文档库 最新最全的文档下载
当前位置:文档库 › 三相-单相矩阵变换器输入电流相角补偿控制

三相-单相矩阵变换器输入电流相角补偿控制

三相-单相矩阵变换器输入电流相角补偿控制
三相-单相矩阵变换器输入电流相角补偿控制

万方数据

万方数据

万方数据

万方数据

万方数据

无功补偿容量计算

无功补偿容量计算 Prepared on 22 November 2020

一、无功补偿装置介绍 现在市场上的无功补偿装置主要分为固定电容器组、分组投切电容器组、有载调压式电容器组、SVC和SVG。下面介绍下各种补偿装置的特点。 1)固定电容器组。其特点是价格便宜,运行方式简单,投切间隔时间长。但它对于补偿变化的无功功率效果不好,因为它只能选择全部无功补偿投入或全部无功补偿切出,从而可能造成从补偿不足直接补偿到过补偿,且投切间隔时间长无法满足对电压稳定的要求。而由于光照强度是不停变化的,利用光伏发电的光伏场发出的电能也跟着光伏能力的变化而不断变化,因此固定电容器组不适应光伏场的要求,不建议光伏项目中的无功补偿选用固定电容器组。 2)分组投切电容器组。分组投切电容器组和固定电容器组的区别主要是将电容器组分为几组,在需要时逐组投入或切出电容器。但它仍然存在投切间隔时间长的问题,且分的组数较少,一般为2~3组(分的组数多了,投资和占地太大),仍有过补偿的可能。因此分组投切电容器组适用于电力系统较坚强、对相应速度要求较低的场所。 3)有载调压式电容器组。有载调压式电容器组和固定电容器组的区别主要是在电容器组前加上了一台有载调压主变。根据公式Q=2πfCU2可知,电容器组产生的无功功率和端电压的平方成正比,故调节电容器组端电压可以调节电容器组产生的无功功率。有载调压式电容器组的投切间隔时间大大缩短,由原来的几分钟缩短为几秒钟。且有载调压主变档位较多,一般为8~10档,每档的补偿无功功率不大,过补偿的可能性较小。因此分组投切电容器组适用于电力系统对光伏场要求一般的场所。

无功补偿及电能计算

北极星主页 | 旧版 | 电力运营 | 电信运营 | 工业控制 | 电子技术 | 仪器仪表 | 大学院校 | 科研院所 | 协会学会新闻中心| 技术天地| 企业搜索| 产品中心| 商务信息| 人才招聘| 期刊媒体| 行业展会| 热点专题| 论坛| 博客| 高级搜索 帐号 密码 个人用户注册企业免费注册 能源工程 ENERGY ENGINEERING 2003年第1卷第1期 工矿企业无功补偿技术及其管理要求 方云翔 (浙江信息工程学校,湖州 313000)

摘要:分析了工矿企业采用无功补偿技术的必要性,介绍了无功补偿方式的确定及补偿容量的计算方法,并论述了加强无功补偿装置管理、提高运行效率应注意的问题。 关键词:无功补偿;技术管理;工矿企业 1 前言 供电部门在向用电单位(以下简称用户)输送的三相交流功率中,包括有功功率和无功功率两部分。将电能转换成机械能、热能、光能等那一部分功率叫有功功率,用户应按期向供电部门交纳所用有功电度的电费;无功功率为建立磁场而存在并未做功,所以供电部门不能向用户收取无功电度电费,但无功功率在输变电过程中要造成大量线路损耗和电压损失,占用输变电设备的容量,降低了设备利用率。因此,供电部门对输送给用户的无功功率实行限制,制订了功率因数标准,采用经济手段———功率因数调整电费对用户进行考核。用户功率因数低于考核标准,调整电费是正值,用户除了交纳正常电费之外,还要增加支付调整电费(功率因数罚款);用户功率因数高于考核标准,调整电费是负值,用户可以从正常电费中减去调整电费(功率因数奖励)。 用电设备如变压器、交流电动机、荧光灯电感式镇流器等均是电感性负荷,绝大多数用户的自然功率因数低于考核标准,都要采取一些措施进行无功补偿来提高功率因数。安装移相电力电容器是广大用户无功补偿的首选方案。 2 无功补偿的经济意义 2.1 提高输变电设备的利用率 有功功率

无功补偿控制器及动态补偿装置工作原理

无功功率补偿装置在电子供电系统中所承担的作用是提高电网的功率因数,降低供电变压器及输送线路的损耗,提高供电效率,改善供电环境。所以无功功率补偿装置在电力供电系统中处在一个不可缺少的非常重要的位置。合理的选择补偿装置,可以做到最大限度的减少网络的损耗,使电网质量提高。反之,如选择或使用不当,可能造成供电系统,电压波动,谐波增大等诸多因素。 一、按投切方式分类: 1.延时投切方式 延时投切方式即人们熟称的”静态”补偿方式。这种投切依靠于传统的接触器的动作,当然用于投切电容的接触器专用的,它具有抑制电容的涌流作用,延时投切的目的在于防止接触器过于频繁的动作时,电容器造成损坏,更重要的是防备电容不停的投切导致供电系统振荡,这是很危险的。当电网的负荷呈感性时,如电动机、电焊机等负载,这时电网的电流滞带后电压一个角度,当负荷呈容性时,如过量的补偿装置的控制器,这是电网的电流超前于电压的一个角度,即功率因数超前或滞后是指电流与电压的相位关系。通过补偿装置的控制器检测供电系统的物理量,来决定电容器的投切,这个物理量可以是功率因数或无功电流或无功功率。 下面就功率因数型举例说明。当这个物理量满足要求时,如COSΦ超前且》0.98,滞后且》0.95,在这个范围内,此时控制器没有控制信号发出,这时已投入的电容器组不退出,没投入的电容器组也不投入。当检测到COSΦ不满足要求时,如COSΦ滞后且《0.95,那么将一组电容器投入,并继续监测COSΦ如还不满足要求,控制器则延时一段时间(延时时间可整定),再投入一组电容器,直到全部投入为止。当检测到超前信号如COSΦ《0.98,即呈容性载荷时,那么控制器就逐一切除电容器组。要遵循的原则就是:先投入的那组电容器组在切除时就要先切除。如果把延时时间整定为300S,而这套补偿装置有十路电容器组,那么全部投入的时间就为30分钟,切除也这样。在这段时间内无功损失补只能是逐步到位。如果将延时时间整定的很短,或没有设定延时时间,就可能会出现这样的情况。当控制器监测到COSΦ〈0.95,迅速将电容器组逐一投入,而在投

在三相电路电压电流关系

在三相电路中,三相电源及三相负载都有两种连接方式:星形连接和三角形连接。 8.2.1 星形连接 在图8.3所示的三相电路中,三相电压源及三相负载都是星形连接的。各相电压源的负极性端连接在一起,称为三根电源的中点或零点,用N 表示。各相电压源的正极性端A 、B 、C 引出,以便与负载相连。这就是星形连接方式,或称Y 形连接方式。三相负载Z A 、Z B 、Z C 也是星形连接的。各相负载的一端连接在一起,称为负载的中点或零点,用N ’表示。各相负载的另一端A ’、B ’、C ’引出后与电源连接。电源与负载相应各相的连接线AA ’、BB ’、CC ’称为端线。电源中点与负载中点的连线NN ’称为中线或零线。具有三根端线及一根中线的三相电路称为三相四线制电路;如果只接三根端线而不接中线,则称为三相三线制电路。 N -+-B I C I A E B E C E B - --+ + -+’ C ’ AN V BN V 图8.3 电源与负载均为星形连接的三相电路 在三相电路中,电源或负载各相的电压称为相电压。例如AN V g 、BN V g 、CN V g 为电源相电压,'' A N V g 、'' B N V g 、''C N V g 为负载相电压。端线之间的电压称为线电压。例如AB V g 、BC V g 、CA V g 是电源的线电压,'' A B V g 、'' B C V g 、''C A V g 是负载的线电压。流过电源或负载各相的电流称为相电流。流过各端线的电流称为线电流,流过中线的电流称为中线电流。 当电源或负载为星形连接时,线电压等于两个相应的相电压之差,例如在电源侧,各线电压为

调整不平衡电流无功补偿装置原理

分相补偿装置可以补偿不平衡的无功电流,但是对于不平衡的有功电流无能为力。实际上,经过恰当设计的无功补偿装置,不但可以将三相的功率因数均补偿至1,而且可以将三相间的不平衡有功电流调整至平衡。 1,怎样调整不平衡电流 在很久以前,电学奇才斯坦因梅茨(C.P.Steinmetz)就已经找到了利用无功补偿来平衡三相电流的解决办法。在《电力系统无功功率控制》一书中有比较详细的介绍,有兴趣的读者不妨一读。 斯坦因梅茨的办法有两个缺点:其一是计算过程比较繁复,读者很难从计算过程中领会这种调整不平衡电流方法的物理意义。其二是只能适用于三相三线系统,当应用于三相四线系统时,如果零线电流不为零,就会出现较大的误差。 笔者在多年研究无功补偿技术的基础上,总结出了一套简明易懂的调整不平衡电流理论与计算方法,下面就进行介绍。 2,调整不平衡电流的基本原理 要了解首调整不平衡电流的基本原理,首先要了解wangs定理,读者可以参见本博客中的Wangs定理一文。 在了解wangs定理的前提下,这里具体介绍一下怎样调整不平衡有功电流。 设有一个电阻连接在A相与B相两端,这是一个典型的不平衡负荷,调整不平衡电流的目标就是将这个电阻的电流平均分配到三相当中去,具体的方法如图1所示:

图1 利用wangs定理的基本概念,在A相与C相之间接入一个适当的电感L将A相有功电流的1/3转移到C相,这时电感L在A相产生的感性无功电流恰好将电阻在A相产生的容性无功电流抵消掉。在B相与C相之间接入一个适当的电容C将B相有功电流的1/3转移到C相,这时电容C在B相产生的容性无功电流恰好将电阻在B相产生的感性无功电流抵消掉。电感L在C相产生的感性无功电流恰好将电容C 在C相产生的容性无功电流抵消掉。这样三相电流完全平衡,并且三相的功率因数全等于1。 设有一个电阻连接在A相与零线之间,这是另一个典型的不平衡负荷,调整不平衡电流的目标就是将这个电阻的电流平均分配到三相当中去,具体的方法如图2所示: 图2

低压无功补偿回路保护熔断器选择

低压无功补偿回路保护熔断器选择 低压无功补偿柜中补偿回路的熔断器作用,是为了保证整个回路安全可靠的运行,以达到无功补偿的目的,那么电容器(和串联电抗器)作为补偿回路的核心元件,熔断器对它提供可靠的保护性能是非常必要的。由于现行相关标准里对补偿回路保护熔断器的选择没有特别详细的要求,所以在实际应用中大家的选择也不尽一致,有时差别甚至相当悬殊。 在低压配电系统中的负载类型变得越来越复杂的情况下,补偿回路熔断器的选择不能一概而论,要视低压无功补偿的具体类型进行科学的分析和选择。 下面我们根据相关的国家标准和低压无功补偿类型两方面来分析如何合理正确的选择补偿回路的熔断器。 一、相关的国家标准 1、在低压并联电容器标准GB/T12747.1-2004中,对有关电容器最大电流和保护的相关要求和说明如下: 21 最大允许电流 电容器单元应适用于在线路电流方均根值为1.3倍该单元在额定正弦电压和额定频率下产

生的电流下连续运行,过渡过程除外。考虑到电容偏差,最大电容可达1.10CN,故其最大电流可达1.43IN。 这些过电流因素是考虑到谐波、过电流和电压偏差共同作用的结果。 33 过电流 电容器决不可在电流超过第21章中规定的最大值下运行。 34 开关、保护装置及连接件 开关、保护装置及连接件均应设计成能连续承受在额定频率和方均根值等于额定电压的正弦电压下得到的电流的1.3倍的电流。因为电容器的电容可能为额定值的 1.10倍,故这一电流最大值为 1.3×1.10倍额定电流,即为1.43IN 2、在中低压电容器及其成套装置标准GB7251中,有关电容保护熔断器的选择要求如下: 5.3.5 b) 熔断器额定工作电流(方均根值)应按2~3倍单组电容器额定电流选取。 3、在并联电容器装置设计规范GB50227-2008中,有关电容保护熔断器是这样要求的: 5.4 熔断器 5.4.2 用于单台电容器保护的外熔断器的熔丝额

三相交流电路电压及电流的测量

三相交流电路电压及电流的测量 一、实验目的 1、掌握三相负载作星形联接、三角形联接的方法,验证这两种接法下线、相电压,线、相电流之间的关系。 2、充分理解三相四线供电系统中中线的作用。 二、原理说明 1、三相负载可接成星形(又称“Y”接)三角形(又称“?”接)当三相对称负载做Y 形联接时,线电压U 1是相电压U P 的3倍,线电流I 1 ,等于相电流I P ,即U 1 =3U P, I 1=I P 当采用三相四线制接法时,流过中线的电流I O =0,所以可以省去中线。 当对称三相负载作?形联接时,有 I 1 =3I P,U1=U P 2、不对称三相负载做U联接时,必须采用三相四线制接法,即Y O 接法。而且中线必须 牢固联接,以保证三相不对称负载的每相电压维持对称不变。 倘若中线开断,会导致三相负载电压的不对称,致使负载的那一相的相电压过高,使负载遭受损坏:负载重的一相相电压又过低,使负载不能正常工作。尤其是对于三相照明负载, 无条件地一律采用Y O 接法。 3、对于不对称负载作?接时,I1≠3I P,但只要电源的线电压U1对称,加在三相负 序号名称型号与规格数量备注 1 三相交流电源3?0~220V 1 主控屏 2 三相自耦调压器 1 主控屏 3 交流电压表 1 DG07 4 交流电流表 1 DG08 5 三相灯组负载15W/220V 白炽灯9 DG02 6 专用测试导线若干 1、三相负载星形联接(三相四线制供电)即三相灯组负载经三相自耦调压器接通三相对称电源,并将三相调压器的旋柄置于三相电压输出为OV的位置,经知道教师检查后,方可合上三相电源开关,然后调节调压器的输出,使输出的三相线嗲那为220V,按数据表格所列各项要求分别测量三相负载的线电压、相电压、线电流(相电流)、中线电流、电流与负载中点间的电压,记录之,并观察各相灯组亮暗的变化程度,特别要注意观察中线的作用。

电流、电压、功率的关系及公式

电流=电压/电阻 功率=电压*电流*时间 电流I,电压V,电阻R,功率W,频率F W=I的平方乘以R V=IR 电流I,电压V,电阻R,功率W,频率F W=I的平方乘以R V=IR W=V的平方除以R 电压V(伏特),电阻R(欧姆),电流强度I(安培),功率N(瓦特)之间的关系是: V=IR,N=IV =I*I*R, 或也可变形为:I=V/R,I=N/V等等.但是必须注意,以上均是在直流(更准确的说,是直流稳态)电路情况下推导出来的!其它情况不适用.如交流电路,那要对其作补充和修正求电压、电阻、电流与功率的换算关系 电流=I,电压=U,电阻=R,功率=P U=IR,I=U/R,R=U/I, P=UI,I=P/U,U=P/I P=U2/R,R=U2/P 就记得这一些了,不知还有没有 还有P=I2R P=IU R=U/I 最好用这两个;如电动机电能转化为热能和机械能。电流 符号: I 符号名称: 安培(安) 单位: A 公式: 电流=电压/电阻 I=U/R 单位换算: 1MA(兆安)=1000kA(千安)=1000000A(安) 1A(安)=1000mA(毫安)=1000000μA(微安)单相电阻类电功率的计算公式= 电压U*电流I

单相电机类电功率的计算公式= 电压U*电流I*功率因数COSΦ 三相电阻类电功率的计算公式= *线电压U*线电流I (星形接法) = 3*相电压U*相电流I(角形接法) 三相电机类电功率的计算公式= *线电压U*线电流I*功率因数COSΦ(星形电流=I,电压=U,电阻=R,功率=P U=IR,I=U/R,R=U/I, P=UI,I=P/U,U=P/I P=U2/R,R=U2/P 就记得这一些了,不知还有没有 还有P=I2R ⑴串联电路 P(电功率)U(电压)I(电流)W(电功)R(电阻)T(时间) 电流处处相等 I1=I2=I 总电压等于各用电器两端电压之和 U=U1+U2 总电阻等于各电阻之和 R=R1+R2 U1:U2=R1:R2 总电功等于各电功之和 W=W1+W2 W1:W2=R1:R2=U1:U2 P1:P2=R1:R2=U1:U2 总功率等于各功率之和 P=P1+P2 ⑵并联电路 总电流等于各处电流之和 I=I1+I2 各处电压相等 U1=U1=U 总电阻等于各电阻之积除以各电阻之和R=R1R2÷(R1+R2) 总电功等于各电功之和 W=W1+W2 I1:I2=R2:R1 W1:W2=I1:I2=R2:R1 P1:P2=R2:R1=I1:I2 总功率等于各功率之和 P=P1+P2

浅谈无功补偿原理及无功补偿率

浅谈无功补偿原理及无功补偿率 无功补偿原理 电网中的电力负荷如电动机、变压器等,大部分属于感性负荷,在运行过程中需向这些设备提供相应的无功功率。在电网中安装并联电容器等无功补偿设备以后,可以提供感性负载所消耗的无功功率,减少了电网电源向感性负荷提供、由线路输送的无功功率,由于减少了无功功率在电网中的流动,因此可以降低线路和变压器因输送无功功率造成的电能损耗,这就是无功补偿。 简介编辑 无功补偿原理 当电网电压的波形为正弦波,且电压与电流同相位时,电阻性电气设备如白炽灯、电热器等从电网上获得的功率P等于电压U和电流I的乘积,即:P=U×I。 电感性电气设备如电动机和变压器等由于在运行时需要建立磁场,此时所消耗的能量不能转化为有功功率,故被称为无功功率Q。此时电流滞后电压一个角度φ。在选择变配电设备时所根据的是视在功率S,即有功功率和无功功率的矢量和:  无功功率为: 有功功率与视在功率的比值为功率因数: cosf=P/S 无功功率的传输加重了电网负荷,使电网损耗增加,系统电压下降。故需对其进行就近和就地补偿。并联电容器可补偿或平衡电气设备的感性无功功率。当容性无功功率QC等于感性无功功率QL时,电网只传输有功功率P。根据国家有关规定,高压用户的功率因数应达到0.9以上,低压用户的功率因数应达到0.85以上。 如果选择电容器功率为Qc,则功率因数为: cosφ= P/ (P2 + (QL-Qc)2)1/2 在实际工程中首先应根据负荷情况和供电部门的要求确定补偿后所需达到的功率因数值,然后再计算电容器的安装容量: Qc = P(tanf1 - tanf2)=P〔(1/cos2f1-1)1/2-(1/cos2f2-1)1/2〕 式中:

三相电路的电压与电流实验(精)

三相电路的电压与电流 1. 实验目的 (1)验证三相对称负载星形联结和三角形联结时,其线电压与相电压、线电流与相电流之间的关系。 (2)观察三相对称和不对称负载星形联结时中线的作用。 (3)观察三相不对称负载三角形联结时,其线电流与相电流之间的关系。 2. 实验预习要求 (1)复习有关三相交流电源特征的内容。 (2)完成下列预习题: ①画出三相对称负载星形联结和三角形联结时,其线电压与相电压、线电流与相电流的相量图。 ②计算图中电路各元件上的电压和流经各元件的电流。 3. 实验参考电路 图1 三相负载星形联结电路 图2 三相负载三角形联结电路

4. 实验内容和步骤 (1)按图1所示的电路接线,并接通电源。用万用表的交流电压档测量三相对称负载(开关S1断开)无中线(开关S2断开)时负载的中点N'与电源的中点N 之间的电压,以此来判断负载是否对称,若存在较严重的不对称时(UNN 10V),则用调换部分负载(白炽灯) ' 的方法,尽量设法使该三相负载对称。 (2)测量三相对称负载(开关S1断开)有中线(开关S2闭合)时,各线电压、相电压、中点电压、相电流和中线电流的值,并记入表1中。 (3)测量三相对称负载(开关S1断开)无中线(开关S2断开)时,上述各电压、电流值,并记入表1中。 (4)测量三相不对称负载(开关S1闭合)有中线(开关S2闭合)时,各线电压、相电压、中点电压、相电流和中线电流的值,并记入表1中。 (5)测量三相不对称负载(开关S1闭合)无中线(开关S2断开)时,上述各电压、电流值,并记入表1中。 (6)按图2所示的电路接线,并接通电源。 (7)测量三相对称负载(开关S断开)时的线电压、线电流和相电流,并记入表2中。(8)测量三相不对称负载(开关S闭合)时的线电压、线电流和相电流,并记入表2中。 表2 三相负载三角形联结实验测试记录表

无功补偿常用计算方法

按照不同的补偿对象,无功补偿容量有不同的计算方法。 (1)按照功率因数的提高计算 对需要补偿的负载,补偿前后的电压、负载从电网取用的电流矢量关系图如图3.7所示: I 2r I 1 补偿前功率因数1cos ?,补偿后功率因数2cos ?,补偿前后的平均有功功率为 P ,则需要补偿的无功功率容量 )t a n (t a n 21? ?-=P Q 补偿 (3.1) 由于负载功率因数的增加,会使电网给负载供电的线路上的损耗下降, 线损的下降率 %100)cos (3)cos (3)cos ( 3%21 122 2211?-= ?R I R I R I P a a a ???线损 %100)c o s c o s (1221??? ? ???-=?? (3.2) 式中R 为负载侧等值系统阻抗的电阻值。 (2)按母线运行电压的提高计算 ①高压侧无功补偿 无功补偿装置直接在高压侧母线补偿,系统等值示意图如图3.8所示: 图3.7 电流矢量图

P+jQ 补偿 图中, S U、U分别是系统电压和负载侧电压;jX R+是系统等值阻抗(不 含主变压器高低压绕组阻抗);jQ P+是负载功率, 补偿 jQ是高压侧无功补偿容 量; 1 U、 2 U分别是补偿装置投入前后的母线电压。 无功补偿装置投入前后,系统电压、母线电压的量值存在如下关系: 无功补偿装置投入前 1 1U QX PR U U S + + ≈ 无功补偿装置投入后 2 2 ) ( U X Q Q PR U U S 补偿 - + + ≈ 所以 2 1 2U X Q U U补偿 ≈ -(3.3) 所以母线高压侧无功补偿容量 ) ( 1 2 2U U X U Q- = 补偿 (3.4) ②主变压器低压侧无功补偿 无功补偿装置在主变压器的低压侧进行无功补偿,系统等值示意图如图3.9所示: P+jQ 补偿 图3.8 系统等值示意图

《国家电网公司电力系统无功补偿配置技术原则》

《国家电网公司电力系统无功补偿配置技术原则》 第一章总则 第一条为保证电压质量和电网稳定运行,提高电网运行的经济效益,根据《中华人民共和国电力法》等国家有关法律法规、《电力系统安全稳定导则》、信息来源:《电力系统电压和无功电力技术导则》、《国家电网公司电力系统电压质量和无功电力管理规定》等相关技术标准和管理规定,特制定本技术原则。 第二条国家电网公司各级电网企业、并网运行的发电企业、电力用户均应遵守本技术原则。 第二章无功补偿配置的基本原则 第三条电力系统配置的无功补偿装置应能保证在系统有功负荷高峰和负荷低谷运行方式下,分(电压)层和分(供电)区的无功平衡。分(电压)层无功平衡的重点是220kV 及以上电压等级层面的无功平衡,分(供电)区就地平衡的重点是110kV及以下配电系统的无功平衡。无功补偿配置应根据电网情况,实施分散就地补偿与变电站集中补偿相结合,电网补偿与用户补偿相结合,高压补偿与低压补偿相结合,满足降损和调压的需要。 第四条各级电网应避免通过输电线路远距离输送无功电力。500(330)kV电压等级系统与下一级系统之间不应有大量的无功电力交换。500(330)kV电压等级超高压输电线路的充电功率应按照就地补偿的原则采用高、低压并联电抗器基本予以补偿。 第五条受端系统应有足够的无功备用容量。当受端系统存在电压稳定问题时,应通过技术经济比较,考虑在受端系统的枢纽变电站配置动态无功补偿装置。 第六条各电压等级的变电站应结合电网规划和电源建设,合理配置适当规模、类型的无功补偿装置。所装设的无功补偿装置应不引起系统谐波明显放大,并应避免大量的无功电力穿越变压器。35kV~220kV变电站,在主变最大负荷时,其高压侧功率因数应不低于0.95,在低谷负荷时功率因数应不高于0.95。 第七条对于大量采用10kV~220kV电缆线路的城市电网,在新建110kV及以上电压等级的变电站时,应根据电缆进、出线情况在相关变电站分散配置适当容量的感性无功补偿装置。 第八条35kV及以上电压等级的变电站,主变压器高压侧应具备双向有功功率和无功功

三相交流电路电压电流的分析与测量(含数据处理)(精)

三相交流电路电压、电流的分析与测量 一、实验目的 1.掌握三相负载作星形联接、三角形联接的方法,验证这两种接法时线、相电压及线、相电流之间的关系。 2.充分理解三相四线供电系统中中线的作用。 二、原理说明 1.三相负载可接成星形(又称“Y”接)或三角形(又称"△"接,当三相对称负载作Y 形联接时,线电压Ul 是相电压Up 的倍。线电流Il 等于相电流Ip,即 Ul=Up Il=Ip 当采用三相四线制接法时,,流过中线的电流I0=0,所以可以省去中线。 当对称三相负载作△形联接时,有 I1=Ip, U1=Up 2.不对称三相负载作Y 联接时,必须采用三相四线制接法,即Y0 接法。而且中线必须牢固联接,以保证三相不对称负载的每相电压维持对称不变。 倘若中线断开,会导致三相负载电压的不对称,致使负载轻的那一相的相电压过高,使负载遭受损坏;负载重的一相相电压又过低,使负载不能正常工作。尤其是对于三相照明负载,无条件地一律采用Y0 接法。 3.当不对称负载作△接时,Il≠Ip,但只要电源的线电压Ul 对称,加在三相负载上的电压仍是对称的,对各相负载工作没有影响。 三、实验设备及器件 序号名称型号与规 格 数量备注 1三相交 流电源 3Φ 0~ 220V 1 2三相自 耦调压 器 1 3交流电 压表 1 4交流电 流表 1 5三相灯 组负载 40W/220V 白炽灯 9DGJ-04 6电门插 座 3DGJ-04

四、实验内容 1.三相负载星形联接(三相四线制供电) 按图6-3-3-1 线路组接实验电路。即三相灯组负载经三相自耦调压器接通三相对称电源,将三相调压器的旋柄置于三相电压输出为0V的位置,经指导教师检查后。方可合上三相电源开关,然后调节调压器的输出,使输出的三相线电压为220V,按表6-3-3-1数据表格所列各项要求分别测量三相负载的线电压、相电压、线电流(相电流)、中线电流、电源与负载中点的电压,记录之。并观察各相灯组亮暗的变化程度,特别要注意观察中线的作用。 图6-3-3-1 三相负载星形联接的实验线路 2.负载三角形联接(三相三线制供电) 按图6-3-3-2改接线路,经指导教师检查合格后接通三相电源,调节调压器,使其输出线电压为220V,并按表6-3-3-2数据表格要求进行测试 图6-3-3-2 三相负载三角形联接的实验线路 五、实验报告 1.三相负载根据什么条件作星形或三角形连接? 答:一般电机功率大于11kw就采用星-三角启动,否则采用三角形直接启动,一般不采用星形接法。 2.试分析三相星形联接不对称负载在无中线情况下,当某相负载开路或短路时会出现什么情况?如果接上中线,情况又如何? 答:在电源无中线且负载不对称情况下,那相的负载重那相的电压就低,如果接上中线,三相电压趋于平衡。 3.本次实验中为什么要通过三相调压器将380V 的市电线电压降为220V 的线电压使用? 答:为了实验人的安全和设备的安全。 4.用实验测得的数据验证对称三相电路中的关系。 5.用实验数据和观察到的现象,总结三相四线供电系统中中线的作用。 答:当三相负载不对称时,中线提供各相电流的回路。 6.不对称三角形联接的负载,能否正常工作?实验是否能证明这一点?

无功补偿怎么计算

没目标数值怎么计算? 若以有功负载1KW,功率因数从0.7提高到0.95时,无功补偿电容量: 功率因数从0.7提高到0.95时: 总功率为1KW,视在功率: S=P/cosφ=1/0.7≈1.4(KVA) cosφ1=0.7 sinφ1=0.71(查函数表得) cosφ2=0.95 sinφ2=0.32(查函数表得) tanφ=0.35(查函数表得) Qc=S(sinφ1-cosφ1×tanφ)=1.4×(0.71-0.7×0.35)≈0.65(千乏) 电网输出的功率包括两部分;一是有功功率;二是无功功率.直接消耗电能,把电能转变为机械能,热能,化学能或声能,利用这些能作功,这部分功率称为有功功率;不消耗电能;只是把电能转换为另一种形式的能,这种能作为电气设备能够作功的必备条件,并且,这种能是在电网中与电能进行周期性转换,这部分功率称为无功功率,如电磁元件建立磁场占用的电能,电容器建立电场所占的电能.电流在电感元件中作功时,电流超前于电压90℃.而电流在电容元件中作功时,电流滞后电压90℃.在同一电路中,电感电流与电容电流方向相反,互差180℃.如果在电磁元件电路中有比例地安装电容元件,使两者的电流相互抵消,使电流的矢量与电压矢量之间的夹角缩小,从而提高电能作功的能力,这就是无功补偿的道理. 计算示例 例如:某配电的一台1000KVA/400V的变压器,当前变压器满负荷运行时的功率因数cosφ =0.75, 现在需要安装动补装置,要求将功率因数提高到0.95,那么补偿装置的容量值多大?在负荷不变的前提下安装动补装置后的增容量为多少?若电网传输及负载压降按5%计算,其每小时的节电量为多少? 补偿前补偿装置容量= [sin〔1/cos0.75〕-sin〔1/cos0.95〕]×1000=350〔KVAR〕安装动补装置前的视在电流= 1000/〔0.4×√3〕=1443〔A〕 安装动补装置前的有功电流= 1443×0.75=1082〔A〕 安装动补装置后视在电流降低=1443-1082/0.92=304 〔A〕 安装动补装置后的增容量= 304×√3×0.4=211〔KVA〕 增容比= 211/1000×100%=21% 每小时的节电量〔304 ×400 ×5% ×√3 ×1 〕 /1000=11 (度) 每小时的节电量(度)

三相交流电路电压电流测量数据

实验七三相交流电路的测量数据 一、实验目的 1. 掌握三相负载作星形联接、三角形联接的方法,验证这两种接法下线、相电压及线、相电流之间的关系。 2. 充分理解三相四线供电系统中中线的作用。 二、原理说明 1. 三相负载可接成星形(又称“Y”接)或三角形(又称"△"接)。当三相对称负载作Y 形联接时,线电压U L是相电压U p的倍。线电流I L等于相电流I p,即 U L=U p,I L=I p 在这种情况下,流过中线的电流I0=0,所以可以省去中线。 当对称三相负载作△形联接时,有I L=I p, U L=U p。 2. 不对称三相负载作Y 联接时,必须采用三相四线制接法,即Y0接法。而且中线必须 牢固联接,以保证三相不对称负载的每相电压维持对称不变。 若中线断开,会导致三相负载电压的不对称,致使负载轻的那一相的相电压过高,使负载遭受损坏;负载重的一相相电压又过低,使负载不能正常工作。尤其是对于三相照明负载,无条件地一律采用Y0接法。 3. 当不对称负载作△接时,I L≠ Ip,但只要电源的线电压U L对称,加在三相负载上 的电压仍是对称的,对各相负载工作没有影响。 三、实验设备 序号名称型号与规格数量备注 1交流电压表0~500V1无 2交流电流表0~5A1无 3万用表无1自备 4三相自耦调压器无1无 5三相灯组负载220V,15W白炽灯9DGJ-04 6电门插座33DGJ-04 四、实验内容 1. 三相负载星形联接(三相四线制供电) 按图 7-1 线路组接实验电路。即三相灯组负载经三相自耦调压器接通三相对称电源。将三相调压器的旋柄置于输出为0V 的位置(即逆时针旋到底)。经指导教师检查合格后,方可开启实验台电源,然后调节调压器的输出,使输出的三相线电压为220V,并按下述内容完成各项实验,分别测量三相负载的线电压、相电压、线电流、相电流、中线电流、电源与负载中点间的电压。将所测得的数据记入表7-1 中,并观察各相灯组亮暗的变化程度,特别要注意观察中线的作用。

无功补偿的计算

无功补偿的计算 一、系统基本情况 XX钢丝绳有限公司35kV变电所目前采用二台SZ11-35±3×2.5%/0.4,1600kVA(Dyn11、U%=6.5)变压器,预留一台SZ11-35±3×2.5%/0.4,1600kVA变压器,电力供电系统经35kV变压器直接降压为0.4kV低压配电系统向热处理车间、拉丝车间、捻股合绳车间和工厂照明等供电。主要负荷为电动机。全厂总供电负荷4800kVA(包括预留),总用电负荷3200kW。 系统容量一般由当地供电部门提供,也可将供电电源出线开关的开断容量作为系统容量。根据设计院图纸,每台35kV变压器额定电流为2309.5A,额定分断电流为20kA,三台35kV变压器的总分断电流为60kA,则可认为系统容量S=3×(1.73×20(kA)×35000(V))=3×1211MVA ≈3600 MVA。实际可将上一级110kV系统设为无穷大。 二、用电设备基本情况 1.用电负荷 XX钢丝绳有限公司的主要用电负荷,拉丝车间的用电负荷为2720 kW,热处理车间负荷为240 kW,捻股合绳车间负荷为903kW等。主要设备为拉丝机,捻绳机等用电动机,全厂共拥用70台不同容量的电动机,总容量为3909kW。电动机的容量、数量(由设计院提供)见表1。 表1:电动机的容量、数量

2.用电负荷的谐波 根据我们分析,用电负荷的谐波主要来自以下几方面: (1)拉丝机的动力采用电磁调速电动机 拉丝机的动力采用电磁调速电动机,电磁调速电动机普遍采用YCT系列调速电动机,该系列调速电动机由鼠笼式异步电动机、电磁转差离合器和控制器三部分组成,能在规定的调速范围均匀地、连续地无级调速,并输出额定转矩。 控制器是将速度指令信号电压和调速电动机速度负反馈信号电压比较后,经放大电路及移相触发电路,从而控制了晶闸的开放角,改变了转差离合器的励磁电流,使调速电动机转速保持恒定。调节励磁电流即能使电动机在规定的调速范围内实现无级调速。 控制器的控制电机功率、最大输出(直流)见表2。 表2:控制器控制电机功率、最大输出(直流) (2)变频整流调速电动机 全厂有110、137kW 变频调速三相异步电机10台,总负荷1316kW,占全部电动机容量的34%。。该电机由变频整流调速装置来调速,一般采用6脉动交-直-交电流型变频器。电网通过可控硅三相全控桥给变频器供电,功率因数角约等于控制角a。供电电流包含6±1次谐波(K=1、2、3…),并且在直流电流无脉动的理想情况下,n次谐波电流含量是基波电流的1/n。实际上,直流电流脉动导致五次谐波和七次谐波含量增加,大于七次谐波的高次谐波含量减少。 (3)无功补偿装置 变频器用量较大的用户,用电容器进行无功力率补偿虽然可以大副度降低基波无功电流,但是必然出现谐波放大现象。这时,供电电流和电容器电流中谐波和间谐波电流大副度增加。(4)热处理设备 热处理设备一般采用工频感应加热整流装置,小型换流装置采用6脉冲,其运行时产生大量谐

三相交流电路电压、电流的测量word精品

一、 头验目的 1. 熟悉三相负载的两种接法,并验证电压和电流的线值和相值的关系。 2. 充分理解三相四线供电系统中中线的作用。 二、 实验仪器 1. 三相自耦调压器 2. 三相灯组负载(三组) 三、 实验原理 1. 三相负载可接成星形(又称接)或三角形(又称"△"接),当三相对称负载 作丫形联接时,线电压U i 是相电压U p 的3倍。线电流I i 等于相电流I p ,即 U L = Q 3 U p I L = I p 当采用三相四线制接法时,,流过中线的电流I o = 0,所以可以省去中线。 当对称三 相负载作△形联接时,有 I L 二J3lp, U L =U P 2. 不对称三相负载作丫联接时,必须采用三相四线制接法,即 丫。接法。而且 中线必须牢固联接,以保证三相不对称负载的每相电压维持对称不变。 倘若中线断开,会导致三相负载电压的不对称,致使负载轻的那一相的相电压过 高,使负载遭受损坏;负载重的一相相电压又过低,使负载不能正常工作。尤其 是对于三相照明负载,无条件地一律采用 丫0接法。 3. 当不对称负载作△接时,I L 工3 Ip ,但只要电源的线电压 U L 对称,加在三 相负载上的电压仍是对称的,对各相负载工作没有影响。 四、 实验内容 1. 三相负载星形联接 按图7-1线路组接实验电路。即三相灯组负载经三相自耦调压器接通三相对 称电源,将三相调压器的旋柄置于三相电压输出为 0V 的位置,经指导教师检查 后。方可合上三相电源开关,然后调节调压器的输出,使输出的三相线电压为 220V ,按表1数据表格所列各项要求分别测量三相负载的线电压、相电压、线 电流(相电流)、中线电流、电源与负载中点的电压,记录之。并观察各相灯组 亮暗的变化程度,特别要注意观察中线的作用。 1) 三相负载星形连接且采用三相四线制供电 按图7-1线路组接实验电路,是输出的三相线电压为 220V 。 2) 按数据表格所列各项要求分别测量三相负载的线电压、相电压、相电流、中 线电流、电源与负载中点间的电压,记录之。 u( V 20 2 v( w( V 20V 2

电流电压功率之间的关系及公式(完整资料).doc

【最新整理,下载后即可编辑】 电流、电压、功率的关系及公式 1、电流I,电压V,电阻R,功率W,频率F W=I2乘以R V=IR W=V2/R 电流=电压/电阻 功率=电压*电流*时间 2、电压V(伏特),电阻R(欧姆),电流强度I(安培),功率N(瓦特) 之间的关系是: V=IR, N=IV=I*I*R,或也可变形为:I=V/R,I=N/V等等. 但是必须注意,以上均是在直流(更准确的说,是直流稳态)电路情况下推导出来的!其它情况不适用. 如交流电路,那要对其作补充和修正求电压、电阻、电流与功率的换算关系 电流=I,电压=U,电阻=R,功率=P U=IR,I=U/R,R=U/I, P=UI,I=P/U,U=P/I P=U2/R,R=U2/P 还有P=I2R P=IU R=U/I 最好用这两个; 3、如电动机电能转化为热能和机械能: 电流符号: I 符号名称: 安培(安) 单位: A 公式: 电流=电压/电阻 I=U/R 单位换算: 1MA(兆安)=1000kA(千安)=1000000A(安) 1A(安)=1000mA(毫安)=1000000μA(微安) 单相电阻类电功率的计算公式= 电压U*电流I

单相电机类电功率的计算公式= 电压U*电流I*功率因数COSΦ 三相电阻类电功率的计算公式= 1.732*线电压U*线电流I(星形接法) = 3*相电压U*相电I(角形接法)三相电机类电功率的计算公式= 1.732*线电压U*线电流I*功率因数COSΦ 星形电流=I,电压=U,电阻=R,功率=P U=IR,I=U/R,R=U/I, P=UI,I=P/U,U=P/I P=U2/R,R=U2/P P=I2R 4、串联电路 P(电功率),U(电压),I(电流),W(电功),R(电阻),T(时间)电流处处相等: I1=I2=I 总电压等于各用电器两端电压之和: U=U1+U2 总电阻等于各电阻之和: R=R1+R2 U1:U2=R1:R2 总电功等于各电功之和“ W=W1+W2 W1:W2=R1:R2=U1:U2 P1:P2=R1:R2=U1:U2 总功率等于各功率之和: P=P1+P2 5、并联电路 总电流等于各处电流之和: I=I1+I2 各处电压相等: U1=U1=U 总电阻等于各电阻之积除以各电阻之和:

无功补偿原理

有功功率、无功功率及视在功率 [ 解决方案1 ] PostTime: 2008-9-3 16:08:01 国际电工委员会定义: 有功电流与线路电压的乘积称为有功功率(P:常用单位为瓦(W)或千瓦(KW)); 无功电流与线路电压的乘积称为无功功率(Q:常用单位为乏(Var)或千乏(Kvar)); 线路电压与线路电流的乘积称为视在功率(S:常用单位为伏安(VA)或千伏安(KVA)); 有功功率(P)、无功功率(Q)及视在功率(S)的关系如下图的功率三角形: 功率因数是有功功率与视在功率的比率,俗称力率: cosj =P/S 或写成:P=S·cosj 并联补偿原理 [ 解决方案1 ] PostTime: 2008-9-9 00:42:01 并联补偿电路是在工厂、生活用电、农业用电、电力网与变电站内最常见和具有实用意义的电路,如图4-2。 我们知道感性电路中电流滞后电压相位90°,而容性电路中电流超前电压相位90°,因此容性无功功率与感性无功功率二者正好相差180°。换句话说,如果电容性电抗等于电感性电抗,即X L=X C,此时Q C=Q L,二者正好抵消,电路中没有无功功率。这便是并联无功补偿的基本思路。 当未接电容C时,流过电感L的电流为I L,流过电阻R的电流为I R。电源所供给的电流与I1相等。I1=I R+jI L,此时相位角为j1,功率因数为cosj1。并联接入电容C后,由于电容电流I C与电

感电流I L方向相反(电容电流I C超前电压U90°,而电感电流滞后电压U90°),使电源供给的电流由I1减小为I2,I2=I R+j(I L_I C),相角由j1减小到j2,功率因数则由cosj1提高到cosj2。 在并联补偿电路中,如果所采用补偿电容的容量正好抵消电感线圈的容量,使电路中电压与电流同相位,此时电路呈电阻性,没有电抗,电感的无功功率正好为电容器的无功功率全部抵消,电源只向负载供应有功功率,此时功率因数cosj =1,这便是完全补偿状态。 无功补偿经济当量 [ 解决方案1 ] PostTime: 2008-9-9 00:42:54 所谓无功补偿经济当量,就是无功补偿后,当电网输送的无功功率减少1千乏时,使电网有功功率损耗降低的千瓦数。 众所周知,线路的有功功率损耗值如式(4-1) 因此减少的有功功率损耗为:

三相电路和线、相电压(电流)的关系

三相电路和线、相电压(电流)的关系 1、对称三相电源<?xml:namespace prefix = o /> 用3个频谱相同,幅值相等而相位依次相等120°的电动势作为供电电源的电路称为三相电路。 1)瞬时值表达式

2)相量表达式(单位相量算子) 3)波形图 三相电源的瞬时波形图如图28-1所示。从

图中可知,在任一瞬间,满足: 4)相序 一般以A,B,C为正序,A,C,B为反序。 图22-1 2、对称三相电源的联接方式 对称三相电源的连接方式有两种:Y联接和D联接。如P210图8-6(a)(b)所示。从A,B,C端引出的导线称为端线或相线,俗称火线,N点称Y联接的中性点,又称中点或零点。从中点引出的导线称中线。 3、三相负载 对称三相负载也分为Y联接和D联接。

4、对称三相电路 由对称三相电源和对称三相负载联接构成的电路,称为对称三相电路。其基本联接方式有四种,即Y-Y,Y-D,D-Y和D-D联接。 5、线电压(电流)与相电压(电流)的关系 a)相线对中点之间的电压,称为相电压;两相线之间的电压,称为线电压。 b)流经每相负载的电流,称为相电流;流经相线的电流,成为线电流。 c)Y联接对称三相电路 如P210图8-7(a)所示。分别为A,B,C三相的相电压

,分别为线电压。线、相电压之间的关系: 即线电压是相电压的倍,线电压在相位上超前相应相电压。线电流与相电流相等。 4)D联接对称三相电路 如P210图8-7(b)所示。线电压与相电压相等。为线电流,为相电流。线、相电流之间的关系: 即线电流是相电流的倍,线电流在相位上落后相应相电流。

相关文档