种方法 方法一、用弹簧秤和已知质量的钩码测量 将已知质量为m的钩码挂在弹簧秤下,平衡后,读数为G.利用公式 G=mg得g=G/m. 方法二、用滴水法测重力加速度 调节水龙头阀门,使水滴按相等时间滴下,用秒表测出n个(n取50—100)水滴所用时间t,则每两水滴相隔时间为t′=t/n,用米尺测出水滴下落距离h,由公式h=gt′2/2可得g=2hn2/t2. 方法三、用单摆测量(见高中物理学生实验) 方法四、用圆锥摆测量.所用仪器为:米尺、秒表、单摆. 使单摆的摆锤在水平面内作匀速圆周运动,用直尺测量出h(见图1),用秒表测出摆球n转所用的时间t,则摆球角速度ω=2πn/t 摆球作匀速圆周运动的向心力F=mgtgθ,而tgθ=r/h所以mgtgθ=mω2r由以上几式得:

g=4π2n2h/t2. 将所测的n、t、h代入即可求得g值. 方法五、用斜槽测量,所用仪器为:斜槽、米尺、秒表、小钢球. 按图2所示装置好仪器,使小钢球从距斜槽底H处滚下,钢球从水平槽底末端以速度v作平抛运动,落在水平槽末端距其垂足为H′的水平地面上,垂足与落地点的水平距离为S,用秒表测出经H′所用的时间t,用米尺测出S,则钢球作平抛运动的初速度v=S/t.不考虑摩擦,则小球在斜槽上运动时,由机械能守恒定律得:mgH=mv2/2.所以g=v2/2H=S2/2Ht2,将所测代入即可求得g值. 方法六、用打点计时器测量.所用仪器为:打点计时器、直尺、带钱夹的铁架台、纸带、夹子、重物、学生电源等. 将仪器按图3装置好,使重锤作自由落体运动.选择理想纸带,找出起始点0,数出时间为t的P点,用米尺测出OP的距离为h,其中t=0.02 秒×两点间隔数.由公式h=gt2/2得g=2h/t2,将所测代入即可求得g.

第三章、逐次逼近法

第三章 逐次逼近法 1.1内容提要 1、一元迭代法x n+1=φ(x n )收敛条件为: 1)映内性x ∈[a,b],φ(x) ∈[a,b] 2)压缩性∣φ(x) -φ(y)∣≤L ∣x-y ∣其中L <1,此时φ为压缩算子,在不断的迭代中,就可以得到最终的不动点集。由微分中值定理,如果∣φ’∣≤L <1,显然它一定满足压缩性条件。 2、多元迭代法x n+1=φ(x n )收敛条件为: 1)映内性x n ∈Ω,φ(x n ) ∈Ω 2)压缩性ρ(▽φ)<1,其中▽φ为x n 处的梯度矩阵,此时φ为压缩算子,在不断的迭代中,就可以得到最终的不动点集。 3、当φ(x )= Bx+f 时,收敛条件为,ρ(B )<1,此时x n+1= Bx n +f ,在不断的迭代中,就可以得到线性方程组的解。 4、线性方程组的迭代解法,先作矩阵变换 U L D A --= Jacobi 迭代公式的矩阵形式 f Bx b D x U L D x n n n +=++=--+111)( Gauss-Seidel 迭代公式的矩阵形式 f Bx b L D Ux L D x n n n +=-+-=--+1 11)()( 超松弛迭代法公式的矩阵形式 f Bx b L D x U D L D x k k k +=-++--=--+ωωωωω111 )(])1[()( 三种迭代方法当1)(

笔算开平方方法

笔算开平方方法 一. 拿出一个数,以小数点为分界,两位为一节,从最高位开始开平方。 我们就拿256吧 两位一节,先看最高的是2,那最大开平方就是1,写下1,剩余1。 第二步就是重点了! 再取两个下来,也就是56。前面还有1,组合成156。 将第一次的开平方数1,先扩大20倍,得到20,加上可以取的最大值,这个最大值是什么最大呢?也就是x*(20+x)<=156的最大x,可以取6,也正好是6,所以开平方的结果是16。 再拿个比较大的数:15625 这个数,我们还是两位一节,看最高位1,那就写1,没剩余。 第二步:再取两个下来,也就是56,我们先将1扩大20倍,再用刚才的方法,取最大的x,可以取2,那就写2,剩余56-2*(20+2)=56-44=12 第三步:再取两个下来,也就是25,和刚才剩余的12组成1225,那我们再对刚才的开平方数12,再扩大20倍,得到240,再求最大的开平方数,正好是5,没有剩余。 所以结果是125 如果有剩余,那小数点后也是两位两位地加,也就是一次加两个0,方法和前面一样,对前面已开出来的先扩大20倍,再取最大开方数,一直到你所要的准确度。 二. 1.将被开方数的整数部分从个位起向左每隔两位划为一段,用撇号分开(竖式中的11’56),分成几段,表示所求平方根是几位数; 2.根据左边第一段里的数,求得平方根的最高位上的数(竖式中的3); 3.从第一段的数减去最高位上数的平方,在它们的差的右边写上第二段数组成第一个余数(竖式中的256); 4.把求得的最高位数乘以20去试除第一个余数,所得的最大整数作为试商(20×3除256,所得的最大整数是4,即试商是4); 5.用所求的平方根的最高位数的20倍加上这个试商再乘以试商.如果所得的积小于或等于余数,试商就是平方根的第二位数;如果所得的积大于余数,就把试商减小再试(竖式中(20×3+4)×4=256,说明试商4就是平方根的第二位数); 6.用同样的方法,继续求平方根的其他各位上的数. 如遇开不尽的情况,可根据所要求的精确度求出它的近似值. 例如求的近似值(精确到0.01),可列出上面右边的竖式,并根据这个竖式得到 笔算开平方运算较繁,在实际中直接应用较少,但用这个方法可求出一个数的平方根的具有任意精确度的近似值. 实例 例如,A=5:5介于2的平方至3的平方;之间。我们取初始值2.1,2.2,2.3,2.4,2.5,2.6,2.7,2.8,2.9都可以,我们最好取中间值2.5。 第一步:2.5+(5/2.5-2.5)1/2=2.2;即5/2.5=2,2-2.5=-0.5,-0.5×1/2=-0.25,2.5+(-0.25)=2.25,取2位数2.2。 第二步:2.2+(5/2.2-2.2)1/2=2.23;即5/2.2=2.27272,2.27272-2.2=-0.07272,-0.07272×1/2=-0.03636,2.2+0.03636=2.23。取3位数2.23。 第三步: 2.23+(5/2.23-2.23)1/2=2.236。即5/2.23=2.2421525,,2.2421525-2.23=0.0121525,,0.0121525×1/2=0.00607,,2.23+0.006=2.236.,取4位数。每一步多取一位数。这个方法又叫反馈开方,即使你输入一个错误的数值,

§3.1解的存在唯一性定理与逐次逼近法

§3.1解的存在唯一性定理与逐次逼近法 一、教学目的:讨论Picard逼近法及一阶微分方程的解的存在与唯一性定理。 二、教学要求:熟练掌握Picard逼近法,理解解的存在唯一性定理的条件、结论 及证明思路,会用Picard逼近法求近似解。 三、教学重点:Picard存在唯一性定理及其证明。 四、教学难点:解的存在唯一性定理的证明。 五、教学方法:讲练结合教学法、提问式与启发式相结合教学法。 六、教学手段:传统板书与多媒体课件辅助教学相结合。 七、教学过程: 3.1.1.解的存在性唯一性定理和逐步逼近法 微分方程来源于生产实践际,研究微分方程的目的就在于掌握它所反映的客观规律,能动解释所出现的各种现象并预测未来的可能情况。在第二章介绍了一阶微分方程初等解法的几种类型,但是,大量的一阶方程一般是不能用初等解法求出其通解。而实际问题中所需要的往往是要求满足某种初始条件的解。因此初值问题的研究就显得十分重要,从前面我们也了解到初值问题的解不一定是唯一的。他必须满足一定的条件才能保证初值问题解的存在性与唯一性,而讨论初值问题解的存在性与唯一性在常微分方程占有很重要的地位,是近代常微分方程定性理论,稳定性理论以及其他理论的基础。 例如方程dy = dx 过点(0,0)的解就是不唯一,易知0 y=是方程过(0,0)的解,此外,容易验证,2 =或更一般地,函数 y x

2 0 0() c<1 x c y x c x ≤≤?=?-≤? 都是方程过点(0,0)而且定义在区间01x ≤≤上的解,其中c 是满足 01c <<的任一数。 解的存在唯一性定理能够很好地解释上述问题,它明确地肯定了方程的解在一定条件下的存在性和唯一性。另外,由于能得到精确解的微分方程为数不多,微分方程的近似解法具有重要的意义,而解的存在唯一性是进行近似计算的前提,如果解本身不存在,而近似求解就失去意义;如果存在不唯一,不能确定所求的是哪个解。而解的存在唯一性定理保证了所求解的存在性和唯一性。 一.存在性与唯一性定理: 1、 显式一阶微分方程 ),(y x f dx dy = (3.1) 这里),(y x f 是在矩形域:00:||,||R x x a y y b -≤-≤ (3.2) 上连续。 定理1:如果函数),(y x f 满足以下条件:1)在R 上连续:2)在R 上关于变量y 满足李普希兹(Lipschitz )条件,即存在常数0L >,使对于R 上任何一对点1(,)x y ,2(,)x y 均有不等式 1212(,)(,)f x y f x y L y y -≤-成立,则方程(3.1)存在唯一的解()y x ?=, 在区间0||x x h -≤上连续,而且满足初始条件00()x y ?= (3.3)

第三章第四节 电力系统低频减载

第四节电力系统低频减载 一、概述 1)事故情况下,系统可能产生严重的有功缺额,因而导致系统频率大幅度下降。2)所缺功率已经大大超过系统热备用容量,只能在系统频率降到某值以下,采取切除相应用户的办法来减少系统的有功缺额,使系统频率保持在事故允许的限额之内。 3)这种办法称为按频率自动减负荷。中文简拼为“ZPJH”,英文为UFLS(Under Frequency Load Shedding)。 二、系统频率的事故限额 (1)系统频率降低使厂用机械的出力大为下降,有时可能形成恶性循环,直至频率雪崩。 (2)系统频率降低使励磁机等的转速也相应降低,当励磁电流一定时,发送的无功功率会随着频率的降低而减少,可能造成系统稳定的破坏。 发生在局部的或某个厂的有功电源方面的事故可能演变成整个电力系统的灾难。 (3)电力系统频率变化对用户的不利影响主要表现在以下几个方面: ①频率变化将引起异步电动机转速的变化,有这些电动机驱动的纺织、 造纸等机械产品的质量将受到影响,甚至出现残、次品。 ②系统频率降低将使电动机的转速和功率降低,导致传动机械的出力降

低。 ③国防部门和工业使用的测量、控制等电子设备将因为频率的波动而影 响准确性和工作性能,频率过低时甚至无法工作。“电力工业技术管 理法规”中规定的频率偏差范围为±0.2~±0.5Hz。 (4)汽轮机对频率的限制。频率下降会危及汽轮机叶片的安全。因为一般汽轮机叶片的设计都要求其自然频率充分躲开它的额定转速及其倍率值。系统频率下降时有可能因机械共振造成过大的振动应力而使叶片损伤。容量在300MW 以上的大型汽轮发电机组对频率的变化尤为敏感。例如我国进口的某350MW机组,频率为48.5Hz时,要求发瞬时信号,频率为47.5Hz时要求30s跳闸,频率为47Hz时,要求0s跳闸。进口的某600MW机组,当频率降至47.5Hz时,要求9s跳闸。 (5)频率升高对大机组的影响。电力系统因故障被解列成几个部分时,有的区域因有功严重缺额而造成频率下降,但有的区域却因有功过剩而造成频率升高,从而危及大机组的安全运行。例如美国1978年的一个电网解列,其中1个区域频率升高,六个电厂中的14台大机组跳闸。我国进口某600MW机组,当频率升至52Hz时,要求小于0.3s跳闸。 (6)频率对核能电厂的影响。核能电厂的反应堆冷却介质泵对供电频率有严格要求,如果不能满足,这些泵将自动断开,使反应堆停止运行。 综上所述,运行规程要求电力系统的频率不能长时期的运行在49.5~49Hz 以下;事故情况下不能较长时间的停留在47Hz以下,瞬时值则不能低于45Hz。

笔算开平方法的计算步骤

笔算开平方法的计算步骤如下: 1.将被开方数的整数部分从个位起向左每隔两位划为一段,用撇号分开,分成几段,表示所求平方根是几位数;小数部分从最高位向后两位一段隔开,段数以需要的精度+1为准。 2.根据左边第一段里的数,求得平方根的最高位上的数。 3.从第一段的数减去最高位上数的平方,在它们的差的右边写上第二段数组成第一个余数。 4.把求得的最高位数乘以20去试除第一个余数,所得的最大整数作为试商 5.用商的最高位数的20倍加上这个试商再乘以试商.如果所得的积小于或等于余数,试商就是平方根的第二位数;如果所得的积大于余数,就把试商减小再试,得到的第一个小于余数的试商作为平方根的第二个数。 6.用同样的方法,继续求平方根的其他各位上的数。 如遇开不尽的情况,可根据所要求的精确度求出它的近似值. 笔算开平方运算较繁,在实际中直接应用较少,但用这个方法可求出一个数的平方根的具有任意精确度的近似值. 我国古代数学的成就灿烂辉煌,早在公元前一世纪问世的我国经典数学著作《九章算术》里,就在世界数学史上第一次介绍了上述笔算开平方法.据史料记载,国外直到公元五世纪才有对于开平方法的介绍. 手工开根号法,只适用于任何一个整数或者有限小数开二次方. 因为网上写不出样式复杂的计算式,所以只能尽量书写,然后通过口述来解释: 假设一个整数1456456,开根号首先要从个位开始,每两位数做个标记,这里用'表示,那么标记后变成1'45'64'56.然后根据你要开的小数位数在小数点后补0,这里的举例开到整,则补2个0,(原因等明白该做法后自会理解),解法如下: 解法中需要说明的几个问题: 1,算式中的....没有意义,是因为网上无法排版,为了能把版式排得整齐点而加上的 2,为了区别小数点,所以小数点用。表示,而所有的.都是为了排版需要 3、除了1'45'64'56中的'有特殊意义,在解题中有用处外,其他的'都是为了排版和对起位置,说明数字来源而加的,取消没有任何影响 ...........1..2..0..6。8 .........----------------------- .....1../..1'45'64'56.00.. (1) (1) ............-------- .......22..|.45.. (2) (44) ..............-------- ........240.|.1'64.. (3)

逐次逼近式转换原理(终审稿)

逐次逼近式转换原理公司内部档案编码:[OPPTR-OPPT28-OPPTL98-OPPNN08]

一、逐次逼近式AD转换器与计数式A/D转换类似,只是数字量由“逐次逼近寄存器SAR”产生。SAR使用“对分搜索法”产生数字量,以8位数字量为例,SAR首先产生8位数字量的一半,即B,试探模拟量Vi的大小,若Vo>Vi,清除最高位,若VoVi,“控制电路”清除最高位,若Vo

(3)在最高位确定后,SAR又以对分搜索法确定次高位,即以低7位的一半y1000000B(y为已确定位) 试探模拟量Vi的大小。在bit6确定后,SAR以对分搜索法确定bit5位,即以低6位的一半yy100000B(y为已确定位) 试探模拟量Vi的大小。重复这一过程,直到最低位bit0被确定。 (4)在最低位bit0确定后,转换结束,“控制电路”发出“转换结束”信号EOC。该信号的下降沿把SAR的输出锁存在“缓冲寄存器”里,从而得到数字量输出。从转换过程可以看出:启动信号为负脉冲有效。转换结束信号为低电平。 ? 我觉得,这有点像数学中的二分法,如给一个数a,先用8'b1000000(设为b)与a相比较,如果a大于b,则保留最高位1,即原来的范围变成了0-7'b1111111(第8位已确认)。之后的过程都是这样,重复执行就可以了。 根据以上理论,举个例子,例如满量程应该是5V,所以,第一次DA输出,输入电压与比较,输入电压大,故而取之间,即最高位保留1。然后在新的范围内取中间电压,即,依此类推。。。。

第三章逐次逼近法

第三章 逐次逼近法 1.1 1、一元迭代法x n+1=φ(x n )收敛条件为: 1)映内性x ∈[a,b],φ(x) ∈[a,b] 2)压缩性∣φ(x) -φ(y)∣≤L ∣x-y ∣其中L <1,此时φ为压缩算子,在不断的迭代中,就可以得到最终的不动点集。由微分中值定理,如果∣φ’∣≤L <1,显然它一定满足压缩性条件。 2、多元迭代法x n+1=φ(x n )收敛条件为: 1)映内性x n ∈Ω,φ(x n ) ∈Ω 2)压缩性ρ(▽φ)<1,其中▽φ为x n 处的梯度矩阵,此时φ为压缩算子,在不断的迭代中,就可以得到最终的不动点集。 3、当φ(x )= Bx+f 时,收敛条件为,ρ(B )<1,此时x n+1= Bx n +f ,在不断的迭代中,就可以得到线性方程组的解。 4、线性方程组的迭代解法,先作矩阵变换 U L D A --= Jacobi 迭代公式的矩阵形式 f Bx b D x U L D x n n n +=++=--+111)( Gauss-Seidel 迭代公式的矩阵形式 f Bx b L D Ux L D x n n n +=-+-=--+111)()( 超松弛迭代法公式的矩阵形式 f Bx b L D x U D L D x k k k +=-++--=--+ωωωωω111 )(])1[()( 三种迭代方法当1)( ∑ ≠-,于是