文档库 最新最全的文档下载
当前位置:文档库 › 《函数与导数》解题方法总结_教(学)案

《函数与导数》解题方法总结_教(学)案

《函数与导数》解题方法总结_教(学)案
《函数与导数》解题方法总结_教(学)案

《函数与导数》解题方法总结 教案

解题策略

1.讨论函数的性质时,必须坚持定义域优先的原则.对于函数实际应用问题,注意挖掘隐含在实际中的条件,避免忽略实际意义对定义域的影响.

2.运用函数的性质解题时,注意数形结合,扬长避短.

3.对于含参数的函数,研究其性质时,一般要对参数进行分类讨论,全面考虑.如对含参数的二次函数问题,应分a =0和a ≠0两种情况讨论,指、对数函数的底数含有字母参数a 时,需按a >1和0<a <1分两种情况讨论.

4.解答函数性质有关的综合问题时,注意等价转化思想的运用.

5.在理解极值概念时要注意以下几点:①极值点是区间部的点,不会是端点;②若()f x 在(a ,b )有极值,那么()f x 在(a ,b )绝不是单调函数;③极大值与极小值没有必然的大小关系;④一般的情况,当函数()f x 在[a ,

b ]上连续且有有限个极值点时,函数()f x 在[a ,b ]的极大值点和极小值点是交替出现的;⑤导数为0的点是该点

为极值点的必要条件,不是充分条件(对于可导函数而言).而充分条件是导数值在极值点两侧异号.

6.求函数的最值可分为以下几步:①求出可疑点,即/

()f x =0的解x 0;②用极值的方法确定极值;③将(a ,

b )的极值与()f a ,()f b 比较,其中最大的为最大值,最小的为最小值;当()f x 在(a ,b )只有一个可疑点时,

若在这一点处()f x 有极大(小)值,则可以确定()f x 在该点处了取到最大(小)值.

7.利用求导方法讨论函数的单调性,要注意以下几方面:①'

()f x >0是()f x 递增的充分条件而非必要条件('

()f x <0亦是如此);②求单调区间时,首先要确定定义域;然后再根据'

()f x >0(或'

()f x <0)解出在定义域相应的x 的围;③在证明不等式时,首先要构造函数和确定定义域,其次运用求导的方法来证明.

8.函数、导数的综合问题往往以压轴题的形式出现,解决这类问题要注意:(1)综合运用所学的数学思想方法来分析解决问题;(2)及时地进行思维的转换,将问题等价转化; (3)不等式证明的方法多,应注意恰当运用,特别要注意放缩法的灵活运用;(4)要利用导数这一工具来解决函数的单调性与最值问题. 典型例题

考点一. 函数的解析式、定义域、值域求法 例1、函数2

34

y x x =

--+的定义域为

A .(4,1)--

B .(4,1)-

C .(1,1)-

D .(1,1]-

解:由2

101

1141340x x x x x x +>>-????-<?

?.故选C 例2、用min{a,b,c}表示a,b,c 三个数中的最小值,设()f x =min{2x

, x+2,10-x} (x ≥ 0),则()f x 的最大值为 (A )4 (B )5 (C )6 (D )7 【解析】:利用数形结合,画出函数的大致图象,如图所示,

很容易的得到函数的最大值是当4x =时,()f x 的最大值为6

考点二. 函数的零点

例1、函数2x +2x-3,x 0

x)=-2+ln x,x>0

f ?≤?

?(的零点个数为 ( ) A.0 B.1 C.2 D.3

解:当0x ≤时,令2

230x x +-=解得3x =-;当0x >时,令2ln 0x -+=解得100x =,所以选C 。

【方法总结】:求函数)(x f y =的零点:①(代数法)求方程0)(=x f 的实数根;②(几何法)对于不能用求根公

式的方程,可以将它与函数)(x f y =的图象联系起来,并利用函数的性质找出零点.

例2、设a 为常数,试讨论方程)lg()3lg()1lg(x a x x -=-+-的实根的个数。

解:原方程等价于???????-=-->->->-x

a x x x a x x )3)(1(0

030

1即???<<-+-=31352x x x a 构造函数)31(352

<<-+-=x x x y 和

a y =,作出它们的图像,易知平行于x 轴的直线与抛物线的交点情况可得:①当31≤

13=a 时,原方

程有一解;②当4133<

13>a 时,原方程无解。

【方法总结】:图象法求函数零点,考查学生的数形结合思想。数形结合,要在结合方面下功夫。不仅要通过图象直观

估计,而且还要计算0x 的邻近两个函数值,通过比较其大小进行判断。

例3、已知a 是实数,函数2()223f x ax x a =+--,如果函数()y f x =在区间[-1,1]上有零点,数a 的取值围。

解:当a=0时,函数为()f x =2x -3,其零点x=

2

3

不在区间[-1,1]上。当a ≠0时,函数()f x 在区间[-1,1]分为两种情况:①函数在区间[─1,1]上只有一个零点,此时48(3)0

(1)(1)(5)(1)0a a f f a a ?=---=??-=--≤?

或??

?

??≤-≤-=---=?121

10

)3(84a a a 解得1≤a ≤5或a=273-- ②函数在区间[─1,1]上有两个零点,此时 ()()208244011121010a a a a f f >???=++>??-<-

11

21010a a a a f f ??-<-

?

-≤?

解得a ≥5或a<

27

3--

综上所述,如果函数在区间[─1,1]上有零点,那么实数a 的取值围为(-∞,

37

--]∪[1, +∞) 【方法总结】:函数零点(即方程的根)的应用问题,即已知函数零点的存在情况求参数的值或取值围问题,解决

该类问题关键是用函数方程思想或数形结合思想,构建关于参数的方程或不等式求解.对于二次函数f(x)=ax 2+bx+c=0(a ≠0)在实数集R 上恒成立问题可利用判别式直接求解,即f(x)>0恒成立?

??

?0

a ;f(x)<0恒成立??

?

?

a .若是二次函数在指定区间上的恒成立问题,还可以利用韦达定理以及根与系数的分布知识求解.

考点三.函数的单调性、奇偶性和周期性

例1、已知定义在R 上的奇函数)(x f ,满足(4)()f x f x -=-,且在区间[0,2]上是增函数,若方程f(x)=m(m>0)在区

间[]8,8-上有四个不同的根1234,,,x x x x ,则1234_________.x x x x +++=

解:因为定义在R 上的奇函数,满足(4)()f x f x -=-,所以(4)()f x f x -=-,所以, 由)(x f 为奇函数, 所以函数图象关于直线2x =对称且(0)0f =,由(4)()f x f x -=-知(8)()f x f x -=, 所以函数是以8为周期的周期函数,

又因为)(x f 在区间[0,2]上是增函数,所以)(x f 在区间[-2,0]上也是增函数.如图所示, 那么方程)(x f =m(m>0)在区间[]8,8-

上有四个不同的根1234,,,x x x x ,不妨设1234x x x x <<<由对称性知1212x x +=- 344

x x += 所以12341248x x x x +++=-+=-

答案:-8 【方法总结】:本题综合考查了函数的奇偶性,单调性,对称性,周期性,以及由函数图象解答方程问题,

运用数形结合的思想和函数与方程的思想解答问题

例2、已知函数22

4,0()4,0

x x x f x x x x ?+≥=?-

(2)(),f a f a ->则实数a 的取值围是 A (,1)(2,)-∞-?+∞ B (1,2)- C (2,1)- D (,2)(1,)-∞-?+∞

解:由已知,函数在整个定义遇上单调递增的故)()2(2

a f a f >- ,等价于022

<-+a a ,解得12<<-a

答案C 【方法总结】:在处理函数单调性时,可以充分利用基本函数的性质直接处理,显得更加简单、方便

考点四.函数的图象

例1、右图是函数)()(x f y x f y '==的导函数的图象,给出下列命题: ①—3是函数)(x f y =的极值点;②—1是函数)(x f y =的最小值点;

③)(x f y =在0=x 处切线的斜率小于零; ④)(x f y =在区间(—3,1)上单调递增。 则正确命题的序号是

( ) A .①② B .①④

C .②③

D .③④

例2、函数

的图像为14313

+-=

x x y ( )

例3、方程

内根的个数为在)2,0(076223=+-x x ( )

A 、0

B 、1

C 、2

D 、3

函数的图象答案: 1、C 2、A 3、B

考点五. 利用单调性、极值、最值情况,求参数取值围

例1、已知函数f (x )=x3+ax2+bx +c 在x =-2

3与x =1时都取得极值

(1)求a 、b 的值与函数f (x )的单调区间

(2)若对x ∈〔-1,2〕,不等式f (x )

恒成立,求c 的取值围。 解:(1)f (x )=x3+ax2+bx +c ,f '(x )=3x2+2ax +b

由f '(

23-

)=124a b 093-+=,f '(1)=3+2a +b =0得a =1

2-

,b =-2

y

o 4 2 4 -4

2 -2 -2

x y

o 4 -4 2 4 -4

2 -2 -2

x

y

y 4 -4 2 4 -4

2

-2 -2

6 6 6

6 y

x

-4

-2 o

4 2 2

4

x

(-∞,-2

3)

-2

3

(-2

3,1)

1 (1,+∞)

f '(x ) + 0

0 +

f (x ) ↑

极大值 ↓ 极小值 ↑

所以函数f (x )的递增区间是(-∞,-23)与(1,+∞),递减区间是(-2

3,1) (2)f (x )=x3-12x2-2x +c ,x ∈〔-1,2〕,当x =-23时,f (x )=2227+c

为极大值,而f (2)=2+c ,则f (2)=2+c 为最大值。 要使f (x )f (2)=2+c ,解得c <-1或c >2

考点六 抽象函数

例1、定义在R 上的单调函数()f x 满足(3)f =log 23且对任意x ,y ∈R 都有()f x y += ()f x +()f y .(1)求证()

f x 为奇函数;(2)若f(k ·3x

)+f(3x

-9x

-2)<0对任意x ∈R 恒成立,数k 的取值围.

解:(1):()f x y += ()f x +()f y (x ,y ∈R ),①令x=y=0,代入①式,得f(0+0)=f(0)+f(0),即 f(0)=0.令y=-x ,代入①式,得 f(x-x)=f(x)+f(-x),又f(0)=0,则有0=f(x)+f(-x).即f(-x)=-f(x)对任意x ∈R 成立,所以f(x)是奇函数.

(2):f(3)=log 23>0,即f(3)>f(0),又f(x)在R 上是单调函数,所以f(x)在R 上是增函数,又由(1)f(x)是奇函

数.f(k ·3x

)<-f(3x

-9x

-2)=f(-3x

+9x

+2), k ·3x

<-3x

+9x

+2,32x

-(1+k)·3x +2>0对任意x ∈R 成立.令t=3

x

>0,问题等价于t 2

-(1+k)t+2>0对任意t >0恒成立.

R 恒成立.

【方法总结】:利用抽象条件,通过合理赋值(赋具体值或代数式)、整体思考、找一个具体函数原型等方法去探究函数的性质。如奇偶性、周期性、单调性、对称性等,再运用相关性质去解决有关问题,是求解抽象函数问题的常规思路。其中合理赋值起关键性的作用。对抽象函数问题的考查在近几年高考中有逐年增加数量的趋势。

考点七:利用导数研究导数的单调性 例1、已知函数1()ln 1()a

f x x ax a R x

-=-+-∈(1)当1a =-时,求曲线()y f x =在点(2,(2))f 处的切线方程;(2)当1

2

a ≤

时,讨论()f x 的单调性. 解(1) 当 1 ()a f x =-=时,),,0(,12

ln +∞∈-++x x

x x 所以 ()222x x f x x +-'= 因此()21f '=,即曲线

()2(2)) 1.y f x f =在点(,处的切线斜率为,又,22ln )2(+=f 所以曲线

()2(2)) (ln 22)2, y f x f y x =-+=-在点(,处的切线方程为 ln 20. x y -+=即

(2)因为11ln )(--+-=x a ax x x f ,所以21

1)('x

a a x x f -+-=2

21x a x ax -+--= ),0(+∞∈x , 令,1)(2

a x ax x g -+-=),,0(+∞∈x 当0a =时,()()1,0,,g x x x =-+∈+∞所以

当()0,1x ∈时,()g x >0,此时()0f x '<,函数()f x 单调递减; 当()1,x ∈+∞时,()g x <0,此时()0f x '>,函数()f x 单调递增. 当0a ≠时,由()0f x '=,即2

10ax x a -+-=,解得121

1,1x x a

==

-. ① 当1

2a =

时, 12x x = , ()0g x ≥恒成立,此时()0f x '≤,函数()f x 在(0,+∞)上单调递减; ② 当102

a <<时, 1

110a ->>,()0,1x ∈时,()0g x >,此时()0f x '<,函数()f x 单调递减

11,1x a ??∈- ???时,()g x <0,此时()0f x '>,函数()f x 单调递增11,x a ??

∈-+∞ ???

时,()0g x >,此时()0f x '<,

函数()f x 单调递减 ③ 当0a <时,由于

1

10a

-<,()0,1x ∈时,()0g x >,此时()0f x '<,函数()f x 单调递减: ()1,x ∈+∞时,()g x <0,此时()0f x '>,函数()f x 单调递增.

综上所述:当0a ≤时,函数()f x 在()0,1上单调递减;函数()f x 在()1,+∞上单调递增 当12a =

时,函数()f x 在()0,+∞上单调递减当1

02

a <<时,函数()f x 在()0,1上单调递减;函数()f x 在11,1a ??- ???上单调递增; 函数()f x 在11,a ??-+∞ ???

上单调递减. 【方法总结】:利用导数研究函数单调性的一般步骤。(1)确定函数的定义域;(2)求导数()f x ';(3)①若求单调区间(或证明单调性),只需在函数()f x 的定义域解(或证明)不等式()f x '>0或()f x '<0。②若已知()f x 的单调性,则转化为不等式()f x '≥0或()f x '≤0在单调区间上恒成立问题求解。

考点八:导数与不等式的综合

例1、设

ax x x f a -=>3

)(,0函数在),1[+∞上是单调函数.数a 的取值围; 解:(1) ,3)(2

a x x f y -='='若)(x f 在[)+∞,1上是单调递减函数,则须,3,02

x a y ><'即这样的实数a 不存在.

故)(x f 在[)+∞,1上不可能是单调递减函数.若)(x f 在[)+∞,1上是单调递增函数,则a ≤2

3x , 由于

[)33,,12

≥+∞∈x x 故.从而0

例2、已知a 为实数,函数23

()()()

2f x x x a =++若函数()f x 的图象上有与x 轴平行的切线,求a 的取值围

解:

3233()22f x x ax x a =++

+Q ,23

'()322f x x ax ∴=++

Q 函数()f x 的图象有与x 轴平行的切线,'()0f x ∴=有实数解

2344302a ∴?=-??≥,292a ≥,所以a

的取值围是-∞+∞U (,)

考点九:导数与向量的结合

例1、设平面向

11),(22a b =-=r r 若存在不同时为零的两个实数s 、t 及实数k ,使,且y x b t a s y b k t a x ⊥+-=-+=,,)(2

(1)求函数关系式()S f t =;

(2)若函数()S f t =在[)∞+,

1上是单调函数,求k 的取值围。 解:(1)

).23,21(),21,23(

=-=10a b a b ==?=r

r r r ,

22222

23,0000x y x y a t k b sa tb sa t t k b t st sk a b s t k t s f t t kt ⊥?=??+--+=??-+--+?=∴-+-===-r u r r u r

r r r r r r r r 又,得()(

),即()-()。(),故()。

(2)

[)上是单调函数,,)在(且)(∞+-='132t f k t t f 则在[)+∞,1上有00)(≤'≥')(或t f t f 由

3)3(3030)(min 222≤?≤?≤?≥-?≥'k t k t k k t t f ;

由223030)(t k k t t f ≥?≤-?≤'。因为在t ∈[)+∞,1上23t 是增函数,所以不存在k ,使23t k ≥在[)+∞,1上恒

成立。故k 的取值围是3≤k 。

专题练习: 1、已知函数

{}32()3(36)124f x x ax a x a a R =++---∈ (Ⅰ)证明:曲线()y f x =0x =在

的切线过点(2,2);(Ⅱ)若00()f x x x x =∈在处取得最小值,(1,3),求a 的取值围。

【解析】(Ⅰ)32()3(36)124f x x ax a x a =++-+-,2

()3636f x x ax a '=++-,故x=0处切线斜率36k a =-,

又(0)124,124(36)f a y a a x =-∴-+=-切线方程为即(36)1240a x y a --+-=,当2,2x y ==时,

(36)2212461221240a a a a -?-+-=--+-=故曲线()0(2,2)y f x x ==在处的切线过点

(Ⅱ)0x Q 处取极小值,令2

()3636,()g x x ax a g x =++-由题意知在(1,3)有解

00)0;)0x x x x x x <<>>且时g(时g(,故2(6)43(36)0(1)0(3)0a a g g ??=-?-=?

?

2(6)43(36)0(1)01(3)0a a g a g ??=-?->?

>?>??>?

或 2、设函数2

2

()ln (0)f x a x x ax a =-+>(Ⅰ)求()f x 单调区间(Ⅱ)求所有实数a ,使2

1()e f x e -≤≤对[1,]x e ∈恒成立,注:e 为自然对数的底数

【解析】:(Ⅰ)因为2

2

()ln (0)f x a x x ax a =-+>所以2()(2)

()2a x a x a f x x a x x

-+'=-+=由于0a >所以()f x 的增区间为(0,)a ,减区间为(,)a +∞。

(Ⅱ)由题意得(1)11f a e =-≥-即a e ≥。由(Ⅰ)知()f x 在[1,]e 单调递增,要使2

1()e f x e -≤≤ 对[1,]x e ∈恒成立,只要2

2

2

(1)11

()f a e f e a e ae e

=-≥-??

=-+≤?解得a e =

4、设()ln .()()()f x x g x f x f x '==+。(Ⅰ)求()g x 的单调区间和最小值;(Ⅱ)讨论()g x 与1

()g x

的大小关系;

(Ⅲ)求a 的取值围,使得()()g a g x -<

1

a 对任意x >0成立。 解(Ⅰ)由题设知1()ln ,()ln f x x g x x x ==+,∴21

(),x g x x

-'=令()g x '=0得x =1,

当x ∈(0,1)时,()g x '<0,故(0,1)是()g x 的单调减区间。

当x ∈(1,+∞)时,()g x '>0,故(1,+∞)是()g x 的单调递增区间,因此,x =1是()g x 的唯一值点,且为极小值点,从而是最小值点,所以最小值为(1) 1.g =

(II)1()g Inx x =-+设11

()()()1h x g x g Inx x =-=-+,则22(1)()x h x -'=-,

当1x =时,(1)0h =即1()()g x g x

=,当(0,1)(1,)x ∈?+∞时(1)0h '=, 因此,()h x 在(0,)+∞单调递减,当01x <<时,()(1)0h x h >=即1()().g x g x

< (III )由(I )知()g x 的最小值为1,所以,1()()g a g x a -<,对任意0x >,成立1

()1,g a a

?-<即ln 1,a <从而得0a e <<。

8、已知函数x

b

x x a x f ++=

1ln )(,曲线)(x f y =在点))1(,1(f 处的切线方程为032=-+y x , (1)求b a ,的值 (2)证明:当1,0≠>x x 时,x

x

x f ->1ln )(

解:(Ⅰ)2

2)1()

ln 1

()(x b x x x x a x f -+-+='Θ,由题意知:??

???-='=21)1(1)1(f f 即?????-=-=2121b a b 1==∴b a (Ⅱ)由(Ⅰ)知x x x x f 1

1ln )(++=,所以,)1ln 2(111ln )(22

x x x x x x x f ---=-- 设)0(,1ln 2)(2>--=x x x x x h 则,2

2

)1()(x x x h --='当1≠x 时, 0)(<'x h ,而0)1(=h 故,当0)(),,1(,0)()1,0(<+∞∈>∈x h x x h x 时当时得:0)(-11

2

>x h x

从而,当0>x 时,,01ln )(>--

x x x f 即1

ln )(->

x x

x f 点评:这道题考查导数的概念、几何意义、导数的应用(证明不等式);考查分析问题解答问题的能力;其中构造函数利用导数证明不等式是解答导数应用问题的常用策略之一。

高中数学三角函数基础知识点及答案

高中数学三角函数基础知识点及答案 1、角的概念的推广:平面内一条射线绕着端点从一个位置旋转到另一个位置所的图形。按逆时针方向旋转所形成的角叫正角,按顺时针方向旋转所形成的角叫负角,一条射线没有作任何旋转时,称它形成一个零角。射线的起始位置称为始边,终止位置称为终边。 2、象限角的概念:在直角坐标系中,使角的顶点与原点重合,角的始边与x 轴的非负半轴重合,角的终边在第几象限,就说这个角是第几象限的角。如果角的终边在坐标轴上,就认为这个角不属于任何象限。 3. 终边相同的角的表示: (1)α终边与θ终边相同(α的终边在θ终边所在射线上)?2()k k αθπ=+∈Z , 注意:相等的角的终边一定相同,终边相同的角不一定相等.如与角 1825-的终边相同,且绝对值最小的角的度数是___,合___弧度。 弧度:一周的弧度数为2πr/r=2π,360°角=2π弧度,因此,1弧度约为57.3°,即57°17'44.806'', 1°为π/180弧度,近似值为0.01745弧度,周角为2π弧度,平角(即180°角)为π弧度, 直角为π/2弧度。(答:25-;5 36 π- ) (2)α终边与θ终边共线(α的终边在θ终边所在直线上) ?()k k αθπ=+∈Z . (3)α终边与θ终边关于x 轴对称?2()k k αθπ=-+∈Z . (4)α终边与θ终边关于y 轴对称?2()k k απθπ=-+∈Z . (5)α终边与θ终边关于原点对称?2()k k απθπ=++∈Z . (6)α终边在x 轴上的角可表示为:,k k Z απ=∈; α终边在y 轴上的角可表示为:,2k k Z παπ=+∈;α终边在坐标轴上的角可表示为:,2 k k Z π α=∈. 如α的终边与 6 π 的终边关于直线x y =对称,则α=____________。 (答:Z k k ∈+ ,3 2π π) 4、α与2α的终边关系:由“两等分各象限、一二三四”确定.如若α是第 二象限角,则2 α 是第_____象限角 (答:一、三) 5.弧长公式:||l R α=,扇形面积公式:211||22 S lR R α==,1弧度 (1rad)57.3≈. 如已知扇形AOB 的周长是6cm ,该扇形的中心角是1弧度,求该扇形的面积。 (答:22cm ) 6、任意角的三角函数的定义:设α是任意一个角,P (,)x y 是α的终边上的任意一点(异于原点),它与原点的距离是220r x y =+>,那么 s i n ,c o s y x r r αα==,()tan ,0y x x α=≠,cot x y α=(0)y ≠,sec r x α=()0x ≠, ()csc 0r y y α=≠。三角函数值只与角的大小有关,而与终边上点P 的位置无关。

小学数学解题11种方法

小学数学是令很多孩子头疼的科目,其实,只要掌握了数学学习的方法和思维,学习过程就变得通透了。 多种数学思维解决问题 在小学数学解题方法中,运用概念、判断、推理来反映现实的思维过程,叫抽象思维,也叫逻辑思维。 抽象思维又分为:形式思维和辩证思维。客观现实有其相对稳定的一面,我们就可以采用形式思维的方式;客观存在也有其不断发展变化的一面,我们可以采用辩证思维的方式。形式思维是辩证思维的基础。 形式思维能力:分析、综合、比较、抽象、概括、判断、推理。 辩证思维能力:联系、发展变化、对立统一律、质量互变律、否定之否定律。 小学数学要培养孩子初步的抽象思维能力,重点突出在: (1)思维品质上,应该具备思维的敏捷性、灵活性、联系性和创造性。 (2)思维方法上,应该学会有条有理,有根有据地思考。 (3)思维要求上,思路清晰,因果分明,言必有据,推理严密。 (4)思维训练上,应该要求:正确地运用概念,恰当地下判断,合乎逻辑地推理。1、对照法 如何正确地理解和运用数学概念?小学数学常用的方法就是对照法。根据数学题意,对照概念、性质、定律、法则、公式、名词、术语的含义和实质,依靠对数学知识的理解、记忆、辨识、再现、迁移来解题的方法叫做对照法。

这个方法的思维意义就在于,训练孩子对数学知识的正确理解、牢固记忆、准确辨识。例1:三个连续自然数的和是18,则这三个自然数从小到大分别是多少? 对照自然数的概念和连续自然数的性质可以知道:三个连续自然数和的平均数就是这三个连续自然数的中间那个数。 例2:判断题:能被2除尽的数一定是偶数。 这里要对照“除尽”和“偶数”这两个数学概念。只有这两个概念全理解了,才能做出正确判断。 2、公式法 运用定律、公式、规则、法则来解决问题的方法。它体现的是由一般到特殊的演绎思维。公式法简便、有效,也是孩子学习数学必须学会和掌握的一种方法。但一定要让孩子对公式、定律、规则、法则有一个正确而深刻的理解,并能准确运用。 例3:计算59×37+12×59+59 59×37+12×59+59 =59×(37+12+1)……运用乘法分配律 =59×50……运用加法计算法则 =(60-1)×50……运用数的组成规则 =60×50-1×50……运用乘法分配律 =3000-50……运用乘法计算法则 =2950……运用减法计算法则

初中数学知识点全总结(打印版)

年级数学(上)知识点 人教版七年级数学上册主要包含了有理数、整式的加减、一元一次方程、图形的认识初步四个章节的内容. 第一章 有理数 一、知识框架 二.知识概念 1.有理数: (1)凡能写成)0p q ,p (p q ≠为整数且形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整 数和分数统称有理数.注意:0即不是正数,也不是负数;-a 不一定是负数,+a 也不一定是正数;π不是有理数; (2)有理数的分类: ① ??? ? ????? ????负分数负整数负有理数零正分数 正整数 正有理数有理数 ② ???????????????负分数正分数分数负整数零正整数整数有理数 2.数轴:数轴是规定了原点、正方向、单位长度的一条直线. 3.相反数: (1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0; (2)相反数的和为0 ? a+b=0 ? a 、b 互为相反数. 4.绝对值: (1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离; (2) 绝对值可表示为:?????<-=>=) 0a (a )0a (0) 0a (a a 或???<-≥=)0a (a )0a (a a ;绝对值的问题经常分类讨论; 5.有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负 数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数-小数 > 0,小数-大数 < 0. 6.互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若 a ≠0,那么a 的倒数是a 1 ;若ab=1? a 、b 互为倒数;若ab=-1? a 、b 互为负倒数. 7. 有理数加法法则: (1)同号两数相加,取相同的符号,并把绝对值相加; (2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值; (3)一个数与0相加,仍得这个数.

(完整版)高中数学完整讲义——排列与组合7排列组合问题的常用方法总结1,推荐文档

m m m n ! n m 知识内容 1. 基本计数原理 ⑴加法原理 分类计数原理:做一件事,完成它有 n 类办法,在第一类办法中有 m 1 种不同的方法,在第二类办法中 有 m 2 种方法,……,在第 n 类办法中有 m n 种不同的方法.那么完成这件事共有 种不同的方法.又称加法原理. ⑵乘法原理 分步计数原理:做一件事,完成它需要分成 n 个子步骤,做第一个步骤有 m 1 种不同的方法,做第二个 步骤有 m 2 种不同方法,……,做第 n 个步骤有 m n 种不同的方法.那么完成这件事共有 种不同的方法.又称乘法原理. ⑶加法原理与乘法原理的综合运用 如果完成一件事的各种方法是相互独立的,那么计算完成这件事的方法数时,使用分类计数原理.如果完成一件事的各个步骤是相互联系的,即各个步骤都必须完成,这件事才告完成,那么计算完成这件事的方法数时,使用分步计数原理. 分类计数原理、分步计数原理是推导排列数、组合数公式的理论基础,也是求解排列、组合问题的基本思想方法,这两个原理十分重要必须认真学好,并正确地灵活加以应用. 2. ⑴排列:一般地,从 n 个不同的元素中任取 m (m ≤ n ) 顺序排成一列,叫做从 n 个不同元素中取出 个元素的一个排列.(其中被取的象叫做元素) 排列数:从 n 个不同的元素中取出个元素的排列数,用符号 个元素的所有排列的个数,叫做从 n 个不同元素中取出 排列数公式: , m , n ∈ N + ,并且 m ≤ n . 全排列:一般地, n 个不同元素全部取出的一个排列,叫做 个不同元素的一个全排列. n 的阶乘:正整数由1 到 n 的连乘积,叫作 n 的阶乘,用 ⑵组合:一般地,从 n 个不同元素中,任意取出个元素的一个组合. 表示.规定: 0! = 1 . 个元素并成一组,叫做从 n 个元素中任取个 组合数:从 n 个不同元素中,任意取出任意取出 m 个元素的组合数,用符号 表示. 元素的所有组合的个数,叫做从 n 个不同元素中, 组合数公式: , m , n ∈ N + ,并且 m ≤ n . 1 / 20 排列组合问题的常用方法总 结 1 m (m ≤ n ) m ! C m n = n (n - 1)(n - 2) (n - m + 1) = n C m n ! m !(n - m )! (m ≤n ) m (m ≤ n ) N = m 1 ? m 2 ? ? m n N = m 1 + m 2 + + m n A m n 表示. A m = n (n - 1)(n - 2) (n - m + 1) n

高中数学三角函数知识点归纳总结

《三角函数》 【知识网络】 一、任意角的概念与弧度制 1、将沿x 轴正向的射线,围绕原点旋转所形成的图形称作角. 逆时针旋转为正角,顺时针旋转为负角,不旋转为零角 2、同终边的角可表示为 {}()360k k Z ααβ? =+∈g x 轴上角:{}()180k k Z αα=∈o g y 轴上角:{}()90180k k Z αα=+∈o o g 3、第一象限角:{}()036090360k k k Z αα? ?+<<+∈o g g 第二象限角:{}()90 360180360k k k Z αα??+<<+∈o o g g 第三象限角:{}()180360270360k k k Z αα? ?+<<+∈o o g g 第四象限角: {}()270 360360360k k k Z αα??+<<+∈o o g g 4、区分第一象限角、锐角以及小于90o 的角 第一象限角:{}()0360 90360k k k Z αα? ?+<<+∈o g g 锐角: {}090αα<

,2 4 , 0π απ ≤ ≤=k ,2 345, 1παπ≤≤=k 所以 2 α 在第一、三象限 6、弧度制:弧长等于半径时,所对的圆心角为1弧度的圆心角,记作1rad . 7、角度与弧度的转化:01745.0180 1≈=?π 815730.571801'?=?≈? = π 9、弧长与面积计算公式 弧长:l R α=?;面积:211 22 S l R R α=?=?,注意:这里的α均为弧度制. 二、任意角的三角函数 1、正弦:sin y r α=;余弦cos x r α=;正切tan y x α= 其中(),x y 为角α终边上任意点坐标,r = 2、三角函数值对应表: 3、三角函数在各象限中的符号

小学数学学习方法小结

小学数学学习方法小结 一、思考:思考是数学学习方法的核心。在学这门课中,思考有重大意义。解数学题时,首先要观察、分析、思考。思考往往能发现题目的特点,找出解题的突破口、简便的解题方法。在我们周围,凡是真正学得好的同学,都有勤于思考,经常开动脑筋的习惯,于是脑子就越用越灵,勤于思考变成了善于思考。我正因为掌握应用了这一方法,所以在全国数学竞赛中获得了武汉市一等奖。 二、动手试一试:动手有助于消化学习过的知识,做到融会贯通。课下,我常常把老师讲过的公式进行推导,推导时不要看书,要默记。这样就能使自己对公式掌握滚瓜烂熟,可为公式变形计算打下扎实的基础。 三、培养创造精神:所谓创造,就是想出新办法,做出新成绩,建立新理论。创造,就要不局限于老师、课本讲的方法。平时,有一些难度高的题目,我在听懂了老师讲的方法后,还要自己去找一找有没有另外的解法,这样能加深对题目的理解,能比较几种解法的利弊,使解题思维达到一个更高的境界。 科学的学习方法在课内课外应注意些什么呢?

第一,认真听老师讲课。这是我取得好成绩的主要原因。听讲时要做到全神贯注,聚精会神,跟着老师的思路走,不能开小差,更切忌一边讲话一边听讲。其次要专心凝听老师讲的每一个字,因为数学是以严谨著称的,一字之差就非同小可,一字之间就隐藏玄机无限。听讲时还要注意记笔记。一次老师讲了一个高难度的几何题,我一时没有听懂,多亏我记下了这道题以及解法,回家后仔细琢磨,终于理解透了,以至在一次竞赛中我轻而易举地解出了类似的一道题,获得了宝贵的10分。上课还要积极举手发言,举手发言的好处可真不少!①可以巩固当堂学到的知识。②锻炼了自己的口才。③那些模糊不清的观念和错误能得到老师的指教。真是一举三得。总之,听讲要做到手到、口到、眼到、耳到、心到。 第二,课外练习。孔子曰:“学而时习之”。课后作业也是学习和巩固数学的重要环节。我很注意解题的精度和速度。精度就是准确度,专心致志地独立完成作业,力求一次性准确,而一旦有了错,要及时改正。而速度是为了锻炼自己注意力集中,有紧迫感。我经常是这样做的,在开始做作业时定好闹钟,放在自己看不见的地方再做作业,这样有助于提高作业速度。考试时,就不会紧张,也不会顾此失彼了。 第三,复习、预习。对数学的复习,预习我定在每天晚上,在完成当天作业后,我将第二天要学的新知识简要地看一看,再回忆一下老师已讲过的内容。睡觉时躺在床上,脑海里再像看电影一样将老师上课

新人教版初中数学知识点总结(完整版)

人教新版初中数学知识点总结(全面最新) 目录 一、七年级数学(上)知识点 1、有理数 2、整式的加减 3、一元一次方程 4、图形的认识初步 二、七年级数学(下)知识点 5、相交线与平行线 6、实数 7、平面直角坐标系 8、二元一次方程组 9、不等式与不等式组 10、数据的收集、整理与描述 三、八年级数学(上)知识点 11、三角形 12、全等三角形 13、轴对称 14、整式的乘除与分解因式 15、分式

四、八年级数学(下)知识点 16、二次根式 17、勾股定理 18、平行四边形 19、一次函数 20、数据的分析 五、九年级数学(上)知识点 21、一元二次方程 22、二次函数 23、旋转 24、圆 25、概率 六、九年级数学(下)知识点 26、反比例函数 27、相似 28、锐角三角函数 29、投影与视图 七年级数学(上)知识点

第一章有理数 一.知识框架 二.知识概念 1.有理数: (1)凡能写成)0 p q,p( p q ≠ 为整数且形式的数,都是有理数. (2)有理数的分类: ① ? ? ? ? ? ? ? ? ? ? ? ? ? 负分数 负整数 负有理数 零 正分数 正整数 正有理数 有理数 ② ? ? ? ? ? ? ? ? ? ? ?? ? ? ? 负分数 正分数 分数 负整数 零 正整数 整数 有理数 注意:0即不是正数,也不是负数; -a不一定是负数,+a也不一定是正数; π不是有理数; 2.数轴:数轴是规定了原点、正方向、单位长度的一条直线. 3.相反数: (1)只有符号不同的两个数,互为相反数,即a和- a互为相反数;

0的相反数还是0; (2) a+b=0 ? a 、b 互为相反数. 4.绝对值: (1)绝对值的意义是数轴上表示某数的点离开原点的距离; (2) ?? ???<-=>=) 0()0(0) 0(a a a a a a 或???<-≥=)0a (a ) 0a (a a 或???≤->=)0()0(a a a a a ; 正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数; 绝对值的问题经常分类讨论,零既可以和正数一组也可以和负数一组; 5.有理数比大小: 两个负数比大小,绝对值大的反而小; 数轴上的两个数,右边的数总比左边的数大; 大数-小数 > 0,小数-大数 < 0. 6.倒数:乘积为1的两个数互为倒数; 注意:0没有倒数; 若 a ≠0,那么a 的倒数是a 1; 若ab=1? a 、b 互为倒数; 若ab=-1? a 、b 互为负倒数. 7. 有理数加法法则: (1)同号两数相加,取相同的符号,并把绝对值相加; (2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对

排列组合常用方法总结

/////////解决排列组合问题常见策略 学习指导 1、排列组合的本质区别在于对所取出的元素是作有序排列还是无序排列。组合问题可理解为把元素取出后放到某一集合中去,集合中的元素是无序的。 较复杂的排列组合问题一般是先分组,再排列。必须完成所有的分组再排列,不能边分组边排列。 排列组合问题的常见错误是重复和遗漏。弄清问题的实质,适当的分类,合理的分步是解决这个错误的关键,采用不同的思路检验结果是否一致是解决这个错误的技巧。 集合是常用的工具之一。为了将抽象问题具体化,可以从特殊情形着手,通过画格子,画树图等帮助理解。 “正难则反”是处理问题常用的策略。 常用方法: 一. 合理选择主元 例1. 公共汽车上有3个座位,现在上来5名乘客,每人坐1个座位,有几种不同的坐法?例2. 公共汽车上有5个座位,现在上来3名乘客,每人坐1个座位,有几种不同的坐法?分析:例1中将5名乘客看作5个元素,3个空位看作3个位置,则问题变为从5个不同 的元素中任选3个元素放在3个位置上,共有种不同坐法。例2中再把乘客看作元素问题就变得比较复杂,将5个空位看作元素,而将乘客看作位置,则例2变成了例1,所以在解决排列组合问题时,合理选择主元,就是选择合适解题方法的突破口。 二. “至少”型组合问题用隔板法 对于“至少”型组合问题,先转化为“至少一个”型组合问题,再用n个隔板插在元素的空隙(不包括首尾)中,将元素分成n+1份。 例5. 4名学生分6本相同的书,每人至少1本,有多少种不同分法? 解:将6本书分成4份,先把书排成一排,插入3个隔板,6本书中间有5个空隙,则分法有: (种) 三. 注意合理分类 元素(或位置)的“地位”不相同时,不可直接用排列组合数公式,则要根据元素(或位置)的特殊性进行合理分类,求出各类排列组合数。再用分类计数原理求出总数。 例6. 求用0,1,2,3,4,5六个数字组成的比2015大的无重复数字的四位数的个数。解:比2015大的四位数可分成以下三类: 第一类:3×××,4×××,5×××,共有:(个); 第二类:21××,23××,24××,25××,共有:(个); 第三类:203×,204×,205×,共有:(个) ∴比2015大的四位数共有237个。

高中数学三角函数知识点总结(珍藏版)

高中数学三角函数知识点总结 1.特殊角的三角函数值: 2.角度制与弧度制的互化: ,23600π= ,1800 π= 1rad =π 180°≈57.30°=57°18ˊ 1°= 180 π≈0.01745(rad ) 3.弧长及扇形面积公式 (1)弧长公式:r l .α= α----是圆心角且为弧度制 (2)扇形面积公式:S=r l .2 1 r-----是扇形半径 4.任意角的三角函数 设α是一个任意角,它的终边上一点p (x,y ), r=22y x + (1)正弦sin α= r y 余弦cos α=r x 正切tan α=x y (2)各象限的符号: 记忆口诀:一全正,二正弦,三两切,四余弦

sin α cos α tan α 5.同角三角函数的基本关系: (1)平方关系:s in 2α+ cos 2α=1 (2)商数关系:ααcos sin =tan α(z k k ∈+≠,2 ππ α) 6.诱导公式: 记忆口诀:把2 k π α±的三角函数化为α的三角函数,概括为:奇变偶不变,符号看象限。 ()()1sin 2sin k παα+=,()cos 2cos k παα+=,()()tan 2tan k k παα+=∈Z . ()()2sin sin παα+=-,()cos cos παα+=-,()tan tan παα+=. ()()3sin sin αα-=-,()cos cos αα-=,()tan tan αα-=-. ()()4sin sin παα-=,()cos cos παα-=-,()tan tan παα-=-. 口诀:函数名称不变,符号看象限. ()5sin cos 2π αα??-= ???,cos sin 2παα?? -= ??? . ()6sin cos 2π αα??+= ???,cos sin 2παα?? +=- ??? . 口诀:正弦与余弦互换,符号看象限. x y O — + + — + y O — + + —

人教部编版小学数学应用题类型全归纳(附解题思路)

人教部编版小学数学应用题类型全归纳(附解题思路) 一、归一问题 【含义】 在解题时,先求出一份是多少(即单一量),然后以单一量为标准,求出所要求的数量。这类应用题叫做归一问题。 【数量关系】 总量÷份数=1份数量 1份数量×所占份数=所求几份的数量 另一总量÷(总量÷份数)=所求份数 【解题思路和方法】 先求出单一量,以单一量为标准,求出所要求的数量。 例1、买5支铅笔要0.6元钱,买同样的铅笔16支,需要多少钱? 解:(1)买1支铅笔多少钱?0.6÷5=0.12(元) (2)买16支铅笔需要多少钱?0.12×16=1.92(元) 列成综合算式0.6÷5×16=0.12×16=1.92(元) 答:需要1.92元。 例2、3台拖拉机3天耕地90公顷,照这样计算,5台拖拉机6天耕地多少公顷? 解:(1)1台拖拉机1天耕地多少公顷?90÷3÷3=10(公顷)

(2)5台拖拉机6天耕地多少公顷?10×5×6=300(公顷) 列成综合算式90÷3÷3×5×6=10×30=300(公顷) 答:5台拖拉机6天耕地300公顷。 例3、5辆汽车4次可以运送100吨钢材,如果用同样的7辆汽车运送105吨钢材,需要运几次? 解:(1)1辆汽车1次能运多少吨钢材?100÷5÷4=5(吨) (2)7辆汽车1次能运多少吨钢材?5×7=35(吨) (3)105吨钢材7辆汽车需要运几次?105÷35=3(次)列成综合算式105÷(100÷5÷4×7)=3(次) 答:需要运3次。 二、归总问题 【含义】 解题时,常常先找出“总数量”,然后再根据其它条件算出所求的问题,叫归总问题。所谓“总数量”是指货物的总价、几小时(几天)的总工作量、几公亩地上的总产量、几小时行的总路程等。 【数量关系】 1份数量×份数=总量 总量÷1份数量=份数 总量÷另一份数=另一每份数量

☆排列组合解题技巧归纳总结

排列组合解题技巧归纳总结 教学内容 1.分类计数原理(加法原理) 完成一件事,有n 类办法,在第1类办法中有1m 种不同的方法,在第2类办法中有2m 种不同的方法,…,在第n 类办法中有n m 种不同的方法,那么完成这件事共有: 12n N m m m =++ + 种不同的方法. 2.分步计数原理(乘法原理) 完成一件事,需要分成n 个步骤,做第1步有1m 种不同的方法,做第2步有2m 种不同的方法,…,做第n 步有n m 种不同的方法,那么完成这件事共有: 12n N m m m =?? ? 种不同的方法. 3.分类计数原理分步计数原理区别 分类计数原理方法相互独立,任何一种方法都可以独立地完成这件事。 分步计数原理各步相互依存,每步中的方法完成事件的一个阶段,不能完成整个事件. 解决排列组合综合性问题的一般过程如下: 1.认真审题弄清要做什么事 2.怎样做才能完成所要做的事,即采取分步还是分类,或是分步与分类同时进行,确定分多少步及多少类。 3.确定每一步或每一类是排列问题(有序)还是组合(无序)问题,元素总数是多少及取出多少个元素. 4.解决排列组合综合性问题,往往类与步交叉,因此必须掌握一些常用的解题策略 一.特殊元素和特殊位置优先策略 例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数. 解:由于末位和首位有特殊要求,应该优先安排,以免不合要求的元素占了这两个位置. 先排末位共有1 3C 然后排首位共有14C 最后排其它位置共有34A 由分步计数原理得113 4 34288C C A = 练习题:7种不同的花种在排成一列的花盆里,若两种葵花不种在中间,也不种在两端的花盆里,问有多少不同的种法? 二.相邻元素捆绑策略 例2. 7人站成一排 ,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法. 解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素,再与其 它元素进行排列,同时对相邻元素内部进行自排。由分步计数原理可得共有522 5 22480A A A =种不同的排法 练习题:某人射击8枪,命中4枪,4枪命中恰好有3枪连在一起的情形的不同种数为 20 三.不相邻问题插空策略 例3.一个晚会的节目有4个舞蹈,2个相声,3个独唱,舞蹈节目不能连续出场,则节目的出场顺序有多少种? C 14A 34C 1 3

三角函数基础知识点整理

三角函数基础知识点 1、两角和公式 sin(A ±B) = sinAcosB ±cosAsinB B A B A B A tan tan 1tan tan )tan(?±=±μ cos(A ±B) = cosAcosB μsinAsinB 2、二倍角公式(含万能公式) tan2A = A tan 12tanA 2- sin2A=2s inA?cosA=A tan 12tanA 2 + cos2A = cos 2A-sin 2A=2cos 2A-1=1-2sin 2A=A tan 1A tan -12 2 + 22cos 1tan 1tan sin 222 A A A A -=+= 2 2cos 1cos 2 A A += 3、特殊角的三角函数值

4、诱导公式 公式一: απαsin )2sin(=+k ;απαcos )2cos(=+k ;απαtan )2tan(=+k .(其中Z ∈k ). 公式二: ααπ-sin sin(=+);ααπ-cos cos(=+);ααπtan tan(=+). 公式三: sin()-sin αα-=;cos()cos αα-= ;tan()tan αα-=-. 公式四: ααπsin sin(=-);ααπ-cos cos(=-);ααπtan tan(-=-) 公式五: sin(2sin παα-=-);cos(2cos παα-=);tan(2tan παα-=-) 公式六: sin( 2π) = cos ; cos(2π ) = sin . 公式七: sin(2π+) = cos ;cos(2π +) = sin . 公式八: sin(32π)=- cos ; cos(32π ) = -sin . 公式九: sin(32π+) = -cos ;cos(32 π +) = sin . 以上九组公式可以推广归结为:要求角2 k π α?±的三角函数值, 只需要直接求角α的三角函数值的问题.这个转化的过程及结果就是十字口诀“奇变偶不变,符号看象限”。即诱导公式的左边为k ·900+α(k ∈Z )的正弦(切)或余弦(切)函数,当k 为奇数时,右边的函数名称正余互变;当k 为偶数时,右边的函数名称不改变,这就是“奇变偶不变”的含义,再就是将α“看成”锐角(可能并不是锐角,也可能是大于锐角也可能小于锐角还有可能是任意角),然后分析k ·900+α(k ∈Z )为第几象限角,再判断公式左边这个三角函数在此象限是正还是负,也就是公式右边的符号。

(完整版)小学数学解题的19种方法总结

小学数学解题的19种方法总结 一、形象思维方法 形象思维方法是指人们用形象思维来认识、解决问题的方法。它的思维基础是具体形象,并从具体形象展开来的思维过程。形象思维的主要手段是实物、图形、表格和典型等形象材料。它的认识特点是以个别表现一般,始终保留着对事物的直观性。它的思维过程表现为表象、类比、联想、想象。它的思维品质表现为对直观材料进行积极想象,对表象进行加工、提炼进而提示出本质、规律,或求出对象。它的思维目标是解决实际问题,并且在解决问题当中提高自身的思维能力。 1、实物演示法 利用身边的实物来演示数学题目的条件和问题,及条件与条件,条件与问题之间的关系,在此基础上进行分析思考、寻求解决问题的方法。这种方法可以使数学内容形象化,数量关系具体化。比如:数学中的相遇问题。通过实物演示不仅能够解决“同时、相向而行、相遇”等术语,而且为学生指明了思维方向。再如,在一个圆形(方形)水塘周围栽树问题,如果能进行一个实际操作,效果要好得多。 二年级数学教材中,“三个小朋友见面握手,每两人握一次,共要握几次手”与“用三张不同的数字卡片摆成两位数,共可以摆成多少个两位数”。像这样的有关排列、组合的知识,在小学教学中,如果实物演示的方法,是很难达到预期的教学目标的。 特别是一些数学概念,如果没有实物演示,小学生就不能真正掌握。长方形的面积、长方体的认识、圆柱的体积等的学习,都依赖于实物演示作思维的基础。 所以,小学数学教师应尽可能多地制作一些数学教(学)具,而且这些教(学)具用过后要好好保存,可以重复使用。这样可以有效地提高课堂教学效率,提升学生的学习成绩。

2、图示法 借助直观图形来确定思考方向,寻找思路,求得解决问题的方法。图示法直观可靠,便于分析数形关系,不受逻辑推导限制,思路灵活开阔,但图示依赖于人们对表象加工整理的可靠性上,一旦图示与实际情况不相符,易使在此基础上的联想、想象出现谬误或走入误区,最后导致错误的结果。比如有的数学教师爱徒手画数学图形,难免造成不准确,使学生产生误解。 在课堂教学当中,要多用图示的方法来解决问题。有的题目,图画出来了,结果也就出来的;有的题,图画好了,题意学生也就明白了;有的题,画图则可以帮助分析题意、启迪思路,作为其他解法的辅助手段。 例1把一根木头锯成3段需要24分钟,锯成6段需要多少分钟?(图略) 思维方法是:图示法。 思维方向是:锯几次,每次用几分钟。 思路是:锯3段锯了几次,每次用几分钟,锯6段锯了几次,需要多少分钟。 例2判断等腰三角形中,点D是底边BC的中点,图甲的面积比图乙的面积大,图甲的周长比图乙的周长长。(图略) 思维方法:图示法。 思维方向:先比较面积,再比较周长。 思路:作条辅助线。图甲占的面积大,图乙所占面积小,所以“图甲的面积比图乙的面积大”是正确的。线段AD比曲线AD短,所以“图甲的周长比图乙的周长长”是错误的。 3、列表法 运用列出表格来分析思考、寻找思路、求解问题的方法叫做列表法。列表法清晰明了,便于分析比较、提示规律,也有利于记忆。它的局限性在于求解范围小,适用题型狭窄,大

排列组合常用方法总结

排列组合常用方法总结 排列组合是组合学最基本的概念。所谓排列,就是指从给定个数的元素中取出指定个数的元素进行排序。组合则是指从给定个数的元素中仅仅取出指定个数的元素,不考虑排序。下面是,请参考! 一、排列组合部分是中学数学中的难点之一,原因在于 (1)从千差万别的实际问题中抽象出几种特定的数学模型,需要较强的抽象思维能力; (2)限制条件有时比较隐晦,需要我们对问题中的关键性词(特别是逻辑关联词和量词)准确理解; (3)计算手段简单,与旧知识联系少,但选择正确合理的计算方案时需要的思维量较大; (4)计算方案是否正确,往往不可用直观方法来检验,要求我们搞清概念、原理,并具有较强的分析能力。 二、两个基本计数原理及应用 (1)加法原理和分类计数法 1.加法原理 2.加法原理的集合形式 3.分类的要求 每一类中的每一种方法都可以独立地完成此任务;两类不同办法中的具体方法,互不相同(即分类不重);完成此任务的任何

一种方法,都属于某一类(即分类不漏) (2)乘法原理和分步计数法 1.乘法原理 2.合理分步的要求 任何一步的一种方法都不能完成此任务,必须且只须连续完成这n步才能完成此任务;各步计数相互独立;只要有一步中所采取的方法不同,则对应的完成此事的方法也不同 [例题分析]排列组合思维方法选讲 1.首先明确任务的意义 例1. 从1、2、3、……、20这二十个数中任取三个不同的数组成等差数列,这样的不同等差数列有________个。 分析:首先要把复杂的生活背景或其它数学背景转化为一个明确的排列组合问题。 设a,b,c成等差,∴ 2b=a+c, 可知b由a,c决定。 又∵ 2b是偶数,∴ a,c同奇或同偶,即:从1,3,5,……,19或2,4,6,8,……,20这十个数中选出两个数进行排列,由此就可确定等差数列,因而本题为2=180。 例2. 某城市有4条东西街道和6条南北的街道,街道之间的间距相同,如图。若规定只能向东或向北两个方向沿图中路线前进,则从M到N有多少种不同的走法? 分析:对实际背景的分析可以逐层深入 (一)从M到N必须向上走三步,向右走五步,共走八步。

高一三角函数知识点梳理总结

高一三角函数知识 §1.1任意角和弧度制 ?? ? ??零角负角:顺时针防线旋转正角:逆时针方向旋转 任意角..1 2.象限角:在直角坐标系中,使角的顶点与原点重合,角的始边与x 轴的非负半轴重合,角的终边在第几象限,就说这个角是第几象限的角。如果角的终边在坐标轴上,就认为这个角不属于任何象限。 3.. ①与α(0°≤α<360°)终边相同的角的集合:{} Z k k ∈+?=,360|αββ ②终边在x 轴上的角的集合: {} Z k k ∈?=,180| ββ ③终边在y 轴上的角的集合:{} Z k k ∈+?=,90180| ββ ④终边在坐标轴上的角的集合:{} Z k k ∈?=,90| ββ ⑤终边在y =x 轴上的角的集合:{ } Z k k ∈+?=,45180| ββ ⑥终边在x y -=轴上的角的集合:{} Z k k ∈-?=,45180| ββ ⑦若角α与角β的终边关于x 轴对称,则角α与角β的关系:Z k k ∈-=,βα 360 ⑧若角α与角β的终边关于y 轴对称,则α与角β的关系:Z k k ∈-+=,βα 180360 ⑨若角α与角β的终边在一条直线上,则α与角β的关系:Z k k ∈+=,βα 180 ⑩角α与角β的终边互相垂直,则α与角β的关系:Z k k ∈++=, 90180βα 4. 弧度制:把等于半径长的圆弧所对的圆心角叫做一弧度。360度=2π弧度。若圆心角所对 的弧长为l ,则其弧度数的绝对值|r l = α,其中r 是圆的半径。 5. 弧度与角度互换公式: 1rad =(π 180)°≈57.30° 1°=180 π 注意:正角的弧度数为正数,负角的弧度数为负数,零角的弧度数为零. 6.. 第一象限的角:? ?? ? ??∈+<

部编人教版小学1-6年级数学易错题解题思路汇总(附答案)

小学数学1-6年级易错题解题思路汇总(附答案) 一年级 【重点1】小芳拍球拍了50下,小明拍的比小芳少一些。 (1)小明可能拍了多少下?(请打“√”) (2)小明最多拍了()下。 【分析】因为“小明拍的比小芳少一些”,这就说明小明拍的球比“50下”少一点。“12下”比“50下”少得多,而“52下”是比“50下”多一些,都不符合要求。所以比“50下”少一些应该是“47下”。“小明最多拍了()下”这个问题,首先要了解“最多”的意思,其实应该是在比“50下”少的范围内的一种“最多”情况。故而因比“50下”只少“1下”,才算“最多”的情况,即“49下”。 【重点2】小文看一本童话书,第1天看了16页,第2天看了20页,第3天应该从第()页开始看起。

【分析】小朋友容易理解为第3天从第(21)页开始看起。其实第3天看的页数应该在第1天和第2天的基础上再往下看的,因此要先求出小文第1天和第2天一共看的页数:16+20=36(页),再用36+1=37(页),即第3天应该从第(37)页开始看起。 【重点3】王叔叔收了一批鸭蛋,前3天卖出30个,还剩8个。他一共收了多少个鸭蛋? 【分析】此题关键要理解“前3天卖出30个”这个条件的意思,它是指前3天一共卖出30个,而并不是前3天每天都是卖出30个。因此,这题要求“一共收了多少个鸭蛋”,只要把“共卖出的30个”和“还剩的8个”合起来就行。题中的“前3天”在解题时不起作用。 【重点4】在计数器上用5颗珠表示两位数,最大可以表示多少?最小呢?先画一画,再填空。 最大是()最小是()

【分析】用5颗珠表示两位数,最大应该把这5颗珠都放在十位上,即50;最小的话应该尽量多的把珠放在个位上,但由于是两位数,十位上必须得保留一颗,即14。其实这题还可继续思考:5颗珠还能表示出哪些两位数呢?可以有序地拨一拨,从最大的50开始,每次把一颗珠拨到个位,直至14。也就是说,用5颗珠表示的两位数有:50、41、32、23、14。 【重点5】学校有55个篮球,五年级借走16个,六年级借走25个。一共借走多少个? 【分析】对于题中出现三个条件时,有的小朋友就会手足无措了。其实可从问题出发,问题要求“一共借走多少个”,那只要把五年级借走的和六年级借走的合起来就是一共借走的。而题中的“学校有55个篮球”对于解决这个问题不起任何作用,是一个多余条件。因此,要善于根据问题,理清数量间的关系,选择合适的条件来解答。 【重点6】小林和小军看同一本故事书。几天后,小林还剩15页没看,小军还剩23页没看。谁看的页数多? 【分析】因为小林和小军看的是同一本故事书,所以所看故事书的总页数是相等的。问题是“谁看的页数多”,我们知道看的页数多,剩下的页数就要少,相比而言小林还剩的页数少,所以小林看的页数就多。

初中数学知识点总结及公式大全(最新最全)

知识点1:一元二次方程的基本概念 1.一元二次方程3x 2 +5x-2=0的常数项是-2. 2.一元二次方程3x 2 +4x-2=0的一次项系数为4,常数项是-2. 3.一元二次方程3x 2 -5x-7=0的二次项系数为3,常数项是-7. 4.把方程3x(x-1)-2=-4x 化为一般式为3x 2 -x-2=0. 知识点2:直角坐标系与点的位置 1.直角坐标系中,点A (3,0)在y 轴上。 2.直角坐标系中,x 轴上的任意点的横坐标为0. 3.直角坐标系中,点A (1,1)在第一象限. 4.直角坐标系中,点A (-2,3)在第四象限. 5.直角坐标系中,点A (-2,1)在第二象限. 知识点3:已知自变量的值求函数值 1.当x=2时,函数y=32-x 的值为1. 2.当x=3时,函数y=2 1-x 的值为1. 3.当x=-1时,函数y= 3 21-x 的值为1. 知识点4:基本函数的概念及性质 1.函数y=-8x 是一次函数. 2.函数y=4x+1是正比例函数. 3.函数x y 2 1-=是反比例函数. 4.抛物线y=-3(x-2)2 -5的开口向下. 5.抛物线y=4(x-3)2 -10的对称轴是x=3. 6.抛物线2)1(2 12+-=x y 的顶点坐标是(1,2). 7.反比例函数x y 2 = 的图象在第一、三象限. 知识点5:数据的平均数中位数与众数 1.数据13,10,12,8,7的平均数是10. 2.数据3,4,2,4,4的众数是4. 3.数据1,2,3,4,5的中位数是3. 知识点6:特殊三角函数值 1.cos30°= 2 3. 2.sin 2 60°+ cos 2 60°= 1. 3.2sin30°+ tan45°= 2. 4.tan45°= 1. 5.cos60°+ sin30°= 1.

基本三角函数知识点总结

基本三角函数 一、重要知识点 1、已知角α为第一象限,求α/2,α/3,α/4为第几象限 2、弧度与角度的转变 特别是一弧度大约等于57度要知道,便于三角函数比较大小和判断正负,举个例子sin (cos30°)与cos (cos30°)大小 3、弧长公式以及弧长公式的公式的推导 ||l R α=,扇形面积公式:211||22 S lR R α== 4、基本三角函数的定义 此章节的基础,比如能理解为什么sinX 在一二象限为正?为什么正弦和余弦平方和等于一?为什么正切余切在一三象限为正,为何正切等于正弦除余弦 重点掌握正弦、余弦和正切余切,正割余割不用掌握 5、诱导公式,奇变偶不变(对k 而言,指k 取奇数或偶数),符号看象限(看原函数,同时可把α看成是锐角).诱导公式的应用是求任意角的三角函数值,其一般步骤: 这个是此章节的重点,只要理解这个定理,就不必记书上繁琐的公式 6、三角函数的两角和与差公式的推导过程,并逐渐推导二倍角公式,半角公式,万能公式,辅助角公式 四川去年高考题就是余弦两角和的公式推导 7、三角函数的定义域、值域,周期性、奇偶性、单调性、对称中心和对称轴、图像以及三角函数的变换

()k x ASin y Sinx y ++==?ω变化为怎样由 ? 振幅变化:Sinx y = ASinx y = 左右伸缩变化: x ASin y ω= 左右平移变化 )(?ω+=x ASin y 上下平移变化 k x ASin y ++=)(?ω ()a b Sin b a bCos aSin y =++=+=??αααtan , 22其中 补充知识点 1.常见三角不等式:(1)若(0,)2x π ∈,则sin tan x x x <<. (2) 若(0,)2x π ∈,则1sin cos 2x x <+≤. (3) |sin ||cos |1x x +≥. 2.三角形面积定理:111sin sin sin 222S ab C bc A ca B ===. 3.三角函数的化简、计算、证明的恒等变形的基本思路是:一角二名三结构。即首先观察角与角之间的关系,注意角的一些常用变式,角的变换是三角函数变换的核心!第二看函数名称之间的关系,通常“切化弦”;第三观察代数式的结构特点。基本的技巧有: (1)巧变角(已知角与特殊角的变换、已知角与目标角的变换、角与其倍角的变换、两角与其和差角的变换. 如 ()()ααββαββ=+-=-+,2()()ααβαβ=++-,2()()αβαβα=+--, 22 αβαβ++=?,()()222αββααβ+=---等),如(1)已知2tan()5 αβ+=,1tan()44πβ-=,那么tan()4 πα+的值是_____(答:322);(2)已知02πβαπ<<<<,且129cos()βα-=-,223 sin()αβ-=,求cos()αβ+的值(答:490729);(3)已知,αβ为锐角,sin ,cos x y αβ==,3cos()5 αβ+=-,则y 与x 的函数关系为______(答:23431(1)555 y x x x =--+<<) (2)三角函数名互化如(1)求值sin50(13tan10)+ (答:1);(2)已 知sin cos 21,tan()1cos 23 αααβα=-=--,求tan(2)βα-的值(答:18)

相关文档
相关文档 最新文档