文档库 最新最全的文档下载
当前位置:文档库 › 磁流体密封的磁场有限元分析

磁流体密封的磁场有限元分析

磁流体密封的磁场有限元分析
磁流体密封的磁场有限元分析

https://www.wendangku.net/doc/9f6059631.html,

磁流体密封的磁场有限元分析

孙明礼,李德才,何新智,白博海

北京交通大学机电学院,北京(100044)

E-mail :sunmingli1@https://www.wendangku.net/doc/9f6059631.html,

摘 要:介绍了磁性液体密封的理论,并应用ANSYS 有限元分析软件对一个三槽四齿密封结构进行磁场有限元分析,通过对计算结果进行的分析和讨论,结果表明,转轴侧极齿两侧磁场强度差决定密封装置的密封能力;密封间隙不宜超过0.3mm 。 关键词:磁流体;密封;磁场

中图分类号:TH136 文献表示码:A

1 引言

磁流体密封是近年来迅速发展起来的一项新技术,具有1)严密的密封性2)不可测量的泄漏率3)长寿命4)可靠性高 + 5)没有污染6)能承受高转速7)最佳的扭矩传递8)低的粘性摩擦9)磁性流体密封即使在中断运行时,也不像弹性密封在停机期间,受增塑和驰豫的影响等优点。可以在高速下运行,尤其在旋转轴密封中具有独特的优越性[1]。

磁流体密封原理是利用永久磁铁在转轴和极齿间的密封间隙内产生强磁场,将磁性流体固定在密封间隙内,形成液体0形密封环,磁场力和外界压差相平衡而实现介质密封。但目前普遍采用的磁流体密封结构其密封间隙很小,间隙内的磁场很难直接测量,一般通过解析方法进行近似计算,这样就很难了解间隙磁场的实际分布情况。邹继斌、Sama 等对磁流体密封的磁场问题进行了计算[2-4],本文利用ANSYS 软件对密封间隙内的磁场进行深入分析。

2 密封理论

根据磁性流体力学分析,对旋转轴密封,磁性流体内部压强为:

()H

p MdH r gh C φρ=+++∫(1)

式中,M 表示磁性流体的磁化强度;H 表示磁场强度;ρ表示磁性流体密度;g 表示重力加速度;φ( r)表示与转速、磁极形状及半

径有关的函数,转速为零时,φ( r)=0;h 表示磁性流体深度;C 表示由边界条件确定的积分常数。

设低压边和高压边磁性流体与被密封介质的分界面分别为1和2,当考虑分解面上介质跃变引起的应力跃变时,则磁性流体密封压差公式为:

2

1

2121()()()

H H p MdH r r g h h φφρ?=+?+?∫

0211

()2

t t M M μ?? (2) 式中, M t 为磁化强度的切向分量,r 为半径.

一般地,外磁场较强,磁流体饱和磁化.M=Ms(磁性流体的饱和磁化强度)。式 (2)右边第五项可以忽略不计,且重力远小于磁场力,因而密封压差可以近似地表示为:

2121()()()s p M H H r r φφ?=?+? (3)

如果是磁性流体静止密封,式(3)密封压差可进一步简化为:

21()s p M H H ?=? (4)

由(4)式可知,在磁性流体饱和磁化强度一定的情况下,只有尽量提高ΔH 的值才能有效提高密封压差[3-6]。

3 静态磁场分析

在ANSYS 的前处理器中创建磁流体密封的物理环境。采用plan53单元并将此单元的的k3选项修改为对称,将磁流体密封的三维轴对称问题简化为二维平面问题。极靴和转轴的材料分别为电工纯铁和45#钢,永磁材料为N40型的Nd-Fe-B 。由于磁性流体的

https://www.wendangku.net/doc/9f6059631.html,

磁化强度较低,把磁性流体的相对磁导率设为与空气相等MURX=1;输入三种导磁材料的B-H 曲线,并将永磁材料的娇顽磁力MGXX,MGYY ,MGZZ 分别设为0、1.5E5和0。

建立一个三槽四齿密封间隙为Lg=0.1mm 的模型,其中齿宽Lt=0.4mm,齿高Lh=2.5 mm,槽宽Ls=2.5 mm 。由于结构同时关于旋转轴和Z 轴对称,可取其第一象限部分进行研究。建完模型后用LESIZE 命令对极齿处的单元大小和数目进行控制,以达到细化感兴趣部位网格的目的。对各个材料赋予相应的属性以后对整个模型进行网格划分,总的原则是极齿和密封间隙处网格最细,周围空气区域网格较粗。

在ANSYS 的求解器中施加边界条件。由于采用的是对称单元,X 轴与Y 轴处的对称边界条件已经自动施加;给周围空气边界施加磁力线平行(Az=0)的边界条件,磁力线垂直的边界条件是自然边界条件,无需施加。然后用MAGSOLV 命令进行求解[7-8]。

4 结果与分析

4.1 等位线分析

单元PLAN53的自由度是矢量磁位Az ,通过进一步处理可获得磁场强度及其分量(Hx 、Hy 、H SUM )和磁通密度及其分量(Bx 、By 、B SUM )

。通过图1磁力线分布图和图2磁通密度等值云图可以有一个直观的认识,并可以进行定性分析。从图中可以看出密封间

隙极齿与两侧

图1 磁力线分布图

Fig 1 Magnetic contour line of equipotential

图2 磁通密度分布等值云图

Fig 2 Magnetic flux density continuous contour

齿槽处的磁通密度分布呈明显的梯度分布,而这种梯度分布越大代表密封耐压能力越大。从这图1中还可以发现磁路的漏磁主要发生在永磁的内外两侧。

4.2 轨线分析

在ANSYS 后处理器中定义两条轴向轨线和一条径向轨线。两条轴向轨线分别在密封间隙的转轴侧和极齿侧,径向轨线定义在极齿间隙处某一极齿与转轴间的垂直方向上。将矢量磁位(Az )、磁感应强度(B SUM )和磁场强度(H SUM )的值映射在三条轨线上。为了更清楚的看出极齿出的磁场变化情况,在定义轴向轨线时,给每个极齿的端点处定义一个点,一共用8个点连成一条轨线,相邻两点插值数为20。图3和图4分别是密封间隙转轴侧和极齿侧轴向轨线H SUM 变化曲线,图5是极齿间隙径向轨线H SUM 变化曲线。

图3 密封间隙转轴侧轴向轨线HSUM 变化曲线 Fig 3 Hsum axial path curve with the sealing gap by

the shaft

图4 密封间隙极齿侧轴向轨线HSUM变化曲线Fig 4 Hsum axial path curve with the sealing gap by

the pole

由公式(4)可知,在磁流体饱和磁化强度M S一定的情况下,只有尽量提高极齿间隙与极齿两侧的磁场强度H差才能有效提高密封的耐压能力。由图3和图4分析可知,密封间隙转轴侧的磁场强度差大于极齿侧的磁场强度差。这说明密封失效首先将在靠近转轴侧开始,此处的磁场强度差决定整个密封的耐压能力。从图4还可以看出极齿表面小范围内的磁场强度分布大致呈一个二次曲线分布,极齿两侧边缘高,中间低。

由图5知,极齿间隙径向从极齿到转轴范围内磁场强度是直线降低的。这种在极齿间隙径向的磁场强度的不均匀性导致磁流体内的磁性颗粒可能向极齿侧偏聚,进而使转轴侧的磁流体的饱和磁化强度降低。这将进一步导致转轴侧的密封耐压能力降低。

图5 极齿间隙径向轨线H SUM变化曲线Fig5 H sum radial path curve with the sealing gap 4.3 耐压能力分析

图6 密封间隙与耐压能力关系曲线

Fig 6 The seal pressure differential versus the sealing

gap.

这里磁性液体饱和磁化强度Ms=300Gs,由公式4可获得耐压值。图6是

不同密封间隙与密封装置耐压能力的关系

曲线。从图中可明显看出,随着密封间隙的

增加,密封装置耐压能力逐渐下降。密封间

隙在0.1mm~0.3mm范围内,每增加0.1mm

密封装置的耐压能力都会急剧降低,其中从0.1-0.2mm范围内降幅最大。密封间隙超过0.3mm后耐压能力下降幅比较缓慢。间隙0.1mm和0.3mm比较,降幅已经达到52.48%,所以一般密封的间隙不宜超过0.3mm。

表1列出了不同密封间隙耐压能力的降低幅度。

表1 不同密封间隙耐压能力降低幅度

Tab.1 descend extend of anti-pressure for different

sealing gap

0.1-0.2mm 0.2-0.3mm 0.3-0.4mm

33.43% 28.62% 24.82% 5 结论

1、绝大部分磁力线都在密封装置内部

形成磁回路,漏磁主要发生在永磁的内外两侧,这是磁流体密封能力的基本保证。

2、密封间隙内靠近转轴侧极齿与两侧

处的磁场强度差决定密封装置的耐压能力。

3、随着密封间隙的增大,密封耐压能

力大幅下降。密封间隙不宜超过0.3mm。

参考文献

[1] 李德才.磁性液体理论及应用[M].北京:科学出版社,2003.8

[2] Sama M S, Stahl P, Ward A. Magnetic Field Analysis of Ferro fluid Seals for Optimum Design [J]. J Appl Phys. 1984.55(6):2595-2597

[3] 邹继斌,尚静,孙桂瑛等.磁流体密封压差的数值计算.摩擦学报.2000,20(1):46-49

[4]J.B.Zou, et al. Numerical analysis on the action of centrifuge force in magnetic fluid rotation shaft seals [J]. J. Magnetism and Magnetic. Materials. 2002(252):321-323

[5] 李德才,袁祖贻, 靳志民.磁性流体静密封耐压能力近似计算法.北方工业大学学报.1997, 9(1): 68-71

[6] 李德才,袁祖贻.磁性流体密封的边界元分析.化学工程师,1995,(4):22-25

[7] 张瑗,张建斌,邵新杰.磁流体密封的磁场分析.润滑与密封,2000,(4):24-28

[8] 李国斌,宋顺成,赵宝荣等.典型磁流体密封结构磁场有限元分析.润滑与密封,2005, (1):79-81

Numerical Simulation for Magnetic Fluid Sealing Device

Sun Mingli,Li Decai,He Xinzhi,Bai Bohai

School mechanical, Electronic and Control engineering, Beijing jiaotong university,

Beijing, (100044)

Abstract

In this paper the principle of magnetic fluid seal is discussed. Base on the finite element software ANSYS, the magnetic field of magnetic fluid sealing device with three slot four pole teeth is analyzed. The results show that the difference between the maximum and minimum intensity of magnetic field in the area near the shaft decide sealing capacity of sealing device; the gap of seal should not over 0.3mm. Keywords: magnetic fluid; seal; magnetic field

作者简介:孙明礼(72-),男,安徽和县人,博士生,主要从事磁性液体理论及应用。

磁场和磁通量

第十章磁场和磁通量 1.磁场的基本性质 磁场的基本性质是对放入其中的磁体、电流或运动电荷有力的作用(对磁极一定有力的作用;对电流和运动电荷可能有力的作用,当电流或运动电荷方向与磁感线平行时不受磁场力作用)。 2.磁感应强度 ①磁感应强度B是一个用比值来定义的物理量: F B I L = ? , ( B⊥L)。 ②磁感应强度B是描述磁场力的性质的物理量。 ③磁场的叠加:遵守平行四边形定则 3. 磁感线及其特点 ①人为(法拉第)引入,为了更形象、直观地描述磁场力的性质。 ②闭合曲线: ③疏密: ④切线: ⑤不相交: 4...会用 ..右手螺旋定则 电流周围存在磁场,磁场方向和电流方向之间的关系可用右手螺旋定则(也叫安培定则)判断。 (1)直线电流的磁场:其磁感线是以导线上各点为圆心的同心圆,这些圆都在跟导线垂直的平面上。直线电流磁场方向和电流方向之间的关系可用右手螺旋定则判断如下:右手握住直导线,让伸直的大拇指指向电流方向,弯曲的四指所指的就是磁感线的环绕方向。 (2)环形电流的磁场:其磁感线是一些围绕环形导线的闭合曲线,在环形导线的中心轴线上,磁感线和环形导线的平面垂直。环形电流磁场方向和电流方向之间的关系可用右手螺旋定则判断如下:右手弯曲的四指与环形电流方向一致,伸直的大拇指指向环形导线中心轴线上的磁感线方向。 (3)通电螺线管的磁场:很象一个条形磁铁产生的磁场。通电螺线管磁场方向和电流方向关系可用右手螺旋定则判断如下:右手握住螺线管,让弯曲的四指跟电流方向一致,大拇指所指的方向就是螺线管内部的磁感线方向。 5...了解 ..五种典型磁场的磁感线分布 五种典型磁场的磁感线分布情况 a. 条形磁铁(如图10-A-1) b. 蹄形磁铁(如图10-A-2) c. 直线电流(如图10-A-3) d. 环形电流(如图10-A-4) e. 通电螺线管(如图10-A-5)

O型密封圈规格表

型号 Model 外径External diameter 线径 Thickness 10001 2.10.35 10002 1.80.5 1000320.6 10004 2.60.6 1000530.7 1000630.8 10007 3.20.8 10008 3.80.8 10009 3.21 10010 3.41 10011 3.51 10012 3.81 10013 3.91 1001441 10015 4.21 10016 4.31 10017 4.51 10018 4.61 10019 4.81 1002051 10021 5.81 1002261 1002371 1002481 1002591 100269.51 10027101 10028111 10029121 10030141 10031151 10032161 10033171 10034181 10035191 10036201 10037221 10038241 10039251 10040261 O型密封圈规格表

10041281 10042301 10043321 10044341 10045351 10046381 10047401 100484 1.1 100495 1.1 100505 1.5 10051 5.5 1.5 100526 1.5 10053 6.5 1.5 100547 1.5 100558 1.5 100568.5 1.5 100579 1.5 1005810 1.5 1005911 1.5 1006012 1.5 1006113 1.5 1006214 1.5 1006315 1.5 1006416 1.5 1006517 1.5 1006618 1.5 1006720 1.5 1006821 1.5 1006922 1.5 1007023 1.5 1007124 1.5 1007225 1.5 1007326 1.5 1007427 1.5 1007528 1.5 1007632 1.5 1007734 1.5 1007836 1.5 1007938 1.5 1008040 1.5 1008142 1.5 1008244 1.5 1008346 1.5 1008448 1.5 1008550 1.5 1008653 1.5 1008756 1.6

磁场的定义_磁场的磁感线_磁场中闭合线圈的磁通量

磁场的定义_磁场的磁感线_磁场中闭合线圈的磁通量 磁场的定义 磁场是一种看不见、摸不着的特殊物质,磁场不是由原子或分子组成的,但磁场是客观存在的。 磁场是对放入其中的磁体有磁力的作用的物质叫做磁场,磁场的基本

特征是能对其中的运动电荷施加作用力,即通电导体在磁场中受到磁场的作用力。 ⒈磁场是一种客观物质,存在于磁体和运动电荷(或电流)周围。 ⒉磁场(磁感应强度)的方向规定为磁场中小磁针N极的受力方向(磁感线的切线方向)。 ⒊磁场的基本性质是对放入其中的磁体、运动电荷(或电流)有力的作用。 描述磁场的磁感线

在磁场中画一些曲线,用(虚线或实线表示)使曲线上任何一点的切线方向都跟这一点的磁场方向相同(且磁感线互不交叉),这些曲线叫磁感线。 磁感线是闭合曲线。规定小磁针的北极所指的方向为磁感线的方向。磁铁周围的磁感线都是从N极出来进入S极,在磁体内部磁感线从S 极到N极。 磁感线都有哪些性质呢? ⒈磁感线是徦想的,用来对磁场进行直观描述的曲线,它并不是客观存在的。 ⒉磁感线是闭合曲线;磁铁的磁感线,外部从N指向S,内部从S指向N; ⒊磁感线的疏密表示磁场的强弱,磁感线上某点的切线方向表示该点的磁场方向。 ⒋任何两条磁感线都不会相交,也不能相切。

磁感线(不是磁场线)的性质最好与电场线的性质对比来记忆。 描述磁场性质的关键物理量:磁感应强度 磁感应强度的定义式B=F/(IL) 磁感应强度是由什么决定的?磁感应强度的大小并不是由F、I、L来决定的,而是由磁极产生体本身的属性。 如果是一块磁铁,那么B的大小之和这块磁铁的大小和磁性强弱有关。 如果是电磁铁,那么B与I、匝数及有无铁芯有关。 高中物理网很多文章都建议同学们采用类比的方法来理解各个物理量。我们用电阻R来做个对比。 R的计算公式是R=U/I;可一个导体的电阻R大小并不是由U或者I 来决定的。而是由其导体自身属性决定的,包括电阻率、长度、横截面积。同样,磁感应强度B也不是由F、I、L来决定的,而是由磁极产生体本身的属性。 如果同学们有时间,可以把静电场中电容的两个公式来复习、巩固下。

有限元分析系统的发展现状与展望外文翻译

Finite element analysis system development present situation and forecast Along with modern science and technology development, the people unceasingly are making the faster transportation vehicle, the large-scale building, the greater span bridge, the high efficiency power set and the preciser mechanical device. All these request engineer to be able precisely to forecast in the design stage the product and the project technical performance, needs to be static, technical parameter and so on dynamic strength to the structure as well as temperature field, flow field, electromagnetic field and transfusion carries on the analysis computation. For example analysis computation high-rise construction and great span bridge when earthquake receives the influence, has a look whether can have the destructive accident; The analysis calculates the nuclear reactor the temperature field, the determination heat transfer and the cooling system are whether reasonable; Analyzes in the new leaf blade the hydrodynamics parameter, enhances its operating efficiency. The sell may sum up as the solution physics question control partial differential equations often is not impossible. In recent years the finite element analysis which develops in the computer technology and under the numerical analysis method support(FEA, Finite Element Analysis) the side principle for solves these complex project analysis estimation problems to provide the effective way. Our country in " 95 " Plan period vigorously promotes the CAD technology, mechanical profession large and middle scalene terries CAD popular rate from " 85 " End 20% enhances that present 70%.With enterprise application of CAD, engineering and technical personnel has gradually get rid drawing board, and will join the main energy how to optimize the design, engineering and improving the quality of products, computer-aided engineering analysis (CAE. Computer Aided Engineering) method and software will be the key technical elements . ln engineering practice, finite element analysis software and CAD system integration design standards should be a qualitative leap, mainly in the following aspects : The increase design function, reduces the design cost; Reduces design and the analysis cycle period; Increase product and project reliability; Uses the optimized design, reduces the material the consumption or the cost;

磁流体密封间隙对密封性能的影响

第33卷第3期 1999年3月 上海交通大学学报 JOU RNAL O F SHAN GHA I J I AO TON G UN I V ER S IT Y V o l .33N o.3  M ar .1999  收稿日期:1998203224 基金项目:上海市教委科技发展基金资助(97H 04)作者简介:顾建明(1948~),男,副教授. 文章编号:100622467(1999)0320380203 磁流体密封间隙对密封性能的影响 顾建明1, 许永兴2, 陆明琦1, 芮 菁1 (1.上海交通大学动力与能源工程学院,上海200030;2.上海电视大学,上海200092) 摘 要:对磁流体在转轴密封中的应用作了探讨.阐明了磁流体密封的原理,根据磁学理论进行了磁回路的计算.在此基础上设计了磁流体密封的试验装置.实验中采用不同的密封间隙,以确定磁流体密封能力与密封间隙之间的关系.同时,进行了轴旋转和静止时磁流体密封能力变化的试验.试验结果表明,磁流体的密封能力随密封级数的增加而提高,随密封间隙的增大而减小,密封间隙在0.05~0.20mm 时,效果较好,同时密封级数有一个最佳值.关键词:磁流体;磁流体密封;密封间隙;密封能力 中图分类号:TH 117;TQ 584.1 文献标识码:A Effe c t of the G a p of M a gne tic F luid S e a l on S e a l C a pa c ity GU J ian 2m ing 1 , X U Y ong 2x ing 2 , L U M ing 2qi 1 , RU I Q ing 1 1.Schoo l of Pow er and Energy Engrg .,Shanghai J iao tong U n iv .,Shanghai 200030,Ch ina 2.Shanghai TV U n iv .,Shanghai 200092,Ch ina Abs tra c t :T he dynam ic seal of sp in shaft w ith m agnetic flu id w as studied .T he p rinci p le of m agnetic flu id seal w as described and w ith the calcu lati on of m agnetic loop based on m agnetic theo ry ,a test un it fo r m ag 2netic flu id seal w as estab ished .In the exp eri m en t ,the relati on sh i p betw een the seal cap acity of m agnetic flu id and the differen t seal gap w as determ ined ,and the variance of m agnetic flu id seal cap acity w as also tested w ith the shaft ro tating o r stati onary .T he resu lt show s that the seal cap acity of m agnetic flu id is raised w ith the increase of seal stage and the decrease of seal gap .W hen the seal gap is betw een 0.05mm and 0.20mm ,the resu lt is better and the num ber of seal stage has an op ti m um value . Ke y w o rds :m agnetic flu id ;m agnetic flu id seal ;seal gap ;seal cap acity 磁流体是一种新材料,它在机械、动力、航天和医学等方面有着广阔的应用前景[1,2].由于它具有独特的超顺磁特性[3],密封是它的又一个重要的用途.自70年代始,美国、前苏联、日本等国先后对磁流体 密封进行了研究和探索.由于磁流体密封是一项新技术,它涉及到磁学、热力学、流体力学等多种学科领域,在机理上是很复杂的.因此,在研究上存在相当的难度.尽管不少国家进行了一定的研究,但无论在理论还是实用上,许多问题有必要进行深入的研究.除了须研制出高性能的磁流体外,研究不同的磁 场强度、不同几何形状的磁极以及不同转轴转速对 密封性能的影响,也是一个十分重要的方面. 1 磁性流体密封原理及实验装置 1.1 密封原理 密封部分原理如图1所示.永久磁铁4和磁极3设置在固定部件上,磁极3和转轴1的间隙内注入磁流体2,将转轴贯穿的空间隔断.图1中,永久磁铁、磁极、磁流体和转轴构成一个封闭磁路.永久磁铁产生的强磁场,将磁流件牢牢地“束缚”在密封间隙内形成液体“O ” 形环,即油膜屏障,用来克服转轴两端的压差.磁流体密封的耐压能力取决于磁场对磁性流体的“束缚”力.

(完整word版)有限元分析软件的比较

有限元分析软件的比较(购买必看)-转贴 随着现代科学技术的发展,人们正在不断建造更为快速的交通工具、更大规模的建筑物、更大跨度的桥梁、更大功率的发电机组和更为精密的机械设备。这一切都要求工程师在设计阶段就能精确地预测出产品和工程的技术性能,需要对结构的静、动力强度以及温度场、流场、电磁场和渗流等技术参数进行分析计算。例如分析计算高层建筑和大跨度桥梁在地震时所受到的影响,看看是否会发生破坏性事故;分析计算核反应堆的温度场,确定传热和冷却系统是否合理;分析涡轮机叶片内的流体动力学参数,以提高其运转效率。这些都可归结为求解物理问题的控制偏微分方程式,这些问题的解析计算往往是不现实的。近年来在计算机技术和数值分析方法支持下发展起来的有限元分析(FEA,Finite Element A nalysis)方法则为解决这些复杂的工程分析计算问题提供了有效的途径。在工程实践中,有限元分析软件与CAD系统的集成应用使设计水平发生了质的飞跃,主要表现在以下几个方面: 增加设计功能,减少设计成本; 缩短设计和分析的循环周期; 增加产品和工程的可靠性; 采用优化设计,降低材料的消耗或成本; 在产品制造或工程施工前预先发现潜在的问题; 模拟各种试验方案,减少试验时间和经费; 进行机械事故分析,查找事故原因。 在大力推广CAD技术的今天,从自行车到航天飞机,所有的设计制造都离不开有限元分析计算,FEA在工程设计和分析中将得到越来越广泛的重视。国际上早20世纪在50年代末、60年代初就投入大量的人力和物力开发具有强大功能的有限元分析程序。其中最为著名的是由美国国家宇航局(NASA)在1965年委托美国计算科学公司和贝尔航空系统公司开发的NASTRAN有限元分析系统。该系统发展至今已有几十个版本,是目前世界上规模最大、功能最强的有限元分析系统。从那时到现在,世界各地的研究机构和大学也发展了一批规模较小但使用灵活、价格较低的专用或通用有限元分析软件,主要有德国的ASKA、英国的PA FEC、法国的SYSTUS、美国的ABQUS、ADINA、ANSYS、BERSAFE、BOSOR、COSMOS、ELAS、MARC和STARDYNE等公司的产品。 以下对一些常用的软件进行一些比较分析: 1. LSTC公司的LS-DYNA系列软件

星形密封圈规格尺寸大全(X形圈)

星形密封圈规格尺寸(X形圈) 内容来源网络,由“深圳机械展(11万㎡,1100多家展商,超10万观众)”收集整理!更多cnc加工中心、车铣磨钻床、线切割、数控刀具工具、工业机器人、非标自动化、数字化无人工厂、精密测量、3D打印、激光切割、钣金冲压折弯、精密零件加工等展示,就在深圳机械展. 简称星形圈,又称X形圈,其规格尺寸用内径d1和截面直径d2表示。 槽中其径向或轴向预压缩赋予星形圈初始密封能力,它随压力的提高而增大 其密封力。在压力作用下,星形圈的截面形状会使压力向各方面均匀地传递, 故具有良好的密封效果。 与O型圈相比优点如下: 由于其截面形状为四个密封唇,在沟槽中不产生扭曲,所以在往复运动时不会在沟槽中滚动 摩擦力小,因为它要求比O型圈小的预压缩。较小的压缩意味着较小的摩擦力和磨损,从而有较长的寿命。 密封效果非常好,由于在星形圈截面上有较好的压力分布,从而可获得非常好的密封效果。 在密封唇之间形成润滑容腔,改善了启动状况。 与O型圈不同,它的分型飞边处于截面凹处,即两个密封唇之间,且远离唇口位置。 星形圈安装沟槽尺寸mm

注:1.括号内为材料是氟橡胶70的沟槽尺寸;2.当使用挡圈时,宽度b1=b+2T;b2=b+T(T为挡圈厚度) 安装沟槽表面粗糙度μm 矩形安装沟槽侧面可加工成倾斜(如图角度),但如使用挡圈则侧面必须是垂直的。

内容来源网络,由“深圳机械展(11万㎡,1100多家展商,超10万观众)”收集整理!更多cnc加工中心、车铣磨钻床、线切割、数控刀具工具、工业机器人、非标自动化、数字化无人工厂、精密测量、3D打印、激光切割、钣金冲压折弯、精密零件加工等展示,就在深圳机械展.

高中物理磁通量的计算

磁通量 一、 磁通量的定义 穿过一个面的磁感线的条数 磁通量公式= B ·S ,其中S 指垂直B 方向的面积 1、(2009年安徽卷)20.如图甲所示,一个电阻为R ,面积为S 的矩形导线框abcd ,水平旋转在匀强磁场中,磁场的磁感应强度为B ,方向与ad 边垂直并与线框平面成450角,o 、o’ 分别是ab 和cd 边的中点。现将线框右半边obco’ 绕oo’ 逆时针900到图乙所示位置。在这一过程中,导线中通过的电荷量是 A . 2BS 2R B . 2BS R C .BS R D .0 答案:A 解析:对线框的右半边(obco ′)未旋转时 a a b b c c d d B B 450 450 甲 乙 o o o / o / b ( c ) b ( c )

整个回路的磁通量12BSsin 452 o BS Φ== 对线框的右半边(obco ′)旋转90o 后,穿进跟穿出的磁通量相等,如右 图整个回路的磁通量20Φ=。212 BS 2 ?Φ=Φ-Φ= 。根据公式22BS q R R ?Φ= =。选A 二、S B ?=φ公式的理解 1、s 为磁场中的有效面积 2、合磁通 3、磁通量的方向 说明:磁通量是标量,它的方向只表示磁感线是穿入还是穿出,当穿过某一面积的磁感线有穿入的又有穿出的时,二者将互相抵消一部分,这类似于导体带电时的“净”电荷。 条形磁铁 1、如图所示,在垂直于条形磁铁的轴线的同一平面内,有两个圆形线圈A 和B 。问穿过这两个线圈的磁通量哪个大? 两条通电直导线 2、如下图所示,在两根平行长直导线M 、N 中,通过同方向同强度的电流.导线框ABCD 和两导线在同一平面内.线框沿着与两导线垂直的方向,自右向左在两导线间匀速移动.在移动过程中,线框中感生电流的方向: 图

对有限元方法的认识

我对有限元方法的认识 1有限元法概念 有限元方法(The Finite Element Method, FEM)是计算机问世以后迅速发展起来的一种分析方法。每一种自然现象的背后都有相应的物理规律,对物理规律的描述可以借助相关的定理或定律表现为各种形式的方程(代数、微分、或积分)。这些方程通常称为控制方程(Governing equation)。 针对实际的工程问题推导这些方程并不十分困难,然而,要获得问题的解析的数学解却很困难。人们多采用数值方法给出近似的满足工程精度要求的解答。 有限元方法就是一种应用十分广泛的数值分析方法。 有限元方法是处理连续介质问题的一种普遍方法,离散化是有限元方法的基础。 这种思想自古有之:古代人们在计算圆的周长或面积时就采用了离散化的逼近方法:即采用内接多边形和外切多边形从两个不同的方向近似描述圆的周长或面积,当多边形的边数逐步增加时近似值将从这两个方向逼近真解。 近年来随着计算机技术的普及和计算速度的不断提高,有限元分析在工程设计和分析中得到了越来越广泛的重视,已经成为解决复杂的工程分析计算问题的有效途径,现在从汽车到航天飞机几乎所有的设计制造都已离不开有限元分析计算,其在机械制造、材料加工、航空航天、汽车、土木建筑、电子电器、国防军工、船舶、铁道、石化、能源、科学研究等各个领域的广泛使用已使设计水平发生了质的飞跃。 国际上早在 60 年代初就开始投入大量的人力和物力开发有限元分析程序。“有限单元”是由Clough R W于1960年首次提出的。但真正的有限元分析软件是诞生于 70 年代初期,随着计算机运算速度的提高,内、外存容量的扩大和图形设备的发展,以及软件技术的进步,发展成为有限元分析与设计软件,但初期其前后处理的能力还是比较弱的,特别是后处理能力更弱。

磁流体密封设计

大学本科生毕业论文 摘要 本论文以对磁流体的表面张力的分析为出发点,建立了磁流体密封模型,根据磁流体密封力的最小单元——磁性微粒间的引力,结合磁性微粒在磁场下的浓度分布模型,推导出相应的磁流体密封耐压公式,并应用该磁流体密封耐压公式设计船舶艉轴磁流体密封实验装置的主要参数。依照密封装置的主要参数,设计出密封装置的动力源和传动机构。在设计的船舶艉轴磁流体密封实验装置上,对磁流体密封的主要密封参数进行了实验研究,并分析了影响磁流体密封装置的密封能力的因素,包括磁环、磁流体的性能,密封间隙与密封级数,磁极的齿型及转速。通过对实验数据的分析可知,密封能力是各因素综合影响的结果,任何一个因素的不合理,都能导致密封能力的降低。船舶艉轴密封实验装置,实现了较高的密封压差,对于实船应用具有一定的参考价值。 1

大学本科生毕业论文 第1章绪论 1.1选题的背景和意义 磁流体也叫磁液或铁流体,它是将磁性微粒掺入到载液中是一种对磁场敏感、可流动的液体磁性材料。磁流体自问世以来,在研磨、抛光、润滑、减振、冷却等领域逐步被人们所认识,磁流体在密封领域的应用也逐渐受到人们的重视。 磁流体密封是借助磁流体在磁场的作用下形成的磁流体密封环对气体、液体进行密封,由于它和密封轴之间是通过磁流体进行接触密封,因而避免了密封轴与密封件之间的直接摩擦,降低了附加载荷。在旋转轴密封中具有其它密封方式不可比拟的优点:无泄露、无磨损、结构简单、寿命长,受到国内外学者和工程技术人员的重视,在工业、国防等领域具有重要的意义。 磁流体密封在低压气体密封中的应用较为简单,因为密封压力低,所需的密封级数较少、密封间隙也可以选的比较大,所以容易实现。同时由于密封级数少,故密封装置的轴向尺寸限制较少,密封间隙大,其他诸如转速、磁极齿型等因素对密封装置的密封能力影响也较小,往往可以采用模糊的理论公式或经验公式对密封装置进行设计,就能满足使用的需要。随着密封压力的升高,磁流体密封耐压公式在磁流体密封装置的设计中越来越重要,它的理论水平直接决定了密封装置的性能。传统密封理论公式存在一些缺陷,比如密封力的来源不明确,计算复杂,适用范围小等等,这就不能很好的满足磁流体高压密封设计的需要。因此,应用新的、合理的密封耐压公式对旋转轴高压密封装置的设计是很必要的。 磁流体在气体密封中的应用已经很多,但是在液体密封中的应用较少,本文将磁流体密封技术应用于船舶艉轴密封中,并采用新的耐压公式,计算出密封装置的参数,设计出密封实验装置,进行了具体实验,取得了大量的数据。最后利用实验数据,分析对船舶艉轴磁流体密封的主要影响因素,可为今后进行磁流体密封装置的设计提供一定的帮助。 1.2国内外磁流体密封技术的发展现状 2

磁通量的变化讲解学习

1. 磁通量Φ:①物理意义:某时刻穿过磁场中某个面的磁感线条数,磁感线越密的地方,也就是穿过单位面积的磁感线条数越多的地方,磁感应强度B越大,因此,B越大,S越大,穿过这个面的磁感线条数就越多,磁通量就越大。 ②大小计算:Φ=BS⊥或φ=SB⊥ Φ=B·S,S为与B垂直的面积,不垂直时,取S在与B垂直方向上的投影, 我们称之为“有效面积”。 如图所示,线圈平面与水平方向成θ角,磁感线竖直向下,设磁感应强度为B, 线圈面积为S,把面积S投影投影到与磁场垂直的方向即水平方向,则S⊥=Scosθ,故φ=BS⊥=BScosθ。 把磁感应强度B分解为平行于线圈平面的分量B∥和垂直与线圈平面的分量B⊥,B∥不穿过线圈,且B⊥=Bcosθ,故φ=B⊥S=BScosθ。 如果磁场范围有限,如图所示,开始时矩形线框与匀强磁场的方向垂直,且一半在磁场内, 一半在磁场外,当线框以bc边为轴转动时,如果转动的角度小于60度,面积S在垂直与 磁感线方向且在磁场中的投影不变,这时“有效面积”为S/2,磁通量φ=BS/2. 如果磁场范围有限,如图示,当线圈包含全部磁场时,面积再扩大,磁通量扔不变,还是φ=BS. ③磁通量是标量,但有正负之分,正负仅表示穿入或穿出某面,而且是人为规定。 穿过某个面有方向相反的磁场,则不能直接用Φ=B·S,应考虑相反方向的磁通量抵消以后 所剩余的磁通量。若磁感线沿相反方向穿过同一平面,且正向穿过它的磁通量为φ1,反向穿过它的磁通量为φ2,则穿过该平面的磁通量等于磁通量的代数和,即φ1-φ2. ○4多匝线圈的磁通量:穿过某一线圈的磁通量是由穿过该面的磁感线条数的多少决定的,与线圈匝数无关,只要n匝线圈的面积相同,放置情况也相同,则通过n匝线圈与通过单匝线圈的磁通量相同,即Φ≠NBS 2.磁通量变化量ΔΦ:①物理意义:穿过某个面的磁通量的差值 ②大小计算:ΔΦ=Φ2-Φ1要首先规定正方向 ③与磁场垂直的平面,开始时和转过180°时穿过平面的磁通量是不同的,一正一负,|ΔΦ|=2BS而不是零 磁通量发生变化的四种情形 ①磁感应强度B不变,有效面积S变化,则△φ=φt-φ0=B?△S。 如图所示,闭合回路的一部分导体切割磁感线,此时穿过abcd面 的磁通量的变化量可用此公式计算。 ②磁感应强度B变化,磁感线穿过的有效面积S不变,则△φ=φt-φ0=△B?S。如图(8)所示,通电直导线下边有一个矩形线框,若使线框逐渐远离(平动)通电导线,此时穿过线框的磁通量的变化量可用此公式计算。 ③线圈平面与磁场方向的夹角θ发生变化时,线圈在垂直与磁场方向的投影面积S⊥=Ssinθ发生变化,从而引起穿过线圈的磁通量发生变化,即B、S不变,θ变化。此时可由△φ=φt-φ0=BS(sinθ1-sinθ2)计算并判断磁通量的变化。如图所示,当线框以ab为轴顺时针转动时,此时穿过abcd面的磁通量的变化量可由此公式计算。○4若磁感应强度B和回路面积S同时发生变化,则△φ=φt-φ0≠△B?△S.如图所示,若导线CD向右滑动,回路面积从S1变到S2,磁感应强度B从变到,则回路中的磁通量的变化量△φ=B2S2- B1S1

有限元分析71831

有限元分析 有限元法的基本思想是将结构离散化,用有限个容易分析的单元来表示复杂的对象,单元之间通过有限个节点相互连接,然后根据变形协调条件综合求解。由于单元的数目是有限的,节点的数目也是有限的,所以称为有限元法(FEM,Finite Element Method)。 有限元法是一种求解关于场问题的一系列偏微分方程的数值方法.这种类型的问题会在许多工程学科中遇到,如机械设计、声学、电磁学、岩土力学、断裂力学、流体力学等.在机械工程中,有限元分析被光分应用在结构、振动和传热问题上。 有限元法是60年代以来发展起来的新的数值计算方法,是计算机时代的产物。虽然有限元的概念早在40年代就有人提出,但由于当时计算机尚未出现,它并未受到人们的重视。随着计算机技术的发展,有限元法在各个工程领域中不断得到深入应用,现已遍及宇航工业、核工业、机电、化工、建筑、海洋等工业,是机械产品动、静、热特性分析的重要手段。早在70年代初期就有人给出结论:有限元法在产品结构设计中的应用,使机电产品设计产生革命性的变化,理论设计代替了经验类比设计。目前,有限元法仍在不断发展,理论上不断完善,各种有限元分析程序包的功能越来越强大,使用越来越方便。 大约在300年前,牛顿和莱布尼茨发明了积分法,证明了该运算具有整体对局部的可加性。虽然,积分运算与有限元技术对定义

域的划分是不同的,前者进行无限划分而后者进行有限划分,但积分运算为实现有限元技术准备好了一个理论基础。 在牛顿之后约一百年,著名数学家高斯提出了加权余值法及线性代数方程组的解法。这两项成果的前者被用来将微分方程改写为积分表达式,后者被用来求解有限元法所得出的代数方程组。在18世纪,另一位数学家拉格郎日提出泛函分析。泛函分析是将偏微分方程改写为积分表达式的另一途经。 在19世纪末及20世纪初,数学家瑞雷和里兹首先提出可对全定义域运用展开函数来表达其上的未知函数。1915年,数学家伽辽金提出了选择展开函数中形函数的伽辽金法,该方法被广泛地用于有限元。1943年,数学家库朗德第一次提出了可在定义域内分片地使用展开函数来表达其上的未知函数。这实际上就是有限元的做法。 所以,到这时为止,实现有限元技术的第二个理论基础也已确立。 20世纪50年代,飞机设计师们发现无法用传统的力学方法分析飞机的应力、应变等问题。波音公司的一个技术小组,首先将连续体的机翼离散为三角形板块的集合来进行应力分析,经过一番波折后获得前述的两个离散的成功。20世纪50年代,大型电子计算机投入了解算大型代数方程组的工作,这为实现有限元技术准备好了物质条件。1960年前后,美国的R. W. Clough教授及我国的冯康教授分别独立地在论文中提出了“有限单元”,这样的名词。此后,这样

磁通量公式使用条件

磁通量公式使用条件 公式 Φ=BS,适用条件是B与S平面垂直。如图,当S与B的垂面存在夹角θ时,Φ=B·S·cosθ。 单位 在国际单位制中,磁通量的单位是韦伯,是以德国物理学家威廉·韦伯的名字命名的。Weber,符号是Wb,1Wb=1T*m2=1V*S,是标量,但有正负,正负仅代表穿向。 韦伯可以用法拉第电磁感应定律来推导。1韦伯=108(1亿)麦克斯韦。 性质 通过某一平面的磁通量的大小,可以用通过这个平面的磁感线的条数的多少来形象地说明。在同一磁场中,磁感应强度越大的地方,磁感线越密。因此,B越大,S越大,磁通量就越大,意味着穿过这个面的磁感线条数越多。过一个平面若有方向相反的两个磁通量,这时的合磁通为相反方向磁通量的代数和(即相反合磁通抵消以后剩余的磁通量)。 磁场的高斯定理指出,通过任意闭合曲面的磁通量为零,即它表明磁场是无源的,不存在发出或会聚磁力线的源头或尾闾,亦即不存在孤立的磁单极。以上公式中的B既可以是电流产生的磁场,也可以是变化电场产生的磁场,或两者之和。 磁通密度是通过垂直于磁场方向的单位面积的磁通量,它等于该处磁场磁感应强度的大小B。磁通密度精确地描述了磁力线的疏密。 通量概念是描述矢量场性质的必要手段,通量密度则描述矢量场的强弱。磁通量和磁通密度,电通量和电通密度都是如此。 通电导体与磁场方向垂直时,它受力的大小既与导线长度L成正比,又与导线中的电流I 成正比,即与I和L的乘积IL成正比,公式是F=ILB,式中B是磁感应强度。 磁通量的定义为覆盖某面积的磁场的积分 其中Φ为磁通量,B为磁感应强度,S为面积。已知高斯磁场定律为:Φ=BS。 这条方程的体积积分,跟散度定理合用,给出以下的结果: 亦即是说,通过任何密闭表面的磁通量一定为零;自由“磁电荷”是不存在的。对比下, 另一条麦克斯韦方程──高斯电场定律为:∫∫E.ds=Q/ε0 其中E为电场强度,ρ为自由电荷的密度(不包括在物料中被束缚的双极 电动机原理图解电荷),ε0为真空介电常数。注意这指出了电单极的存在,也就是,自由的正或负电荷。 磁通量密度向量的方向定义为从磁南极到磁北极(磁铁里面)。在磁铁外,场线会由北到南。若磁场通过能导电的电线环,而磁通量的改变的话,会引起电动势的生成, 并因此会产生电流(在环中)。其关系式可由法拉第定律得出,这就是发电机发电的原理。

有限元分析的发展趋势

有限元分析的发展趋势 摘要:1965年“有限元”这个名词第一次出现,到今天有限元在工程上得到广泛应用,经历了三十多年的发展历史,理论和算法都已经日趋完善。有限元的核心思想是结构的离散化,就是将实际结构假想地离散为有限数目的规则单元组合体,实际结构的物理性能可以通过对离散体进行分析,得出满足工程精度的近似结果来替代对实际结构的分析,这样可以解决很多实际工程需要解决而理论分析又无法解决的复杂问题。 关键词:有限元分析结构计算结构设计 Abstract: The 1965 "finite" appeared for the first time this term, and today is widely used finite element in engineering, after more than 30 years of history, theory and algorithms have been improved. Finite element discretization of the core idea is to structure, is the actual structure of the supposed discrete combination unit for a limited number of rules, the actual structure to analyse the physical properties can be felt through a discrete body of drawn precision engineering approximation as an alternative to the analysis of actual structures, this would solve a lot of theoretical analysis and practical engineering needed to address complex problems that cannot be resolved. Key words: finite element analysis structural calculation physical design 1 有限元的发展历程 有限元法的发展历程可以分为提出(1943)、发展(1944一1960)和完善(1961-二十世纪九十年代)三个阶段。有限元法是受内外动力的综合作用而产生的。 1943年,柯朗发表的数学论文《平衡和振动问题的变分解法》和阿格瑞斯在工程学中取得的重大突破标志着有限元法的诞生。 有限元法早期(1944一1960)发展阶段中,得出了有限元法的原始代数表达形式,开始了对单元划分、单元类型选择的研究,并且在解的收敛性研究上取得了很大突破。1960年,克劳夫第一次提出了“有限元法”这个名称,标志着有限元法早期发展阶段的结束。 有限元法完善阶段(1961一二十世纪九十年代)的发展有国外和国内两条线索。在国外的发展表现为: 第一,建立了严格的数学和工程学基础;第二,应用范围扩展到了结构力学以外的领域;第三,收敛性得到了进一步研究,形成了系统的误差估计理论;第四,发展起了相应的商业软件包。 近年来随着计算机技术的普及和计算速度的不断提高,有限元分析在工程设计和分析中得到了越来越广泛的重视,已经成为解决复杂的工程分析计算问题的有效途径,现在从汽车到航天飞机几乎所有的设计制造都已离不开有限元分析计算,其在机械制造、材料加工、航空航天、汽车、土木建筑、电子电器,国防军工,船舶,铁道,石化,能源,科学研究等各个领域的广泛使用已使设计水平发生了质的飞跃,主要表现在以下几个方面: 一、增加产品和工程的可靠性; 二、在产品的设计阶段发现潜在的问题 三、经过分析计算,采用优化设计方案,降低原材料成本

磁性流体密封技术

■磁性流体密封技术 磁性流体密封技术是在磁性流体的基础上发展的,当磁性流体注 入具有磁场的间隙中时,它可以充满整个间隙,成为一种液体“O型 密封圈”。 磁性流体真空进给装置是一种把旋转运动传入真空容器的装置, 其基本构成为一个永久磁场,两个磁极,一个磁性转动轴和磁性流体。 传动轴是一个多级结构,由磁极和转轴组成。在每级环形间隙中,充 满了磁性流体。在理想状态下,所有磁性流体密封在每一级极间与磁 极之间,形成一系列的“磁性流体密封圈”。每级“磁性流体密封圈” 能随的压差0.15-0.2个大气压,整个区域的随能力为密封圈子总的承 压能力,为适应真空环境,磁性流体密封圈标准设计压力大于两个大 气压,所以说是绝对安全的。 Magnetic fluid Sealing Technique Sealing techniques of magnetic fluid take advantage of response of Magnetic fluids. When a Magnetic fluid is placed into a gap between the surfaces of rotating and stationary elements in the presence of magnetic fluid, it assumes the shape of a"Liquid O-ring" to comple电话y fill the gap. The magnetic fluid vacuum rotary feed through is a device that transmits rotary motion into a vacuum chamber. The basic components are permanent magnet, two pole pieces, a magnetically permeable shaft and Magnetic fluid. The shaft (of pole pieces) contains a multistage structure, completed bye the pole pieces and the shaft, concentrating magnetic flux in the radial gap under each stage. In the ideal situation, all flux lines are confined under each stage, and none are in interstate region. The magnetic fluid is trapped and

磁流体密封原理

磁流体密封原理 磁流体密封技术是在磁性流体的基础上发展而来的,当磁流体注入磁场的间隙时,它可以充满整个间隙,形成一种“液体的O型密封圈”。 磁流体密封装置的功能是把旋转运动传递到密封容器内,常用于真空密封,其基本原理见下图 磁流体密封装置是由不导磁座、轴承、磁极、永久磁铁、导磁轴、磁流体组成,在均匀稳定磁场的作用下,使磁流体充满于设定的空间内,建立起多级“O型密封圈”,从而达到密封的效果;每级密封圈一般可以承受大于0.15~0.2个大气压的压差。总承压为各级压差之和,一般设计为2.5个大气压,完全满足真空密封的需要;另外经过我公司的研究开发,也可用于高压密封。 2、磁流体密封的特性 ·长寿命 无磨损,具有极佳的工作可靠性。 ·高性能 极限真空度10-6Pa,泄漏率10-12Pa.m3/sec。 ·高适应性: 从低速到高速,从低压到高压,从室温到高温,均能满足各种[wiki]设备[/wiki]的要求。 3、磁流体密封的应用 近年来,国内外真空设备发展迅猛。在许多回转动密封装置上,磁流体密封得到了广泛的应用,例如在单晶硅炉、真空钎焊炉、真空熔炼炉、化学气相沉积、离子镀膜、液晶再生等真空设备的密封,以及高温高压设备及对[wiki]环境[/wiki]要求较高的设备的密封。从而提高产品质量,获得很好的经济效益。 1995年由美国帕佩尔(Papell)发明的磁性流体,是把磁铁矿等强磁性的微细粉末(约100?)在水、油类、酯类、醚类等液体中进行稳定分散的一种胶态液体。这种液体具有在通常离心力和磁场作用下,既不沉降和凝聚又能使其本身承受磁性,可以被磁铁所吸引的特性。 磁流体由3种主要成分组成: 1)固体铁磁体微粒(Fe3O4); 2)包覆着微粒并阻止其相互凝聚的表面活性剂(稳定剂); 3)载液(溶媒)。

相关文档
相关文档 最新文档