文档库 最新最全的文档下载
当前位置:文档库 › 近代物理课程教学大纲

近代物理课程教学大纲

近代物理课程教学大纲
近代物理课程教学大纲

《近代物理实验》课程教学大纲

一、实验教学目标与基本要求

近代物理实验是继普通物理实验和无线电电子学实验后的一门重要的基础实验课程,具有较强的综合性和技术性。

本课程的主要目的是:通过近代物理实验丰富和活跃学生的物理思想,培养他们对物理现象的观察能力和分析能力,引导他们了解实验物理在物理概念的产生、形成和发展过程的作用,学习近代物理中的一些常用方法、技术、仪器和知识,进一步培养正确的和良好的实验习惯以及严谨的科学作风,使学生掌握一定程度的实验方法和技术,获得研究物理现象和规律的独立工作能力。

1.学习如何用实验方法和技术研究物理现象与规律,培养学生实验过程中发现问题,分析问题和解决问题的能力,以及创新能力。

2.学习近代物理主要领域中的基本实验方法和技术,同时通过实验加深对近代物理的基本现象及其规律的理解。

3.通过实验加深对近代物理的基本现象及其规律的理解。

4.能对实验结果做出基本的分析,并巩固和加强有关实验数据处理及误差分析方面的训练。

5.培养实事求是,踏实细致,严肃认真的科学态度和克服困难,坚韧不拔的工作作风以及良好的实验素养。

二、课程介绍与考核要求

兰州大学的近代物理实验分为两部分:常规近物实验和近物创新实验。

常规近物实验为必做实验题目,包涵原子、分子与量子物理,核物理与相对论,真空物理与致冷技术,微波与光学,固体物理,先进测量与传感技术等领域,由30几个实验组成。

近物创新实验为选做实验题目,也是开放性实验,分为工程类实验和科学研究类实验。工程类实验包括科学研究仪器制备,实验教学需要的仪器制备,实验仪器配件及实验电路的设计与实现等;科学研究类包括半导体材料的性质及器件

制备研究,磁性材料制备表征及性质研究等。创新实验题目可由任课老师给出,学生按自己的兴趣自由选题,也可由学生根据实验室提供的仪器,自己设立题目,老师指导和审核学生提出的题目和方案并提供实验指导。

本课程为一学年,其中第一学期必做实验8个,第二学期必做实验2个,选做实验6个(从30多个必做实验中选出6个未作的实验,也就是不得重复实验),共要求学生完成16个实验。另外学生在每学期都可选做创新实验题目,其中萃英班和物理基地班学生至少要选做一个创新实验。

本课程的教学方式是在教师指导下,学生独立进行实验,教学中提倡学生之间的讨论和交流。常规近物实验教学过程分为预习、操作和撰写实验报告三个环节。近物创新实验的教学过程分为,讨论选题,实验过程,与总结实验成果三个环节。

本课程的最终考核结果为百分制,以平时成绩为主,综合期末考核成绩为最终总成绩。平时成绩由是否参加预习,实验操作表现和实验报告三部分组成,期终采取笔试,面试或仪器操作的方式进行考核。选修近物创新实验的学生,每学期实验结束后,科研类实验需给出小论文,工程类需给出实物。

三、实验题目及其目的和实验内容

原子、分子与量子物理:钠原子的发射光谱,CCl4分子振动拉曼散射光谱,黑体辐射,塞曼效应;金属热电子逸出功测定;

核物理与相对论:核磁共振,NaI(TI)闪烁谱仪和γ射线在物质中的吸收,相对论效应;

真空物理与致冷技术:高真空的获得与测量,真空镀膜,铜膜的霍尔效应和电阻率的测量,汽液两相致冷机;

微波与光学:反射速调管和波导管工作特性(Properties of Klystrons and wave-guides),微波介质介电常数测量(Measurement of Dielectric constant under microwaves frequency),微波的光特性(Optical Properties of microwaves),光拍法测量光速;

固体物理:微波段电子自旋共振,电子衍射,用椭圆偏振仪测定薄膜的厚度和折射率,铁磁共振,红外分光计应用,紫外分光计应用,光磁共振,穆斯堡尔

谱仪,扫描隧道显微镜,X射线衍射实验—晶体结构分析;

先进测量与传感技术:锁相放大器应用-PN结电容的测量,工业CT,计算机自动测量,虚拟仪器(Virtual Instruments),光纤光栅传感实验,微弱信号检测。

一、原子、分子与量子物理

实验一、CCl4分子振动拉曼散射光谱

实验目的:

通过对一些典型分子的常规拉曼谱进行测量,达到对这方面的基本原理和基本实验技术有一定的了解。

实验内容:

(1)基本实验:记录CCl4分子的振动拉曼谱;(2)选做实验:测CCl4分子的偏振拉曼谱并求其退偏比;(3)识别某些化学样品。

实验二、黑体辐射

实验目的:

(1)掌握黑体辐射的基本规律;(2)了解黑体辐射实验装置的原理和结构。实验内容:

(1)验证斯特藩- 玻耳兹曼定律;(2)验证维恩位移定律;(3)验证普朗克定律。

实验三、塞曼效应

实验目的:

应用高分辨率的分光仪器--法布里-珀罗标准具去观察一条谱线的塞曼效应,测量它分裂的波长差,并计算出电子的比荷值(即荷质比)。

实验内容:

调整光学元件共轴与磁场强度B,获得分裂的汞谱线,计算求出谱线的分裂波数差和电子的荷质比。

实验四、金属热电子逸出功测定

实验目的:

通过测定金属(钨)电子的逸出功,学习直线测量法,外延测量法和磁控测量法等多种基本实验方法,加深对数据处理方法的理解。

实验内容:

(1)正确连接实验电路;(2)计算零场热电子发射电流,作图求出逸出功;(3)设计性扩展实验。

二、核物理与相对论

实验一、核磁共振

实验目的:

掌握NMR的基本原理和稳态吸收的实验方法,测定一些样品的核磁矩,并学会用NMR方法测定磁场。

实验内容:

(1)观察氢核H的NMR现象;(2)利用水样品H的共振吸收,测定电磁铁的励磁电流与磁场的关系;(3)用聚四氟乙烯样品测定氟核F的磁矩。

实验二、NaI(TI)闪烁谱仪和γ射线在物质中的吸收

实验目的:

了解物质对γ射线的吸收特性;学会测量物质对γ射线的吸收系数μ。

实验内容:

(1) 调整实验装置,实现窄束测量条件;(2) 测量Pb和Al对137Cs和60Co 的γ射线的吸收系数。

实验三、相对论效应

实验目的:

验证快速电子的动量与动能之间的相对论关系;了解β磁谱仪的测量原理。

实验内容:

(1)测量快速电子的动量;(2) 测量快速电子的动能;(3) 验证快速电子的动量与动能之间的关系符合相对论效应。

三、真空物理与致冷技术

实验一、高真空的获得与测量

实验目的:

(1)了解真空的基本概念;(2)了解高真空的获得方式;(3)研究真空的测量方式。

实验内容:

(1)研究机械泵和扩散泵的工作原理;(2)学习真空泵的规范操作过程;(3)测量并研究系统在抽真空时的压强变化曲线。

实验二、真空镀膜

实验目的:

(1)了解真空(蒸发)镀膜机的基本结构和使用方法;(2)掌握真空蒸发法制备金属薄膜的方法和过程。

实验内容:

(1)清洗玻璃基片;(2)抽真空并测量真空度;(2)在玻璃衬底上制备铝薄膜。

实验三、铜膜的霍尔效应和电阻率的测量

实验目的:

(1)了解霍尔效应的本质;(2)测量铜膜的霍耳电压,判断和计算铜膜中载流子的极性和浓度;(3)测量铜膜的电阻率。

实验内容:

(1)正确连接电路;(2)熟悉电位差计的使用;(3)观测铜膜的霍尔效应并测量霍尔电压;(4)计算铜膜的霍尔电压,载流子浓度及铜的电阻率,并

进行误差分析。

四、微波、光学

实验一、反射速调管和波导管工作特性(Properties of Klystrons and wave-guides)

实验目的:

(1)学会用频率计测量微波频率,用微瓦功率计与功率探头测定微波功率;(2)学习和使用驻波测量线测定波导波长和驻波比;(3)通过观察反射速调管振荡模,了解其工作特性。

实验内容:

(1)频率测量;(2)功率测量;(3)波导波长和驻波比的测量;(4)反射速调管式输出特性的测量。

本实验实行英语教材、英语讲授的双语教学形式,要求学生英语过四级。实验报告要求用英语撰写。

实验二、微波介质介电常数测量(Measurement of Dielectric constant under microwaves frequency)

实验目的:

学会用示波器观察速调管的振荡模和反射式谐振腔的谐振曲线,加深对速调管和谐振腔工作特性的理解。

实验内容:

(1)观察反射速调管震荡模;(2)观察放射式谐振腔的谐振曲线;(3)观察样品放入后放射式腔的谐振曲线。

本实验实行英语教材、英语讲授的双语教学形式,要求学生英语过四级。实验报告要求用英语撰写。

实验三、微波的光特性(Optical Properties of microwaves)

实验目的:

(1)了解和验证微波的光特性;(2)了解微波相对功率的测量方法。

实验内容:

(1)电磁波反射定律验证;(2) 单缝衍射;(3)双缝干涉;(4)迈克乐逊干涉;(4)布拉格衍射。

本实验实行英语教材、英语讲授的双语教学形式,要求学生英语过四级。实验报告要求用英语撰写。

实验四、光拍法测量光速

实验目的:

学习一种新的测量光速的方法,了解声光调制的基本原理,衍射特性等声光效应。

实验内容:

测量超声频率F和光拍波长Δλ,计算光速及其标准差,并与标准光速值比较,具体分析实验误差。

五、固体物理

实验一、微波段电子自旋共振

实验目的:

掌握顺磁共振谱议的基本原理和使用方法,通过实际操作熟悉EPR技术及调试,培养创新意识;通过测量观察过渡金属离子化合物CuSO4.5H2O 单晶体中的Cu2+离子的超精细结构的EPR谱线及晶场影响的各向异性,学会金属离子Cu2+的g因子,线宽及弛豫时间T2的测量技术。

实验内容:

(1) 耿氏二级管V-I特性及边限振荡现象的观测;(2) EPR谱线受晶场影响的各向异性观测。

实验二、电子衍射

实验目的:

1 验证德布罗意假说;

2 掌握真空蒸发镀膜及镀底膜的方法;

3 更进一步熟悉真空及真空操作。

实验内容:

(1)预抽真空;(2)制底膜并镀样品膜;(3)观察电子衍射、照相并测量电子波长。

实验三、用椭圆偏振仪测定薄膜的厚度和折射率

实验目的:

(1)掌握光线经薄膜反射以后状态的变化规律;(2)掌握椭圆偏振法的基本思想和测量方法。

实验内容:

(1)测量TiO2薄膜的厚度和折射率;(2)测量ZrO2薄膜的厚度和折射率;(3)测量金属Cr薄膜的厚度和折射率;

实验四、铁磁共振

实验目的:

(1)认识铁磁共振的物理本质;(2)实验观察和测量铁磁共振现象;(3)进一步熟悉微波电路。

实验内容:

(1)调整微波系统;(2)测量微波频率;(3)观察和测量多晶样品的铁磁共振曲线及其半宽度。

实验五、红外分光计应用

实验目的:

(1)掌握红外光区的划分、红外光产生条件和原理;(2)掌握红外光谱图的测试的分析方法;(3)掌握利用红外光谱来对物质进行定性分析的原理和方法。

实验内容:

(1)测试和分析聚苯乙烯薄膜的红外谱图;(2)测试并分析未知薄膜样品

的红外谱图。

实验六、紫外分光计应用

实验目的:

(1)了解紫外分光计的结构和原理;(2)掌握用紫外分光计对物质定性鉴定的方法;(3)学习光吸收的郞白-比耳定律。

实验内容:

(1)熟悉紫外分光仪使用方法和注意事项;(2)测量不同浓度时有机发光材料八羟基喹啉铜的丙酮溶液的紫外可见光谱;(3)验证溶液光吸收的郞白-比耳定律;(4)研究不同溶剂对八羟基喹啉铜紫外可见光谱的影响。

实验七、光磁共振

实验目的:

(1)掌握以光抽运为基础的磁共振光检测方法;(2)认识光磁共振现象的物理本质。

实验内容:

(1)调试仪器;(2)观测光抽运信号;(3)测量g因子。

实验八、扫描隧道显微镜

实验目的:

(1)了解扫描隧道显微镜的原理和结构;(2)观测和验证量子力学中的隧道效应;

实验内容:

(1)观测石墨(HOPG)样品的原子分辨图像;(2)计算机软件处理原始数据图象。

实验九、X射线衍射实验—晶体结构分析

实验目的:

(1)了解X射线的本质、特点和产生方法等;(2)掌握X射线衍射的基本原理等;(3)了解X射线衍射分析的常用方法,掌握X射线衍射仪的工作原理、基本结构、实验参数的选择和衍射谱的测量等内容;(4)了解晶体晶胞参数的测定和衍射谱指标化的基本原理,并掌握简单六方晶体晶胞参数和每一条衍射谱对应晶面指数(h k l)的分析确定方法。

实验内容:

通过对JF-1型X射线晶体分析仪的介绍,使同学们了解X射线管、劳厄相机和德拜相机的工作原理、结构特点等;并操作XD-3A型和TD-3500B型X射线衍射仪,了解X射线衍射仪的基本操作要领;最后利用测量的简单六方晶体衍射谱,对其晶胞参数和每一条衍射谱对应的晶面指数(h k l)进行具体分析。

六、先进测量与传感技术

实验一、锁相放大器应用-PN结电容的测量

实验目的:

了解相关检测原理,锁相放大器的基本组成,以及掌握锁相放大器的正确使用方法。

实验内容:

锁相放大器的工作特性和参数测定。

实验二、工业CT

实验目的:

(1)掌握CT成象的基本原理;(2)熟悉仪器的构成及各部分的功能;(3)弄清楚CT成像和一般照相的区别。

实验内容:

(1)扫描样品密度分布的灰度图;(2)灰度图分析与处理。

实验三、计算机自动测量

实验目的:

了解利用IBM PC系列微机进行自动控制的原理;学会自动控制的基本编程方法。

实验内容:

(1)测量AD转换器的转换曲线;(2)直流电压的精确测量;(3)交变电压测量;(4)D/A转换;(5)发光二极管I-V特性测量(选做);(6)RC电路充电、放电过程测量(选做)。

实验四、虚拟仪器(Virtual Instruments)技术实验

实验目的:

了解虚拟仪器技术的概念、特点和构成等;了解LabVIEW的基本程序结构;并能掌握LabVIEW的基本编程方法。

实验内容:

按照范例的步骤,学习LabVIEW的基本编程方法;并能完成1~2个实际的简单应用编程;最后使用DAQ Assistant进行模拟输出D/A和模拟输入A/D等基本数据采集工作。

实验五、光纤光栅传感实验

实验目的:

(1)了解光纤光栅工作原理及其应用领域;(2)掌握光纤光栅应变传感和温度传感特性。

实验内容:

(1)测量应变光纤光栅反射波的波长分布(手工测量);(2)测量光纤光栅特征反射波长与其应变之间的关系(手工测量);(3)光纤光栅应变传感测量(半自动);(4)光纤光栅温度传感测量(半自动)。

实验六、微弱信号检测

实验目的:

(1)了解同步积分器的工作原理;(2)掌握同步积分器的测试方法;(3)能使用同步积分器测量微弱信号的振幅和相位。

实验内容:

(1)输出波形的观察和测试;(2)谐波响应的观察和测量;(3)对白噪声的抑制测量(4)同步积分器相敏特性的测量。

近代物理创新实验室仪器:

1.高真空蒸发镀膜机

2.高真空磁控溅射镀膜机

3.强磁场高真空快速升温高温处理设备

4.Kw-4A型台式匀胶机

5.计算机自动测量系统

6.激光光谱椭偏仪

7.扫描探针显微镜(SPM)

8.振动样品磁强计(VSM)

9.比表面和孔径分析仪

10.霍尔效应仪

11.红外光谱仪

12.紫外可见分光光度计

13.X射线衍射仪

过去5年开放性研究题目:

1.大电压可调直流电源制备

2.有机半导体二极管制备

3.温度控制系统制备

4.自动测量试验仪功能扩展

5.傅里叶分析实验硬件实验

6.分布反馈光栅制备

7.器件模型研究

8.过压过流保护电路制作

9.磁控溅射法制备有机场效应管栅介电薄膜

10.高真空强磁场处理有机光敏场效应晶体管薄膜材料和器件

11.酞菁铜薄膜光电导测量

12.半导体薄膜材料迁移率测量

13.器件模型研究(异质结、或联体有机太阳能电池)

14.发光薄膜放大自发辐射特性研究

15.半导体薄膜椭圆偏振分析

16.无磁性薄膜强磁场处理研究

17.光电倍增管测试系统的设计和硬件实现

18.16*32led点阵显示器

19.步进电机转速与步进角度显示

20.速度里程计

21.重力加速度单摆测量系统

22.篮球比赛计分计时及规则控制系统

23.多路温度采集系统

四、实验教科书、参考书

教科书

1.彭应全、刘征等主编,《近代物理实验》,兰州大学出版社,2006年

2.近代物理实验室自编讲义

参考书

1. 吴思诚、荀坤主编,《近代物理实验》(第四版),北京大学出版社,2015年

大学物理B课程教学大纲

《大学物理B(2)》课程教学大纲一、课程基本信息

第5章:真空中的静电场 课程内容: 1、电荷和电场库仑定律 2、电场强度场强的叠加原理连续分布电荷的场强 3、电场线电通量高斯定理高斯定理的应用 4、静电场力做功电势能电势电势差电势的叠加原理场强与电势的关系※ 5、电偶极子 6. 电流和电流密度欧姆定律电动势 基本要求: 1、掌握电场强度和电势的概念以及场的叠加原理。 2、掌握用叠加原理计算简单的典型的场源所产生的电场强度和电势。 3、理解高斯定理和环路定律,能熟练地用高斯定理求具有特殊对称性分布电荷的场强。 4、掌握电场力的功与电势差和移动电荷之间的关系。 5、理解电场是保守力场。 6、掌握电势与场强的积分关系。 7、了解解电场线、等势面的概念。 8、了解场强和电势梯度的关系。 9、了解电偶极子,电偶极矩的概念。 10、理解电流、电流密度、电动势的概念。 11、掌握欧姆定律 本章重点: 1、电场强度和电势的概念、场的叠加原理。 2、掌握高斯定理和环路定律的应用 3、会计算电场力的功。 4、电流密度、欧姆定律 本章难点: 1、利用叠加原理计算简单的典型的场源所产生的电场强度和电势。 2、用高斯定理求具有特殊对称性分布电荷的场强。 模块分类及要求:

※第6章:静电场中的导体和电介质 课程内容: 1、静电场中的导体 2、静电场中的电介质 3、电位移有电介质时的高斯定理 4、电容电容器 5、静电场的能量能量密度 6、静电的应用 基本要求: 1、理解导体静电平衡条件及导体表面电荷分布。 2、掌握电容的定义及其物理意义,能计算平板、球、圆柱形电容器的电容。 3、了解电介质极化的微观解释和极化强度矢量。 4、理解电介质中的高斯定理和各向同性介质中电位移与电场强度的关

《近代物理实验》教学大纲

《近代物理实验》教学大纲 一、课程名称与编号 课程名称:近代物理实验编号:023315 二、学时与学分 本课程学时:84 本课程学分:5学分 三、授课对象 物理学专业学生,第六、七个学期做 四、先修课程 力学、热学、电磁学、光学、原子物理学、高等数学 五、课程的性质和目的 科学实验是理论的源泉,是自然科学的根本,也是工程技术的基础。物理学是一门实验科学,所有物理定律的形成和发展都是建立在客观自然现象的观察和研究的基础上的,并以实验结果为检验理论正确与否的唯一标准,重要的物理实验常常是新兴科学技术的生长点。 《近代物理实验》是继《普通物理实验》和《无线电电子实验》后的一门重要实验基础课程,本课程所涉及的物理基础知识面较广,并具有较强的综合性和技术性。 本课程的主要目的是:通过近代物理实验,丰富和活跃学生的物理思想,培养学生敏锐的观察能力,分析、归纳和综合能力,掌握新技术的能力,创新意识和综合素质。引导学生了解物理实验在物理概念的产生、形成和发展中的作用,学习近代物理中的一些常用方法、技术、仪器等知识,使他们具备良好的实验素养,严谨的科学作风,求实的科学精神,并具备一定的独立工作能力和科学研究能力。 六、主要内容、基本要求及学时分配 讲授部分 1、绪论(2学时) 理解近代物理实验课的特点,了解课程的内容、任务和学习方法。了解一些实验的史料,加深对近代物理实验的了解。 2、实验的误差分析与数据处理(4学时) 在普通物理验实训练的基础上,继续巩固和加强有关实验误差和数据处理的训练。如泊松分布、曲线的拟合等,可通过讲授或落实到一些实验题目中进行。 3、理解近代物理实验仪器的工作原理、使用常识(2学时) 掌握实验中的注意事项,包括人身安全及防护、通用仪器的正常使用。理解使用特殊仪

UbuntuLinux操作系统第2版(微课版)—教学大纲

《Ubuntu Linux操作系统》课程教学大纲 学分: 4 学时:48 适用专业: 高职高专类计算机专业 一、课程的性质与任务 课程的性质: 本课程是为计算机专业学生开设的课程。课程安排在第学期。 课程的任务: 通过本课程的学习,使学生熟悉Linux操作系统的基本操作,掌握Linux操作系统的配置管理、软件使用和编程环境部署。本课程将紧密结合实际,以首选的Linux桌面系统Ubuntu 为例讲解操作系统的使用和配置,为学生今后进行系统管理运维、软件开发和部署奠定基础。整个课程按照从基础到应用,从基本功能到高级功能的逻辑进行讲授,要求学生通过动手实践来掌握相关的技术操作技能。 前导课程: 《计算机原理》、《Windows操作系统》。 后续课程: 《Linux应用开发》 二、教学基本要求 理论上,要求学生掌握Ubuntu Linux操作系统的基础知识,包括配置管理、桌面应用、编程和软件开发环境。 技能上,要求学生能掌握Ubuntu Linux操作系统的配置方法和使用技能,涵盖系统安装和基本使用、图形界面与命令行、用户与组管理、文件与目录管理、磁盘存储管理、软件包管理、系统高级管理、桌面应用、Shell编程、C/C++编程、Java与Android应用开发、LAMP 平台与PHP、Python、Node.js开发环境部署,以及Ubuntu服务器安装与管理。 培养的IEET核心能力: ?具备系统管理方向的系统工程师的工程能力:掌握Linux配置管理和运维,包括用 户与组管理、文件与目录管理、磁盘存储管理、软件包管理、系统高级管理、服务器安装与管理。 ?具备应用开发工程师的开发环境部署能力,包括Shell编程、C/C++编程、Java与 Android应用开发、LAMP平台与PHP、Python、Node.js开发环境的部署和流程。 ?基本职业素养:具有良好的文化修养、职业道德、服务意识和敬业精神;接受企业 的文化;具有较强的语言文字表达、团结协作和社会活动等基本能力;具有基本的英语文档阅读能力,能较熟练地阅读理解Ubuntu Linux的相关英文资料。

【实验报告】近代物理实验教程的实验报告

近代物理实验教程的实验报告 时间过得真快啊!我以为自己还有很多时间,只是当一个睁眼闭眼的瞬间,一个学期都快结束了,现在我们为一学期的大学物理实验就要画上一个圆满的句号了,本学期从第二周开设了近代物理实验课程,在三个多月的实验中我明白了近代物理实验是一门综合性和技术性很强的课程,回顾这一学期的学习,感觉十分的充实,通过亲自动手,使我进一步了解了物理实验的基本过程和基本方法,为我今后的学习和工作奠定了良好的实验基础。我们所做的实验基本上都是在物理学发展过程中起到决定性作用的著名实验,以及体现科学实验中不可缺少的现代实验技术的实验。它们是我受到了著名物理学家的物理思想和探索精神的熏陶,激发了我的探索和创新精神。同时近代物理实验也是一门包括物理、应用物理、材料科学、光电子科学与技术等系的重要专业技术基础物理实验课程也是我们物理系的专业必修课程。 我们本来每个人要做共八个实验,后来由于时间关系做了七个实验,我做的七个实验分别是:光纤通讯,光学多道与氢氘,法拉第效应,液晶物性,非线性电路与混沌,高温超导,塞满效应,下面我对每个实验及心得体会做些简单介绍: 一、光纤通讯:本实验主要是通过对光纤的一些特性的探究(包括对光纤耦合效率的测量,光纤数值孔径的测量以及对塑料光纤光纤损耗的测量与计算),了解光纤光学的基础知识。探究相位调制型温度传感器的干涉条纹随温度的变化的移动情况,模拟语电话光通信, 了解光纤语音通信的基本原理和系统构成。老师讲的也很清楚,本试验在操作上并不是很困难,很易于实现,易于成功。

二、光学多道与氢氘:本实验利用光学多道分析仪,从巴尔末公式出发研究氢氘光谱,了解其谱线特点,并学习光学多道仪的使用方法及基本的光谱学技术通过此次实验得出了氢原子和氘原子在巴尔末系下的光谱波长,并利用测得的波长值计算出了氢氘的里德伯常量,得到了氢氘光谱的各光谱项及巴耳末系跃迁能级图,计算得出了质子和电子的质量之比。个人觉得这个实验有点太智能化,建议锻炼操作的部分能有所加强。对于一些仪器的原理在实验中没有体现。如果有所体现会比较容易使学生深入理解。数据处理有些麻烦。不过这也正是好好提高自己的分析数据、处理数据能力的好时候、更是理论联系实际的桥梁。 三、法拉第效应:本实验中,我们首先对磁场进行了均匀性测定,进一步测量了磁场和励磁电流之间的关系,利用磁场和励磁电流之间的线性关系,用电流表征磁场的大小;再利用磁光调制器和示波器,采用倍频法找出ZF6、MR3-2样品在不同强度的旋光角θ和磁场强度B的关系,并计算费尔德常数;最后利用MR3样品和石英晶体区分自然旋光和磁致旋光,验证磁致旋光的非互易性。 四p液晶物性:本实验主要是通过对液晶盒的扭曲角,电光响应曲线和响应时间的测量,以及对液晶光栅的观察分析,了解液晶在外电场的作用下的变化,以及引起的液晶盒光学性质的变化,并掌握对液晶电光效应测量的方法。本实验中我们研究了液晶的基本物理性质 和电光效应等。发现液晶的双折射现象会对旋光角的大小产生的影响,在实验中通过测量液晶盒两面锚泊方向的差值,得到液晶盒扭曲角的大小为125度;测量了液晶的响应时间。观察液晶光栅的衍射现象,在“常黑模式”和“常白模式”下分别测量了液晶升压和降压过程的电光响应曲线,求得了阈值电压、饱

大学物理实验课程教学大纲

大学物理实验课程教学大纲 课程名称:大学物理实验 英文名称:College Physics Experiment 实验课程编号:110309 课程性质:基础必修课 课程属性:工科各专业本科生必修 教材名称:《大学物理实验》 实验指导书名称: (无) 课程总学时:56 实验总学时:56 开设实验项目数:17 总学分:3.5 应开实验学期:一年级第2学期,二年级第1学期 适用专业:工科各专业本科生 先修课程:高等数学 本大纲主撰人:凌亚文 审核人:王占民 一、 课程的目标及基本要求 物理学是一门实验科学。物理规律的发展及其理论的建立,都必须以严格的物理实验为基 础,并受到实验的检验。 为了适应社会飞速发展的要求,需要培养大量有创造性的工程技术人才。为此要求工科大 学毕业生,不仅要具有较宽广的基础理论知识, 而且还要具有能从事现代科学实验的较强能力。 物理实验是学生入学后,受系统实验技能训练的开端,是一系列实验训练的重要基础。因此, 在整个物理学的教学过程中,必须十分注意实验技能的训练,物理实验应与理论教学具有同等 重要的地位,而不是作为理论课的附属环节。 二、 课程实验的目的要求 在一定的物理知识和中学物理实验的基础上,对学生进行实验方法和技能的基础训练。要 求学生弄懂实验原理,了解一些物理量的测量方法。要求学生熟悉常用仪器的基本原理和性能, 并了解使用方法。要求学生能够正确记录、处理实验数据,分析判断实验结果,并能写出比较 完整的实验报告。培养和提高学生观察、分析实验现象的本领和独立工作能力。并通过实验中 的观察、测量和分析,加深对物理学中某些概念、规律和理论的理解。培养学生严肃认真的工 作作风,实事求是的科学态度和爱护国家财产、遵守纪律的优良品德。 三、 适用专业 工科各专业本科生。 四、实验方式与基本要求 西安建筑科技大学 负责人:史彭

原子物理学教学大纲

原子物理学理论课教学大纲 《原子物理学》课程教学大纲新06年8月课程编号:02300009 课程名称:原子物理学 英文名称: Atomic Physics 课程类型:专业基础课 总学时: 54 学分: 2.5 适用对象:物理、电子信息科学专业本科生 先修课程:高等数学、力学、电磁学、光学 1.课程简介 本课程着重从光谱学、电磁学、X射线等物理实验规律出发,以原子结构为中心,按照由现象到本质、由实验到理论的过程帮助学生建立起微观世界量子物理的基本概念,并利用这些基本概念说明原子、分子以及原子核和粒子的结构和运动规律,介绍在现代科学技术上的重大应用。是近代物理的入门课程,是物理专业的一门重要基础课。本课程需在高等数学、力学、电磁学、光学之后开设,是理论物理课程中量子力学部分的前导课程,拟在第三学年第一学期开出。 2.课程性质、目的和任务

本课程是物理专业学生必修课。是力学、电磁学和光学的后续课程、近代物理课的入门课程。是量子力学、固体物理学、原子核物理学、激光、近代物理实验等课程的基础课。目的是引导学生从实验入手,用量子化和微观思维方式,分析微观高速运动物体的规律。主要任务是:通过本课程的教学,让学生对原子及原子核的结构、性质、相互作用及运动规律有概括而系统的认识。通过对重要实验现象以及理论体系逐步完善过程的分析,使学生建立丰富的微观世界的物理图像和物理概念,培养学生用微观思维方式分析问题和解决问题的能力。 3.教学基本要求 (1)了解原子物理学、原子核物理学发展的历程,培养科学研究的素质,加深对辩证唯物主义的理解。 (2)了解原子和原子核所研究的内容和前沿研究领域的概况,培养有现代意识、有远见的新一代大学生。 (3)掌握原子、原子核物理学的基本原理、基本概念和基本规律;掌握处理原子、原子核物理学现象及问题的手段和途径。培养学生掌握科学研究的基本方法。 (4)使学生了解无限分割的物质世界中的依次深入的不同结构层次,理解原子核的结构和基本性质、基本运动规律; (5)结合一些物理学史介绍,使学生了解物理学家对物理结构的实验——理论——再实验——再理论的认识过程,了解微观物理学对现代科学技术重大影响和各种应用,并为以后继续学习量子力学和有关课程打下基础。 4.教学内容及要求

计算机系统课程教学大纲

《计算机系统结构》教学大纲 (参考学时:约48学时) 1.课程的性质、目的和意义 计算机系统结构是计算机科学与技术专业(本科)必修的一门专业技术课。计算机系统结构是计算学科的重要分支之一。计算机的发展历史说明,计算机性能的不断提高主要依靠器件的变革和系统结构的改进。今天,在器件潜力几乎达到极限的情况下,计算机系统结构的改进尤为重要。 本课程是从外部来研究计算机系统, 即使用者所看到的物理计算机的抽象;编写出能够在机器上正确运行的程序所必须了解到的计算机的属性;软硬件功能分配及分界面的确定。 通过本课程的学习,使学生建立计算机系统的完整概念;掌握计算机系统结构的基本概念、基本原理、基本结构和基本分析方法,为学生熟悉现代计算机系统特别是微型计算机系统的开发、应用和发展打下良好的基础。本课程应该注重培养学生对系统结构的分析能力,掌握系统结构设计的基本原则。即如何最合理地利用新器件,最大限度地发挥其潜力,设计并构成综合性能指标最佳的计算机系统。 本课程为计算机专业(本科)高年级课程,需要综合几乎所有计算机专业基础和相关的前继专业课程知识。主要有:计算机组成原理、汇编语言程序设计、高级语言程序设计、数据结构、操作系统、编译原理等课程。本课程的新内容为超标量处理机、超流水线处理机、向量处理机、并行处理机、线程级并行、多核处理器、多处理器系统及其并行计算等。 1.教学内容 本课程知识结构图如图1所示。

第一部分计算机系统结构的基础 1.教学内容 2.计算机的发展及其分类; 3.计算机系统多级层次结构和计算机系统结构的基本概念; 4.计算机系统设计的评价标准和定量原理; 5.软件、器件、应用对计算机系统结构的影响; 6.计算机系统的分类。 2.教学基本要求 1.熟练掌握内容: 计算机系统层次结构,计算机系统结构定义,计算机组成定义,计算 机实现定义,系统结构、组成与实现的三者关系,透明性,计算机系统设计的定量分析原理(Amdahl定律,CPU性能公式,并行性原理,局部性原理),MIPS定义,MFLOPS 定义。 2.掌握内容: 弗林分类法,冯·诺依曼计算机特征,计算机系统结构的演变,软件、器 件、应用对计算机系统结构的影响,模拟与仿真。 3.了解内容: 计算机系统结构的发展,计算机的分类,计算机系统设计的主要方法。 3.重点和难点 重点: 1.计算机系统结构,计算机组成和计算机实现是三个不同的概念; 2.计算机系统设计的定量分析原理(Amdahl定律,CPU性能公式,并行性原理,局部性 原理); 3.系统结构的评价标准; 4.计算机系统结构的分类。 难点: 1.计算机系统设计的定量分析原理。 第二部分计算机指令系统 1. 教学内容 1.数据类型; 2.寻址技术; 3.指令系统的设计; 4.指令系统的改进。 2.教学基本要求 1.熟练掌握内容:数据表示和数据结构,自定义数据表示,大端存储和小端存储,寻址 方式,指令格式的优化(Huffman编码法、扩展编码法),RISC的定义与特点,减少指令平均执行周期数方法。

大学物理教学大纲

《大学物理》(I)教学大纲 <总学时数:48,学分数:3> 一.课程的性质、任务和目的 大学物理课程是理工类大学生一门必修的重要基础课,它为学生学习后继课程和解决实际问题提供了必不可少的物理基础知识及常用的物理方法。在课程学习中,要求以应用为目的,加强与实际应用较多的基础知识和基本方法的训练。通过各个教学环节,使学生具有较完整的物理理论基础和比较熟练的运用物理知识解决实际问题的能力和创新能力。 二.课程基本内容和要求 (一)质点运动学 1.理解质点模型和参照系等概念。 2.掌握描述质点运动的物理量:位置矢量、位移、路程、速度、加速度等。 3.能借助于直角坐标系熟练地计算质点在平面内运动时的速度和加速度。理解速度与加速度的瞬时 性、矢量性和独立性等基本特性。 4.掌握圆周运动的角量表示及角量与线量之间的关系。能够计算质点作圆周运动时的角速度和角加 速度、切向加速度和法向加速度。 5.了解相对运动的基本概念,并能解决一些简单问题。 (二)牛顿运动定律 1.理解牛顿运动三定律的物理内容,了解其适用范围。 2.能够使用隔离法分析物理对象,熟练应用牛顿运动定律分析和解决基本力学问题。 (三)动量守恒定律和能量守恒定律 1.掌握动量、冲量的概念,明确其物理意义,并熟练应用动量原理、动量守恒定律求解质点在平面 内的动力学问题。 2.理解功、动能、势能、保守力和机械能概念,明确其物理意义,并能进行有关的计算。 3.掌握动能定理、机械能守恒定律,理解功能原理、能量守恒定律及其意义。 (四)刚体的转动 1.了解刚体模型和刚体的基本运动,理解刚体运动与质点运动的区别和联系。

2.理解描述刚体定轴转动的角坐标、角位移、角速度和角加速度等概念及其运动学公式。 3.理解转动惯量的意义及计算方法,能够计算典型几何形体的转动惯量。 4.理解转动定律,能够结合力矩概念构造动力学方程求解定轴转动的问题。 5.理解力矩的功,刚体的转动动能,刚体的重力势能等的计算方法;能够应用动能定理及机械能守 恒定律解决刚体定轴转动的问题。 6.理解刚体的动量矩(角动量)概念,能计算刚体或质点对固定轴的动量矩。理解动量矩守恒定律 及其适用条件,并能对含有定轴转动刚体在内的系统正确应用角动量定理及角动量守恒定律分析、计算有关问题。 (五)机械振动 1.理解谐振动模型,掌握简谐振动的基本特征及描述简谐振动的基本特征量:频率、相位、振幅的 意义及确定方法,能够进行一些简单的计算。 2.掌握旋转矢量法,并能用以分析有关问题(如确定初相、运动时间、写出振动方程)。 3.理解两个同方向、同频率谐振动合成的规律,以及合振动振幅极大和极小的条件。了解两个互相 垂直、同频率和不同频率谐振动的合成规律,了解李萨如图形。 (六)机械波 1.理解描述波动的各物理量的物理意义及各量之间的相互关系。 2.理解机械波产生的条件。掌握根据已知质元的振动表达式建立平面简谐波的波函数的方法以及波 函数的物理意义,理解波形图线。了解波的能量传播特征及能流、能流密度等概念。 3.理解惠更斯原理和波的叠加原理。掌握波的相干条件,能应用位相差和波程差的概念分析和确定 相干波叠加后振幅加强和减弱的条件。 4.理解驻波及其形成的条件和特点,建立半波损失的概念,了解驻波和行波的区别。 (七)波动光学 1.了解原子发光的特点,理解光的相干条件及获得相干光的基本原理和一般方法。 2.掌握光程概念以及光程差与相位差的关系,了解反射时产生半波损失的条件。能正确计算两束相 干光之间的光程差和相位差,并写出产生明条纹和暗条纹的相应条件。 3.掌握杨氏双缝干涉的基本装置和实验规律,了解干涉条纹的分布特点及其应用,并能做相应的计 算。掌握薄膜等厚干涉的规律及干涉位置的计算,理解等倾干涉条纹产生的原理,了解薄膜干涉原理在实际中的应用。了解迈克尔逊干涉仪的结构、原理及其应用。 4.理解惠更斯-菲涅耳原理及其对光衍射现象的定性解释。了解分析单缝夫琅和费衍射的半波带法, 能够根据衍射公式确定明、暗条纹分布。了解光栅衍射条纹的成因和特点,掌握光栅公式,了解

给水排水工程专业实验室教学大纲

给水排水工程专业实验室教学大纲 一、实验教学在本专业的性质和任务 给水排水专业是实践性很强的应用型专业,其教学建设是适应生产的不断发展逐渐形成完善的。给水排水工程专业的教学与实验教学是给水排水和环境工程两个专业的必修课程。 实验教学在整个教学过程中的任务是:培养学生具有解决城市水厂和工业企业自用水的水质处理的基本理论、工艺流程、主要水处理构筑物及设备,学习科学实验的理论、方法,培养学生具有对不同水质进行处理时的实验能力与设计计算能力以及培养学生的创新意识。 二、毕业生应获得的实验技能要求 1.具有分析实验现象,加深对水处理原理理解的能力; 2.掌握水处理实验基本测试技术; 3.具有设计实验方案和组织实验的能力; 4.掌握测试仪器原理及使用方法; 5.掌握水处理构筑物的工艺流程及运转性能; 6.具有分析实验及整理实验数据的能力; 7.结合实验内容检索相关文献的方法,了解当前技术发展现状,掌握研究信息。 三、实验教学,实践教学的主要内容 结合给水排水工程教学特点,参照外校同类专业实验教学,初步制定以下实验教学内容; 1.第一学年第一学期组织学生参观实验室; 2.第一至第四学年,开放实验室开设演示实验、验证型实验、设计型实验、综合型实验; 3.第四学年至第七学期组织学生赴现场进行参观,认识运转实习; 4.第四学年至第七学期组织学生有序开展专业实验教学; 5.第四学年至第八学期实施学生毕业试验及教学活动。 四、主干实验课程 无机化学、物理化学、水分析化学、有机化学、工程测量、流体力学、水处理生物学、泵与泵站、水质工程试验。 五、实验课程设置基本框架 1.学科基础课实验; 计算机文化基础32 学时 Fortan 语言程序设计32 学时 大学物理实验48 学时 电工与电子技术12 学时 工程力学 2 学时 工程测量16 学时 物理化学 6 学时 无机化学 4 学时 水分析化学12 学时

操作系统课程教学大纲

GDOU-B-11-213 《操作系统》课程教学大纲 课程简介 课程简介: 本课程主要讲述操作系统的原理,使学生不仅能够从系统内部了解操作系统的工作原理,而且可以学到软件设计的思想方法和技术方法。主要内容 包括:操作系统的概论;操作系统的作业管理;操作系统的文件管理原理; 操作系统的进程概念、进程调度和控制、进程互斥和同步等;操作系统的各 种存储管理方式以及存储保护和共享;操作系统的设备管理一般原理。其次 在实验环节介绍实例操作系统的若干实现技术,如:Windows操作系统、Linux 操作系统等。 课程大纲 一、课程的性质与任务: 本课程计算机学科的软件工程专业中是一门专业方向课,也可以面向计算机类的其它专业。其任务是讲授操作系统的原理,从系统内部了解操作系统的工作原理以级软件设计的思想方法和技术方法;同时介绍实例操作系统的若干实现技术。 二、课程的目的与基本要求: 通过本课程的教学使学生能够从操作系统内部获知操作系统的工作原理,理解操作系统几大管理模块的分工和管理思想,学习设计系统软件的思想方法,通过实验环节掌握操作系统实例的若干实现技术,如:Windows操作系统、Linux操作系统等。 三、面向专业: 软件工程、计算机类 四、先修课程: 计算系统基础,C/C++语言程序设计,计算机组成结构,数据结构。 五、本课程与其它课程的联系:

本课程以计算系统基础,C/C++语言程序设计,计算机组成结构,数据结构等为先修课程,在学习本课程之前要求学生掌握先修课程的知识,在学习本课程的过程中能将数据结构、计算机组成结构等课程的知识融入到本课程之中。 六、教学内容安排、要求、学时分配及作业: 第一章:操作系统概论(2学时) 第一节:操作系统的地位及作用 操作系统的地位(A);操作系统的作用(A)。 第二节:操作系统的功能 单道系统与多道系统(B);操作系统的功能(A)。 第三节:操作系统的分类 批处理操作系统(B);分时操作系统(B);实时操作系统(B)。 第二章:作业管理(2学时) 第一节:作业的组织 作业与作业步(B);作业的分类(B);作业的状态(B);作业控制块(B)。 第二节:操作系统的用户接口 程序级接口(A);作业控制级接口(A)。 第三节:作业调度 作业调度程序的功能(B);作业调度策略(B);作业调度算法(B)。 第四节:作业控制 脱机控制方式(A);联机控制方式(A)。 第三章:文件管理(8学时) 第一节:文件与文件系统(1学时) 文件(B);文件的种类(B);文件系统及其功能(A)。 第二节:文件的组织结构(1学时) 文件的逻辑结构(A);文件的物理结构(A)。 第三节:文件目录结构(1学时) 文件说明(B);文件目录的结构(A);当前目录和目录文件(B)。 第四节:文件存取与操作(1学时) 文件的存取方法(A);文件存储设备(C);活动文件(B);文件操作(A)。 第五节:文件存储空间的管理(2学时) 空闲块表(A);空闲区表(A);空闲块链(A);位示图(A)。 第六节:文件的共享和保护(2学时)

西南大学物理专业近代物理实验课程

西南大学物理专业近代物理实验课程

————————————————————————————————作者:————————————————————————————————日期:

物理专业近代物理实验课程 教学大纲 物理科学与技术学院 二〇〇六年十月 《近代物理实验》教学大纲 课程名称(中文)近代物理实验 课程性质独立设课课程属性专业基础 实验指导书名称《近代物理实验》 学时学分:总学时90总学分 4 实验学时90 实验学 分4 应开实验学期 3 年级五~六学期 先修课程《原子物理学》,《原子核物理学》,《固体物理》,《量子力学》,《激光技术》等

一.课程简介及基本要求 近代物理实验是继“普通物理实验”和“无线电电子学实验”之后的一门 重要的专业实验基础课程。近代物理学实验也是介于普通物理学实验与现代科学技术研究实验之间、具有承上启下作用的重要环节。近代物理学实验涉及物理学中各项基础课程和专业课程知识,实验课程内容有一些是20世纪著名的、开拓物理学新的发展方向和方法的实验,使学生了解前人的物理思想和探索过程;有些是与近代科学技术常用实验方法有关的新实验,使学生了解有关新的实验技术和方法;还有一些实验反映物理学院系科研的部分成果。通过学习和掌握这些内容,对进一步掌握物理学概念、运用现代科学技术的实验方法有十分重要意义。近代物理学实验课程着眼于培养学生将来从事科学研究和各项实际科学活动所必备的物理实验技能。 二.课程实验目的要求 《近代物理实验》是一门面向理工科物理与材料科学类专业开设的专业技术基础实验课程。学生通过本课程学习,掌握一些比较先进的和比较综合性的实验方法和技能。加强理论与实验相结合,锻炼学生综合运用各种技术的能力,培养科学工作作风;进一步加深对有关物理学概念和规律的理解,扩大知识面,培养学生独立进行科学实验的能力;丰富和活跃学生的物理思想,锻炼学生对物理现象的洞察力和分析力,正确认识物理实验在物理学创立和发展中的地位和作用;正确认识物理概念、物理规律的产生、完善和发展过程与物理实验密切关系;了解和掌握近代物理学中常用的实验方法、实验技术、实验仪器和相关科学知识;进一步培养学生正确和良好的实验操作习惯和严谨的科学素质。使学生具有利用近代物理学实验方法和技术,观测物理现象和研究探索未知世界物理规律的创造性能力。 三.适用专业 物理学、材料物理等物理类本科生。 四.主要仪器设备: X-射线晶体分析仪、真空镀膜设备、组合式多功能光栅光谱仪、光谱分析仪、扫描隧道显微镜、相对论效应实验仪、正电子湮没寿命谱仪、磁共振实验装置、激光拉曼光谱仪等 五.实验方式与基本要求 1.本课程以实验室为课堂,以完成教学实验项目为主,教学内容按照分支学科设置专题实验项目,由专题实验项目指导教师负责实验课程教学。 2.该课程要求学生在进入实验室进行实验之前,必须对于所做实验进行预

大学物理实验--教学大纲

大学物理实验课教学大纲 大学物理实验课程体系、内容和教学模式 (1) 一级物理实验(基础物理实验) (3) 二级物理实验(综合性、设计性实验) (4) 三级物理实验(现代物理实验技术) (5) 四级物理实验(研究型实验) (7) 开放实验 (8) 物理学在人的科学素质培养中具有重要的地位,实验为物理学的基础,它反映了理工科实验的共性和普遍性问题,在人才科学素质培养中起着不可替代的重要作用.20世纪中叶以来,以计算机信息科学技术、生命科学、空间科学、材料科学等为代表的新的科学技术革命,极大地加速了科学技术的发展和各学科之间的相互交叉和渗透,新的综合化趋势已成为科学发展的主流。因此,物理实验课程体系,教学内容和教学方法、手段必须由封闭型向开放型转变。大学物理实验作为大学生在进校后的第一门科学实验课程,不仅应让学生受到严格的、系统的实验技能训练,掌握科学实验的基本知识、方法和技巧,更主要的是要培养学生严谨的科学思维能力和创新精神,培养学生理论联系实际、分析和解决实际问题的能力,特别是与科学技术的发展相适应的综合能力,适应时代的发展,科技进步的创新能力。 大学物理实验课程体系、内容和教学模式 1.素质教育为目标,建立物理实验课程新体系: 打破了传统的力、热、电、光、近代物理实验教学的封闭体系。建立以基本实验、综合性实验、设计性实验、研究性实验等组成的新的实验课程体系,形成从低到高、从基础到前沿、从接授知识到培养综合能力,逐级提高的四级基础物理实验课程新体系。每一级物理实验大致用一个学期的时间完成,不同的级标志着不同实验技能和科学思维水平。使学生从较高起点进入大学物理实验,一个台阶、一个台阶地走向科学的高峰。 2.注重物理实验的时代性与先进性,改革实验教学内容: 物理实验必须与现代科学技术接轨,才能激发学生的学习积极性与热情,也才能使现代科技进步的成果渗透到传统的经典课程内容之中,例如将计算机技术、光纤技术、磁共振技术、核物理技术、X射线技术、电子显微技术、光谱技术、真空技术、传感器技术等现代技术及科研成果融用于学生物理实验之中。 3.营造培养创新人才的多元化教学模式和环境)

专业物理实验一

《物理专业实验一》课程教学大纲一、课程分析

二、教学内容及基本要求 教学重点: 1、密立根油滴实验中,要求学生掌握测定电子电荷值的两种方法。 2、利用单探针和双探针法来测定等离子体的各项参量。 3、掌握太阳能电池的暗态特性和太阳能电池的负载特性。 4、学会用平行光管测量凸透镜的焦距;会用平行光管测定鉴别率。。 5、测定氩原子的第一激发电位;了解在研究原子内部能量量子化问题时所 使用的基本方法。 教学难点: 1、掌握晶体电光调制的原理和实验方法;学会利用实验装置测量晶体的半 波电压,计算晶体的电光系数。 2、掌握四象限探测器的原理,将其应用于目标定向。 3、掌握LED和LD的工作原理和基本特性;掌握LED/LD的P-I(功率- 电流)特性和V-I(电压-电流)特性,并计算阈值电流和微分量子效率;掌握温度对阈值电流和输出功率的影响;LD/LED发光原理及它们之间的区别、LD/LED特性的测试方法及意义。 4、掌握全息照相的基本原理以及静物全息照相的拍摄方法,了解再现全息 物象的性质和方法。 实验教学目标与技能要求: 1、掌握近代物理学发展史上具有典型性和重要作用的实验。 2、掌握近代物理中某些主要领域的基本实验方法与技术。 3、熟悉掌握相关仪器的使用及CCD、计算机等现代技术。 4、培养学生理论与实际相结合,综合理论应用及创新精神。 5、培养学生阅读,查阅参考资料,拟订实验方案,选配测量仪器。 6、观察分析现象,独立操作,判断实验中尚存的问题。 7、巩固和加强有关数据处理,误差分析等方面的训练。 实验内容与学时分配: 实验项目一: 1、实验项目名称:TD-1太阳能电池特性试验

操作系统教学大纲

《操作系统》课程教学大纲 一、课程基本信息课程名称:《操作系统》总学时与学分:72学时 4学分 课程性质:专业必修课授课对象:计算机科学与技术专业 二、课程教学目标与任务 操作系统原理是一门专业基础课程,是涉及考研等进一步进修的重要课程,是计算机 体系中必不可少的组成部分。本课程的目的和任务是使学生通过本课程的学习,理解操作 系统的基本概念和主要功能,掌握操作系统的使用和一般的管理方法,从而为学生以后的 学习和工作打下基础。 三、学时安排 课程内容与学时分配表 章 节 内 容学 时 第一章 操作系统引论5第二章 进程管理12第三章 处理机调度与死锁12第四章 存储管理12第五章 设备管理10第六章 文件管理8第七章 操作系统接口4第八章 网络操作系统3第九章 系统安全性3第十章 UNIX 操作系统3四、课程教学内容与基本要求 第一章 操作系统引论 教学目标:通过本章的学习,使学生掌握操作系统的概念,操作系统的作用和发展过 程,知道操作系统是配置在计算机硬件上的第一层软件,是对计算机系统的首次扩充,是 现代计算机系统必须配置的软件。 基本要求:掌握操作系统的目标和作用、发展过程、基本特征及主要功能;了解操作 系统的结构设计 本章重点:操作系统的概念、作用,操作系统的基本特征以及操作系统的主要功能。 本章难点:操作系统基本特征的理解,操作系统主要功能的体现。 教学方法:讲授与演示相结合、管路敷设技术通过管线不仅可以解决吊顶层配置不规范高中资料试卷问题,而且可保障各类管路习题到位。在管路敷设过程中,要加强看护关于管路高中资料试卷连接管口处理高中资料试卷弯扁度固定盒位置保护层防腐跨接地线弯曲半径标高等,要求技术交底。管线敷设技术包含线槽、管架等多项方式,为解决高中语文电气课件中管壁薄、接口不严等问题,合理利用管线敷设技术。线缆敷设原则:在分线盒处,当不同电压回路交、电气课件中调试试卷相互作用与相互关系,根据生产工艺高中资料试卷要求,对电气设备进行空载与带负荷下高中资料试卷调控试验;对设备进行调整使其在正常工况下与过度工作下都可以正常工作;对于继电保护进行整核对定值,审核与校对图纸,编写复杂设备与装置高中资料试卷调试方案,编写重要设备高中资料试卷试验方案以及系统启动方案;对整套启动过程中高中资料试卷电气设备进行调试工作并且进行过关运行高中资料试卷技术指导。对于调试过程中高中资料试卷、电气设备调试高中资料试卷技术电力保护装置调试技术,电力保护高中资料试卷配置技术是指机组在进行继电保护高中资料试卷总体配置时,需要在最大限度内来确保机组高中资料试卷安全,并且尽可能地缩小故障高中资料试卷破坏范围,或者对某些异常高中资料试卷工况进行自动处理,尤其要避免错误高中资料试卷保护装置动作,并且拒绝动作,来避免不必要高中资料试卷突然停机。因此,电力高中资料试卷保护装置调试技术,要求电力保护装置做到准确灵活。对于差动保护装置高中资料试

大学物理教学大纲.

《大学物理》教学大纲 一、课程简介 大学物理是一门重要的专业基础课,大学物理课程既为学生打好必要的物理基础,又在培养学生科学的世界观,增强学生分析问题和解决问题的能力,培养学生的探索精神、创新意识等方面,具有其他课程不能替代的重要作用。 物理学的理论体系具有完美性和系统性。物理思想的表述,定律、定理的表达式,问题的科学处理方法,物理常量的测量等形成了完美的理论体系,对学生后续课程的学习具有重要的意义。近代物理内容的教学,使学生了解科学发展的前沿问题,为学生的创新奠定基础。 二、课程目标 通过本课程的学习,要求学生能够: 1、通过本课程的学习,要求学生能够对物理学的内容和方法、概念和物理图像、物理学的工作语言、物理学发展的历史、现状和前沿、及其对科学发展和社会进步的作用等方面在整体上有一个比较全面的了解,对物理学所研究的各种运动形式,以及它们之间的联系,有比较全面和系统的认识,并具有初步应用的能力。 2、注重物理学思想、科学思维方法、科学观点的传授。通过介绍科学研究的方法论和认识论,启迪学生的创造性思维和创新意思,培养学生的科学素质。 3、熟练掌握矢量和微积分在物理学中的表示和应用。了解物理学在自然科学和工程技术中的应用,以及相关科学互相渗透的关系。 4、通过学习科学的思维方法和研究方法,使学生具备综合运用物理学知识和数学知识解决实际问题的能力,提高发现问题、分析问题、解决问题的能力和开拓创新的素质。为学生进一步学习专业知识奠定良好的基础,也为学生将来走向社会从事科学技术工作和科学研究工作打下基础。 5、通过该课程的学习,使学生树立科学的唯物主义的世界观、方法论和认识论,具备独立分析和处理相关问题的能力,具有较强的自学和吸收新知识的能力。

操作系统课程设计2014教学大纲

《操作系统课程设计》大纲 一、设计目的和要求 目的:本课程设计是为配合计算机相关专业的重要专业课《操作系统》而开设的,其主要内容是让学生实际进行操作系统功能模块的设计和编程实现。通过本课程设计的实施,使学生能将操作系统的概念具体化,并从整体和动态的角度去理解和把握操作系统,以巩固和补充操作系统的原理教学,提高学生解决操作系统设计及实现过程中的具体问题的能力。 要求:通过本课程设计的实施,要求培养学生以下能力: (1)培养学生在模拟条件下与实际环境中实现功能模块和系统的能力:课程设计要求学生实际进行操作系统功能模块的设计和编程实现,具体包括:基于线程的多任务调度系统的设计与实现;一个简单文件系统的设计与实现。 (2)培养学生设计和实施工程实验的能力,合理分析试验结果的能力:学生在完成项目的过程中,需要进行实验设计、程序调试、错误分析,从而熟悉实验设计方法及实验结果的分析方法。 (3)培养学生综合运用理论和技术手段设计系统和过程的能力:学生需根据设计项目的功能要求及操作系统原理的相关理论提出自己的解决方案,需考虑项目实现的软硬件环境,设计相关数据结构及算法,在实现过程中发现解决方案的问题并进行分析改进。 (4)培养学生分析并清楚阐述设计合理性的能力:要求学生在项目上机验收和实验报告中分析阐述设计思路的合理性和正确性。 (5)培养学生的组织管理能力、人际交往能力、团队协作能力:课程设计分小组进行,每个小组有一个组长,负责组织本组成员的分工及合作。 二、设计学时和学分 学时:32 ;学分:1 三、设计的主要内容 以下三个题目中:1、2中选做一题,第3题必做。 1、基于线程的多任务调度系统的设计与实现 (1)线程的创建、撤消和CPU切换。 掌握线程的定义和特征,线程的基本状态,线程的私有堆栈,线程控制块TCB,理解线程与进程的区别,实现线程的创建、撤消和CPU切换。 (2)时间片轮转调度 理解各种调度算法、调度的原因,完成时钟中断的截取,具体实现调度程序。 (3)最高优先权优先调度 理解优先权的概念,并实现最高优先权优先调度策略。 (4)利用记录型信号量实现线程的同步

近代物理实验教程的实验报告

( 实验报告) 姓名:____________________ 单位:____________________ 日期:____________________ 编号:YB-BH-054001 近代物理实验教程的实验报告Experimental report of modern physics experiment course

工作报告| Work Report 实验报告近代物理实验教程的实验报告 时间过得真快啊!我以为自己还有很多时间,只是当一个睁眼闭眼的瞬间,一个学期都快结束了,现在我们为一学期的大学物理实验就要画上一个圆满的句号了,本学期从第二周开设了近代物理实验课程,在三个多月的实验中我明白了近代物理实验是一门综合性和技术性很强的课程,回顾这一学期的学习,感觉十分的充实,通过亲自动手,使我进一步了解了物理实验的基本过程和基本方法,为我今后的学习和工作奠定了良好的实验基础。我们所做的实验基本上都是在物理学发展过程中起到决定性作用的著名实验,以及体现科学实验中不可缺少的现代实验技术的实验。它们是我受到了著名物理学家的物理思想和探索精神的熏陶,激发了我的探索和创新精神。同时近代物理实验也是一门包括物理、应用物理、材料科学、光电子科学与技术等系的重要专业技术基础物理实验课程也是我们物理系的专业必修课程。 我们本来每个人要做共八个实验,后来由于时间关系做了七个实验,我做的七个实验分别是:光纤通讯,光学多道与氢氘,法拉第效应,液晶物性,非线性电路与混沌,高温超导,塞满效应,下面我对每个实验及心得体会做些简单介绍: 一、光纤通讯:本实验主要是通过对光纤的一些特性的探究(包括对光纤耦合效率的测量,光纤数值孔径的测量以及对塑料光纤光纤损耗的测量与计算), 第2页

近代物理实验研究性教学改革的探索

近代物理实验研究性教学改革的探索 作者:钟鹏王殿生周丽霞 来源:《科技创新导报》2011年第24期 摘要:针对验证性为主实验教学对高年级学生研究能力和创新能力培养不足的情况,以近代物理实验教学改革为例,探讨如何调动实验教师和学生的积极性,充分利用现有的实验资源,变验证性为主的教学模式为综合创新为主的研究性实验教学模式,从而实现实验教学多元化。 关键词:近代物理实验研究性教学多元化 中图分类号:G6 文献标识码:A 文章编号:1674-098X(2011)08(c)-0164-01 1 引言 研究性教学是以培养学生的研究意识、研究能力和创新能力为目标,通过教学过程,使学生不仅掌握系统的学科知识,还能综合运用知识去发现、分析和解决问题,学会研究与探索,培养研究能力、实践能力和创新能力的一种教学模式[1]。实验教学是研究性教学重要的载体之一,是培养创造性人才的基础[2]。中国石油大学(华东)通过近代物理实验教学改革,充分利用现有的人力和设备资源,在保证基本实验的基础上,采用了以学生为中心,鼓励学生创新的“研究性教学”新模式,实现了“基础、综合、创新”三个层次的实验教学,进一步培养了本科学生的创新精神和实践能力,实现了人才培养的多元化,取得了良好的教学效果。 2 近代物理实验的传统教学模式分析 “近代物理实验”是物理学院高年级学生的一门重要基础课,所涉及的物理知识面广,综合性和技术性强。中国石油大学(华东)近代物理实验室承担物理专业12个班级的实验教学任务,可开出涉及声学,光学,电学,微波,原子物理学,核物理学等多个学科近代物理实验34个。 在传统的教学模式下,近代物理实验多为再现式或验证性实验,实验前由教师讲解要点,实验中学生严格按照实验讲义进行操作。考核方式为学生完成一篇学习总结或综述。这种教学模式,对于训练学生正确掌握近代物理实验的基本技能和方法,巩固学生对所学理论知识的理解,具有一定意义。但这种模式也存在很多弊端。首先,实验内容抑制了学生学习主动性,限制了学生创新思维和发散思维,不利于培养和提高高年级学生分析问题解决问题的能力和科研水平。其次,再现式的模式使得教学过程对教师而言是一个重复劳动的枯燥过程,缺乏不断学习和改进实验 的动力。再次,实验中的仪器一般只使用一项功能,效率偏低。由于近代物理实验的深度,很多仪器测量精密,功能先进,例如,电子自旋共振实验中使用的频率计有三个测量档位,测量范围0~200MHz,而实验中仅使用其中一个档位,只需测量26~27MHz的狭窄范围,如此造成了设备其他功能的闲置。因此,要在保证专业基础实验教学效果的前提下,加强实验教学的综合性和创新性,充分调动学生和教师的积极性,发挥实验设备的潜力,进行实验教学的研究性改革。

相关文档
相关文档 最新文档