文档库 最新最全的文档下载
当前位置:文档库 › 风机的风量、风压和功率之间是个什么关系

风机的风量、风压和功率之间是个什么关系

风机的风量、风压和功率之间是个什么关系

这是风机选型里面的问题之一,主要对应关系如下:

1、功率=流量×压力/1000/3600/效率。除1000是让功率变为KW,除3600是让每小时流量变为每秒的。

2、风机选型确定了,的确是压力越高流量应该越小,这点可以从风机的性能曲线上看出。

3、相同的风机可以满足很多流量压力,但是每个点所需的功率并不完全相同,这从功率的公式可以看出。

4、由于电机一般有功率余量,但也不能安照流量越大压力越低的规律使用于压力很低的场合,要按照系统来选配,如选型点和实际使用点相差很远,电机功率就不够了!

5、流量越大时对同一风机来说,效率越低,压力越高时,对同一风机来说,有可能失速或喘振。因此风机的使用要在曲线推荐的范围内,并且按照对应的选型点来选择功率,一般同一风机在使用曲线范围内可能需要2~3种不同的电机功率,性能变化不大对功率的影响不大。

风量风压风速的计算方法

离心式风机风量风压转速的关系和计算 n:转速 N:功率 P:压力 Q:流量 Q1/Q2=n1/n2 P1/P2=(n1/n2)平方 N1/N2=(n1/n2)立方 风机风量及全压计算方法风机 功率(W)=风量(L/S)*风压(Kpa)/效率(75%)/力率(75%) 全压=静压+动压。风机马达功率(W)=风机功率(W)*130%= 风量(L/S)*风压(Kpa)/效率(75%)/力率(75%)*130% 风机的,静压,动压,全压 所谓静压的定义是:气体对平行于气流的物体表面作用的压力。通俗的讲:静压是指克服管道阻力的压力。 动压的定义是:把气体流动中所需动能转化成压的的形式。通俗的讲:动压 是带动气体向前运动的压力。 全压=静压+动压 全压是出口全压和入口全压的差值 静压是风机的全压减取风机出口处的动压(沿程阻力) 动压是空气流动时自身产生的阻力P动=*密度*风速平方 P=P动+P静 、两台型号相同且转速相等的风机并联后,风量最高时是两台风机风量的90%左右,风压等于单台风机的压力。 2、两台型号相同且转速相等的风机串联后,风压是单台风机风压的2倍,风量等于单台风机的风量。 3、两台型号不同且转速不等并联使用,风量等于较大的一台风机的风量,风压不叠加。 4、两台型号不同且转速不等,型号较大的一台置前串联使用,风压小于单台风机的风压,风量等于较大的一台风机的风量 风速与风压的关系 我们知道,风压就是垂直于气流方向的平面所受到的风的压力。根据伯努利方程得出的风-

压关系,风的动压为 wp=·ro·v2 (1) 其中wp为风压[kN/m2],ro为空气密度[kg/m3],v为风速[m/s]。 由于空气密度(ro)和重度(r)的关系为r=ro·g, 因此有 ro=r/g。在(1)中使用这一关系,得到 wp=·r·v2/g (2) 此式为标准风压公式。在标准状态下(气压为1013 hPa, 温度为15°C), 空气重度 r= [kN/m3]。纬度为45°处的重力加速度g=[m/s2], 我们得到

风机特性曲线

用以表示通风机的主要性能参数(如风量L、风压H、功率N及效率η)之间关系的曲线称为风机特性曲线或风机性能曲线。为了使用方便,将H—L曲线、N—L曲线、η—L曲线画在同一图上。下图为4—72 No5离心式通风机在转速2 900r/min时的特性曲线。 4—72No5离心式通风机特性曲线 在通风除尘系统工作的风机,即使在转速相同时,在不同阻力的系统中它所输送的风量也可能不相同。系统的阻力小时,要求风机的风压低,输送的风量就大;反之,系统阻力大,要求的风压高,输送的风量就小。因此,用一种工况下的风量和风压,来评定风机的性能是不够的。例如,风压为1 000Pa时,4—7 2No5风机可输送风量18 000m3/h;但当风压增到3000Pa时,输送的风量就只有1 000m3/h。为了全面评定风机的性能,就必须了解在各种工况下风机的风压和风量,以及功率、效率与风量的关系。这就是为什么要通过风机性能试验做出风机特性曲线的原因所在。

通风机制造工厂对生产的风机,根据实验预先做出其特性曲线,以供用户选择风机时参考。有些风机产品样本,不但列出特性曲线图,而是还提供性能表格。下表列出了4—72离心式通风机的部分性能数据。 从特性曲线图可以看出,在一定转速下,风机的效率随着风量的改变而变化,但其中必有一个最高效率点刁一。相应于最高效率下的风量、风压和轴功率称为风机的最佳工况,在选择风机时,应使其实际运转效率不低于0.9ηmax。此范围称为风机的经济使用范围。下表中列出的8个性能点(工况点),均在风机的经济使用范围内。 4—72 型离心式通风机性能表(摘录)

正确选择风机,是保证通风系统正常、经济运行的一个重要条件。所谓正确选择风机,主要是指根据被输送气体的性质和用途选择不同用途的风机;选择的风机要满足系统所需要的风量,同时风机的风压要能克服系统的阻力,而且在效率最高或经济使用范围内工作。具体选择方法和步骤如下: 1.根据被输送气体的性质,选用不同用途的风机。例如,输送清洁空气,或含尘气体流经风机时已经过净化,含尘浓度不超过150mg/m3时,可选择一般通风换气用的风机;输送腐蚀性气体,要选用防腐风机;输送易燃、易爆气体或含尘气体时,要选用防爆风机或排尘风机。但在选择具体的风机型号和规格时,还必须根据某种类型风机产品样本上的性能表或特性曲线图才能确定。

风量风压计算公式

该帖被浏览了2690次| 回复了4次 风量风压计算公式 风量计算 风量(Q):所谓风量(又称体积流率)指的是风管之截面积所通过气流之流速,一般在使用上以下式来表示: Q=60VA Q(风量)=m3/min V(风速)=m/sec A(截面积)=m2 压力常用换算公式 1Pa= 1mbar= 1mmHg= 1psi=703mmAq 1Torr= 1Torr= 常用单位换算表-风量 1m3/min(CMM)=1000 l/min = ft3/min(CFM) 常用名词说明 (1)标准状态:为20℃,绝对压力760mmHg,相对湿度 65%。此状态简称为STP,一般在此状态下1m3之空气重量为。 (2)空气之绝对压力:为当地大气压计所显示的大气压力再加上表压力之和,一般用kgf/m2或mmaq来表示。

(3)基准状态:为0℃,绝对压力760mmHg,相对湿度0%。此状态简称为NTP,一般在此状态下1m3之空气重量为。 压力 (1)静压(Ps):所谓静压就是流体施加於器具表面且与表面垂直的力,在风机中一般是由於重力与风扇之推动所造成,在使用上常以 kgf/m2或mmaq来表示,且可以直接经过量测取得。而在风机之风管中,任何方向之静压值皆为定值且也有正负之分,若静压值为正则表示风管目前正被胀大,若静压值为负则表示风管目前正受挤压。 (2)动压(Pv):所谓动压就是流体在风管内流动之速度所形成之压力,在使用上常以kgf/m2或mmaq来表示. (3)全压(PT):所谓全压就是静压与动压之和,在使用上常以kgf/m2或mmaq来表示。在风机中全压值是属固定,并不会因风管缩管而产生变化. 风压与温度 温度变化会影响空气之密度。故在其他条件不变的情况下,温度变化时,其风压必须依下面之关系加以校正,以获得标准情况下之风压值: P = P’[(273 + t)/293] (mm Aq) 同样,当空气密度变更时,其风压值可作如下之修正: P = P’(γ ) (mm Aq) 式中,等号右侧之值如P’、t、γ等之实测压力、温度与空气密度。

风量风压计算公式

风量风压计算公式 该帖被浏览了2690次 | 回复了4次 风量风压计算公式 风量计算 风量(Q):所谓风量(又称体积流率)指的是风管之截面积所通过气流之流速,一般在使用上以下式来表示: Q=60VA Q(风量)=m3/min V(风速)=m/sec A(截面积)=m2 压力常用换算公式 1Pa=0.102mmAq 1mbar=10.197mmAq 1mmHg=13.6mmAq 1psi=703mmAq 1Torr=133.3pa 1Torr=1.333mbar 常用单位换算表-风量 1m3/min(CMM)=1000 l/min = 35.31 ft3/min(CFM) 常用名词说明 (1)标准状态:为20℃,绝对压力760mmHg,相对湿度65%。此状态简称为STP,一般在此状态下1m3之空气重量为1.2kg。 (2)空气之绝对压力:为当地大气压计所显示的大气压力再加上表压力之和,一般用kgf/m2或mmaq来表示。 (3)基准状态:为0℃,绝对压力760mmHg,相对湿度0%。此状态简称为NTP,一般在此状态下1m3之空气重量为1.293kg。 压力

(1)静压(Ps):所谓静压就是流体施加於器具表面且与表面垂直的力,在风机中一般是由於重力与风扇之推动所造成,在使用上常以 kgf/m2或mmaq来表示,且可以直接经过量测取得。而在风机之风管中,任何方向之静压值皆为定值且也有正负之分,若静压值为正则表示风管目前正被胀大,若静压值为负则表示风管目前正受挤压。 (2)动压(Pv):所谓动压就是流体在风管内流动之速度所形成之压力,在使用上常以kgf/m2或mmaq来表示. (3)全压(PT):所谓全压就是静压与动压之和,在使用上常以kgf/m2或mmaq来表示。在风机中全压值是属固定,并不会因风管缩管而产生变化. 风压与温度 温度变化会影响空气之密度。故在其他条件不变的情况下,温度变化时,其风压必须依下面之关系加以校正,以获得标准情况下之风压值: P = P’[(273 + t)/293] (mm Aq) 同样,当空气密度变更时,其风压值可作如下之修正: P = P’(1.2/γ ) (mm Aq) 式中,等号右侧之值如P’、t、γ等之实测压力、温度与空气密度。 压力与速度的关系 多大的压力就固定有多大的速度,不可能压力不变速度会改变,同理,不可能 有关风机风量的计算公式

风速与风压的关系

风压就是垂直于气流方向的平面所受到的风的压力。根据伯努利方程得出的风-压关系,风的动压为wp=0.5·ro·v2 (1) 其中wp为风压[kN/m2],ro为空气密度[kg/m3],v为风速[m/s]。 由于空气密度(ro)和重度(r)的关系为r=ro·g, 因此有ro=r/g。在(1)中使用这一关系,得到wp=0.5·r·v2/g (2) 此式为标准风压公式。在标准状态下(气压为1013 hPa, 温度为15°C), 空气重度r=0.01225 [kN/m3]。纬度为45°处的重力加速度g=9.8[m/s2], 我们得到 wp=v2/1600 (3) 此式为用风速估计风压的通用公式。应当指出的是,空气重度和重力加速度随纬度和海拔高度而变。一般来说,r/g 在高原上要比在平原地区小,也就是说同样的风速在相同的温度下,其产生的风压在高原上比在平原地区小。 “作为一个复杂完整的系统,……除尘系统的性能一般要由多个参数来评定,评定气力除尘系统的参数如下: 风量____指在单位时间内通过气力除尘系统气流管道某一截面上的气体体积(m3/h); 风速____指气力吸尘系统气流管道内气流的流动速度(m/s); 风压____指气流管道内部与外部环境的压力差以Pa或mm水柱来表示。 风量、风速与风压三个参数,在一个气力除尘系统中是相互联系、相互制约。风量大小决定了管道内气流的浓度,风量与风速共同决定了气流管道截面的结构尺寸,风压的大小主要由气流管道的长度尺寸所决定。在风机输出性能许可的范围内,设计中应尽量减少管道长度,以保证足够的压力差和风速,在保证管道内气流混合浓度的条件下,应尽量地减小气流管道截面结构尺寸,以增大风速,进而增大吸料口的吸力。 实际应用中的气力除尘系统往往由于这些参数选择的不尽合理,而造成吸力不足或能耗浪费。较为典型的不合理现象有系统过于庞大,管道过长;气流混合浓度过低,管道截面过大;各段管道结构尺寸不合理,系统压力不平衡等。这些系统的不合理因素,最终造成吸料口

风量风压的计算方法

风量的计算方法,风压和风速的关系 1、假设在直径300mm的风管中风速为0.5m/m,它的风压是多少帕?怎么计算?(要求有公式,并说明公式中符号的意思,举例) 2、假如一台风机它的风量为100003/h,分别给10个房间抽风,就是有10个抽风口,风管的主管道是直径400mm,靠近风机的第一个抽风口的风压和抽风量肯定大于后面的抽风口,要怎么样配管才能使所有的抽风口的抽风量一样?要怎么计算? 3、如何快速的根据电机的转速、风机叶片的角度、面积来来计算出这台风机的风量和风压。?(要求有公式,并说明公式中符号的意思,举例) 4、风管的阻力怎么计算,矩形和圆形,每米的阻力是多少帕,一台风压为200帕的抽风机,管道50m,它的进风口的风压是多少帕??(要求有公式,并说明公式中符号的意思,举例) 首先,我们要知道风机压力是做什么用的,通俗的讲:风机压力是保证流量的一种手段。基于上述定义,我们可以通过一些公式来计算出在300mm管道中要保证风速为0.5m/s时所需的压力。 1.1、计算压力: 1.2、Re=(D*ν/0.0000151) =(0.3*0.5/0.0000151) =9933.77 1.3、λ=0.35/Re^0.25 =0.35/9933.77^0.25 =0.035 1.4、R=[(λ/D)*(ν^2*γ/2)]*65 =(0.035/0.3)*(0.5^2*1.2/2) =0.07Pa 1.5、结论:在每米直径300mm风管中要保证0.5m/s的风速压力应为0.07Pa。 2、计算400mm管道中的流速: 2.1、ν=Q/(r^2* 3.14*3600) =10000/(0.2^2*3.14*3600) =22.11(m/s) 2.2、平衡各抽风口的压力,并计算出各个抽风口的直径: 为保证各抽风口的流量相等,需对各抽风口的压力进行平衡,我们采用试算法调管径。当支管与主环路阻力不平衡时,可重新选择支管的管径和流速,重新计算阻力直至平衡为止。这种方法是可行的,但只有试算多次才能找到符合节点压力平衡要求的管径。 设1-2段的阻力值为Ho,为使节点2的压力达到平衡,应使4-2段的阻力H等于Ho。设每一个抽风口的间距为1m,每条支管长为1m(如图):

风机的重要参数及含义

风量风压计算公式 风机有2个很重要的参数,流量和升压,升压即风压。相对于一台风机来说,流量大,升压就降低,风压高,流量就减少 压头通常指全压,风量与全压存在以下关系,当风机尺寸已定,风量越大,全压越大, 风机流量是指就是指风机每分钟送风的立方米数。 风机流量=进口风量=出口风量。 “风量”与“风压”是风机的两个独立的、最主要的参数。 出口压力是风机的另一个重要参数。 同风压的两个风机可能风量不同,风量大的外形大,配电机大; 同风量的两个风机可能风压不同,风压大的叶轮直径大或叶轮转速高,配电机大。 对于给定的风机,尺寸参数都确定了,提高了转速会同时加大风量和提高风压 A——截面积 D——风量 dP——风压

空气密度——1.293×293/(273+风温) D=A×sqrt(dP/空气密度) sqrt.....开平方 风机流量就是单位时间内输送气体的多少,通常用体积流量来表示,也就是,每小时输送的立方米数。对于一般风机来说,风机输出的风速是小于100m/s的,此时,空气可以看做是不可压缩流体,于是,风机流量与进口风量和出口风量是相同的,因为,风机并不消耗空气,从进口来的空气全部从出口排出了。 如果风机的风速比较大,空气的压缩不能忽略,则进口风量和出口风量用体积流量来计算的话,会有差别,但是,它们的质量流量仍然是相同的,也就是每小时流过的空气的质量不变。此外,体积流量还会受到空气密度的影响,而空气密度与其工作的温度、大气压和湿度等环境因素都有关系。所以,在工程上,风机所标识的流量,都是换算到标准进口状态下进口处的体积流量。所谓标准进口状态,是指温度293K、气压101325Pa、相对湿度50%的空气状态。 常见的离心风机和轴流风机的流量都与风机压力有关,它在不同压力下的流量需要去查看风机性能曲线。而容积式风机(比如罗茨风机)的流量则与压力无关。

风机功率与风量对照表

风机功率与风量对照表 风机水泵类负载是典型的变转距负载,即风量与转速成正比,转距或风压与转速平方成正比,轴功率与转速立方成正比,故在低速运行时,负载转距非常小。通常风机水泵类负载多是根据满负荷工作需用量来选型,实际应用中大部分时间并非工作于满负荷状态,当采用电机直接方式,由于转速无法调节,常用挡风板、阀门来调节风量或流量,这样不仅造成能源的浪费而且由于过大的启动电流造成电网冲击和设备的震动和水锤现象。采用变频调速器控制风机、泵类负载是一种理想的控制方法,当电机在额定转速的80%运行时,理论上其消耗的功率为额定功率的(80%)的三次方,即50%左右(理论依据:流量:q2/q1=n2/n1;扬程:h2/h1=(n2/n1)2;输入功率:p2/p1=(q2/q1)*(h2/h1)=(n2/n1)3;其中:q:流量,n:转速;h:扬程,p功率。举例:当前转速下降到额定转速80%时,n2=0.8n,功率p2=0.8*0.8*0.8p=0。512p,即当前速度下降到80%,所需要的功率只需要原来的51%。 风机的风压、风量、功率与转速的关系 通风机的转速n可用转速表直接测量,其数值用每分钟多少转(转/分)来表示。小型风机的转速一般较高,往往与电动机直

接相连。大型风机的转速较低,一般用皮带传动与电动机相连,改变皮带轮的直径即可调节风机的转速,其关系如下:n1/n2=d2/d1 式中:n1,n2——风机;电动机的转速d1,d2——风机和电动机的皮带轮的直径。如要改变风机的转速,只要改变通风机或电动机中任意一个皮带轮的直径即可。当改变风机转速时,风机的特性参数;特性曲线也随之改变,亦即,风机在每一转速下都有其相应的特性曲线。当转速改变时,风机的特性参数Q,H,N的变化可按下式计算:Q/Q`=n/n` H/H`=(n/n`)2 N/N`=(n/n`)3

风量风压计算公式

风量风压计算公式 IMB standardization office【IMB 5AB- IMBK 08- IMB 2C】

风量风压计算公式 该帖被浏览了2690次|回复了4次 风量风压计算公式 风量计算 风量(Q):所谓风量(又称体积流率)指的是风管之截面积所通过气流之流速,一般在使用上以下式来表示: Q=60VA Q(风量)=m3/min V(风速)=m/sec A(截面积)=m2 压力常用换算公式 1Pa= 1mbar= 1mmHg= 1psi=703mmAq 1Torr= 1Torr= 常用单位换算表-风量 1m3/min(CMM)=1000 l/min = ft3/min(CFM) 常用名词说明 (1)标准状态:为20℃,绝对压力760mmHg,相对湿度 65%。此状态简称为STP,一般在此状态下1m3之空气重量为。 (2)空气之绝对压力:为当地大气压计所显示的大气压力再加上表压力之和,一般用kgf/m2或mmaq来表示。

(3)基准状态:为0℃,绝对压力760mmHg,相对湿度0%。此状态简称为NTP,一般在此状态下1m3之空气重量为。 压力 (1)静压(Ps):所谓静压就是流体施加於器具表面且与表面垂直的力,在风机中一般是由於重力与风扇之推动所造成,在使用上常以kgf/m2或mmaq来表示,且可以直接经过量测取得。而在风机之风管中,任何方向之静压值皆为定值且也有正负之分,若静压值为正则表示风管目前正被胀大,若静压值为负则表示风管目前正受挤压。 (2)动压(Pv):所谓动压就是流体在风管内流动之速度所形成之压力,在使用上常以kgf/m2或mmaq来表示. (3)全压(PT):所谓全压就是静压与动压之和,在使用上常以kgf/m2或mmaq来表示。在风机中全压值是属固定,并不会因风管缩管而产生变化.风压与温度 温度变化会影响空气之密度。故在其他条件不变的情况下,温度变化时,其风压必须依下面之关系加以校正,以获得标准情况下之风压值: P = P’[(273 + t)/293] (mm Aq) 同样,当空气密度变更时,其风压值可作如下之修正: P = P’(γ) (mm Aq) 式中,等号右侧之值如P’、t、γ等之实测压力、温度与空气密度。 压力与速度的关系

风机变频及转速风量之间关系

文档 . “变频空调”工作原理:“变频”采用了比较先进的技术,启动时电压较小,可在低电压和低温度条件下启动,这对于某些地区由于电压不稳定或冬天室内温度较低而空调难以启动的情况,有一定的改善作用。由于实现了压缩机的无级变速,它也可以适应更大面积的制冷制热需求。 众所周知,我国的电网电压为220伏、50赫兹,在这种条件下工作的空调称之为“定频空调”。由于供电频率不能改变,传统的定频空调的压缩机转速基本不变,依靠其不断地“开、停”压缩机来调整室内温度,其一开一停之间容易造成室温忽冷忽热,并消耗较多电能。而与之相比,“变频空调”变频器改变压缩机供电频率,调节压缩机转速。依靠压缩机转速的快慢达到控制室温的目的,室温波动小、电能消耗少,其舒适度大大提高。而运用变频控制技术的变频空调,可根据环境温度自动选择制热、制冷和除湿运转方式,使居室在短时间内迅速达到所需要的温度并在低转速、低能耗状态下以较小的温差波动,实现了快速、节能和舒适控温效果。 变频电机和普通电机的主要差别在于普通电机的冷却风扇安装在电机轴,其转速与电机转速相同,而变频电机的冷却风扇单独设置,与电机转与不转无关。 用变频器调速,普通电机和变频电机没有什么不一样,不一样的只是普通电机转速一低,电机的冷却就差,转速低到一定程度,电机要过热。 因此,普通电机用变频器调速,一般情况必须控制转速至少要在额定转速的一半以上。至于超过额定转速,则不管对于调频电机或普通电机,都应该是不合适的。 自动变频与手动变频:手动控制一般是人的控制,自动控制一般是指依靠plc 、控制器控制。 如果是断点控制方法,你的手动控制功能只需要在变频器的控制接点上并连上按扭就行。如果是通迅控制,那么你的手动控制需要做在PLC 的输入端。变频器一般不支持通迅和断点双重控制功能。 变频器控制,DCS 肯定要有两根根启动信号线连接变频器接线端子,一根接公共端,一根接启动信号端子。可以从这两根线上考虑。 风机变频器:是为各类风机量身定制的一种专用型变频器。采用变频调速控制装置,通过改变风机的转速,从而改变风机风量以适应生产工艺的需要,而且运行能耗最省,综合效益最高。所以变频调速是高效的最佳调速方案,它可以实现风机的无级调速,并且可以方便的组成闭环控制系统、实现恒压或恒流量的控制。 电机转速与频率的公式 n=60f/p 上式中 n ——电机的转速(转/分); 60——每分钟(秒); f ——电源频率(赫芝); p ——电机旋转磁场的极对数。极对数(电机级数)=1/2/3/4/5 小型风机的转速一般较高,往往与电动机直接相连。大型风机的转速较低,一般用皮带传动与电动机相连,改变皮带轮的直径即可调节风机的转速,其关系如下: n1/n2=d2/d1 式中: n1,n2——风机、电动机的转速 d1,d2——风机和电动机的皮带轮的直径。 如要改变风机的转速,只要改变通风机或电动机中任意一个皮带轮的直径即可。当改变风机转速时,风机的特性参数;特性曲线也随之改变,风机在每一转速下都有其相应的特性曲线。 当转速改变时,风机的特性参数Q(流量),H (风压),N (功率)的变化可按下式计算: Q/Q`=n/n` H/H`=(n/n`)2

(4)水泵和风机的功率计算及风量、风压的附加系数

①通风机(水泵)的机械效率(传动效率):ηm=N/N m ②通风机的(全压)效率或水泵的效率:η=N y/N=P·Q/N(风机) η=N y/N=γ·H·Q/N(水泵) ③通风机(水泵)的电机功率:N m =K×N/ηm= K×N y/(η·ηm)= K×P·Q/(η·ηm) (风机) N m =K×N/ηm= K×N y/(η·ηm)= K×γ·H·Q/ (η·ηm)(水泵) ④通风机或水泵的有效功率(轴出功率):N y= P·Q=γ·H·Q(W) ⑤通风机或水泵的轴功率(轴入功率):N (W) ⑥ 注意:以上公式中,通风机风量Q的单位为m3/h,电机容量安全系数K=1.15~1.5 5.7.2选择通风机时,应按下列因素确定: 1、采用定转速通风机时,通风机的压力附加:10%~15%; 通风机的风量附加:5%~10%; 2、采用变频通风机时,通风机的压力应以系统计算的总压力损失作为额定风压, 但风机电动机的功率应在计算值上再附加:15%~20%; 3、除尘系统,风量附加:10%~15%(正压除尘器系统不计除尘器的漏风量); 风压附加:10%; 4、排烟系统,风量附加:10%~20%; 风压全压应满足最不利环路要求; 5、风机的选用设计工况效率,不应低于风机最高效率的:90%;

5.8.2风管漏风量应根据管道长短及其气密程度,按系统风量百分率计算。 一般送风系统漏风率宜采用:5%~10%; 一般排风系统漏风率宜采用:5%~10%; 除尘系统漏风率宜采用:10%~15%; 5.8.3通风、除尘、空气调节系统各环路的压力损失应进行压力平衡计算。各并联环路压力 损失的相对差额,不宜超过下列数值: 一般送风系统各并联环路压力损失相对差额,不宜超过15%; 一般排风系统各并联环路压力损失相对差额,不宜超过15%; 除尘系统各并联环路压力损失相对差额,不宜超过10%;

煤矿主要通风机风叶角度与风量的关系如何

煤矿主要通风机风叶角度与风量的关系如何 一、煤矿通风机性能测定的主要参数是某一风叶角度下不同工况的风压,风量和功率。 改变前导叶片的角度可以改变通风机入口的风流速度,从而改变通风机所产生的压力。 二、实现通风机经济运行的几种途径 1.减少风机径向间隙 (1)局部更换机壳,为使紧靠动叶处的圆筒不因碰撞和振动而引起变形,可在此处将外壳分成两段,加工一厚30mm的圆环,并对其镀锌防腐处理,用此环将两段外壳联接在一起。该项改造费用较小,可防止机壳变形。 (2)对那些径向间隙大机壳变形量小的风机可采用加大风叶长度的方法来缩卸向间隙,提高风机的容积效率。 (3)对那些椭圆度较大或局部超差的风机外壳可采用修补机壳内壁的方法,把滑石粉加环氧树脂后均匀搅拌成浆糊状,然后加入二丁脂、乙二胺,搅拌均匀即可,涂抹前应对机壳内壁进行除锈处理。该法虽不能完全解决变形达到间隙填补均匀,但此法操作简单,施工经济,有一定的实用价值。 2.调整风叶个数,改双段运行为单段运行 一些初用或投产时间不长的矿井,工况点负压较低,为使风机经济运行,在满足矿井通风要求的前提下,可适当调整风叶个数,当叶片减少后,叶片与流体的摩擦接触面也相应减少,这样可使圆盘摩擦系数降低,圆盘

损失功率下降,从而提高了风机的机械效率。但由于风机叶轮的转动需高度平稳,减少风叶后可使其平衡遭到破坏,故需对转动部件做静平衡试验,确认无误方可投用。 3.把方形出风口改成圆形风口 根据流体摩擦阻力损失与流体速度的平方成正比,在各种封闭曲线所围成的图形中,当周长一定时,圆面积最大。因此当出风口周长相同时,方形出风口的摩擦阻力是圆形出风口的两倍,可见圆形出风口可大大减少流体经过出风口的流体损失。 4.降低风机转速,增大叶片安装角度 有些新矿长期处于高速低效的运转状态,造成电能严重浪费,究其原因:(1)是叶片安装角度小,流体对叶片的冲击角增大,流体在叶片的工作面上形成涡流区,引起冲击增加损失;(2)由于高速旋转的叶轮与流体的剧烈摩擦增加,圆盘的损失功率。为减少上述两种损失,可采取降低风机转速,适当增大风叶的安装角度来满足矿井供风量的要求。原因是转速降低时,将减少转动部件的机械摩擦损失和流体对叶片的冲击损失,通过绘制不同转速条件下的风网特性曲线和风机特性曲线可发现在满足流量和风压的前提下,低速大安装角度比高速小安装角度风机的工况点效率高,固可达到经济运行的目的 通风机的动压、静压、全压之间是什么关系另外风机动压Pd=ρv2 那么这个V是风机哪一点的风速呢

引风机风量与电机功率关系

功率(KW)=风量(m3/h)*风压(Pa)/(3600*风机效率*机械传动效率*1000)。 风量=(功率*3600*风机效率*机械传动效率*1000)/风压。 风机效率可取0、719至0、8;机械传动效率对于三角带传动取0、95,对于联轴器传动取0、98。 引风机型号Y4-73-120代表什么意义,其风量、风压、电机功率为多少? Y就是引风的意思,4-73就是压力的一个范围,12就是叶轮直径1200mm,D就是D型传动,风机接轴承箱再接电机。 24吨锅炉选多大引风机?(24米水平烟道,32米烟囱,金属的)风量、风压、电机功率就是多少? 4-72 12C 75KW 1120 转皮带传动常温选型参考资料:传益风机 1、锅炉烟气量在漏风系数为1、55,排烟温度为200度时约为2500标准立方米/小时; 2、24吨锅炉引风机电机功率约100KW,风量约60000立方米/小时,风压3000P a左右。 评论|00 2011-12-16 17:04wfm8931|五级 24吨锅炉排烟就是否有省煤器或空气预热器,如果有建议选用(排烟温度在100度左右)转速1800r/min,风量36000-78000m3/h,压力5000Pa左右,电机功率13 0KW;;如果没有参数值可以小点。 评论|00 2011-12-16 13:07guanbofengji2|三级 24吨锅炉可选用Y5-48型锅炉离心引风机,No、12、5C,转速1600r/min,风量3 4490-77489m3/h,压力5530-3649Pa,电机功率132KW;也可选用Y5-47型No、13D ,风量43773-79908m3,压,3104-4258Pa,电机功率4-132KW。

离心式风机风量风压转速的关系和计算

离心式风机风量风压转速的关系和计算 Document serial number【KKGB-LBS98YT-BS8CB-BSUT-BST108】

离心式风机风量风压转速的关系和计算n:转速N:功率P:压力Q:流量Q1/Q2=n1/n2P1/P2=(n1/n2)平方 N1/N2=(n1/n2)立方 风机风量及全压计算方法风机 功率(W)=风量(L/S)*风压(Kpa)/效率(75%)/力率(75%) 全压=静压+动压。风机马达功率(W)=风机功率(W)*130%=风量 (L/S)*风压(Kpa)/效率(75%)/力率(75%)*130% 风机的,静压,动压,全压 所谓静压的定义是:气体对平行于气流的物体表面作用的压力。通俗的讲:静压是指克服管道阻力的压力。 动压的定义是:把气体流动中所需动能转化成压的的形式。通俗的讲:动压是带动气体向前运动的压力。 全压=静压+动压 全压是出口全压和入口全压的差值 静压是风机的全压减取风机出口处的动压(沿程阻力) 动压是空气流动时自身产生的阻力P动=0.5*密度*风速平方P=P动+P静 、两台型号相同且转速相等的风机并联后,风量最高时是两台风机风量的90%左右,风压等于单台风机的压力。 2、两台型号相同且转速相等的风机串联后,风压是单台风机风压的2倍,风量等于单台风机的风量。

3、两台型号不同且转速不等并联使用,风量等于较大的一台风机的风量,风压不叠加。 4、两台型号不同且转速不等,型号较大的一台置前串联使用,风压小于单台风机的风压,风量等于较大的一台风机的风量风速与风压的关系 我们知道,风压就是垂直于气流方向的平面所受到的风的压力。根据伯努利方程得出的风-压关系,风的动压为 wp=0.5·ro·v2(1)

风量风压计算.

1、机熔除硫管路计算: 风量的计算: 根据设备使用方提供的图纸得知管路的总管(水平管)尺寸为Φ600,取总管风速为:16m/s 风速取值见下表: 脱硫除尘系统的阻力确定: ①支管的阻力:(支管为垂直管,风速取14m/s,风量为6000m3/h左右) 支管1的局部压力损失系数:吸风罩ζ1=0.15 弯头ζ2=0.28 风阀ζ3=0.17 渐扩管ζ4=0.56 Σζ=1.16 所以支管1的压力损失为:△P1=(ΣRm×L+Σζρυ2/2) =5.897×8+1.16×118 =185Pa 支管2和3是对称布置,所以压损基本和1相同。 ②主管的压损: 主管的局部压力损失系数:渐扩管ζ4=0.56 弯头ζ3=0.28 风帽ζ4=1 Σζ=1.84 所以主管的压力损失为:△P z=(ΣRm×L+Σζρυ2/2) =4.405×26+1.84×154.112 =399Pa 脱硫除尘系统的总压损:△P=△P1+△P2+△P3+△P z+△P C(废气处理装置压损为800~1000Pa) =1954Pa 根据风量和压损选定风机的型号:4-72No6C 转速:2240r/min(流量19124 m3/h,全压2004Pa) N=15kw 电机型号:Y160L-4 2、铸造厂清理抽风管路计算: 风量的计算:

根据设备使用方提供的图纸得知车间尺寸为77×50×10m,取车间换气次数为:20次/h 换气次数取值见下表: 所以处理风量为:Q=N×V=770000m/h,由于采用两台风机对称处理,所以单台风机处理量为385000m3/h 铸造厂清理系统的阻力确定: ①支管的阻力:(支管为垂直管,风速取16m/s,风量为77000m3/h左右(5个支管),支 管尺寸Φ1200) 支管1的局部压力损失系数:弯头ζ1=0.28 弯头ζ2=0.28 风阀ζ3=0.17 渐扩管ζ4=0.56 Σζ=1.29 所以支管1的压力损失为:△P1=(ΣRm×L+Σζρυ2/2) =2.012×18+1.29×154.112 =235Pa 支管2、3和4、5是对称布置,所以压损基本和1相同。 ②主管的压损: 主管的局部压力损失系数:渐扩管ζ4=0.56 弯头ζ3=0.28 风帽ζ4=1 Σζ=1.84 所以主管的压力损失为:△P z=(ΣRm×L+Σζρυ2/2) =4.405×45+1.84×195.048 =556Pa 铸造厂清理系统的总压损:△P=△P1+△P2+△P3+△P z+△P4+△P5 =1731Pa 根据风量和压损选定风机的型号:T4-72No2-20E 转速:660r/min(流量408000 m3/h,全压1844Pa) N=315kw 电机型号:Y450-508(JSQ-148-8) 通风除尘管网的设计计算 第六章 第六章:通风除尘管网设计计算 通风管道计算有两个基本的任务: 一是确定管道的阻力, 以确定通风除尘系统所需的风机性能; 二是确定管道的尺寸(直径),管道设计的合理与否直接影响系统的投资费用和运行费用. 第六章:通风除尘管网设计计算 一. 管道压力计算 (一) 管道的阻力计算 管道的阻力包括摩擦阻力和局部阻力. 摩擦阻力由空气的粘性力及空气与管壁之间的摩擦作用产生, 它发生在整个管道的沿程上, 因此也称为沿程阻力. 第六章:通风除尘管网设计计算

风机特性曲线97678

风机特性曲线 用以表示通风机的主要性能参数(如风量L、风压H、功率N及效率η)之间关系的曲线称为风机特性曲线或风机性能曲线。为了使用方便,将H—L曲线、N—L曲线、η—L曲线画在同一图上。下图为4—72 No5离心式通风机在转速2 900r/min时的特性曲线。 4—72No5离心式通风机特性曲线 在通风除尘系统工作的风机,即使在转速相同时,在不同阻力的系统中它所输送的风量也可能不相同。系统的阻力小时,要求风机的风压低,输送的风量就大;反之,系统阻力大,要求的风压高,输送的风量就小。因此,用一种工况下的风量和风压,来评定风机的性能是不够的。例如,风压为1 000Pa时,4—72No5风机可输送风量18 000m3/h;但当风压增到3000Pa时,输送的风量就只有1 000m3/h。为了全面评定风机的性能,就必须了解在各种工况下风机的风压和风量,以及功率、效率与风量的关系。这就是为什么要通过风机性能试验做出风机特性曲线的原因所在。 通风机制造工厂对生产的风机,根据实验预先做出其特性曲线,以供用户选择风机时参考。有些风机产品样本,不但列出特性曲线图,而是还提供性能表格。下表列出了4—72离心式通风机的部分性能数据。 从特性曲线图可以看出,在一定转速下,风机的效率随着风量的改变而变化,但其中必有一个最高效率点刁一。相应于最高效率下的风量、风压和轴功率称为风机的最佳工况,在选择风机时,应使其实际运转效率不低于0.9ηmax。此范围称为风机的经济使用范围。下表中列出的8个性能点(工况点),均在风机的经济使用范围内。 4—72 型离心式通风机性能表(摘录)

如有侵权请联系告知删除,感谢你们的配合!

主通风机的叶片与风量的关系

一、煤矿通风机性能测定的主要参数是某一风叶角度下不同工况的风压,风量和功率。 改变前导叶片的角度可以改变通风机入口的风流速度,从而改变通风机所产生的压力。 二、实现通风机经济运行的几种途径 1.减少风机径向间隙 (1)局部更换机壳,为使紧靠动叶处的圆筒不因碰撞和振动而引起变形,可在此处将外壳分成两段,加工一厚30mm的圆环,并对其镀锌防腐处理,用此环将两段外壳联接在一起。该项改造费用较小,可防止机壳变形。 (2)对那些径向间隙大机壳变形量小的风机可采用加大风叶长度的方法来缩卸向间隙,提高风机的容积效率。 (3)对那些椭圆度较大或局部超差的风机外壳可采用修补机壳内壁的方法,把滑石粉加环氧树脂后均匀搅拌成浆糊状,然后加入二丁脂、乙二胺,搅拌均匀即可,涂抹前应对机壳内壁进行除锈处理。该法虽不能完全解决变形达到间隙填补均匀,但此法操作简单,施工经济,有一定的实用价值。 2.调整风叶个数,改双段运行为单段运行 一些初用或投产时间不长的矿井,工况点负压较低,为使风机经济运行,在满足矿井通风要求的前提下,可适当调整风叶个数,当叶片减少后,叶片与流体的摩擦接触面也相应减少,这样可使圆盘摩擦系数降低,圆盘损失功率下降,从而提高了风机的机械效率。但由于风机叶轮的转动需高度平稳,减少风叶后可使其平衡遭到破坏,故需对转动部件做静平衡试验,确认无误方可投用。 3.把方形出风口改成圆形风口 根据流体摩擦阻力损失与流体速度的平方成正比,在各种封闭曲线所围成的图形中,当周长一定时,圆面积最大。因此当出风口周长相同时,方形出风口的摩擦阻力是圆形出风口的两倍,可见圆形出风口可大大减少流体经过出风口的流体损失。 4.降低风机转速,增大叶片安装角度 有些新矿长期处于高速低效的运转状态,造成电能严重浪费,究其原因:(1)是叶片安装角度小,流体对叶片的冲击角增大,流体在叶片的工作面上形成涡流区,引起冲击增加损失;(2)由于高速旋转的叶轮与流体的剧烈摩擦增加,圆盘的损失功率。为减少上述两种损失,可采取降低风机转速,适当增大风叶的安装角度来满足矿井供风量的要求。原因是转速降低时,将减少转动部件的机械摩擦损失和流体对叶片的冲击损失,通过绘制不同转速条件下的风网特性曲线和风机特性曲线可发现在满足流量和风压的前提下,低速大安装角度比高速小安装角度风机的工况点效率高,固可达到经济运行的目的。

鼓风机风量与转速的关系

风机水泵类负载是典型的变转距负载,即风量与转速成正比,转距或风压与转速平方成正比,轴功率与转速立方成正比,故在低速运行时,负载转距非常小。通常风机水泵类负载多是根据满负荷工作需用量来选型,实际应用中大部分时间并非工作于满负荷状态,当采用电机直接方式,由于转速无法调节,常用挡风板、阀门来调节风量或流量,这样不仅造成能源的浪费而且由于过大的启动电流造成电网冲击和设备的震动和水锤现象。采用变频调速器控制风机、泵类负载是一种理想的控制方法,当电机在额定转速的80%运行时,理论上其消耗的功率为额定功率的(80%)的三次方,即50%左右(理论依据:流量:q2/q1=n2/n1 ;扬程:h2/h1=(n2/n1)2 ;输入功率:p2/p1=(q2/q1)*(h2/h1)=(n2/n1)3;其中:q:流量,n:转速;h:扬程,p 功率。举例:当前转速下降到额定转速80%时,n2=0.8n,功率p2=0.8*0.8*0.8p=0。512p,即当前速度下降到80%,所需要的功率只需要原来的51% 风机的风压、风量、风机的风压、风量、功率与转速的关系 通风机的转速n 可用转速表直接测量,其数值用每分钟多少转(转/分)来表示。小型风机的转速一般较高,往往与电动机直接相连。大型风机的转速较低,一般用皮带传动与电动机相连,改变皮带轮的直径即可调节风机的转速,其关系如下:n1/n2=d2/d1 式中:n1,n2——风机;电动机的转速d1,d2——风机和电动机的皮带轮的直径。如要改变风机的转速,只要改变通风机或电动机中任意一个皮带轮的直径即可。当改变风机转速时,风机的特性参数;特性曲线也随之改变,亦即,风机在每一转速下都有其相应的特性曲线。当转速改变时,风机的特性参数Q,H,N 的变化可按下式计算:Q/Q`=n/n` 2 H/H`=(n/n`) 3 N/N`=(n/n`) 以上可见,如果通风机的转速由n 改变为nˊ时,风机的风量变化与转速比的一次方成正比;风压变化与转速比的二次方成正比;功率变化与转速比的三次方成正比。所以在增加风机转速时,必须重新计算所需功率,注意原来配备的电机是否会过载。通风机的几个性能参数不是固定不变的,它们之间都有一定的内在联系。当通风机在管网中工作时,这些参数又受到网路特性的影响,所以要选择好,使用好一台通风机,不但要熟悉通风机的性能,还要了解网路特性以及它们之间的关系。

风机功率与风量对照表

风机: 风机是依靠输入的机械能,提高气体压力并排送气体的机械,它是一种从动的流体机械。 风机性能曲线: 风机性能曲线是用以表示通风机的主要性能参数(如风量L、风压H、功率N及效率η)之间关系的曲线称为风机特性曲线或风机性能曲线。 概念: 风机性能曲线是用来表示通风机的主要性能参数,如风量Q、风压H、功率N及效率η之间关系的曲线。通风机的特性曲线通常有三个坐标轴:风机的压力、风量、功率。为了使用方便,通风机的特性曲线通常包括全压随风量的变化、静压随风量的变化、功率随风量的变化、全效率随风量的变化和静效率随风量的变化。 基于Matlab和VB混编拟合风机性能曲线研究: 火力发电厂中风机的运行状况直接关系到电厂的安全、经济运行。在选择风机时,一般把运行工况点控制在性能曲线的高效区内,以获得较好的经济性。利用性能曲线还可以分析风机内部的流动情况,积累资料,找出规律,作为设计和修改新老产品的依据,也可以作为相似设计的基础。由于对叶轮内的各项损失尚不能用分析方法精确地进行计算,使得风机的性能曲线也就不能用分析方法精确地计算出来,通常是由试验方法求得。通过风机性能试验得到风机在不同流量时对应的风机全压、轴功率和效率值,利用数据拟合方法得到风机性能曲

线。 VisualBasic是在Windows操作平台上的主力编程语言之一,它避开了C++编程过分繁琐和抽象的缺点,语言容易上手,界面容易设计,但是对予数值计算方面其能力欠佳。而Matlab语言可以提供与矩阵有关的强大的数据处理和图形显示功能,为软件开发人员在程序编制过程中实现数值计算和图形显示新添了又一行之有效的开发平台。但Matlab的界面功能比较弱,给友好界面的开发应用或软件演示系统带来不便。为了提高工程计算软件的开发效率和质量,鉴于上述两个软件的各自特点,可采取把VB可视化功能和Matlab计算功能相结合的办法,充分利用各自的特点进行混合编程,即用VB 来设计界面作为主程序,调用Matlab编写的子程序,以此开发出高质量、高性能的软件系统。其实现的过程有多种,研究采用ActiveX 自动化技术实现VB调用Matlab,编制了基于最小二乘法的风机性能曲线拟合软件。 比例定律 当已知风机转速为n0时的性能曲线,欲求转速为n时的性能曲线时,其相似工况点的参数应该满足式下式: Q/Q0=n/n0 p/p0=(n/n0)2 p/p0=(n/n0)3 式中脚标“0”代表样本条件。所以应用比例定律(在转速相差不超过20%情况下)可以实现如下功能:

相关文档
相关文档 最新文档