文档库 最新最全的文档下载
当前位置:文档库 › 天体运动专题(一)

天体运动专题(一)

天体运动专题(一)
天体运动专题(一)

天体运动专题(一)

一、人类认识宇宙的过程

(1)模型及学说

1.地心说:代表:托勒密

内容:地球是世界的中心,并且静止不动,一切行星围绕地球做匀速圆周运动。

2.日心说:代表:哥白尼

内容; 太阳是世界的中心,并且静止不动,一切行星都围绕太阳做圆周运动

(2)探究方法

假设法; 假设火星的轨道是圆形+精确计算和推理→得出火星位置的理论值与第谷观测的火星位置的实际值→偏差较大→假设不成立→再一次运用假设法; 假设火星的轨道是椭圆+精确计算和推理→得出火星位置的理论值与第谷观测的火星位置的实际值→几乎密合→假设成立

定律内容图示

开普勒第一定律所有的行星绕太阳运动的轨道都是椭圆,太阳处在椭圆的一个焦点上

开普勒第二定律对任意一个行星而言,它与太阳的连线在相等的时间内扫过相等的面积

开普勒第三定律所有行星轨道半长轴的三次方跟它的公转周期的二次方的比值都相等.32

/

a T K

特别提示:(1)开普勒三定律虽然是根据行星绕太阳的运动总结出来的,但也适用于卫星绕行星的运动.(2)开普勒第三定律中的k是一个与运动天体无关的量,只与被环绕的中心天体有关.

专题训练一

1.2016(全国新课标III卷,14)关于行星运动的规律,下列说法符合史实的是( )

A.开普勒在牛顿定律的基础上,导出了行星运动的规律

B.开普勒在天文观测数据的基础上,总结出了行星运动的规律

C.开普勒总结出了行星运动的规律,找出了行星按照这些规律运动的原因

D.开普勒总结出了行星运动的规律,发现了万有引力定律

2、[2014·浙江卷] 长期以来“卡戎星(Charon)”被认为是冥王星唯一的卫星,它的公转轨道半径r1=19 600 km,公转周期T1=6.39天.2006年3月,天文学家新发现两颗冥王星的小卫星,其中一颗的公转轨道半径r2=48 000 km,则它的公转周期T2最接近于()

A.15天B.25天C.35天D.45天

3、(2013江苏】火星和木星沿各自的椭圆轨道绕太阳运行,根据开普勒行星运动定律可知()

(A)太阳位于木星运行轨道的中心(B)火星和木星绕太阳运行速度的大小始终相等

(C)火星与木星公转周期之比的平方等于它们轨道半长轴之比的立方

(D)相同时间内,火星与太阳连线扫过的面积等于木星与太阳连线扫过的面积

4.【2017?新课标Ⅱ卷】如图,海王星绕太阳沿椭圆轨道运动,P为近日

点,Q为远日点,M、N为轨道短轴的两个端点,运行的周期为T0。若只

考虑海王星和太阳之间的相互作用,则海王星在从P经过M、Q到N的运动过程中( ) A.从P到M所用的时间等于T0/4 B.从Q到N阶段,机械能逐渐变大

C.从P到Q阶段,速率逐渐变小 D.从M到N阶段,万有引力对它先做负功后做正功

5、【2013江苏高考】. 火星和木星沿各自的椭圆轨道绕太阳运行,根据开普勒行星运动定律可知( )

(A)太阳位于木星运行轨道的中心

(B)火星和木星绕太阳运行速度的大小始终相等

(C)火星与木星公转周期之比的平方等于它们轨道半长轴之比的立方

(D)相同时间内,火星与太阳连线扫过的面积等于木星与太阳连线扫过的面积

二、万有引力的建立过程

(1)思考与猜想

牛顿的思考:苹果与月亮受到的力可能是同一种力!可能是地球表面的重力延伸到月亮。 胡克的猜想:行星的运动是太阳的引力的缘故,其所受的引力大小跟行星到太阳的距离的平方成反比;认为重力是地球引力产生的。

牛顿的猜想:苹果与月亮受到的力 它们都是类似太阳行星间的引力,它们都应遵从“与距离平方成反比”的关系

(2)牛顿的“月--地检测”; 证明苹果、月亮受力满足“平方反比”的关系

1.对比依据:当时已知的一些量:重力加速度g =9.8m/s 2;地球的半径R =6.4×106m ;月-

地的距离r =3.84×108m ;月球的公转周期T =27.3天月亮轨道半径: r ≈ 60R

2.假设推理:月球绕地球做圆周运动的半径r=60R ,若将苹果放在月球轨道处,由“反平方

比”规律,引力应减小到地面附近引力的1/602,月球轨道处的加速度应为地面处重力加速

度的1/602 3.计算验证:地球对月球引力产生的加速度:

地球对地面上物体引力产生的加速度:g=9.8m/s 2 让数据说话,用不可辩驳的事实印证猜想2229.813600,60,0.002760

g a R r R a g r =≈=== 4.归纳推广:自然界中任何两个物体

(3) 万有引力定律的推导:简化处理:按圆处理→万有引力提供向心力2v F m r

=→圆周运动规律2r v T π=→224mr F T π=→把开普勒第三定律32r T k =代入得224m F k r

π=?→太阳对行星引力2m F r ∝→牛顿第三定律得出行星对太阳引力'2M F r ∝→综合整理2Mm F r

∝→写成等式2Mm F G

r =→实验验证;卡文迪许扭称实验 (4)万有引力定律

1.内容:自然界中任何两个物体都相互吸引,引力的方向在它们的连线上,引力的大小与物体的质量m 1和m 2的乘积成正比,与它们之间距离r 的二次方成反比.

2.公式:2Mm F G r

=,其中G =6.67×10-11 N ·m 2/kg 2, 3.适用条件:严格地说,公式只适用于质点间的相互作用,当两个物体间的距离远大于物体本身的大小时,公式也可以使用.对于均匀的球体,r 是两球心间的距离.

专题训练二、(1)对万有引力探究的理解

6.(上海物理卷 )牛顿以天体之间普遍存在着引力为依据,运用严密的逻辑推理,建立了万有引力定律。在创建万有引力定律的过程中,牛顿( )

A. 接受了胡克等科学家关于“吸引力与两中心距离的平方成反比”的猜想

B. 根据地球上一切物体都以相同加速度下落的事实,得出物体受地球的引力与其质量成正比,

2282222244 3.14 3.8410/0.0027/(27.3243600)r a r m s m s T πω???====??

即F m ∝的结论 C. 根据F m ∝和牛顿第三定律,分析了地月间的引力关系,进而得出12F m m ∝ D. 根据大量实验数据得出了比例系数G 的大小

7..(2018北京卷).若想检验“使月球绕地球运动的力”与“使苹果落地的力”遵循同样的规律,在已知月地距离约为地球半径60倍的情况下,需要验证 ( B )

A .地球吸引月球的力约为地球吸引苹果的力的1/602

B .月球公转的加速度约为苹果落向地面加速度的1/602

C .自由落体在月球表面的加速度约为地球表面的1/6

D .苹果在月球表面受到的引力约为在地球表面的1/60

(2)比例法解题

8. 两个质量分布均匀密度相同且大小相同的实心小铁球紧靠在一起,它们之间的万有引力为F ,若两个半径是小铁球2倍的实心大铁球紧靠在一起,则它们之间的万有引力为( )

A .2F

B .4F

C .8F

D .16F

(3)补缺法解题

9.若在上例中的其中一个小球中挖去半径为1/2原球半径的球,并按

如图6-2-2所示的形式紧靠在一起(三个球心在一条直线上),试计

算它们之间的万有引力大小。(2325F ) (4).重力与万有引力的关系:在地球表面,重力只是万有引力的一个分力。

在两极:02Mm G mg R = ,在赤道:22Mm G mg m R R

ω=+,在高空:2()h Mm mg G R h ≈+地 近似计算时可认为万有引力等于重力。

专题训练三

10..(2015重庆-2)宇航员王亚平在“天宫1号”飞船内进行了我国首次太空授课,演示了一些完全失重状态下的物理现象。若飞船质量为m ,距地面高度为h ,地球质量为M ,半径为R ,引力常量为G ,则飞船所在处的重力加速度大小为 ( )

A.0

B. 2()GM R h + C 2()GMm R h +. D. 2GM h

11.(年江苏卷物理1)火星的质量和半径分别约为地球的1/10和1/2,地球表面的重力加速度为g ,则火星表面的重力加速度约为( )

A .0.2g

B .0.4g

C .2.5g

D .5g

12.【2015海南-6】若在某行星和地球上相对于各自水平地面附近相同的高度处、以相同的速率平抛一物体,它们在水平方向运动的距离之比为2:7。已知该行星质量约为地球的7倍,地球的半径为R ,由此可知,该行星的半径为( )

A. 12R

B. 72

R C. 2R D. 7R 专题训练四、卫星或行星的运动规律(“中心天体圆周轨道”模型)

1. 思路:天体运动可近似看做匀速圆周运动,天体运动的向心力由万有引力提供。

22

2224Mm v G ma m m r m r m v r r T

πωω===== 2. 运动规律:

加速度:2Mm G ma r =,221GM a r r ∴=∝

线速度:22Mm v G m r r =,GM v r r ∴=∝

角速度:22Mm G m r r ω=,33GM r r ω∴=∝ 周期:2224Mm r G m r T π=,32r T GM

π∴= r R h =+(R 为地球的半径,h 为卫星距地面的高度) 3. 强调:同一轨道圆周运动的线速度、角速度、周期都相同,跟卫星的质量无关。卫星离地面

越高(轨道半径越大),线速度越小,角速度越小,周期越大。

13.【2015北京-16】.假设地球和火星都绕太阳做匀速圆周运动,已知地球到太阳的距离小于火星到太阳的距离,那么( )

A .地球公转周期大于火星的公转周期

B .地球公转的线速度小于火星公转的线速度

C .地球公转的加速度小于火星公转的加速度

D .地球公转的角速度大于火星公转的角速度

14.(2017全国统一)14.2017年4月,我国成功发射的天舟一号货运飞船与天宫二号空间实验室完成了首次交会对接,对接形成的组合体仍沿天宫二号原来的轨道(可视为圆轨道)运行。与天宫二号单独运行相比,组合体运行的( )

A .周期变大

B .速率变大

C .动能变大

D .向心加速度变大

15.(2017天津高考)我国自主研制的首艘货运飞船“天舟一号”发射升空后,

与已经在轨运行的“天宫二号”成功对接形成组合体。假设组合体在距地

面高度为h 的圆形轨道上绕地球做匀速圆周运动,已知地球的半径为R ,

地球表面处重力加速度为g ,且不考虑地球自转的影响。则组合体运动的

线速度大小为__________,向心加速度大小为___________。

(g v R R h =+ 2

2()gR a R h =+) 16.(2017年江苏)6.“天舟一号”货运飞船于2017年4月20日在文昌航天发射中心成功发射升空。与“天宫二号”空间实验室对接前,“天舟一号”在距地面约380km 的圆轨道上飞行,则其( )

(A)角速度小于地球自转角速度 (B)线速度小于第一宇宙速度

(C)周期小于地球自转周期 (D)向心加速度小于地面的重力加速度

17.【2015山东-15】.如图,拉格朗日点L1位于地球和月球连线上,处在该点的物体在地球和月球引力的共同作用下,可与月球一起以相同的周期绕地球运动。据此,科学家设想在拉格朗日点L1建立空间站,使其与月球同周期绕地球运动。以a1 、a2 分别表示该空间站和月球向心加速度的大小,a 3表示地球同步卫星向心加速度的大小。以下判断正确的是( )

A .231a a a >>

B .213a a a >>

C .312a a a >>

D 321a a a >>.

18.[2014·福建卷Ⅰ] 若有一颗“宜居”行星,其质量为地球的p 倍,半径

为地球的q 倍,则该行星卫星的环绕速度是地球卫星环绕速度的( )

A. Pq 倍

B. q

p 倍 C. P

q 倍. D. 3pq 倍

19.[2014·江苏卷] 已知地球的质量约为火星质量的10倍,地球的半径约为火星半径的2倍,则航天器在火星表面附近绕火星做匀速圆周运动的速率约为( )

A .3.5 km/s

B .5.0 km/s

C .17.7 km/s

D .35.2 km/s

20.(2018年全国卷Ⅲ)为了探测引力波,“天琴计划”预计发射地球卫星P ,其轨道半径约为地球半径的16倍;另一地球卫星Q 的轨道半径约为地球半径的4倍。P 与Q 的周期之比约为( )

A .2:1

B .4:1

C .8:1

D .16:1

参考答案:1.B 2.B 3.C 4.CD 5.C 6.ABC 7.B 8.D 9.

2325F 10.B 11.B 12.C 13.D 14. C 15. g v R R h =+,22()gR a R h =+16.BCD 17.D 18.C 19.A 20.C

(完整版)天体运动知识点

第二讲天体运动 一、两种对立的学说 1.地心说 (1)地球是宇宙的中心,是静止不动的;太阳、月亮以及其他行星都绕_地球运动; (2) 地心说的代表人物是古希腊科学家__托勒密__. 2.日心说 (1)__ 太阳_是宇宙的中心,是静止不动的,所有行星都绕太阳做__匀速圆周运动__; (2)日心说的代表人物是_哥白尼_. 二、开普勒三大定律 行星运动的近似处理 在高中阶段的研究中可以按圆周运动处理,开普勒三定律就可以这样表述: (1)行星绕太阳运动的轨道十分接近圆,太阳处在圆心; (2)对某一行星来说,它绕太阳做圆周运动的角速度(或线速度)不变,即行星做匀速圆周运动; (3)所有行星轨道半径的三次方跟它的公转周期的二次方的比值都相等,即r3 T2=k. 三、太阳与行星间的引力 1.模型简化:行星以太阳为圆心做__匀速圆周__运动.太阳对行星的引力,就等于行星做_匀速圆周_运动的向心力. 2.太阳对行星的引力:根据牛顿第二定律F =m v2r 和开普勒第三定律r3T2∝k 可得:F∝___m r 2__.这表明:太阳对 不同行星的引力,与行星的质量成___正比_,与行星和太阳间距离的二次方成___反比___. 3.行星对太阳的引力:太阳与行星的地位相同,因此行星对太阳的引力和太阳对行星的引力规律相同,即F′∝_M r 2 4.太阳与行星间的引力:根据牛顿第三定律F =F′,所以有F∝Mm r 2_,写成等式就是F =_ G Mm r 2__. 四、万有引力定律 1.内容:自然界中任何两个物体都相互吸引,引力的方向在它们的连线上,引力的大小与物体的质量m 1和m 2的乘积成正比、与它们之间距离r 的二次方成反比. 2.公式: F=G Mm r 2 (1)G 叫做 引力常量 , (2)单位:N ·m2/kg2 。在取国际单位时,G 是不变的。 (3)由卡文迪许通过扭秤实验测定的,不是人为规定的。 3.万有引力定律的适用条件 (1)在以下三种情况下可以直接使用公式F =G m1m2 r2 计算: ①求两个质点间的万有引力:当两物体间距离远大于物体本身大小时,物体可看成质点,公式中的r 表示两质点间的距离. ②求两个均匀球体间的万有引力:公式中的r 为两个球心间的距离. ③一个质量分布均匀球体与球外一个质点的万有引力:r 指质点到球心的距离. (2)对于两个不能看成质点的物体间的万有引力,不能直接用万有引力公式求解,切不可依据F =G m1m2 r2得出r→0 时F→∞的结论而违背公式的物理含义. 内容 理解 开普勒第一定律 所有行星绕太阳运动的轨道都 是椭圆,太阳处在椭圆的一个上。 开普勒第一定律又叫轨道定律. 某个行星在一个固定平面的轨道上运动。 不同行星的运动轨道是不同的。 开普勒第二定律 对任意一个行星来说,它与太阳的连线在相等的时间内扫过的相等. 开普勒第二定律又叫面积定律. 行星运动的速度是在变化的,近日点速率最大,远日点速率最小。 开普勒第三定律 所有行星的轨道的半长轴的三次方跟它的公转周期的二次方的比 值都相等 表达式 a 3T 2 =k 第三定律也叫周期定律 K 与中心天体的质量有关,与行星的质量无关。 如果围绕着同一个恒星运动,对于所有行星而言,K 是相同的。如果围绕着不同的恒星,K 不同。 此公式使用于所有天体。

(完整版)天体运动总结

天体运动 总结 一、处理天体运动的基本思路 1.利用天体做圆周运动的向心力由万有引力提供,天体的运动遵循牛顿第二定律求解,即G Mm r 2=ma ,其中a =v 2r =ω2r =(2π T )2r ,该组公式可称为“天上”公式. 2.利用天体表面的物体的重力约等于万有引力来求解,即G Mm R 2=m g ,gR2=GM ,该公式通常被称为黄金代 换式.该式可称为“人间”公式. 合起来称为“天上人间”公式. 二、对开普勒三定律的理解 开普勒行星运动定律 1.所有行星绕太阳运动的轨道都是椭圆,太阳处在椭圆的一个焦点上。 2.对任意一个行星来说,它与太阳的连线在相等的时间内扫过相等的面积。 3.所有行星的轨道的半长轴的三次方跟它的公转周期的二次方的比值都相等.此比值的大小只与有关,在不 同的星系中,此比值是不同的.(R 3 T 2=k ) 1.开普勒第一定律说明了不同行星绕太阳运动时的椭圆轨道是不同的,但有一个共同的焦点. 2.行星靠近太阳的过程中都是向心运动,速度增加,在近日点速度最大;行星远离太阳的时候都是离心运动,速度减小,在远日点速度最小. 3.开普勒第三定律的表达式为a 3 T 2=k ,其中a 是椭圆轨道的半长轴,T 是行星绕太阳公转的周期,k 是一个常量,与行星无关但与中心天体的质量有关. 三、开普勒三定律的应用 1.开普勒定律不仅适用于行星绕太阳的运转,也适用于卫星绕地球的运转. 2.表达式a 3 T 2=k 中的常数k 只与中心天体的质量有关.如研究行星绕太阳运动时, 常数k 只与太 阳的质量有关,研究卫星绕地球运动时,常数k 只与地球的质量有关. 四、太阳与行星间的引力 1.模型简化:行星以太阳为圆心做匀速圆周运动,太阳对行星的引力提供了行星做匀速圆周运一、太阳与行星间的引力 2.万有引力的三个特性 (1)普遍性:万有引力不仅存在于太阳与行星、地球与月球之间,宇宙间任何两个有质量的物体之间都存在着这种相互吸引的力. (2)相互性:两个有质量的物体之间的万有引力是一对作用力和反作用力,总是满足牛顿第三定律. (3)宏观性:地面上的一般物体之间的万有引力很小,与其他力比较可忽略不计,但在质量巨大的天体之间或天体与其附近的物体之间,万有引力起着决定性作用.

2018高考物理总复习专题天体运动的三大难点破解1深度剖析卫星的变轨讲义

拼十年寒窗挑灯苦读不畏难;携双亲期盼背水勇战定夺魁。如果你希望成功,以恒心为良友,以经验为参谋,以小心为兄弟,以希望为哨兵。 二、重难点提示: 重点:1. 卫星变轨原理; 2. 不同轨道上速度和加速度的大小关系。 难点:理解变轨前后的能量变化。 一、变轨原理 卫星在运动过程中,受到的合外力为万有引力,F 引=2 R Mm G 。卫星在运动过程中所需要的向心力为:F 向= R m v 2 。当: (1)F 引= F 向时,卫星做圆周运动; (2)F 引> F 向时,卫星做近心运动; (3)F 引

运动进入轨道2沿椭圆轨道运动,此过程为离心运动;到达B点,万有引力过剩,供大于求做近心运动,故在轨道2上供需不平衡,轨迹为椭圆,若在B点向后喷气,增大速度可使飞船沿轨道3运动,此轨道供需平衡。 2. 回收变轨 在B点向前喷气减速,供大于需,近心运动由3轨道进入椭圆轨道,在A点再次向前喷气减速,进入圆轨道1,实现变轨,在1轨道再次减速返回地球。 三、卫星变轨中的能量问题 1. 由低轨道到高轨道向后喷气,卫星加速,但在上升过程中,动能减小,势能增加,增加的势能大于减小的动能,故机械能增加。 2. 由高轨道到低轨道向前喷气,卫星减速,但在下降过程中,动能增加,势能减小,增加的动能小于减小的势能,故机械能减小。 注意:变轨时喷气只是一瞬间,目的是破坏供需关系,使卫星变轨。变轨后稳定运行的过程中机械能是守恒的,其速度大小仅取决于卫星所在轨道高度。 3. 卫星变轨中的切点问题 【误区点拨】 近地点加速只能提高远地点高度,不能抬高近地点,切点在近地点;远地点加速可提高近地点高度,切点在远地点。

-天体运动单元测试题及答案

天体运动单元测试题 一、选择题 1.“神舟七号”在绕地球做匀速圆周运动的过程中,下列事件不可能发生的是( ) A .航天员在轨道舱内能利用弹簧拉力器进行体能锻炼 B .悬浮在轨道舱内的水呈现圆球形 C .航天员出舱后,手中举起的五星红旗迎风飘扬 D .从飞船舱外自由释放的伴飞小卫星与飞船的线速度相等 2.我国的“神舟七号”飞船于2008年9月25日晚9时10分载着3名宇航员顺利升空,并成功“出舱”和安全返回地面.当“神舟七号”在绕地球做半径为r 的匀速圆周运动时,设飞船舱内质量为m 的宇航员站在可称体重的台秤上.用R 表示地球的半径,g 表示地球表面处的重力加速度,g ′表示飞船所在处的重力加速度,N 表示航天员对台秤的压力,则下列关系式中正确的是( ) A .g ′=0 B .g ′=22R g r C .N=mg D .N=R mg r 3.“坦普尔一号”彗星绕太阳运行的轨道是一个椭圆,其运动周期为5.74年,则关于“坦 普尔一号”彗星的下列说法中正确的是( ) A .绕太阳运动的角速度不变 B .近日点处线速度大于远日点处线速度 C .近日点处加速度大于远日点处加速度 D .其椭圆轨道半长轴的立方与周期的平方之比是一个与太阳质量有关的常数 4.地球表面的重力加速度为g ,地球半径为R ,引力常量为G .假设地球是一个质量分布均 匀的球体,体积为343 R π,则地球的平均密度是( ) A .34g GR π B .234g GR π C .g GR D .2g G R 5.“嫦娥二号”已于2010年10月1日发射,其环月飞行的高度距离月球表面100km ,所探测到的有关月球的数据将比环月飞行高度为200km 的“嫦娥一号”更加翔实.若两颗卫星环月的运行均可视为匀速圆周运动,运行轨道如图所示.则( ) A .“嫦娥二号”环月运行的周期比“嫦娥一号”更小 B .“嫦娥二号”环月运行时的线速度比“嫦娥一号”更小 C .“嫦娥二号”环月运行时的角速度比“嫦娥一号”更小 D .“嫦娥二号”环月运行时的向心加速度比“嫦娥一号”更小 6.人造卫星绕地球做匀速圆周运动,其轨道半径为R ,线速度为v ,周期为T ,要使卫星的周期变为2T ,可以采取的办法是( ) A .R 不变,使线速度变为2 v

天体运动模型

常见的天体运动模型 天体及卫星的运动问题也是高考的热点问题,从近几年全国各地的高考试题来看,透彻理解四个基本模型是关键。 计算天体间的万有引力时,将天体视为质点,天体的全部质量集中于天体的中心;一天体绕另一天体的稳定运行视为匀速圆周运动;研究天体的自转运动时,将天体视为均匀球体。 一、自转模型 1.考虑地球(或某星球)自转影响,地表或地表附近的随地球转的物体所受重力实质是万有引力的一个分力 由于地球的自转,因而地球表面的物体随地球自转时需 要向心力,向心力必来源于地球对物体的万有引力,重力实际 上是万有引力的一个分力,由于纬度的变化,物体作圆周运动 的向心力也不断变化,因而地球表面的物体重力将随纬度的变 化而变化,即重力加速度的值g 随纬度变化而变化;从赤道到两极逐渐增大.在赤道上,在两极处, 。 2.忽略地球(星球)自转影响,则地球(星球)表面或地球(星球)上方高空物体所受的重力就是地球(星球)对物体的万有引力. 在天体表面,物体所受万有引力近似等于所受重力。设天体质量为M ,半径为R ,其表面的重力加速度为g ,由这一近似关系有:,即。这一关系式的应用,可实现天体表面重力加速度g 与的相互替代,因此称为“黄金代换”。 二、环绕模型 环绕模型的基本思路是:①把天体、卫星的环绕运动近似看 做是匀速圆周运动;②万有引力提供天体、卫星做圆周运动的向 心力:G Mm r 2=m v 2r =m ω2r =m ? ?? ??2πT 2r =m(2πf)2r= ma 其中r 指圆周运动的轨道半径;③在地球表面,若不考虑地球自转,万有引 力等于重力:由G Mm R 2=mg 可得天体质量M =R 2g G ,这往往是题目中重要的隐含条件。 三、变轨模型 若卫星所受万有引力等于做匀速圆周运动的向心力,将 保持匀速圆周运动;当卫星由于某种原因速度突然改变时 (开启或关闭发动机或空气阻力作用),万有引力就不再等于 向心力,卫星将做变轨运行。①当v 增大时,所需向心力增 大,即万有引力不足以提供向心力,卫星将做离心运动,脱 离原来的圆轨道,轨道半径变大,但卫星一旦进入新的轨道 运行,由v =r GM 知其运行速度要减小,但重力势能、

2018年高考物理复习天体运动专题练习(含答案)

2018年高考物理复习天体运动专题练习(含答 案) 天体是天生之体或者天然之体的意思,表示未加任何掩盖。查字典物理网整理了天体运动专题练习,请考生练习。 一、单项选择题(本题共10小题,每小题6分,共60分.) 1.(2014武威模拟)2013年6月20日上午10点神舟十号航天员首次面向中小学生开展太空授课和天地互动交流等科 普教育活动,这是一大亮点.神舟十号在绕地球做匀速圆周运动的过程中,下列叙述不正确的是() A.指令长聂海胜做了一个太空打坐,是因为他不受力 B.悬浮在轨道舱内的水呈现圆球形 C.航天员在轨道舱内能利用弹簧拉力器进行体能锻炼 D.盛满水的敞口瓶,底部开一小孔,水不会喷出 【解析】在飞船绕地球做匀速圆周运动的过程中,万有引

力充当向心力,飞船及航天员都处于完全失重状态,聂海胜做太空打坐时同样受万有引力作用,处于完全失重状态,所以A错误;由于液体表面张力的作用,处于完全失重状态下的液体将以圆球形状态存在,所以B正确;完全失重状态下并不影响弹簧的弹力规律,所以拉力器可以用来锻炼体能,所以C正确;因为敞口瓶中的水也处于完全失重状态,即水对瓶底部没有压强,所以水不会喷出,故D正确. 【答案】 A 2.为研究太阳系内行星的运动,需要知道太阳的质量,已知地球半径为R,地球质量为m,太阳与地球中心间距为r,地球表面的重力加速度为g,地球绕太阳公转的周期T.则太阳的质量为() A.B. C. D. 【解析】地球表面质量为m的物体万有引力等于重力,即G=mg,对地球绕太阳做匀速圆周运动有G=m.解得M=,D正确.

【答案】 D 3.(2015温州质检)经国际小行星命名委员会命名的神舟星和杨利伟星的轨道均处在火星和木星轨道之间.已知神舟星平均每天绕太阳运行1.74109 m,杨利伟星平均每天绕太阳运行1.45109 m.假设两行星都绕太阳做匀速圆周运动,则两星相比较() A.神舟星的轨道半径大 B.神舟星的加速度大 C.杨利伟星的公转周期小 D.杨利伟星的公转角速度大 【解析】由万有引力定律有:G=m=ma=m()2r=m2r,得运行速度v=,加速度a=G,公转周期T=2,公转角速度=,由题设知神舟星的运行速度比杨利伟星的运行速度大,神舟星的轨道半径比杨利伟星的轨道半径小,则神舟星的加速度比杨利伟星的加速度大,神舟星的公转周期比杨利伟星的公转周期小,神舟星的公转角速度比杨利伟星的公转角速度大,故选

天体运动经典例题含答案

1.人造地球卫星做半径为r ,线速度大小为v 的匀速圆周运动。当其角速度变为原来的 24倍后,运动半径为_________,线速度大小为_________。 【解析】由22Mm G m r r ω=可知,角速度变为原来的24倍后,半径变为2r ,由v r ω=可知,角速度变为原来的24倍后,线速度大小为22v 。【答案】2r ,22 v 2.一卫星绕某一行星表面附近做匀速圆周运动,其线速度大小为0v 假设宇航员在该行星表面上用弹簧测力 计测量一质量为m 的物体重力,物体静止时,弹簧测力计的示数为 N ,已知引力常量为G,则这颗行星的质量为 A .2GN mv B.4GN mv C . 2Gm Nv D.4Gm Nv 【解析】卫星在行星表面附近做匀速圆周运动,万有引力提供向心力,根据牛顿第二定律有 R v m M G 2/2/R m =,宇航员在行星表面用弹簧测力计测得质量为m 的物体的重为N ,则 N M G =2R m ,解得M=GN 4 mv ,B 项正确。【答案】B 3.如图所示,在火星与木星轨道之间有一小行星带。假设该带中的小行星只受到太阳的引力,并绕太阳做匀速圆周运动。下列说法正确的是 A.太阳对小行星的引力相同 B.各小行星绕太阳运动的周期小于一年 C.小行星带内侧小行星的向心加速度值大于小行星带外侧小行星的向心加速度值 D.小行星带内各小行星圆周运动的线速度值大于 地球公转的线速度值 【答案】C 【解析】根据行星运行模型,离地越远,线速度越小,周期越大,角速度越小,向心加速度等于万有引力加速度,越远越小,各小行星所受万有引力大小与其质量相关,所以只有C 项对。 4.宇航员在地球表面以一定初速度竖直上抛一小球,经过时间t 小球落回原处;若他在某星球表面以相同的 速度竖直上抛同一小球,需经过时间5t 小球落回原处.(取地球表面重力加速度g=10 m/s 2,空气阻力不计) (1)求该星球表面附近的重力加速度g ′. (2)已知该星球的半径与地球半径之比为R 星∶R 地=1∶4,求该星球的质量与地球质量之比M 星∶M 地. 答案 (1)2 m/s2 (2)1∶80

专题提升(五) 天体运动中的三类典型问题

专题提升(五) 天体运动中的三类典型问题 基础必备 1.两个靠近的天体称为双星,它们以两者连线上某点O为圆心做匀速圆周运动,其质量分别为m1,m2,如图所示,以下说法正确的是( A ) A.线速度与质量成反比 B.线速度与质量成正比 C.向心力与质量的乘积成反比 D.轨道半径与质量成正比 解析:设两星之间的距离为L,轨道半径分别为r1,r2,根据万有引力提供向心力得,G=m 1ω2r1,G=m2ω2r2,则m1r1=m2r2,即轨道半径和质量成反比,故D错误;根据v=ωr可知,线速度与轨道半径成正比,则线速度与质量成反比,故A正确,B错误;由万有引力公式F 向=G,向心力与质量的乘积成正比,故C错误. 2.(多选)2017年4月20日19时41分,“天舟一号”货运飞船在文昌航天发射场成功发射,后与“天宫二号”空间实验室成功对接.假设对接前“天舟一号”与“天宫二号”都围绕地球做匀速圆周运动,下列说法正确的是( AC ) A.“天舟一号”货运飞船发射加速上升时,里面的货物处于超重状态

B.“天舟一号”货运飞船在整个发射过程中,里面的货物始终处于完全失重状态 C.为了实现飞船与空间实验室的对接,飞船先在比空间实验室半径小的轨道上向后喷气加速,加速后飞船逐渐靠近空间实验室,两者速度接近时实现对接 D.为了实现飞船与空间实验室的对接,飞船先在比空间实验室半径小的轨道上向前喷气减速,减速后飞船逐渐靠近空间实验室,两者速度接近时实现对接 解析:“天舟一号”货运飞船发射加速上升时,加速度向上,则里面的货物处于超重状态,选项A正确,B错误;为了实现飞船与空间实验室的对接,飞船先在比空间实验室半径小的轨道上向后喷气加速,加速后飞船逐渐靠近空间实验室,两者速度接近时实现对接,选项C正确,D错误. 3.某同学学习了天体运动的知识后,假想宇宙中存在着由四颗星组成的孤立星系.如图所示,一颗母星处在正三角形的中心,三角形的顶点各有一颗质量相等的小星围绕母星做圆周运动.如果两颗小星间的万有引力为F,母星与任意一颗小星间的万有引力为9F.则( A ) A.每颗小星受到的万有引力为(+9)F B.每颗小星受到的万有引力为(+9)F

天体运动专题(一)

天体运动专题(一) 一、人类认识宇宙的过程 (1)模型及学说 1.地心说:代表:托勒密 内容:地球是世界的中心,并且静止不动,一切行星围绕地球做匀速圆周运动。 2.日心说:代表:哥白尼 内容; 太阳是世界的中心,并且静止不动,一切行星都围绕太阳做圆周运动 (2)探究方法 假设法; 假设火星的轨道是圆形+精确计算和推理→得出火星位置的理论值与第谷观测的火星位置的实际值→偏差较大→假设不成立→再一次运用假设法; 假设火星的轨道是椭圆+精确计算和推理→得出火星位置的理论值与第谷观测的火星位置的实际值→几乎密合→假设成立 定律内容图示 开普勒第一定律所有的行星绕太阳运动的轨道都是椭圆,太阳处在椭圆的一个焦点上 开普勒第二定律对任意一个行星而言,它与太阳的连线在相等的时间内扫过相等的面积 开普勒第三定律所有行星轨道半长轴的三次方跟它的公转周期的二次方的比值都相等.32 / a T K 特别提示:(1)开普勒三定律虽然是根据行星绕太阳的运动总结出来的,但也适用于卫星绕行星的运动.(2)开普勒第三定律中的k是一个与运动天体无关的量,只与被环绕的中心天体有关. 专题训练一 1.2016(全国新课标III卷,14)关于行星运动的规律,下列说法符合史实的是( ) A.开普勒在牛顿定律的基础上,导出了行星运动的规律 B.开普勒在天文观测数据的基础上,总结出了行星运动的规律 C.开普勒总结出了行星运动的规律,找出了行星按照这些规律运动的原因 D.开普勒总结出了行星运动的规律,发现了万有引力定律 2、[2014·浙江卷] 长期以来“卡戎星(Charon)”被认为是冥王星唯一的卫星,它的公转轨道半径r1=19 600 km,公转周期T1=6.39天.2006年3月,天文学家新发现两颗冥王星的小卫星,其中一颗的公转轨道半径r2=48 000 km,则它的公转周期T2最接近于() A.15天B.25天C.35天D.45天 3、(2013江苏】火星和木星沿各自的椭圆轨道绕太阳运行,根据开普勒行星运动定律可知() (A)太阳位于木星运行轨道的中心(B)火星和木星绕太阳运行速度的大小始终相等 (C)火星与木星公转周期之比的平方等于它们轨道半长轴之比的立方 (D)相同时间内,火星与太阳连线扫过的面积等于木星与太阳连线扫过的面积 4.【2017?新课标Ⅱ卷】如图,海王星绕太阳沿椭圆轨道运动,P为近日 点,Q为远日点,M、N为轨道短轴的两个端点,运行的周期为T0。若只 考虑海王星和太阳之间的相互作用,则海王星在从P经过M、Q到N的运动过程中( ) A.从P到M所用的时间等于T0/4 B.从Q到N阶段,机械能逐渐变大 C.从P到Q阶段,速率逐渐变小 D.从M到N阶段,万有引力对它先做负功后做正功

专题十六:天体运动典型问题

专题十六:天体运动 基本方法:把天体运动看作是匀速圆周运动,F 万=F 向 往往还需要补充一个等式:在天体表面有——GMm/R2=mg 该式被称为黄金代换。 对卫星(行星)模型 卫星(行星)模型的特征是卫星(行星)绕中心天体做匀速圆周运动。 (1)卫星(行星)的动力学特征:中心天体对卫星(行星)的万有引力提供卫星(行星)做匀速圆周运动的向心力,即有: 。 (2)卫星(行星)轨道特征:由于卫星(行星)正常运行时只受中心天体的万有引力作用,所以卫星(行星)平面必定经过中心天体中心。 1)讨论卫星(行星)的向心加速度、绕行速度、角速度、周期与半径的 关系问题。 由得,故越大,越小。 由得,故越大,越小。 由得,故越大,越小。 得,故越大,越长。 2)求中心天体的质量或密度(设中心天体的半径) ①若已知卫星绕中心天体做匀速圆周运动的周期与半径 根据得,则 ②若已知卫星绕中心天体做匀速圆周运动的线速度与半径 由得,则

③若已知卫星绕中心天体做匀速圆周运动的线速度与周期 由和得,则 ④若已知中心天体表面的重力加速度及中心天体的球半径 由得,则 一、基本规律 1.关于地球的第一宇宙速度,下列说法中正确的是( ) A它是人造地球卫星环绕地球运转的最小速度 B它是近地圆行轨道上人造卫星运行的最大速度 C 它是能使卫星进入近地轨道最小发射速度 D它是能使卫星进入轨道的最大发射速度 2.地球公转的轨道半径为R 1,周期为T 1 ,月球绕地球运转的轨道半径为R 2 ,周期 为T 2 ,则太阳质量与地球质量之比为() 3.宇宙飞船与目标飞行器在近地圆轨道上成功进行了空间交会对接。对接轨道所处的空间存在极其稀薄的空气,下面说法正确的是() A.为实现对接,两者运行速度的大小都应介于第一宇宙速度和第二宇宙速度之间 B.如不加干预,在运行一段时间后,天宫一号的动能可能会增加 C.如不加干预,天宫一号的轨道高度将缓慢降低 D.航天员在天宫一号中处于失重状态,说明航天员不受地球引力作用 二、赤道上的物体、近地卫星和同步卫星的比较 (1)忽略地球(星球)自转影响,赤道上的物体,万有引力远大于随地球自转所需的向心力。 (2)在地球(星球)表面或地球(星球)上方高空物体所受的重力就是地球(星球)对物体的万有引力。特别的,在星球表面附近对任意质量为m的物体有:

高三一轮专题复习:天体运动知识点归类解析

天体运动知识点归类解析 【问题一】行星运动简史 1、两种学说 (1)地心说:地球是宇宙的中心,而且是静止不动的,太阳、月亮以及其他行星都绕地球运动。支持者托勒密。 (2).日心说:太阳是宇宙的中心,而且是静止不动的,地球和其他行星都绕太阳运动。(3).两种学说的局限性 都把天体的运动看的很神圣,认为天体的运动必然是最完美,最和谐的圆周运动,而和丹麦天文学家第谷的观测数据不符。 2、开普勒三大定律 开普勒1596年出版《宇宙的神秘》一书受到第谷的赏识,应邀到布拉格附近的天文台做研究工作。1600年,到布拉格成为第谷的助手。次年第谷去世,开普勒成为第谷事业的继承人。 第谷去世后开普勒用很长时间对第谷遗留下来的观测资料进行了整理与分析他在分析火星的公转时发现,无论用哥白尼还是托勒密或是第谷的计算方法得到的结果都与第谷的观测数据不吻合。他坚信观测的结果,于是他想到火星可能不是按照人们认为的匀速圆周运动他改用不同现状的几何曲线来表示火星的运动轨迹,终于发现了火星绕太阳沿椭圆轨道运行的事实。并将老师第谷的数据结果归纳出三条著名定律。 第一定律:所有行星绕太阳运动的轨道都是椭圆,太阳处在椭圆的一个焦点上。 第二定律:对任意一个行星来说,它与太阳的连线在相等时间内扫 过的面积相等。 如图某行星沿椭圆轨道运行,远日点离太阳的距离为a,近日

点离太阳的距离为b ,过远日点时行星的速率为a v ,过近日点时的速率为b v 由开普勒第二定律,太阳和行星的连线在相等的时间内扫过相等的面积,取足够短的时间t ?,则有: t bv t av b a ?=?2 1 21① 所以 b a v v a b = ② ②式得出一个推论:行星运动的速率与它距离成反比,也就是我们熟知的近日点快远日点慢的结论。②式也当之无愧的作为第二定律的数学表达式。 第三定律:所有行星的轨道半长轴的三次方跟它的公转周期平方的比值都相等。 用a 表示半长轴,T 表示周期,第三定律的数学表达式为k T a =23 ,k 与中心天体的质量有 关即k 是中心天体质量的函数)(23 M k T a =①。不同中心天体k 不同。今天我们可以由万有 引力定律证明:r T m r Mm G 2234π=得2234πGM T r =②即2 4)(π GM M k =可见k 正比与中心天体的质量M 。 ①式)(23 M k T a =是普遍意义下的开普勒第三定律多用于求解椭圆轨道问题。 ②式2 234πGM T r =是站在圆轨道角度下得出多用于解决圆轨道问题。为了方便记忆与区分我 们不妨把①式称为官方版开三,②式成为家庭版开三。 【问题二】:天体的自转模型 1、重力与万有引力的区别

人教版物理必修二天体运动测试题

人教版物理必修二天体运动测试题(含参考答案) 总分:100分 时间:60min 一、选择题(除特殊说明外,本题仅有一个正确选项,每小题4分,共计40分) 1. 人造卫星在运行中因受高空稀薄空气的阻力作用,绕地球运转的轨道半径会慢慢减小,在半径缓慢变化过程中,卫星的运动还可近似当作匀速圆周运动。当它在较大的轨道半径r 1上时运行线速度为v 1,周期为T 1,后来在较小的轨道半径 r 2上时运行线速度为v 2,周期为T 2,则它们的关系是 ( ) A .v 1﹤v 2,T 1﹤T 2 B .v 1﹥v 2,T 1﹥T 2 C .v 1﹤v 2,T 1﹥T 2 D .v 1﹥v 2,T 1﹤T 2 2. 土星外层上有一个土星环,为了判断它是土星的一部分还是土星的卫星群,可以测量环中各层的线速度v 与该层到土星中心的距离R 之间的关系来判断 ① 若v R ∝,则该层是土星的一部分 ②2v R ∝,则该层是土星的卫星群. ③若1v R ∝,则该层是土星的一部分 ④若21v R ∝,则该层是土星的卫星群.以上说法正确的是 A. ①② B. ①④ C. ②③ D. ②④ 3.假如地球自转速度增大,关于物体重力的下列说法中不正确的是 ( ) A 放在赤道地面上的物体的万有引力不变 B.放在两极地面上的物体的重力不变 C 赤道上的物体重力减小 D 放在两极地面上的物体的重力增大

4.在太阳黑子的活动期,地球大气受太阳风的影响而扩张,这样使一些在大气层外绕地球飞行的太空垃圾被大气包围,而开始下落。大部分垃圾在落地前烧成灰烬,但体积较大的则会落到地面上给我们造成威胁和危害.那么太空垃圾下落的原因是( ) A .大气的扩张使垃圾受到的万有引力增大而导致的 B .太空垃圾在燃烧过程中质量不断减小,根据牛顿第二定律,向心加速度就会不断增大,所以垃圾落向地面 C .太空垃圾在大气阻力的作用下速度减小,那么它做圆运动所需的向心力就小于实际受到的万有引力,因此过大的万有引力将垃圾拉向了地面 D .太空垃圾上表面受到的大气压力大于下表面受到的大气压力,所以是大气的力量将它推向地面的 5.用 m 表示地球通讯卫星(同步卫星)的质量,h 表示它离地面的高度,R 表示地球的半径,g 表示地球表面处的重力加速度,ω表示地球自转的角速度,则通讯卫星所受万有引力的大小为( ) A.等于零 B.等于22 ()R g m R h + C.等于3 4 2ωg R m D.以上结果都不正确 6. 关于第一宇宙速度,下列说法不正确的是 ( ) A 第一宇宙速度是发射人造地球卫星的最小速度 B .第一宇宙速度是人造地球卫星环绕运行的最大速度 C .第一宇宙速度是地球同步卫星环绕运行的速度 D .地球的第一宇宙速度由地球的质量和半径决定的 7.某人造地球卫星绕地球做匀速圆周运动,假如它的轨道半径增加到原来的n 倍后,仍能够绕地球做匀速圆周运动,则( )

天体运动 规律

确定研究对象解题 -----高中物理必修2第六章万有引力与航天的题型归纳 高中物理必修2第六章万有引力与航天是第五章曲线运动在天体运动学的运用与升华,本章知识点较多,研究对象多,导致学生掌握困难。在教学中,笔者发现只要指导好学生认清楚题目的研究对象,就能突破学生在学习,解题中无从下手或者下手就错的现象。 本章按照研究对象分类可以分为以下几类:a,放在极地的物体;b,赤道上的物体;c,近地卫星(过赤道的,过极地的,一般的);d,同步卫星;e,一般卫星(月亮);f,双星a,放在极地的物体 放在极地的物体只受万有引力和地面的支持力,它的受力如图所示,它的运动状态相对于地球来说是静止的,所以受力平衡。有因为物体所受的重力就 是物体对地面的压力所有又有 即 把本公式化简就可以得到万能代换公式 b,放在赤道的物体 放在赤道的物体,跟地面保持相对静止,但是它随地球一起自转,所以它做匀速圆周运动,受力如图所示,它受到的合外力应该提供向心力。 有其中,所以 说重力只是万有引力的一个分力,另外一个分力就是用来提 供向心力了。在不是赤道和极地的位置,万有引力是指向球 心的,而所需要的向心力指向圆心(并不重合),所以我们 说重力是竖直向下的,而不能说重力也是指向球心的。考虑 实际情况,在地球上,因为向心加速度过小只有a=0.034m/s2, 所以有时候可以忽略不计。但是在有些自转比较快的星球上, 这个向心加速度就不可以忽略了。 c,近地卫星 近地卫星首先是一个卫星,那么它肯定在做匀速圆周运动, 而且万有引力提供向心力。 有公式 这个公式最重要的一点,因为近地卫星它的高度很低所以可以忽略,那么近地卫星的轨道半径就等于地球的半径。它的运动轨迹的圆心是地球的球心,所以它可能好几种情况,一是在赤道上空,二是过极地,三是一般的情况。又因为万能公式,所以又可以得到 对近地卫星也可以说重力提供了向心力。ωωω

2019高考物理一轮复习天体运动专题检测(带答案)精品教育.doc

2019届高考物理一轮复习天体运动专题检测 (带答案) 人类行为学意义上的天体运动,应该理解为现代人崇尚回归自然、崇尚返朴归真、崇尚人与自然的和谐共融的一种行为。以下是2019届高考物理一轮复习天体运动专题检测,请考生及时练习。 1.(2019福建高考)若有一颗宜居行星,其质量为地球的p 倍,半径为地球的q倍,则该行星卫星的环绕速度是地球卫星环绕速度的() A.1倍 B.3倍 C.7倍 D5.倍 2.(2019宜春模拟)2019年3月8日凌晨,从吉隆坡飞往北京的马航MH370航班起飞后与地面失去联系,机上有154名中国人。之后,中国紧急调动了海洋、风云、高分、遥感等4个型号近10颗卫星为地面搜救行动提供技术支持。假设高分一号卫星与同步卫星、月球绕地球运行的轨道都是圆,它们在空间的位置示意图如图1所示。下列有关高分一号的说法正确的是 () A.其发射速度可能小于7.9 km/s B.绕地球运行的角速度比月球绕地球运行的大 C.绕地球运行的周期比同步卫星的大 D.在运行轨道上完全失重,重力加速度为0

对点训练:卫星运行参量的分析与比较 3.(2019浙江高考)长期以来卡戎星(Charon)被认为是冥王星唯一的卫星,它的公转轨道半径r1=19 600 km,公转周期T1=6.39天。2019年3月,天文学家新发现两颗冥王星的小卫星,其中一颗的公转轨道半径r2=48 000 km,则它的公转周期T2最接近于() A.15天 B.25天 C.35天 D.45天 4.(2019赣州模拟)如图2所示,轨道是近地气象卫星轨道,轨道是地球同步卫星轨道,设卫星在轨道和轨道上都绕地 心做匀速圆周运动,运行的速度大小分别是v1和v2,加速度大小分别是a1和a2则() 图2 A.v1v2 a1 B.v1v2 a1a2 C.v1 D.v1a2 5.(多选)截止到2019年2月全球定位系统GPS已运行了整整25年,是现代世界的奇迹之一。GPS全球定位系统有24颗卫星在轨运行,每个卫星的环绕周期为12小时。GPS系统的卫星与地球同步卫星相比较,下面说法正确的是() A.GPS系统的卫星轨道半径是地球同步卫星半径的倍

天体运动高考真题

天体运动 1.(2017·北京理综)利用引力常量G 和下列某一组数据,不能计算出地球质量的是( ) A .地球的半径及重力加速度(不考虑地球自转) B .人造卫星在地面附近绕地球做圆周运动的速度及周期 C .月球绕地球做圆周运动的周期及月球与地球间的距离 D .地球绕太阳做圆周运动的周期及地球与太阳间的距离 D 本题考查天体运动.已知地球半径R 和重力加速度g ,则mg =G M 地m R 2,所以M 地=gR 2G ,可求M 地;近地卫星做圆周运动,G M 地m R 2=m v 2R ,T =2πR v ,可解得M 地=v 2R G =v 2T 2πG ,已知v 、T 可求M 地;对于月球:G M 地·m r 2=m 4π2T 2月r ,则M 地=4π2r 3GT 2月,已知r 、T 月可求M 地;同理,对地球绕太阳的圆周运动,只可求出太阳质量M 太,故此题符合题意的选项是D 项. 2.(多选)2016年4月6日1时38分,我国首颗微重力科学实验卫星——实践十号返回式科学实验卫星,在酒泉卫星发射中心由长征二号丁运载火箭发射升空,进入近百万米预定轨道,开始了为期15天的太空之旅,大约能围绕地球转200圈,如图所示.实践十号卫星的微重力水平可达到地球表面重力的10-6g ,实践十号将在太空中完成19项微重力科学和空间生命科学实验,力争取得重大科学成果.以下关于实践十号卫星的相关描述中正确的有( ) A .实践十号卫星在地球同步轨道上 B .实践十号卫星的环绕速度一定小于第一宇宙速度 C .在实践十号卫星内进行的19项科学实验都是在完全失重状态下完成的 D .实践十号卫星运行中因受微薄空气阻力,需定期点火加速调整轨道 BD 实践十号卫星的周期T =15×24200 h = h ,不是地球同步卫星,所以不在地球同步轨道上,故A 错误;第一宇宙速度是近地卫星的环绕速度,也是最大的圆周运动的环绕速度,则实践十号卫星的环绕速度一定小于第一宇宙速度,故B

天体运动专题例题练习测试

精心整理 3.已知地球的同步卫星的轨道半径约为地球半径的6.0倍,根据你知道的常识,可以估算出地球到月球的距离,这个距离最接近() A .地球半径的40倍 B .地球半径的60倍 C .地球半径的80倍 D .地球半径的100倍 10据报道,我国数据中继卫星“天链一号01星”于2008年4月25日在西昌卫星发射中心发射升空,经过4次变轨控制后,于5月1日成功定点在东经77°赤道上空的同步轨道.关于成功定点后的“天链一号01星”,下列说法正确的是 A.运行速度大于7.9 km/s B.离地面高度一定,相对地面静止 C.绕地球运行的角速度比月球绕地球运行的角速度大 D.向心加速度与静止在赤道上物体的向心加速度大小相等 4.宇航员在月球表面完成下面实验:在一固定的竖直光滑圆弧轨道内部的最低点,静止一质量为m 的小球(可视为质点),如图所示,当给小球水平初速度υ0时,刚好能使小球在竖直平面内做完整的圆周运动。已知圆弧轨道半径为r ,月球的半径为R ,万有引力常量为G 。若在月球表面上发射一颗环月卫星,所需最小发射速度为() A . Rr r 550 υ B . Rr r 52 0υ C . Rr r 50 υ D . Rr r 552 0υ 3.(6分)(2015?红河州模拟)“神舟”五号载人飞船在绕地球飞行的第五圈进行变轨,由原来的椭圆轨道变为距地面高度为h 的圆形轨道.已知飞船的质量为m ,地球半径为R ,地面处的重力加速度为g .则飞船在上述圆轨道上运行的动能E k ( ) A . 等于mg (R+h ) B . 小于mg (R+h ) C . 大于mg (R+h ) D . 等于mgh 7(2015沈阳质量检测).为了探测x 星球,总质量为1m 的探测飞船载着登陆舱在以该星球中心为圆心的圆轨道上运动,轨道半径为1r ,运动周期为1T 。随后质量为2m 的登陆舱脱离飞船,变轨到离星球更近的半径为2r 的圆轨道上运动,则 A .x 星球表面的重力加速度2 11214T r g π= B .x 星球的质量2 13 124GT r M π= C .登陆舱在1r 与2r 轨道上运动时的速度大小之比 1 22 121 r m r m v v = D .登陆舱在半径为2r 轨道上做圆周运动的周期131 3 22T r r T =

高考物理天体运动问题的专题研究

天体运动问题的专题研究 例1如图所示,m1、m2为两颗一前一后在同一轨道绕地球做匀速圆周运动的卫星,试述用何种方法可使卫星m2追上前面的卫星m1? 解析m2不能像在地面上行驶的汽车一样加大速度去追赶m1,而应先通过反向制动火箭把速度变小,这样万有引力就大于m2做匀速圆周运动所需要的向心力,从而轨道半径变小,在较低轨道上匀速圆周运动。由于在较低轨道上m2的运行速率要大些,大于m1的运行速率,就会慢慢赶上前上方的m1,再在恰当位置m2通过助推火箭把速度变大,这时万有引力又小于所需要的向心力,m2将做离心运动,轨道半径将变大到与m1相同,这时m2就追上了m1。 例2 2006年2月10日,面向社会征集的月球探测工程标志最终确定。上海设计师作品“月球之上”最终当选。我国的探月计划分为“绕”“落”“回”三阶段。第一阶段“绕”的任务由我国第一颗月球探测卫星“嫦娥一号”来承担。发射后,“嫦娥一号”探测卫星将用8天至9天的时间完成调相轨道段、地—月转移轨道段和环月轨道段的飞行。其中,假设地—月转移轨道阶段可以简化为:绕地球做匀速圆周运动的卫星,在适当的位置点火加速,进入近地点在地球表面附近、远地点在月球表面附近的椭圆轨道运行,如图所示。若要此时的“嫦娥一号”进入环月轨道,则必须()A.在近地点P启动火箭向运动的反方向喷气 B.在近月点(远地点)Q启动火箭向运动的反方向喷气 C.在近月点(远地点)Q启动火箭向运动方向喷气 D.在近地点P启动火箭向运动方向喷气 解析要使月球探测卫星在地球椭圆轨道上变轨绕月球运行,则必须在近月点Q处点火减速,即启动火箭向运动的方向喷气使探测器减速,使月球对探测卫星的引力大于做圆周运动所需的向心力而做向心的变轨运动,正确答案为选项C。 例3天文学家观察到哈雷彗星的周期约是75年,离太阳最近的距离是8.9×1010 m,但它离太阳最远距离不能测出。试根据开普勒定律计算这个最远距离。已知太阳系的开普勒常量 k=3.354×1018 m3/s2。 解析设哈雷彗星离太阳的最近距离为R1,最远距离为R2,则椭圆轨道半长轴为。 根据开普勒第三定律,得

天体运动精要点总结

天体运动归纳 Ⅰ、重力类:(重力近似等于万有引力) 1.主要解决天体表面重力加速度问题 基本关系式:2R GMm mg = 例1、某星球质量是地球的1/5,半径为地球的1/4,则该星球的表面重力加速度与地球表面重力加速度的比值是多少? 设天体表面重力加速度为g ,天体半径为R ,则: GR ρπ342==R GM g (33 4R M πρ=) 由此推得两个不同天体表面重力加速度的关系为: 2.行星表面重力加速度、轨道重力加速度问题: 例2、设地球表面的重力加速度为g,物体在距地心4R (R 是地球半径)处,由于地球的引力作用而产生的重力加速度g ,则g //g 为 A 、1; B 、1/9; C 、1/4; D 、1/16。 表面重力加速度:22R GM g mg R Mm G =?= 轨道重力加速度:g h R R h R M G g 2 2 2)()(+=+=' Ⅱ、天体运动类: 行星(卫星)模型:F =G Mm r 2=m v 2r =mrω2=m 4π2T 2r 一、周期类:主要解决天体的质量(或密度)与同步卫星问题 基本关系式:r T m r GMm 2 22?? ? ??=π 设恒星质量为M ,行星质量为m(或行星质量为M ,卫星质量为m),它们之间的间距为r ,行星绕恒星(或卫星绕行星)的线速度、角速度、周期分别为v 、ω、T . 可以推得开普勒第三定律:K T r ==4πGM 23(常量) 1.天体质量(或密度)问题 2324GT r M π= 323 GT 3ρR r V M π== 当r=R 时,则天体密度简化为:2GT 3ρπ= R 、T 分别代表天体的半径和表面环绕周期,由上式可以看出,天体密度只与表面环绕周期有关. 2 1212221M M R R g g ?=

高三物理专题天体运动

高三物理 第5课时 天体运动问题 【专题考纲要求】 开普勒行星运动定律 I 级要求 计算不做要求 万有引力定律及其应用 II 级要求 地球表面附近,重力近似等于万有引力 第一、二、三宇宙速度 I 级要求 计算仅限于第一宇宙速度 【专题考点分析】 天体运动规律及万有引力定律的应用是江苏省高考每年必考内容,属于简单题,一般会结合我国的航天事业进行考查;在备考中要注重复习解答天体运动的两条思路、考查的知识点主要有:一、开普勒第三定律的初步理解;二、万有引力定律的理解和应用;三、宇宙航行活动中卫星的发射、运行、变轨等问题。解决的方法主要有应用牛顿第二定律与圆周运动知识的结合,应用能量守恒定律等。以近几年中国及世界空间技术和宇宙探索为背景的题目备受青睐,会形成新情景的物理试题。 【活动一】回顾开普勒行星运动定律内容及表达式(回归课本) 1、轨道定律: 2、面积定律: 3、周期定律: (对k 值的理解) {真题再现} 1.[2016·江苏卷4分] 如图1-所示,两质量相等的卫星A 、B 绕地球做匀速圆周运动,用R 、T 、E k 、S 分别表示卫星的轨道半径、周期、动能、与地心连线在单位时间内扫过的面积.下列关系式正确的有( ) A .T A >T B B .E kA >E kB C .S A =S B D .R 3A T 2A =R 3 B T 2B 【活动二】掌握解决天体运动问题的两个突破口 1、 = 2、 在忽略地球自转的情况下,重力近似等于万有引力

总结: 【活动三】人造地球卫星运行参量及发射、运行、变轨分析 一、人造卫星 1、最大环绕速度:最小环绕周期: 2、发射速度范围: 3、运行轨道特点: 二、人造地球同步卫星特点: 三、近地卫星的特点及第一宇宙速度推导 四、卫星运行参量: 卫星运行参量(向心加速度、绕行速度、角速度、周期)与半径的关系 a= v= ω= T= 总结: {真题再现} 2.(2018·高考江苏卷)我国高分系列卫星的高分辨对地观察能力不断提高.今年5月9日发射的“高分五号”轨道高度约为705 km,之前已运行的“高分四号”轨道高度约为36 000 km,它们都绕地球做圆周运动.与“高分四号”相比,下列物理量中“高分五号”较小的是() A.周期 B.角速度 C.线速度 D.向心加速度 3.(多选)(2017·高考江苏卷)“天舟一号”货运飞船于2017年4月20日在文昌航天发射中心成功发射升空.与“天宫二号”空间实验室对接前,“天舟一号”在距地面约380 km的圆轨道上飞行,则其( ) A.角速度小于地球自转角速度 B.线速度小于第一宇宙速度 C.周期小于地球自转周期 D.向心加速度小 于地面的重力加速度 五、卫星变轨问题分析:

相关文档