文档库 最新最全的文档下载
当前位置:文档库 › 【2017优化探究一轮复习习题】第9章-第2讲法拉第电磁感应定律自感涡流

【2017优化探究一轮复习习题】第9章-第2讲法拉第电磁感应定律自感涡流

【2017优化探究一轮复习习题】第9章-第2讲法拉第电磁感应定律自感涡流
【2017优化探究一轮复习习题】第9章-第2讲法拉第电磁感应定律自感涡流

[随堂反馈]

1.将闭合多匝线圈置于仅随时间变化的磁场中,线圈平面与磁场方向垂直.关于线圈中产生的感应电动势和感应电流,下列表述正确的是( )

A .感应电动势的大小与线圈的匝数无关

B .穿过线圈的磁通量越大,感应电动势越大

C .穿过线圈的磁通量变化越快,感应电动势越大

D .感应电流产生的磁场方向与原磁场方向始终相同

解析:由法拉第电磁感应定律E =n ΔΦΔt

知,感应电动势的大小与线圈匝数有关,A 错误;感应电动势正比于ΔΦΔt ,与磁通量的大小无直接关系,B 错误,C 正确;

根据楞次定律知,感应电流的磁场总是阻碍引起感应电流的磁通量的变化,即“增反减同”,D 错误.

答案:C

2.如图所示,均匀磁场中有一由半圆弧及其直径构成的导线框,半圆直径与磁场边缘重合;磁场方向垂直于半圆面(纸面)向里,磁感应强度大小为B 0.使该线框从静止开始绕过圆心O 、垂直于半圆面的轴以角速度ω匀速转动半周,在线框中产生感应电流.现使线框保持图中所示位置,磁感应强度大小随时间线性变化.为了产生与线框转动半周过程中同样大小的电流,磁感应强度随时间的变化率ΔB Δt 的大小应为( )

A.4ωB 0π

B.2ωB 0π

C.ωB 0π

D.ωB 02π

解析:设圆的半径为r ,当其绕过圆心O 的轴匀速转动时,圆弧部分不切割磁感线,不产生感应电动势,而在转过半周的过程中仅有一半直径在磁场中,产生的

感应电动势E =B 0r v =B 0r ·rω2=12B 0r 2ω;当线框不动时,E ′=ΔB Δt ·πr 22.由闭合电

路欧姆定律得I =E R ,要使I =I ′,必须使E =E ′,即ΔB Δt =ωB 0π,C 正确.

答案:C

3.某同学为了验证断电自感现象,自己找来带铁芯的线圈L、小灯泡A、开关S 和电池组E,用导线将它们连接成如图所示的电路.检查电路后,闭合开关S,小灯泡发光;再断开开关S,小灯泡仅有不显著的延时熄灭现象.虽经多次重复,仍未见老师演示时出现的小灯泡闪亮现象,他冥思苦想找不出原因.你认为最有可能造成小灯泡未闪亮的原因是()

A.电源的内阻较大B.小灯泡电阻偏大

C.线圈电阻偏大D.线圈的自感系数较大

解析:由自感规律可知,在开关断开的瞬间造成灯泡闪亮以及延时熄灭的原因是:线圈中产生了与原电流同向的自感电流,且大于稳定时通过灯泡的原电流.断开开关S,线圈与灯泡构成闭合的自感回路,与电源无关,故A错误.开关S闭合,电路稳定,灯泡正常发光时,如果电感线圈L的电阻比灯泡的电阻大,则电感线圈L中的电流I L比灯泡A中的电流I A小;开关S断开,由于自感现象,L和A 构成回路,使L和A中的电流从I L开始减小,因此不可能看到小灯泡闪亮的现象,B错误,C正确.自感系数越大,延时越明显,与是否闪亮无关,D错误.答案:C

4.(多选)(2015·高考山东卷)如图所示,一均匀金属圆盘绕通过其圆心且与盘面垂直的轴逆时针匀速转动.现施加一垂直穿过圆盘的有界匀强磁场,圆盘开始减速.在圆盘减速过程中,以下说法正确的是()

A.处于磁场中的圆盘部分,靠近圆心处电势高

B.所加磁场越强越易使圆盘停止转动

C.若所加磁场反向,圆盘将加速转动

D.若所加磁场穿过整个圆盘,圆盘将匀速转动

解析:将圆盘看成很多根由圆心沿半径指向外的金属杆.根据右手定则可知,磁

场中的导体部分电流由b指向a,即a端电势高,A正确.由于磁场部分导体切割磁感线,会在圆盘中形成涡流,根据楞次定律可知,磁场部分受到与转动方向相反的力使圆盘停止转动,而且磁场越强圆盘停止越快,B正确.若所加磁场方向相反,则电流会反向,安培力仍阻碍圆盘转动,不会加速,C错误.若磁场穿过整个圆盘,圆心与边缘会形成一个恒定的电势差,不会形成涡流,也就不存在安培力,因此,圆盘将匀速转动,D正确.

答案:ABD

5.如图所示,金属三角形导轨COD上放有一根金属棒MN,拉动MN使它以速度v在匀强磁场中向右匀速平动.若导轨和金属棒都是粗细相同的均匀导体,它们的电阻率相同,则在MN运动过程中闭合电路的()

A.感应电动势保持不变

B.感应电流逐渐增大

C.感应电流将保持不变

D.感应电流逐渐减小

解析:拉动MN使它以速度v在匀强磁场中向右匀速平动,t时刻,导体棒切割磁感线的有效长度l=v t tan α,产生的感应电动势E=Bl v=B v2t tan α,感应电动势逐渐增大,选项A错误;粗细相同的均匀导体,它们的电阻率相同,单位长

度电阻相同,设为R,回路总电阻R总=R(v t tan α+

v t

cos α+v t)=R?

?

?

?

?

tan α+

1

cos α+1

v t,产生的感应电流I=

E

R总

是一恒量,选项C正确,B、D错误.

答案:C

[课时作业]

授课提示:对应学生用书第4页

一、单项选择题

1.(2016·南通模拟)电磁炉是利用电磁感应现象产生的涡流,使锅体发热从而加热食物,下列相关的说法中正确的是()

A.锅体中涡流的强弱与磁场变化的频率有关

B .电磁炉中通入电压足够高的直流电也能正常工作

C .金属或环保绝缘材料制成的锅体都可以利用电磁炉来烹饪食物

D .电磁炉的上表面一般都用金属材料制成,以加快热传递、减少热损耗

解析:涡流是高频交流电产生的磁场引起的电磁感应现象,故选项A 正确,B 错误;电磁炉表面一般用绝缘材料制成,避免产生涡流,锅体用金属制成,利用涡流加热食物,故选项C 、D 错误.

答案:A

2.关于感应电动势,下列说法中正确的是( )

A .线圈中的磁通量越大,产生的感应电动势一定越大

B .线圈放在磁感应强度越大的地方,产生的感应电动势一定越大

C .线圈中产生的感应电动势为2 V ,则穿过线圈的磁通量的变化率一定为2 Wb/s

D .线圈中产生的感应电动势为2 V ,则线圈电源的“-”极比“+”极电势低2 V

解析:由E =n ΔΦΔt 可知,感应电动势E 与磁通量的变化率ΔΦΔt 成正比,与磁通量

Φ、磁感应强度B 大小无关,故选项A 、B 均错误;由于不知道线圈的匝数n ,

虽知道E 的大小为2 V ,但无法确定ΔΦΔt 的大小,故选项C 错误;感应电动势的

方向为电源内部感应电流的方向,电源内部感应电流从“-”极流向“+”极,故选项D 正确.

答案:D

3.一矩形线框置于匀强磁场中,线框平面与磁场方向垂直.先保持线框的面积不变,将磁感应强度在1 s 时间内均匀地增大到原来的两倍.接着保持增大后的磁感应强度不变,在1 s 时间内,再将线框的面积均匀地减小到原来的一半.先后两个过程中,线框中感应电动势的比值为( )

A.12

B .1

C .2

D .4

解析:根据法拉第电磁感应定律E =ΔΦΔt ,设初始时刻磁感应强度为B 0,线圈面

积为S 0,则第一种情况下的感应电动势为E 1=ΔBS Δt =(2B 0-B 0)S 01

=B 0S 0,则第二

种情况下的感应电动势为E 2=B ΔS Δt =2B 0(S 0-S 02)1=B 0S 0,所以两种情况下线圈中

的感应电动势相等,比值为1,B 正确.

答案:B

4.如图所示,在磁感应强度为B 、方向垂直纸面向里的匀强磁场中,金属杆MN 在平行金属导轨上以速度v 向右匀速滑动,MN 中产生的感应电动势为E 1;若磁感应强度增为2B ,其他条件不变,MN 中产生的感应电动势变为E 2.通过电阻R 的电流方向及E 1与E 2之比分别为( )

e

A .c →a,2∶1

B .a →c,2∶1

C .a →c,1∶2

D .c →a,1∶2

解析:杆MN 向右匀速滑动,由右手定则判知,通过R 的电流方向为a →c ;又因为E =BL v ,所以E 1∶E 2=1∶2,故选项C 正确.

答案:C

5.(2016·常州检测)如图所示,电路中A 、B 是两个完全相同的灯泡,L 是一个自感系数很大、电阻可忽略的自感线圈,C 是电容很大的电容器.当S 闭合与断开时,A 、B 灯泡的发光情况是( )

A .S 刚闭合后,A 亮一下又逐渐熄灭,

B 逐渐变亮

B .S 刚闭合后,B 亮一下又逐渐亮暗,A 逐渐变亮

C .S 闭合足够长时间后,A 和B 一样亮

D .S 闭合足够长时间后,A 、B 都熄灭

解析:S 刚闭合后,A 、B 都变亮,之后A 逐渐熄灭,B 逐渐变亮,选项A 正确,B 错误.S 闭合足够长时间后,A 熄灭,B 一直都是亮的,选项C 、D 错误. 答案:A

6.(2016·武汉模拟)如图所示,正方形线框的左半侧处在磁感应强度为B 的匀强磁场中,磁场方向与线框平面垂直,线框的对称轴MN 恰与磁场边缘平齐.若第一

次将线框从磁场中以恒定速度v 1向右匀速拉出,第二次以线速度v 2让线框绕轴MN 匀速转过90°.为使两次操作过程中,线框产生的平均感应电动势相等,则

( )

A .v 1∶v 2=2∶π

B .v 1∶v 2=π∶2

C .v 1∶v 2=1∶2

D .v 1∶v 2=2∶1

解析:第一次将线框从磁场中以恒定速度v 1向右匀速拉出,线框中的感应电动势恒定,有E 1=E 1=BL v 1.第二次以线速度v 2让线框绕轴MN 匀速转过90°,所

需时间t =πr 2v 2=πL 4v 2

,线框中的磁通量变化量ΔΦ=B ·L ·L 2=12BL 2,产生的平均电动势E 2=ΔΦt =2BL v 2π.由题意知E 1=E 2,可得v 1∶v 2=2∶π,A 正确.

答案:A

7.(2015·高考安徽卷)如图所示,abcd 为水平放置的平行形“”滑金属导轨,间距为l ,导轨间有垂直于导轨平面的匀强磁场,磁感应强度大小为B ,导轨电阻不计.已知金属杆MN 倾斜放置,与导轨成θ角,单位长度的电阻为r ,保持金属杆以速度v 沿平行于cd 的方向滑动(金属杆滑动过程中与导轨接触良好).则

( )

A .电路中感应电动势的大小为Bl v sin θ

B .电路中感应电流的大小为B v sin θr

C .金属杆所受安培力的大小为B 2l v sin θr

D .金属杆的热功率为B 2l v 2

r sin θ

解析:金属杆MN 切割磁感线的有效长度为l ,产生的感应电动势E =Bl v ,A 错

误;金属杆MN的有效电阻R=

rl

sin θ,故回路中的感应电流I=

E

R=

Bl v sin θ

rl=

B v sin θ

r,B正确;金属杆受到的安培力F=

BIl

sin θ=

Bl

sin θ·

B v sin θ

r=

B2l v

r,C错误;

金属杆的热功率P=I2R=B2v2sin2θ

r2·

rl

sin θ=

B2v2sin θ·l

r,D错误.

答案:B

8.(2016·安庆一中高三月考)在如图所示的电路中,电源的电动势为E,内阻为r,电感L的电阻不计,电阻R的阻值大于灯泡D的阻值.在t=0时刻闭合开关S,经过一段时间后,在t=t1时刻断开S.下列表示A、B两点间电压U AB随时间t变化的图象中,正确的是()

解析:S闭合时,由于自感L有感抗,经过一段时间电流稳定时L电阻不计,可见电路的外电压是从大变小的,所以A、C错误.t1时刻断开S,由于自感在L、R、D构成的回路中电流从B向A,所以t1时刻U AB反向,B正确.

答案:B

二、多项选择题

9.(2014·高考江苏卷)如图所示,在线圈上端放置一盛有冷水的金属杯,现接通交流电源,过了几分钟,杯内的水沸腾起来.若要缩短上述加热时间,下列措施可行的有()

A.增加线圈的匝数

B.提高交流电源的频率

C.将金属杯换为瓷杯

D.取走线圈中的铁芯

解析:当线圈上通交流电时,金属杯由于发生电磁感应现象,杯中有感应电流,对水加热,若要增大感应电流,则需要增大感应电动势或者减小杯体的电阻.增加线圈的匝数,使得穿过金属杯的磁场增强,感应电动势增大,选项A正确;提高交变电流的频率,使得磁通量的变化率增大,感应电动势增大,选项B正确;若将金属杯换为瓷杯,则不会产生感应电流,选项C错误;取走线圈中的铁芯,磁场会大大减弱,感应电动势减小,选项D错误.

答案:AB

10.如图所示,一导线弯成半径为a的半圆形闭合回路.虚线MN右侧有磁感应强度为B的匀强磁场,方向垂直于回路所在的平面.回路以速度v向右匀速进入磁场,直径CD始终与MN垂直.从D点到达边界开始到C点进入磁场为止,下列结论正确的是()

A.感应电流方向不变

B.CD段直导线始终不受安培力

C.感应电动势最大值E m=Ba v

D.感应电动势平均值E=1

4πBa v

解析:根据楞次定律可判断闭合回路中产生的感应电流方向始终不变,选项A 正确;CD段电流方向是由D指向C,CD段受到安培力作用,且方向竖直向下,选项B错误;当半圆的圆心刚进入磁场时,产生的感应电动势最大,E m=Ba v,

选项C正确;由法拉第电磁感应定律得E=ΔΦ

Δt=

πBa v

4,选项D正确.

答案:ACD

三、非选择题

11.(2015·高考浙江卷)小明同学设计了一个“电磁天平”,如图甲所示,等臂天

平的左臂为挂盘,右臂挂有矩形线圈,两臂平衡.线圈的水平边长L =0.1 m ,竖直边长H =0.3 m ,匝数为N 1,线圈的下边处于匀强磁场内,磁感应强度B 0=1.0 T ,方向垂直线圈平面向里.线圈中通有可在0~2.0 A 范围内调节的电流I .挂盘放上待测物体后,调节线圈中电流使天平平衡,测出电流即可测得物体的质量.(重力加速度g 取10 m/s 2)

(1)为使电磁天平的量程达到0.5 kg ,线圈的匝数N 1至少为多少?

(2)进一步探究电磁感应现象,另选N 2=100匝、形状相同的线圈,总电阻R =10 Ω,不接外电流,两臂平衡.如图乙所示,保持B 0不变,在线圈上部另加垂直纸面向外的匀强磁场,且磁感应强度B 随时间均匀变大,磁场区域宽度d =0.1 m .当

挂盘中放质量为0.01 kg 的物体时,天平平衡,求此时磁感应强度的变化率ΔB Δt .

解析:(1)线圈受到的安培力F =N 1B 0IL

天平平衡mg =N 1B 0IL

代入数据得N 1=25

(2)由电磁感应定律得E =N 2ΔΦΔt

即E =N 2ΔB Δt Ld

由欧姆定律得I ′=E R

线圈受到的安培力F ′=N 2B 0I ′L

天平平衡m ′g =N 22B 0ΔB Δt ·dL 2R

代入数据可得ΔB Δt =0.1 T/s

答案:(1)25 (2)0.1 T/s

12.(1)如图甲所示,两根足够长的平行导轨,间距L =0.3 m ,在导轨间有垂直

于纸面向里的匀强磁场,磁感应强度B 1=0.5 T .一根直金属杆MN 以v =2 m/s 的速度向右匀速运动,杆MN 始终与导轨垂直且接触良好.杆MN 的电阻r 1=1 Ω,导轨的电阻可忽略.求杆MN 中产生的感应电动势E 1.

(2)如图乙所示,一个匝数n =100的圆形线圈,面积S 1=0.4 m 2,电阻r 2=1 Ω.在线圈中存在面积S 2=0.3 m 2垂直线圈平面(指向纸外)的匀强磁场区域,磁感应强度B 2随时间t 变化的关系如图丙所示.求圆形线圈中产生的感应电动势E 2.

(3)有一个R =2 Ω的电阻,将其两端分别与图甲中的导轨和图乙中的圆形线圈相连接,b 端接地.试判断以上两种情况中,哪种情况a 端的电势较高?求这种情况中a 端的电势φa .

解析:(1)杆MN 做切割磁感线运动产生的感应电动势为

E 1=B 1L v =0.3 V .

(2)穿过圆形线圈的磁通量发生变化产生的感应电动势为

E 2=n ΔB 2Δt S 2=4.5 V .

(3)当电阻R 与题图甲中的导轨相连接时,a 端的电势较高,通过电阻R 的电流I

=E 1R +r 1

. 电阻R 两端的电势差φa -φb =IR ,

a 端的电势φa =IR =0.2 V .

答案:(1)0.3 V (2)4.5 V (3)与甲相连时 0.2 V

法拉第电磁感应定律教案

§ 4.3 法拉第电磁感应定律 编写 薛介忠 【教学目标】 知识与技能 ● 知道什么叫感应电动势 ● 知道磁通量的变化率是表示磁通量变化快慢的物理量,并能区别Φ、ΔΦ、t ??Φ ● 理解法拉第电磁感应定律内容、数学表达式 ● 知道E =BLv sin θ如何推得 ● 会用t n E ??Φ=和E =BLv sin θ解决问题 过程与方法 ● 通过推导到线切割磁感线时的感应电动势公式E =BLv ,掌握运用理论知识探究问题的方法 情感态度与价值观 ● 从不同物理现象中抽象出个性与共性问题,培养学生对不同事物进行分析,找出共性与个性的辩证唯物主义思想 ● 了解法拉第探索科学的方法,学习他的执著的科学探究精神 【重点难点】 重点:法拉第电磁感应定律 难点:平均电动势与瞬时电动势区别 【教学内容】 [导入新课] 在电磁感应现象中,产生感应电流的条件是什么? 在电磁感应现象中,磁通量发生变化的方式有哪些情况? 恒定电流中学过,电路中产生电流的条件是什么? 在电磁感应现象中,既然闭合电路中有感应电流,这个电路中就一定有电动势。在电磁感应现象中产生的电动势叫感应电动势。下面我们就来探讨感应电动势的大小决定因素。 [新课教学] 一.感应电动势 1.在图a 与图b 中,若电路是断开的,有无电流?有无电动势? 电路断开,肯定无电流,但有电动势。 2.电流大,电动势一定大吗? 电流的大小由电动势和电阻共同决定,电阻一定的情况下,电流越大,表明电动势越大。 3.图b 中,哪部分相当于a 中的电源?螺线管相当于电源。 4.图b 中,哪部分相当于a 中电源内阻?螺线管自身的电阻。 在电磁感应现象中,不论电路是否闭合,只要穿过电路的磁通量发生变化,电路中就有感应电动势。有感应电动势是电磁感应现象的本质。

法拉第与电磁感应定律

法拉第与电磁感应定律 摘要:法拉第,在科学史上做出杰出贡献的实验物理学家,他是名副其实的穷二代,凭借高于常人的智商和自己坚持不懈的努力成为了举世闻名的科学家,他不只是在电磁学中引入了电场线和电磁感应线,这使得后人能更清楚、形象地理解电磁场。他最突出的成就就是发现了电磁感应定律,不但促进了科学的发展而且还开创了人类美好生活的新时代,为人类带来了丰富的物质和精神财富。 关键词:法拉第、电磁感应定律、应用、学习、感应电流 0引言 在21世纪的新时代,法拉第电磁感应定律的运用遍及人类生活的很多方面并使我们的生活越来越便捷,享受着这个时代独有的幸福的同时,我们便更想探索法拉第电磁感应定律具体应用在哪些方面,更想知道到底是什么样的天才发现了这样神奇的定律。本篇论文选择了对近代物理学做出了杰出贡献的英国科学家法拉第的生平进行全面的分析,并综述了电磁感应定律在科技史上的地位。文中有历史、人物和科学的发展过程。 1法拉第简介 1.1法拉第的家庭背景 法拉第,一个自学成才的理工男。1971年9月22日这个未来著名的物理学家呱呱坠地,他是家里的第三个儿子,他的家庭贫困,父亲是一个铁匠,靠着自己勤劳的双手养家糊口,收入甚微,入不敷出。所以,“富二代”、官二代“这样的身份注定与他无缘,要想以后出人头地,只能靠他自己的天赋和努力。贫困的家庭连温饱都难以解决,上学接受教育对他来说那只能是梦想。由于穷困,法拉第在人生最灿烂的时候辍学了,那一年他才13岁,是求知欲最强烈的年华。退学后,为生活所迫,他在街上卖报、在书店当学徒挣钱以贴补家用。是金子就一定会发光,是锤子就一定会受伤,法拉第无疑就是一块金子,就算是出生卑微,无学可上也不会阻碍他这块金子熠熠生辉。 1.2法拉第的求学及工作经历 法拉第酷爱学习,任何一个学习机会对于他都是极其珍贵的,他的哥哥注意到了他的天赋,所以愿意资助他学习,他非常幸运地参加了很多科学活动。通过这些活动他开始接触到了科学的神秘世界并且深深地被科学所吸引,这一切为他未来成为科学家铺好了道路。如果你足够好上帝一定不会埋没你,而且总会为你开上一扇窗,法拉第就是被上帝宠爱的那个人才,上帝为他开了一扇窗从而结识了著名的化学家戴维,他被戴维的才华所征服,随即他大胆地写信给戴维讲述了他对一些科学的见解,并表明自己热爱科学、愿意为科学献身。机会总是垂青于有准备的人,法拉第的能力才华深受戴维的赏识,22岁的他就被戴维任命为自己的实验助理。名师出高徒,法拉第以戴维为师,这为他后来的成就铺就了一条康庄大道。而且法拉第聪明、刻苦,很受戴维的器重,所以每次戴维外出考察时总会让法拉第相伴,而每一次外出考察对他来说都是弥足珍贵的学习机会,都会是他增长知识、开拓视野。 法拉第于1815年回到皇家研究所,而且他的启蒙老师戴维非常耐心地指导他做各种研究工作,在他们共同的努力下好几项化学研究都取得了成果。1816年对法拉第来说是不寻常的一年,是他科学道路的新起点,因为在这一年他发表了他人生中的首篇论文。从1818年开始他和J·斯托达特共同钻研合金钢,并且第一次独立创立了著名的金相分析方法。由于法拉第工作兢兢业业,深受研究院的重视,所以1821年被学院提升担任皇家学院总监这一要职。在两年之后的1823年,经过刻苦的钻研他发现了氯气与其余一些气体的液化方法。世界总是公平的,春天种下什么种子秋天就会收获什么果实,而法拉第所付出的努力也是会得到回报的,1824年1月他终于正式成为皇家学会的会员。1825年2月法拉第传承了启蒙老师戴维曾经的职位即被任命为皇家研究所实验室主任。就在这一年,他又有一项伟大的发现-----他发现了有机物苯。

《法拉第电磁感应定律》教学案例

法拉第电磁感应定律教学设计 鹿城中学理化生教研组田存群 课程背景: “法拉第电磁感应定律”是高二物理选修(3-2)中的第四章第4节内容,是电磁学的核心内容。从知识的发展来看,它既能与电场、磁场和恒定电流有紧密的联系,又是学习交流电、电磁振荡和电磁波的重要基础。从能力的发展来看,它既能在与力、热知识的综合应用中培养综合分析能力,又能全面体现能量守恒的观点。因此,它既是教学的重点,又是教学的难点。 鉴于此部分知识较抽象,而我的学生的抽象思维能力较弱。在这节课的教学中,我注重体现新课程改革的要求,注意新旧知识的联系,同时紧扣教材,通过实验、类比、等效的手段和方法,来化难为简,使同学们利用已掌握的旧知识,来理解所要学习的新概念。力求通过明显的实验现象诱发同学们真正的主动起来,从而激发兴趣,变被动记忆为主动认识。 课程详述: 一.教学目标: 1.知道感应电动势,能区分磁通量的变化Δφ和磁通量的变化率Δφ/Δt。 通过演示实验,定性分析感应电动势的大小与磁通量变化快慢之间的关系。培养学生对实验条件的控制能力和对实验的观察能力。 2.通过法拉第电磁感应定律的建立,进一步定量揭示电与磁的关系,培养学生类比推理能力和通过观察、实验寻找物理规律.使学生明确电磁感应现象中的电路结构,通过对公式E=nΔφ/Δt的理解,引导学生推导出E=BLv,并学会初步的应用。 3.通过介绍法拉第的生平事迹,使学生了解法拉第探索科学的方法和执著的科学研究精神,教育学生加强学习的毅力和恒心。 二.教学重点: 法拉第电磁感应定律的建立过程及规律理解。 三.教学难点: 1.磁通量、磁通量的变化量、磁通量的变化率三者的区别。 2.理解E=nΔφ/Δt是普遍意义的公式,而E=BLv是特殊情况下导线在切割磁感线情况下的计算公式。 四.教具:

法拉第电磁感应定律总结

法拉第电磁感应定律总结 一·电磁感应是指利用磁场产生电流的现象。所产生的电动势叫做感应电动势。所产生的电流叫做感应电流 注意: 1) 产生感应电动势的那部分导体相当于电源。 2) 产生感应电动势与电路是否闭合无关, 而产生感应电流必须闭合电路。 3) 产生感应电流的两种叙述是等效的, 即闭合电路的一部分导体做切割磁感线 运动与穿过闭合电路中的磁通量发生变化等效。: 二·电磁感应规律 1感应电动势的大小: 由法拉第电磁感应定律确定。 当长L的导线,以速度v,在匀强磁场B中,垂直切割磁感线,其两端间感应电动势的大小为E=BLV(1)。 此公式使用条件是方向相互垂直,如不垂直,则向垂直方向作投影。,电路中感应电动势的大小跟穿过这个电路的磁通变化率成正比——法拉第电磁感应定律。 2在回路中面积变化,而回路跌磁通变化量,又知B S T。 如果回路是n匝串联,则 E=NBS/T(2)。 3公式一:要注意: 1)该式通常用于导体切割磁感线时, 且导线与磁感线互相垂直 (l^B )。2)为v与B的夹角。l为导体切割磁感线的有效长度(即l为导体实际长度在垂直 于B方向上的投影) 公式二: 。注意: 1)该式普遍适用于求平均感应电动势。2)只与穿过电路的磁通量的变化率有关, 而与磁通的产生、磁通的大小及变化方式、电路是否闭合、电路的结构与材料等因素无关 公式中涉及到磁通量的变化量的计算, 对的计算, 一般遇到有两种情况: 1)回路与 磁场垂直的面积S不变, 磁感应强度发生变化, 由, 此时,此式中的叫磁感应强度的变化率, 若是恒定的, 即磁场变化是均匀的, 那么产生的感应电动势是恒定电动势。2)磁感应强度B 不变, 回路与磁场垂直的面积发生变化, 则, 线圈绕垂直于匀强磁场的轴匀速转动产生交 变电动势就属这种情况。 4严格区别磁通量, 磁通量的变化量磁通量的变化率, 磁通量, 表示穿过研究平面的 磁感线的条数, 磁通量的变化量, 表示磁通量变化的多少, 磁通量的变化率表示磁通量变 化的快慢, , 大, 不一定大; 大, 也不一定大, 它们的区别类似于力学中的v, 的区别, 另外I、也有类似的区别。 5 当长为L的导线,以其一端为轴,在垂直匀强磁场B的平面内,以角速度匀速转动时,其两端感应电动势为E=1/2BL*LW。 6 三种切割情形的感应电动势

法拉第电磁感应专题大题

法拉第电磁感应定律专题 1.如图所示,宽度L二的足够长的平行光滑金属导轨固定在绝缘水平面上,导 轨的一端连接阻值R=Q的电阻。导轨所在空间存在竖直向下的匀强磁场,磁感应强度B=.—根质量m=10g的导体棒MN放在导轨上,并与导轨始终接触良好,导轨和导体棒的电阻均可忽略不计。现用垂直MN的水平拉力F拉动导体棒使其沿导轨向右匀速运动,速度v=s,在运动过程中始终保持导体棒与导轨垂直。求: (1)在闭合回路中产生感应电流I的大小; (2)作用在导体棒上拉力F的大小; (3)当导体棒移动50cm时撤去拉力,求整个过程中电阻R上产生的热量Q。 X X 乂MX XXX Q, R2=6Q,整个装置放在磁感应强度为B=的匀强磁场中,磁场方向垂直与整个导轨平面,现用外力F拉着AB向右以v=5m/s速度作匀速运动.求: (1)导体棒AB产生的感应电动势E和AB棒上的感应电流方向, (2)导体棒AB两端的电压U. 3.如图所示,半径为R的圆形导轨处在垂直于圆平面的匀强磁场中,磁感应 强度为B,方向垂直于纸面向内。一根长度略大于导轨直径的导体棒MN以速率v在圆导轨上从左端滑到右端,电路中的定值电阻为r,其余电阻不计, 导体棒与圆形导轨接触良好。求: (1)在滑动过程中通过电阻r的电流的平均值; (2)MN从左端到右端的整个过程中,通过r的电荷量; (3)当MN通过圆导轨中心时,通过r的电流是多大 2.如图所示,两个光滑金属导轨(金属导轨电阻忽略不计)相距L=50cm, 导体棒AB的电阻为r=1 Q,且可以在光滑金属导轨上滑动,定值电阻R1=3 4?如图(a)所示,平行金属导轨MN、PQ光滑且足够长,固定在同一水平面上,两导轨间距L=,电阻R=Q,导轨上停放一质量m =、电阻r =Q的金属杆, 导轨 X X n n XXX F X X X [x X XXX X X i/ X X X

法拉第的电磁感应实验

法拉第的电磁感应实验 作者:不详日期:2006-11-2 来源:本站点击: 我们现在生活在一个电气时代里:电动机在工厂里轰鸣,电车在飞驰,电灯照亮了千家万户,电视机在播放节目,电脑在运作……由于有了电,旧时代许多令人神往的幻想已变成了现实。如今电气业给我们创造的这一切福利和文明,都起源于1831年10月17日法拉第的一次具有划时代意义和意外的电磁实验成功。由于这次成功,法拉第制造了世界上第一台电磁感应发电机;由于这次成功,人类制造出今天的发电机、电动机、水电站,以及一切电力站网。 法拉第(1791~1867)出生于英国伦敦一个铁匠家里。由于家庭贫困,他12岁时就到一家书店当学徒。由于经常接触图书,他发现书里有许多自己从不知道的事物,书籍简直是知识的海洋。从此以后他开始刻苦自学,认真读书,发奋要成为一个有学识的人。他不仅认真阅读电学、化学方面的书籍,而且用平日节约下来的一点钱买了几件实验仪器,按书中所说的做起实验来。 法拉第不仅向书本学习,还利用一切机会向当时著名的科学家学习,买票听他们的讲演,认真做记录。1810年春天,法拉第凑钱去听科学家塔特林讲解自然科学。他每晚都将所做的记录整理誊清。特别对法拉第人生具有重大转折意义的是,他于1812年时到英国皇家学院去听著名科学家戴维的化学讲演。正是从此开始,他踏上了献身科学的道路。 他大胆地给戴维先生写了封信,而且将听讲的记录全寄去了。他在信中说明了自己对科学的热爱,并且渴望能在皇家学会得到一份工作。戴维看到了他的严肃认真和对科学的热情,竟然答应了他的请求,介绍他到皇家学院当助理员,担任了戴维的实验助手。 实验室的工作为法拉第提供了优越的条件。他可以自由地利用图书馆,获得各种资料,从而可以发展各方面的知识。作为戴维的助手和随从,法拉第又获得了到欧洲大陆进行科学考察的机会。尽管在旅行中受到戴维夫人的凌辱,以及其他不公正的待遇,但法拉第借这次机会却增长了知识,结交了朋友,了解了当时各国的科学状况。

法拉第电磁感应定律教案

第四节法拉第电磁感应定律(教案) 教学目标: (一)知识与技能 1.让学生知道什么叫感应电动势,知道电路中哪部分相当于电源 2.让学生知道磁通量的变化率是表示磁通量变化快慢的物理量。 3.让学生理解法拉第电磁感应定律内容、数学表达式。 4.知道E=BLv sinθ如何推得。 (二)过程与方法 (1)通过实验,培养学生的动手能力和探究能力。 (2)通过推导导线切割磁感线时的感应电动势公式E=BLv,掌握运用理论知识探究问题的方法。 (三)情感、态度与价值观 了解法拉第探索科学的方法,学习他的执著的科学探究精神。 教学重点 1、让学生探究影响感应电动势的因素,并能定性地找出感应电动势与磁通量的变化率的关 系。 2、会推导导线切割磁感线时的感应电动势的表达式。 教学难点 如何设计探究实验定性研究感应电动势与磁通量的变化率之间的关系。 教学用具 多媒体电脑、PPT课件、8组探究实验器材(线圈、蹄形磁铁、导线、电流计等) 教学过程: 课堂前准备 将实验器材提前分组发给学生。以便分组实验。 引入新课 师:在物理学史上,有这样一位科学家,他是一个贫穷的铁匠的儿子,做过订书学徒,干过非常卑贱的工作,但却取得了非凡的成就。他用一个线圈和一个磁铁,改变了整个世界。

今天,从美国的阿拉斯加到中国的青藏高原,从北极附近的格陵兰岛,到南极考察站,都里不开他一百多年前的发现,这位科学家是谁?——英国科学家法拉第。 下面大家各小组在重新做一下这一有着划时代意义的实验:(学生做实验) 在学生组装实验器材做实验的同时,教师进行巡视,指导。学生可能出现的情况: 组装器材缓慢,接触不好,现象不明显等。教师应加以必要的指导。 师:同学们,我们用一个线圈和一个磁铁竟然使闭合电路中产生了电流,这是多么令人惊奇的发现!根据电路的知识,在这个实验电路中哪一部分相当于电源呢?(学生回答) 师:如果你是法拉第,当你发现了电磁感应现象以后,下一步你要进一步研究什么呢?(学生回答) 好,下面我们就来探究一下影响感应电动势的因素。现在大家猜想一下:感应电动势可能由什么因素决定?小组讨论一下。(学生讨论) (可让学生自由回答)情况预测:线圈的大小、匝数、磁通量的大小、磁通量变化的大小、时间、磁通量的变化率、磁感应强度等等…….. 师:大家猜想的都有可能。我们知道产生感应电流的条件是磁通量要变化,那么是不是就意味着感应电动势和磁通量的变化有关,与变化时间有关。下面我们就来探究一下感应电动势E 与磁通量的变化ΔΦ和变化时间Δt 有什么定性关系。 研究三个变量之间的关系,我们采用什么方法? (生答)待定系数法黑板上板书: ΔΦ一定,Δt 增大,则E Δt 一定,ΔΦ增大,则E 师:好,现在就请各组的同学按照学案上的提示,看能不能 设计试验来探究一下: 在这里教师要在巡回中加以指导,对对学生的设计方案进行 必要修改和纠正。可先让学生说一下实验方案。(注意图中 两个电表不应该是电流计) 学生试验完成后,让学生在黑板上填上结论。 精确的定量实验人们得出:电路中感应电动势的大小,跟穿过这一电路的磁通量的变化率成正比,这就是法拉第电磁感应定律。 表达式:E= t n E ??Φ= 实际上,上式只是单匝线圈所产生的感应电动势的表达式,如果是n 匝线圈,那么表达式应该是怎样的?为什么?可以从理论上得出吗?

《楞次定律和法拉第电磁感应定律

2016楞次定律和法拉第电磁感应定律(一) 班级姓名 【知识反馈】 1.产生感应电流的条件: 2.楞次定律的内容: 从不同角度理解楞次定律: (1)从磁通量变化的角度: (2)从相对运动的角度: (3)从面积变化的角度: 3.法拉第电磁感应定律的内容: 表达式:,适用 表达式:,适用 【巩固提升】 1、如图所示,蹄形磁铁的两极间,放置一个线圈abcd,磁铁和线圈 都可以绕OO′轴转动,磁铁如图示方向转动时,线圈的运动情况是 ( ) A.俯视,线圈顺时针转动,转速与磁铁相同 B.俯视,线圈逆时针转动,转速与磁铁相同 C.线圈与磁铁转动方向相同,但转速小于磁铁转速 D.线圈静止不动 2、如图所示,两轻质闭合金属圆环,穿挂在一根光滑水平绝缘直杆上,原来处于静止状态。当条形磁铁的N极自右向左插入圆环时,两环的运动情况是( ) A.同时向左运动,两环间距变大; B.同时向左运动,两环间距变小; C.同时向右运动,两环间距变大; D.同时向右运动,两环间距变小。 3.如图所示,光滑固定导轨M、N水平放置,两根导体棒P、Q 平行放置于导轨上,形成一个闭合回路,一条形磁铁从高处下 落接近回路时( ) A.P、Q将相互靠拢 B.P、Q将相互远离 C.磁铁的加速度仍为g D.磁铁的加速度小于g 4.如图是验证楞次定律实验的示意图,竖直放置的线圈固定不动,将磁铁从线圈上方插入或拔出,线圈和电流表构成的闭合回路中就会产生感应电流,各图中分别标出了磁铁的极性、磁铁相对线圈的运动方向以及线圈中产生的感应电流的方向等情况,其中表示正确的是( )

5.如图所示,一金属弯杆处在磁感应强度大小为B、方向垂直纸面向里的匀强磁场中,已知ab=bc=L,当它以速度v向右平动时,a、c两点间的电势差为( ) A.BLv B.BLv sinθ C.BLv cosθ D.BLv(l+sinθ) 6.如图所示,两块水平放置的金属板距离为d,用导线与一 个n匝的线圈连接,线圈置于方向竖直向上的变化磁场B 中,两板间有一个质量为m、电量为+q的油滴处于静止状态,则线圈中的磁场B 的变化情况和磁通量变化率分别是( ) A、正在增加, B、正在减弱, C、正在增加, D、正在减弱, 7.在竖直方向的匀强磁场中,水平放置一圆形导体环。规定导体环中电流的正方向如图11(甲)所示,磁场方向竖直向上为正。当磁感应强度B 随时间t按图(乙)变化时,下列能正确表示导体环中感应电流随时间变化情况的是( ) 8.如图所示,平行金属导轨MN和PQ,它们的电阻可忽略不计,在M和P之间接有阻值为R=3.0 Ω的定值电阻,导体棒ab长L=0.5 m,其电阻不计,且与导轨接触良好,整个装置处于方向竖直向上的匀强磁场中,磁感应强度B=0.4 T,现使ab以v=10 m/s的速度向右做匀速运动,则以下判断正确的是( ) A.导体棒ab中的感应电动势E=2.0 V B.电路中的电流I=0.5 A C.导体棒ab所受安培力方向向右 D.导体棒ab所受合力做功为零 9. 在匀强磁场中放一电阻不计的平行金属导轨,导轨跟大 线圈M相接,如图所示,导轨上放一根导线ab,磁感线垂 直导轨所在的平面,欲使M所包围的小闭合线圈N产生顺 时针方向的感应电流,则导线的运动可能是()

我看法拉第 电磁学小论文

法拉第与电磁感应 【摘要】迈克尔·法拉第(Michael Faraday,1791年9月22日—1867年8月25日),英国物理学家,也精于化学,在电磁学及电化学领域有贡献。迈克尔·法拉第是英国著名化学家戴维的学生和助手,他的发现奠定了电磁学的基础,是麦克思韦的先导。1831年10月17日,法拉第首次发现电磁感应现象。有人问戴维一生中最伟大的发现是什么,他绝口不提自己发现的钠、钾、氯、氟等元素,却说:“我最伟大的发现是一个人,是法拉第。” 【关键词】法拉第成才贡献楷模创造性 一、法拉第的成才 迈克尔·法拉第于1791年9月22日出生在英国伦敦南效萨里郡纽英镇的一个铁匠家庭。由于他家里相当穷,上不起学。他被家人送到书店里学习装订技术,法拉第在装订书籍的同时从书店老板那里习得识字。从书中学到很多新的知识。特别是当他接触到有趣的书籍时就贪婪地读起来,尤其是百科全书和有关电的书本,简直使他着了迷。繁重的体力劳动、无知和贫穷,都没有能阻挡法拉第向科学进军。就这样,法拉第走上了自学的道路。法拉第学徒期满,在一家书铺做装订工。1812年,法拉第听完了当时著名的化学家戴维在皇家学院做的一系列化学讲座,并作了详细的笔记。这时法拉第已无法安心自己的工作,他是那样地向往科学。他给皇家学会会长兼皇家学院院长写了一封求职信,却石沉大海。同年12月,法拉第又一次向命运挑战了。他鼓起勇气给戴维写信,并且把装订成册的戴维4次讲座的笔记一起送去。法拉第巨大的热情、超人的记忆和献身科学的精神,感动了这位大化学家。法拉第到皇家学院化学实验室当了戴维的助手。科学圣殿的大门向学陡出身的法拉弟打开了。 法拉第在戴维指导下开始了自己的研究工作。1815年,他参与了煤矿安全灯的研制工作。1816年,法拉第发表了他的第一篇论文“多斯加尼本工生石灰的分析”。到1819年他已经在化学、气体液化、特种钢研究等方面发表论文37篇,成了一位小有名气的化学家。1821年10月,法拉第发表了一篇有关电磁学的论文“论某些新的电磁运动兼论磁学的理论”,开始在电磁学领域崭露头角。同年,他发明了电磁旋转器,用实验证实了电磁力是一种旋转力。1824年,被选为皇家研究所的实验室主任。1831年发现了电磁感应现象,这是法拉第在科学上的最高成就,这在物理学上起了重大的作用。1833年到1834年他研究电流通过溶液时产生的化学变化,提出了法拉第电解定律。1834年,他又重新研究了感应现象,这一次发现了静电感应, 并独立地和亨利同时发现了自感现象。1843年法拉第第一个证明了电荷守恒定律。1845年,发现了偏振光在磁场作用下通过重玻璃后偏振面旋转,称为“磁旋光效应”。他还提出了“场”和“力线”的概念,同年又发现了物质的抗磁性。法拉第的最后一个研究课题是探索光束在磁场中分裂效应,在这个课题上他没能取得成功,但后来终于被塞罗发现。1855年法拉第完成了电磁学巨著——《电的实验研究》。1858年,法拉第离开皇家学院,到伦敦度过晚年生活。1867年8

法拉第电磁感应定律知识点及例题

第3讲 法拉第电磁感应定律及其应用 一、感应电流的产生条件 1、回路中产生感应电动势和感应电流的条件是回路所围面积中的磁通量变化,因此研究磁通量的变化是关键,由磁通量的广义公式中φθ=B S ·sin (θ是B 与S 的夹角)看,磁通量的变化?φ可由面积的变化?S 引起;可由磁感应强度B 的变化?B 引起;可由B 与S 的夹角θ的变化?θ引起;也可由B 、S 、θ中的两个量的变化,或三个量的同时变化引起。 2、闭合回路中的一部分导体在磁场中作切割磁感线运动时,可以产生感应电动势,感应电流,这是初中学过的,其本质也是闭合回路中磁通量发生变化。 3、产生感应电动势、感应电流的条件:穿过闭合电路的磁通量发生变化。 二、法拉第电磁感应定律 公式一: t n E ??=/φ 注意: 1)该式普遍适用于求平均感应电动势。 2)E 只与穿过电路的磁通量的变化率??φ/t 有关, 而与磁通的产生、磁通的大小及变化方式、电路是否闭合、电路的结构与材料等因素无关。 公式t n E ??=φ 中涉及到磁通量的变化量?φ的计算, 对?φ的计算, 一般遇到有两种情况: 1)回路与磁场垂直的面积S 不变, 磁感应强度发生变化, 由??φ=BS , 此时S t B n E ??=, 此式中的??B t 叫 磁感应强度的变化率, 若 ??B t 是恒定的, 即磁场变化是均匀的, 那么产生的感应电动势是恒定电动势。 2)磁感应强度B 不变, 回路与磁场垂直的面积发生变化, 则??φ=B S ·, 线圈绕垂直于匀强磁场的轴匀速转动产生交变电动势就属这种情况。 严格区别磁通量φ, 磁通量的变化量?φB 磁通量的变化率 ??φ t , 磁通量φ=B S ·, 表示穿过研究平面的磁感线的条数, 磁通量的变化量?φφφ=-21, 表示磁通量变化的多少, 磁通量的变化率 ??φ t 表示磁通量变化的快慢, 公式二: θsin Blv E = 要注意: 1)该式通常用于导体切割磁感线时, 且导线与磁感线互相垂直(l ⊥B )。 2)θ为v 与B 的夹角。l 为导体切割磁感线的有效长度(即l 为导体实际长度在垂直于B 方向上的投影)。 公式Blv E =一般用于导体各部分切割磁感线的速度相同, 对有些导体各部分切割磁感线的速度不相同的情况, 如何求感应电动势? 如图1所示, 一长为l 的导体杆AC 绕A 点在纸面内以角速度ω匀速转动, 转动的区域的有垂直纸面向里的匀强磁场, 磁感应强度为B , 求AC 产生的感应电动势, 显然, AC 各部分切割磁感线的速度不相等, v v l A C ==0,ω, 且AC 上各点的线速度大小与半径成 正比, 所以AC 切割的速度可用其平均切割速v v v v l A C C =+==222ω, 故2 2 1l B E ω=。 ω2 2 1BL E = ——当长为L 的导线,以其一端为轴,在垂直匀强磁场B 的平面内,以角速度ω匀速转动时,其两端感应电动势为E 。

法拉第电磁感应的应用(一)

法拉第电磁感应的应用(一) 【知识梳理】: 电磁感应现象中的力学和能量问题; 1.电磁感应中,导体运动切割磁感线而产生感应电流,感应电流在磁场中将受到安培力的作用,动态分析中,抓住“速度变化引起安培力的变化”,正确分析受力情况和运动情况.结合平衡问题和牛顿第二定律以及运动学公式求解. 例题2.如图,光滑斜面的倾角α= 30°,在斜面上放置一矩形线框abcd ,ab 边的边长l 1 = l m ,bc 边的边长l 2= 0.6 m ,线框的质量m = 1 kg ,电阻R = 0.1Ω,线框通过细线与重物相连,重物质量M = 2 kg ,斜面上ef 线(ef ∥gh )的右方有垂直斜面向上的匀强磁场,磁感应强度B = 0.5 T ,如果线框从静止开始运动,进入磁场最初一段时间是匀速的,ef 线和gh 的距离s = 11.4 m , (取g = 10.4m/s 2 ),求: (1)线框进入磁场前重物M 的加速度; (2)线框进入磁场时匀速运动的速度v ;

(3)ab 边由静止开始到运动到gh 线处所用的时间t ; (4)ab 边运动到gh 线处的速度大小和在线框由静止开始到运动到gh 线的整个过程中产生的焦耳热。 “思路分析”(1)线框进入磁场前,线框仅受到细线的拉力F T ,斜面的支持力和线框重力,重物M 受到重力和拉力F T 。运用牛顿第二定律可得因为线框进入磁场的最初一段时间做匀速运动所以重物受力平衡(3)线框abcd 进入磁场前时,做匀加速直线运动;进磁场的过程中,做匀速直线运动;进入磁场后到运动到gh 线,仍做匀加速直线运动。 “解答” (1)对线框,由F T – mg sin α= ma . 平向右或有水平向右的分量,但安培力若有竖直向上的分量,应小于导体棒所受重力,否则导体棒会向上跳起而不是向右摆,由左手定则可知,磁场方向斜向下或竖直向下都成立,A 错;当满足导体棒“向右摆起”时,若磁场方向竖直向下,则安培力水平向右,在导体棒获得的水平冲量相同的条件下,所需安培力最小,因此磁感应强度也最小,B 正确;设导体棒右摆初动能为E k ,摆动过程中机械能守恒,有E k = mgl (1–cos θ),导体棒的动能是电流做功而获得的,若回路电阻不计,则电流所做的功全部转化为导体棒的动 能,此时有W = IEt = qE = E k ,得W = mgl (1–cos θ),(1cos )mgl q E θ=-,题设条件有电源内阻不计而没有

法拉第电磁感应

感应电动势: 我们知道,要使闭合电路中有电流,这个电路中必须有电源,因为电流是由电源的电动势引起的。在电磁感应现象里,既然闭合电路里有感应电流,那么这个电路中也必定有电动势,在电磁感应现象中产生的电动势叫做感应电动势。 感应电动势分为感生电动势和动生电动势。 感生电动势的大小跟穿过闭合电路的磁通量改变的快慢有关系, E=ΔΦ/Δt. 产生动生电动势的那部分做切割磁力线运动的导体就相当于电源。 理论和实践表明,长度为l的导体,以速度v在此感应强度为B的匀强磁场中做切割磁感应线运动时,在B、L、v互相垂直的情况下导体中产生的感应电动势的大小为:ε=BLv 式中的单位均应采用国际单位制,即伏特、特斯拉、米每秒。 电磁感应现象中产生的电动势。常用符号E表示。当穿过某一不闭合线圈的磁通量发生变化时,线圈中虽无感应电流,但感应电动势依旧存在。当一段导体在匀强磁场中做匀速切割磁感线运动时,不论电路是否闭合,感应电动势的大小只与磁感应强度B、导体长度L、切割速度v 及v和B方向间夹角θ的正弦值成正比,即E=BLvsinθ(θ为B,L,v三者间通过互相转化两两垂直所得的角)。 在导体棒不切割磁感线时,但闭合回路中有磁通量变化时,同样能产生感应电流。 应用楞次定律可以判断电流方向。 感应电流产生的条件: 1.电路是闭合且通的 2.穿过闭合电路的磁通量发生变化 (如果缺少一个条件,就不会有感应电流产生). 感应电动势的种类:动生电动势和感生电动势。 动生电动势是因为导体自身在磁场中做切割磁感线运动而产生的感应电动势,其方向用右手定则判断,使大拇指跟其余四个手指垂直并且都跟手掌在一个平面内,把右手放入磁场中,让磁感线垂直穿入手心,大拇指指向导体运动方向,则其余四指指向动生电动势的方向。动生电动势的方向与产生的感应电流的方向相同。右手定则确定的动生电动势的方向符合能量转化与守恒定律。 感生电动势是因为穿过闭合线圈的磁场强度发生变化产生涡旋电场导致电流定向运动。其方向符合楞次定律。右手拇指指向磁场变化的反方向,四指握拳,四指方向即为感应电动势方向。 [编辑本段]法拉第电磁感应定律的重要意义

法拉第电磁感应定律教案

法拉第电磁感应定律 江苏省金湖中学 吉启洲 2006-7-30 【教学依据】 人教版高中物理选修3-2第四章第三节 【教学流程】 1.感应电动势:创设问题情景→设计问题→迁移类比→回答问题→定义概念 2.法拉第电磁感应定律:创设问题情景→提出问题→设计实验→进行实验→分析与论证→交流与评估→总结规律→规律应用 【课程标准的研究及教材分析】 研究新课程标准,是了解编者意图的有效途径,也是明确每节教材内容在前后知识体系中的地位,以及确立每节内容的三维目标的基础,更是进行案例设计和教学的前提。本节是选修3-2模块的一个二级主题“电磁感应”的一节内容(另外两个二级主题分别是交变电流和传感器)。【标准】中认为本模块的大部分内容都要求通过实验、探究与活动来展现。应让学生尽可能多的经历一些探究的过程,领悟物理学研究的思想和方法。结合这一要求,虽然本节教材没有安排实验,然笔者在本节教学设计中根据教材前后内容的承接关系及学生的认知能力和特点,还是以实验定性探究来突破重难点和落实三维目标。 新课程标准中为“电磁感应”确立了是4个主题,本节内容是第三个主题――通过探究,理解楞次定律,理解法拉第电磁感应定律。因此本节内容属知识与技能目标的“理解”水平。由于高中阶段电磁感应定律的定量实验很难完成,因而 【标准】没有要求通过实验来研究,但应通过定性的实验让学生观察磁通量的变化快慢是影响感应电动势的主要因素,从而直接给出法拉第电磁感应定律和公式。要求学生能应用电磁感应定律解释一些生活和技术中的现象,要会应用电磁感应定律计算有关问题。 就本节内容而言,“法拉第电磁感应定律”是电磁学的核心内容,从知识的发展来看,它既能与电场、磁场和恒定电流有紧密的联系,又是学习交流电、电磁振荡和电磁波的重要基础;从能力的发展来看,它既能在与力、热知识的综合应用中培养综合分析能力,又能全面体现能量守恒的观点。因此,它既是教学的重点,又是教学的难点。根据课程标准和学生的接受能力,教学中应着重揭示法拉第电磁感应定律及其公式E=n t ??Φ的建立过程、物理意义及应用,而公式E =BLv sin θ只作为法拉第电磁感应定律在特定条件下推导出的表达式.这样做可以让学生在这节课的学习中分清主次,减轻学生认知上的负担,又不降低应用上的要求. 此部分知识较抽象,而现在学生的抽象思维能力还比较弱。所以在这节课的

最新高中物理选修3-2法拉第电磁感应定律练习题及答案

法拉第电磁感应定律练习题 一、选择题 1.关于感应电动势大小的下列说法中,正确的是[ ] A.线圈中磁通量变化越大,线圈中产生的感应电动势一定越大 B.线圈中磁通量越大,产生的感应电动势一定越大 C.线圈放在磁感强度越强的地方,产生的感应电动势一定越大 D.线圈中磁通量变化越快,产生的感应电动势越大 2.与x轴夹角为30°的匀强磁场磁感强度为B(图1),一根长l的金属棒在此磁场中运动时始终与z轴平行,以下哪些情况可在棒中得到方向相同、大小为Blv 的电动势[ ] A.以2v速率向+x轴方向运动 B.以速率v垂直磁场方向运动 3.如图2,垂直矩形金属框的匀强磁场磁感强度为B。导体棒ab垂直线框两长边搁在框上,ab长为l。在△t时间内,ab向右匀速滑过距离d,则[ ]

4.单匝矩形线圈在匀强磁场中匀速转动,转轴垂直于磁场,若线圈所围面积里磁通量随时间变化的规律如图3所示[ ] A.线圈中O时刻感应电动势最大 B.线圈中D时刻感应电动势为零 C.线圈中D时刻感应电动势最大 D.线圈中O至D时间内平均感电动势为0.4V 5.一个N匝圆线圈,放在磁感强度为B的匀强磁场中,线圈平面跟磁感强度方向成30°角,磁感强度随时间均匀变化,线圈导线规格不变,下列方法中可使线圈中感应电流增加一倍的是[ ] A.将线圈匝数增加一倍 B.将线圈面积增加一倍 C.将线圈半径增加一倍 D.适当改变线圈的取向 6.如图4所示,圆环a和圆环b半径之比为2∶1,两环用同样粗细的、同种材料的导线连成闭合回路,连接两圆环电阻不计,匀强磁场的磁感强度变化率恒定,则在a环单独置于磁场中和b环单独置于磁场中两种情况下,M、N两点的电势差之比为[ ] A.4∶1

法拉第电磁感应现象

课题:第三章第二节法拉第电磁感应现象 年级:高二文科课型:新课主备人审核人班级:姓名: 【教学目标】 知识与技能:1、知道什么是感应电动势。 2、了解什么是磁通量及磁通量的变化量和磁通量的变化率。 3、了解法拉第电磁感应定律内容及数学表达式,学会用该定律分析与解决一些问题。 过程与方法:自学、探究、训练 情感态度与价值观:培养学生实事求是,严格认真的科学态度。 【学前准备】 电气化需要强大的电力。要利用电磁感应现象来获得大规模使用的电,还有许多规律要探索。例如,怎样使电磁感应获得电压高一些,就是一个必须解决的问题。法拉第电磁感应定律的建立,为解决实际问题指明了方向,叩开了电气化的大门。 在电磁感应现象中,既然在闭合电路中产生了感应电流,这个电路中就一定有电动势。我们把电磁感应现象中产生的电动势叫做感应电动势。在闭合电路里,产生感应电动势的那部分导体相当于电源。 1、在电磁感应现象中,什么是磁通量及磁通量的变化率? 【新知学习】 1、我们仍然用教材图3.1-2和图3.1-3的装置做实验,研究影响感应电动势大小的因素。 为了使得感应电动势大一些,我们可以怎么做? 思考与讨论:能不能利用磁通量的概念,把情况概括起来,用一句话说明什么条件下可以获得较大的感应电动势? 2、什么是法拉第电磁感应定律? 法拉第电磁感应定律的表达式:E=ΔΦ/Δt(E表示感应电动势;ΔΦ表示磁通量;Δt 表示时间变化量) 3、线圈的匝数与感应电动势有着什么关系?

例题:1.当穿过线圈的磁通量发生变化时,下列说法中正确的是() A、线圈中一定有感应电流 B、线圈中一定有感应电动势 C、感应电动势的大小跟磁通量的变化成正比 D、感应电动势的大小跟线圈的电阻有关 例题:2.闭合的金属环处于随时间均匀变化的匀强磁场中,磁场方向垂直于圆环平面,则( ) A、环中产生的感应电动势均匀变化 B、环中产生的感应电流均匀变化 C、环中产生的感应电动势保持不变 D、环上某一小段导体所受的安培力保持不变 【应用与拓展】 1.关于感应电动势大小的下列说法中,正确的是() A、线圈中磁通量变化越大,线圈中产生的感应电动势一定越大 B、线圈中磁通量越大,产生的感应电动势一定越大 C、线圈放在磁感强度越强的地方,产生的感应电动势一定越大 D、线圈中磁通量变化越快,产生的感应电动势越大 2、穿过单匝闭合线圈的磁通量每秒钟均匀的增加2Wb,则() A、线圈中的感应电动势将均匀增加 B、线圈中的感应电流将均匀增大 C、线圈中的感应电动势将保持2V不变 D、线圈中的感应电流将保持2A 3、关于感应电动势和感应电流,下列说法中正确的是() A、只要当电路闭合,且穿过电路的磁通量发生变化时,电路中才有感应电 动势 B、只有当电路闭合,且穿过电路的磁通量发生变化时,电路中才有感应 C、不管电路是否闭合,只要有磁通量穿过电路,电路中就有感应电动势 D、不管电路是否闭合,只要穿过电路的磁通量发生变化,电路中就有感应 电流

法拉第电磁感应定律练习题40道35066

xxxXXXXX学校XXXX年学年度第二学期第二次月考XXX年级xx班级 :_______________班级:_______________考号:_______________ 题号 一 、选择 题二、填空 题 三、计算 题 四、多项 选择 总分 得分 一、选择题 (每空?分,共?分) 1、彼此绝缘、相互垂直的两根通电直导线与闭合线圈共面,下图中穿过线圈的磁通量可能为零的是 2、伟大的物理学家法拉第是电磁学的奠基人,在化学、电化学、电磁学等领域都做出过杰出贡献,下列述中不符合历史事实的是() A.法拉第首先引入“场”的概念来研究电和磁的现象 B.法拉第首先引入电场线和磁感线来描述电场和磁场 C.法拉第首先发现了电流的磁效应现象 D.法拉第首先发现电磁感应现象并给出了电磁感应定律 3、如图所示,两个同心放置的共面金属圆环a和b,一条形磁铁穿过圆心且与环面垂直,则穿过两环的磁通量Φa 和Φb大小关系为: A.Φa>Φb B.Φa<Φb C.Φa=Φb D.无法比较 4、关于感应电动势大小的下列说法中,正确的是() 评卷人得分

A.线圈中磁通量变化越大,线圈中产生的感应电动势一定越大 B.线圈中磁通量越大,产生的感应电动势一定越大 C.线圈放在磁感强度越强的地方,产生的感应电动势一定越大 D.线圈中磁通量变化越快,产生的感应电动势越大 5、对于法拉第电磁感应定律,下面理解正确的是 A.穿过线圈的磁通量越大,感应电动势越大 B.穿过线圈的磁通量为零,感应电动势一定为零 C.穿过线圈的磁通量变化越大,感应电动势越大 D.穿过线圈的磁通量变化越快,感应电动势越大 6、如图所示,均匀的金属长方形线框从匀强磁场中以匀速V拉出,它的两边固定有带金属滑轮的导电机构,金属框向右运动时能总是与两边良好接触,一理想电压表跨接在PQ两导电机构上,当金属框向右匀速拉出的过程中,电压表的读数:(金属框的长为a,宽为b,磁感应强度为B) A.恒定不变,读数为BbV B.恒定不变,读数为BaV C.读数变大D.读数变小 7、如图所示,平行于y轴的导体棒以速度v向右匀速直线运动,经过半径为R、磁感应强度为B的圆形匀强磁场区域,导体棒中的感应电动势ε与导体棒位置x关系的图像是 8、如图所示,一个高度为L的矩形线框无初速地从高处落下,设线框下落过程中,下边保持水平向下平动。在线框的下方,有一个上、下界面都是水平的匀强磁场区,磁场区高度为2L,磁场方向与线框平面垂直。闭合线圈下落后,刚好匀速进入磁场区,进入过程中,线圈中的感应电流I0随位移变化的图象可能是

初中九年级物理 法拉第与电磁感应

法拉第与电磁感应 法拉第(MichaelFaraday,1791~1867),英国著名物理学家、化学家。在化学、电化学、电磁学等领域都做出过杰出贡献。 他幼年家境贫寒,未受过系统的正规教育,但却在众多领域中作出惊人成就,堪称刻苦勤奋、探索真理、不计个人名利的典范。 1.刻苦认真自学成才 法拉第1791年9月22日生于萨里郡纽因顿的一个铁匠家庭。13岁就在一家书店当送报和装订书籍的学徒。他有强烈的求知欲,挤出一切休息时间贪婪地力图把他装订的一切书籍内容都从头读一遍。读后还临摹插图,工工整整地作读书笔记;用一些简单器皿照着书上进行实验,仔细观察和分析实验结果,把自己的阁楼变成了小实验室。在这家书店呆了八年,他废寝忘食、如饥似渴地学习。他后来回忆这段生活时说:“我就是在工作之余,从这些书里开始找到我的哲学。这些书中有两种对我特别有帮助,一是《大英百科全书》,我从它第一次得到电的概念;另一是马塞夫人的《化学对话》,它给了我这门课的科学基础。” 在哥哥赞助下,1810年2月至1811年9月听他了十几次自然哲学的通俗讲演,每次听后都重新誊抄笔记,并画下仪器设备图。1812月至4月又连续听了戴维4次讲座,从此燃起了进行科学研究的愿望。他曾致信皇家学院院长求助。失败后,他写信给戴维:“不管干什么都行,只要是为科学服务”。他还把他的装帧精美的听课笔记整理成《亨·戴维爵士讲演录》寄上。他对讲演内容还作了补充,书法娟秀,插图精美,显示出法拉第一丝不苟和对

科学的热爱。经过戴维的推荐。1813年3月,24岁的法拉第担任了皇家学院助理实验员。后来戴维曾把他发现法拉第作为自己最重要的功绩而引以为荣。 法拉第1813年随同戴维赴欧洲大陆作科学考察旅行,1815年回国后继续在皇家学院工作,长达50余年。1816年发表第一篇科学论文。他最初从事化学研究工作,也涉足合金钢、重玻璃的研制。在电磁学领域,倾注了大量心血,取得出色成绩。1824年被选为皇家学会会员,1825年接替戴维任皇家学院实验室主任,1833年任皇家学院化学教授。 2.长期实验大胆探索 他的工作异常勤奋,研究领域十分广泛。1818~1823年研制合金钢期间,首创金相分析方法。1823年从事气体液化工作,标志着人类系统进行气体液化工作的开始。采用低温加压方法,液化了氯化氢、硫化氢、二氧化硫、氢等。1824年起研制光学玻璃,这次研究导致在1845年利用自己研制出的一种重玻璃(硅酸硼铅),发现磁致旋光效应。1825年在把鲸油和鳝油制成的燃气分馏中发现苯。 他最出色的工作是电磁感应的发现和场的概念的提出。1821年在读过奥斯特关于电流磁效应的论文后,为这一新的学科领域深深吸引。他刚刚迈人这个领域,就取得重大成果──发现通电流的导线能绕磁铁旋转,从而跻身著名电学家的行列。因受苏格兰传统科学研究方法影响,通过奥斯特实验,他认为电与磁是一对和谐的对称现象。既然电能生磁,他坚信磁亦能生电。经过10年探索,历经多次失败后,1831年8月26日终于获得成功。这次实验因为是用伏打电池在给一组线圈通电(或断电)的瞬间,在另一组线圈获得的感生电流,他称之为“伏打电感应”。尔后,同年10月17日完成了在磁体与闭合线圈相对运动时在闭合线圈中激发电流的实验,他称之为“磁电感应”。经过大量实验后,他终于实现了“磁生电”的夙愿,宣告了电气时代的到来。

相关文档
相关文档 最新文档