文档库 最新最全的文档下载
当前位置:文档库 › 高级计算机体系结构知识点

高级计算机体系结构知识点

高级计算机体系结构知识点
高级计算机体系结构知识点

第1章 计算机系统结构的基本概念

多级层次结构

从计算机语言的角度,把计算机系统按功能划分成多级层次结构。

虚拟机器

由软件实现的机器。 解释

语言实现的一种基本技术。每当一条N +1级指令被译码后,就直接去执行一串等效的N 级指令,然后再去取下一条N +1级的指令,依此重复进行。 翻译

语言实现的一种基本技术。先把N +1级程序全部变换成N 级程序后,再去执行新产生的N 级程序,在执行过程中N +1级程序不再被访问。

计算机系统结构

程序员所看到的计算机的属性,即概念性结构与功能特性。

经典计算机系统结构概念的实质

计算机系统中软、硬件界面的确定,其界面之上的是软件的功能,界面之下的是硬件和固件的功能。

透明性

在计算机技术中,对本来存在的事物或属性,但从某种角度看又好象不存在的概念称为透明性。

第6级

第5级 第4级

第3级

第2级 第1级

计算机组成

计算机系统的逻辑实现。

计算机实现

计算机系统的物理实现。

冯氏分类法

冯氏分类法是用系统的最大并行度对计算机进行分类。它是由冯泽云先生于1972年提出的。

最大并行度

计算机系统在单位时间内能够处理的最大的二进制位数。可以用平面直角坐标系中的一个点代表一个计算机系统,其横坐标表示字宽(n位),纵坐标表示一次能同时处理的字数(m 字)。m×n就表示了其最大并行度。

Flynn分类法

按照指令流和数据流的多倍性进行分类,它是M.J.Flynn于1966年提出的。

指令流

机器执行的指令序列。

数据流

由指令流调用的数据序列。

多倍性

在系统受限的部件上,同时处于同一执行阶段的指令或数据的最大数目。

以经常性事件为重点

对于大概率事件(最常见的事件),赋予它优先的处理权和资源使用权,以获得全局的最优结果。

系统的加速比

对系统中的某些部件进行改进,改进后的系统性能与改进前的系统性能之比。

Amdahl定律

加快某部件执行速度所获得的系统性能加速比,受限于该部件在系统中所占的重要性。

可改进比例

在改进前的系统中,可改进部分的执行时间在总的执行时间中所占的比例。

部件加速比

可改进部分改进以后性能提高的倍数。它是改进前所需的执行时间与改进后执行时间的比。

程序的局部性原理

程序在执行时所访问地址的分布不是随机的,而是相对地簇聚;这种簇聚包括指令和数据两

部分。

程序的时间局部性

程序即将用到的信息很可能就是目前正在使用的信息。

程序的空间局部性

程序即将用到的信息很可能与目前正在使用的信息在空间上相邻或者临近。

CPU性能公式

程序执行的CPU时间= CPI IC / 时钟频率

IC

程序执行过程中所处理的指令数。

反映了计算机指令集的结构和编译技术。

CPI

指令时钟数。

CPI = 总时钟周期数/ IC

反映了计算机实现技术、计算机指令集的结构和计算机组织。

响应时间

从事件开始到结束之间的时间,也称为执行时间。即计算机完成某一任务所花费的全部时间,包括访问磁盘、访问存储器、输入/输出、操作系统开销等。

流量

在单位时间内所能完成的工作量。

CPU时间

CPU为用户程序工作的时间,不包含I/O等待时间及运行其他程序的时间。可细分为用户CPU时间及系统CPU时间。

核心测试程序

由从真实程序中提取的较短但很关键的代码构成。

小测试程序

通常是指代码在几十行到100行的具有一些特定目的的测试程序。用户可以随时编写一些这样的程序来测试系统的各种功能,并产生用户已预知的输出结果,如皇后问题、迷宫问题、快速排序、求素数、计算π等。

合成测试程序

首先对大量的应用程序中的操作进行统计,得到各种操作比例,再按这个比例构造测试程序。Whetstone与Dhrystone是最流行的合成测试程序。

基准测试程序套件

为了能比较全面地反映计算机在各个方面的处理性能,通常采用整套测试程序。这组程序称为基准测试程序套件,它是由各种不同的真实应用程序构成的。目前最成功和最常见的测试程序套件是SPEC系列。

事务处理测试程序

主要测试在线事务处理(On-Line Transaction Processing,OLTP)系统的性能,包括数据库访问和更新等。

存储程序计算机

冯·诺依曼结构计算机

输入/输出方式

程序控制(程序等待、程序中断)、DMA、通道、I/O处理机

相联存储器CAM

可按内容访问的存储器。

相联处理机

以相联存储器为核心的处理机。相联存储器除了完成信息检索任务外,还能进行一些算术逻辑运算。

系列机

由同一厂家生产的具有相同的系统结构,但具有不同组成和实现的一系列不同型号的机器。

软件兼容

同一个软件可以不加修改地运行于系统结构相同的各档机器,而且它们所获得的结果一样,差别只在于运行时间不同。

兼容机

不同厂家生产的具有相同系统结构的计算机。

向上(下)兼容

按某档计算机编制的程序,不加修改的就能运行于比它高(低)档的计算机。

向前(后)兼容

按某个时期投入市场的某种型号机器编制的程序,不加修改地就能运行于在它之前(后)投入市场的机器。

模拟

用软件的方法在一台现有的机器(称为宿主机host)上实现另一台机器(称为虚拟机)的指令集。

仿真

用一台现有机器(称为宿主机)上的微程序去解释实现另一台机器(称为目标机)的指令集。

并行性

在同一时刻或是同一时间间隔内完成两种或两种以上性质相同或不相同的工作。只要时间上互相重叠,就存在并行性。

同时性

两个或多个事件在同一时刻发生的并行性。

并发性

两个或多个事件在同一时间间隔内发生的并行性。

字串位串

每次只对一个字的一位进行处理。这是最基本的串行处理方式。

字串位并

同时对一个字的全部位进行处理,不同字之间是串行的。

字并位串

同时对许多字的同一位(称为位片)进行处理。

全并行

同时对许多字的全部位或部分位进行处理。

指令内部并行

单条指令中各微操作之间的并行。

指令级并行

并行执行两条或两条以上的指令。

线程级并行

并行执行两个或两个以上的线程,通常是以一个进程内派生的多个线程为调度单位。

任务级或过程级并行

并行执行两个或两个以上的过程或任务(程序段),以子程序或进程为调度单元。

作业或程序级并行

并行执行两个或两个以上的作业或程序。

时间重叠

多个处理过程在时间上相互错开,轮流使用同一套硬件设备的各个部分,以加快硬件周转而赢得速度。

资源重复

通过重复设置资源,尤其是硬件资源,大幅度提高计算机系统的性能。

资源共享

是一种软件方法,它使多个任务按一定时间顺序轮流使用同一套硬件设备。

同构型(对称型)多处理机

由多个同类型,至少担负同等功能的处理机组成,同时处理同一作业中能并行执行的多个任务。

异构型(非对称型)多处理机

由多个不同类型,至少担负不同功能的处理机组成,按照作业要求的顺序,利用时间重叠原理,依次对它们的多个任务进行加工,各自完成规定的功能动作。

分布处理系统

把若干台具有独立功能的处理机(或计算机)相互连接起来,在操作系统的全盘控制下,统一协调地工作,而最少依赖集中的程序、数据或硬件。

耦合度

反映多机系统各机器之间物理连接的紧密程度和交互作用能力的强弱。

松散耦合

通过通道或通信线路实现计算机间互连,共享某些外围设备,机间的相互作用是在文件或数据集一级进行。

紧密耦合

机间物理连接的频带较高,它们往往通过总线或高速开关实现互连,可以共享主存。

第2章计算机指令集结构设计

堆栈型机器

其CPU中存储操作数的主要单元是堆栈。

累加器型机器

其CPU中存储操作数的主要单元是累加器。

通用寄存器型机器

CPU中存储操作数的主要单元是通用寄存器。

三种类型指令集结构

根据CPU内部存储单元类型,将指令集结构分为堆栈型指令集结构、累加器型指令集结构

和通用寄存器型指令集结构。

通用寄存器型指令集结构的三种类型

寄存器-寄存器型(RR:Register-Register)

寄存器-存储器型(RM:Register-Memory)

存储器-存储器型(MM:Memory-Memory)

CISC

复杂指令集计算机。

RISC

精简指令集计算机。

指令集结构的完整性

在一个有限可用的存储空间内,对于任何可解的问题,编制计算程序时,指令集所提供的指令足够使用。

指令集结构的规整性

没有或尽可能减少例外的情况和特殊的应用,以及所有运算都能对称、均匀地在存储器单元或寄存器单元之间进行。规整性主要包括对称性和均匀性。

对称性

指所有与指令集有关的存储单元的使用、操作码的设置等都是对称的。

均匀性

指对于各种不同的操作数类型、字长、操作种类和数据存储单元,指令的设置都要同等对待。

面向高级语言(HL)的机器

采用各种对高级语言和编译程序提供支持的措施,使机器语言和高级语言的语义差距比传统的冯·诺依曼型机器缩小许多。这种机器统称为面向高级语言(HL)的机器。

间接执行型高级语言机器

使高级语言成为机器的汇编语言。即高级语言和机器语言是一一对应的,这种机器称为间接执行型高级语言机器。

直接执行型高级语言机器

高级语言机器本身没有机器语言,或者说高级语言就作为机器语言。它可以直接由硬件或固件对高级语言源程序的语句逐条进行解释并执行。这种机器称为直接执行型高级语言机器。

跳转

当控制指令为无条件改变控制流时,称之为跳转。

分支

当控制指令是有条件改变控制流时,称之为分支。

位置无关

代码在执行时与它被载入的位置无关。

操作数类型

面向应用、面向软件系统所处理的各种数据结构。

操作数表示

硬件结构能够识别、指令系统可以直接调用的那些数据结构。

操作数的类型

主要有:整数(定点)、浮点、十进制、字符、字符串、向量、堆栈等。

变长编码格式

指令的长度是可变的。

定长编码格式

将操作类型和寻址方式组合编码在操作码中,所有指令的长度是固定唯一的。

混合型编码格式

通过提供一定类型的指令字长,期望能够兼顾降低目标代码长度和降低译码复杂度两个目标。

第3章流水线技术

一次重叠执行方式

把执行第k条指令与取第k+l条指令同时进行。

二次重叠执行方式

为了进一步提高执行速度,可以增加指令重叠执行的程度。把取第k+l条指令提前到与分析第k条指令同时进行,把分析第k+l条指令与执行第k条指令同时进行。

哈佛结构

程序空间和数据空间相互独立,因而具有独立的指令总线和数据总线的系统结构。

先行控制技术

缓冲技术和预处理技术的结合。

缓冲技术

在工作速度不固定的两个功能部件之间设置缓冲器,用以平滑它们的工作。

预处理技术

指预取指令、对指令进行加工以及预取操作数等。

流水线技术

将一个重复的时序过程分解成为若干个子过程,而每一个子过程都可有效地在其专用功能段上与其他子过程同时执行。

时(间)空(间)图

用来描述流水线的工作,横坐标表示时间,纵坐标代表流水线的各段。

流水线的深度

流水线的段数。

通过时间

流水线中第一个任务流出结果所需的时间。

单功能流水线

只能完成一种固定功能的流水线。

功能流水线

流水线的各段可以进行不同的连接,从而使流水线在不同的时间,或者在同一时间完成不同的功能。

TI ASC的多功能流水线

静态流水线

在同一时间内,流水线的各段只能按同一种功能的连接方式工作。

动态流水线

在同一时间内,当某些段正在实现某种运算时,另一些段却在实现另一种运算。

部件级流水线(运算操作流水线)

把处理机的算术逻辑部件分段,以便为各种数据类型进行流水操作。

处理机级流水线(指令流水线)

把解释指令的过程按照流水方式处理。

处理机间流水线(宏流水线)

由两个以上的处理机串行地对同一数据流进行处理,每个处理机完成一项任务。

标量流水处理机

不具有向量数据表示,仅对标量数据进行流水处理的处理机。

向量流水处理机

具有向量数据表示,并通过向量指令对向量的各元素进行处理的流水处理机。

线性流水线

流水线的各段串行连接,没有反馈回路。

非线性流水线

1 2 3

4 6 5

7 8

2 3 4 5 6 7

8 6 7 8 (b )浮点连接 (a )分段

(c )定乘连接

1 1

2

3

4 5

流水线中除有串行连接的通路外,还有反馈回路。

非线性流水线的调度

在非线性流水线中,确定什么时候向流水线引进新的任务,才能使该任务不会与先前进入流水线的任务发生冲突——争用流水段。

顺序流水线

流水线输出端任务流出的顺序与输入端任务流入的顺序完全相同。每一个任务在流水线的各段中是一个跟着一个顺序流动的。

乱序流水线

流水线输出端任务流出的顺序与输入端任务流入的顺序可以不同,允许后进入流水线的任务先完成(从输出端流出)。又称为无序流水线、错序流水线、异步流水线。

吞吐率

在单位时间内流水线所完成的任务数或输出结果的数量。

最大吞吐率

流水线在连续流动达到稳定状态后所得到的吞吐率。

流水线的瓶颈

流水线中最慢的一段。

消除瓶颈段的两种方法

细分瓶颈段、重复设置瓶颈段

加速比

流水线的速度与等功能的非流水线的速度之比。

效率

流水线的设备利用率。

排空时间

流水线中最后一个任务通过流水线所需的时间。

流水寄存器建立时间

在触发写操作的时钟信号到达之前,寄存器输入必须保持稳定的时间。

流水寄存器传输延迟

时钟信号到达后到寄存器输出可用的时间。

时钟偏移开销

流水线中,时钟到达各流水寄存器的最大差值时间(时钟到达各流水寄存器的时间不是完全相同)。

相关

指两条指令之间存在某种依赖关系。确定程序中指令之间存在什么样的相关,对于充分发挥流水线的效率有重要的意义。

数据相关

对于两条指令i(在前)和j(在后),如果下述条件之一成立,则称指令j与指令i数据相关:

(1)指令j使用指令i产生的结果;

(2)指令j与指令k数据相关,而指令k又与指令i数据相关。

指指令所访问的寄存器或存储器单元的名称。

名相关

如果两条指令使用相同的名,但是它们之间并没有数据流动,则称这两条指令存在名相关。

反相关

如果指令j(在后)写的名与指令i(在前)读的名相同,则称指令i和j发生了反相关。反相关指令之间的执行顺序是必须严格遵守的,以保证i读的值是正确的。

输出相关

如果指令j(在后)和指令i(在前)写相同的名,则称指令i和j发生了输出相关。输出相关指令的执行顺序是不能颠倒的,以保证最后的结果是指令j写进去的。

换名技术

通过改变指令中操作数的名来消除名相关。

寄存器换名

对于寄存器操作数进行换名称为寄存器换名。这个过程既可以用编译器静态实现,也可以用硬件动态完成。

控制相关

由分支指令引起的相关。它需要根据分支指令的执行结果来确定后续指令是否执行。

流水线冲突

指对于具体的流水线来说,由于相关的存在,使得指令流中的下一条指令不能在指定的时钟周期执行。

结构冲突

因硬件资源满足不了指令重叠执行的要求而发生的冲突。

数据冲突

当相关的指令靠得足够近时,它们在流水线中的重叠执行或者重新排序会改变指令读/写操作数的顺序,使之不同于它们非流水实现时的顺序,则发生了数据冲突。

控制冲突

流水线遇到分支指令和其他会改变PC值的指令所引起的冲突。

流水线气泡

流水线中插入的暂停周期。

定向技术

当流水线中出现数据冲突时,可以将计算结果从其产生的地方直接送到其他指令中需要它的地方,或所有需要它的功能单元,避免暂停。

写后读冲突(RAW)

考虑流水线中的两条指令i和j,且i在j之前进入流水线中,j的执行要用到i的计算结果,当它们在流水线中重叠执行时,j可能在i写入其计算结果之前就先行对保存该结果的寄存器进行读操作,从而得到错误的值。

写后写冲突(W AW)

考虑流水线中的两条指令i和j,且i在j之前进入流水线中,j和i的目的寄存器相同,当它们在流水线中重叠执行时,j可能在i写入其计算结果之前就先行对该结果寄存器进行写操作,从而导致写入顺序错误,在目的寄存器中留下的是i写入的值,而不是j写入的值。

读后写冲突(W AR)

考虑流水线中的两条指令i和j,且i在j之前进入流水线中,j可能在i读取某个源寄存器的内容之前就先对该寄存器进行写操作,导致i后来读取到的值是错误的。

流水线调度或指令调度

当流水线中出现冲突时,编译器通过重新排列代码的顺序来消除流水线中的暂停,这种技术称为流水线调度。

冻结或排空流水线

在流水线中,处理分支最简单的方法,保持或清除流水线在分支指令之后读入的任何指令,直到知道分支指令的目标地址以及分支转移是否成功为止。

分支延迟

由分支指令引起的延迟。

预测分支失败的方法

当流水线译码到一条分支指令时,流水线继续取指令,并允许该分支指令后的指令继续在流水线中流动。当流水线确定分支转移成功与否以及分支的目标地址之后,如果分支转移成功,流水线必须将在分支指令之后取出的所有指令转化为空操作,并在分支的目标地址处重新取出有效的指令;如果分支转移失败,那么可以将分支指令看作是一条普通指令,流水线正常流动,无需将在分支指令之后取出的所有指令转化为空操作。

预测分支成功的方法

一旦流水线译码到一条指令是分支指令,且完成了分支目标地址的计算,我们就假设分支转移成功,并开始在分支目标地址处取指令执行。

“延迟分支”方法

其主要思想是从逻辑上“延长”分支指令的执行时间。设延迟长度为n的分支指令后面有n个分支延迟槽,选择n条有效和有用的指令放入分支延迟槽中,无论分支成功与否,流水线都会执行这些指令。处于分支延迟槽中的指令“掩盖”了流水线原来必须插入的暂停周期。

水平(横向)处理方式

在横向处理方式中,向量计算是按行的方式从左到右横向地进行。若向量长度为N,则水平处理方式相当于执行N次循环。若使用流水线,在每次循环中可能出现数据相关和功能转换,不适合对向量进行流水处理。

垂直(纵向)处理方式

将整个向量按相同的运算处理完毕之后,再去执行其他运算。

存储器-存储器型操作的运算流水线

向量运算指令的源/目向量都放在存储器内,使得流水线运算部件的输入、输出端直接与存储器相联,构成MM型的运算流水线。

分组(纵横)处理方式

把长度为N的向量分为若干组,每组长度为n,组内按纵向方式处理,依次处理各组,组数为「N/n」,适合流水处理。

寄存器-寄存器型操作的运算流水线

可设长度为n的向量寄存器,使每组向量运算的源/目向量都在向量寄存器中,流水线的运算部件输入、输出端与向量寄存器相联,构成RR型运算流水线。

V i冲突

并行工作的各向量指令的源向量或结果向量的V i有相同的。

功能部件冲突

向量功能部件冲突指的是同一个向量功能部件被一条以上的并行工作向量指令所使用。

链接技术

两条向量指令出现“写后读”相关时,若它们不存在功能部件冲突和向量寄存器(源或目的)冲突,就有可能把它们所用的功能部件头尾相接,形成一条链接流水线,进行流水处理。

链接流水线的流水时间

在链接流水线中,从第一个操作数开始流动到第一个结果产生并存入向量寄存器所需的时间。

向量循环或分段开采技术

当向量的长度大于向量寄存器的长度时,就必须把长向量分成固定长度的段,然后循环分段处理,一次循环只处理一个向量段。

向量处理机的峰值性能R :

当向量长度为无穷大时,向量处理机的最高性能,也称为峰值性能。

半性能向量长度

n

2/1

向量处理机的运行性能达到其峰值性能

R的一半时所必须满足的向量长度。

向量长度临界值

对于某一计算任务而言,向量方式的处理速度优于标量串行方式处理速度时所需的最小向量长度。

第4章指令级并行

指令级并行

当指令之间不存在相关时,它们可以在流水线中重叠起来并行执行。这种指令序列中存在的潜在并行性称为指令级并行。

基本程序块

如果一串连续的代码除了入口和出口以外,没有其他的分支指令和转入点,则称之为一个基本程序块。

循环级并行性

循环体中指令之间的并行性。

程序顺序

由源程序确定的在完全串行方式下指令的执行顺序。

保持异常行为

无论怎么改变指令的执行顺序,都不能改变程序中异常的发生情况。即原来程序中是怎么发生的,改变执行顺序后还是怎么发生。

静态调度技术

依靠编译器对代码进行静态调度,以减少相关和冲突。它不是在程序执行的过程中、而是在编译期间进行代码调度和优化。静态调度通过把相关的指令拉开距离来减少可能产生的停顿。

动态调度方法

在流水线中出现相关时,通过硬件重新安排指令的执行顺序,来调整相关指令实际执行时的关系,减少处理器空转。

不精确异常

当执行指令i导致发生异常时,处理机的现场(状态)与严格按程序顺序执行时指令i的现场不同。

精确异常

当执行指令i导致发生异常时,处理机的现场跟严格按程序顺序执行时指令i的现场相同。

Tomasulo算法的核心思想

①记录和检测指令相关,操作数一旦就绪就立即执行,把发生RAW冲突的可能性减少到最少;②通过寄存器换名来消除W AR冲突和W AW冲突。

保留站

设置在运算部件的入口,每个保留站中保存一条已经流出并等待到本功能部件执行的指令(相关信息),包括操作码、操作数以及用于检测和解决冲突的信息。

CDB

公共数据总线。它是一条重要的数据通路,所有功能部件的计算结果都要送到CDB上,由它把这些结果直接送到(播送到)各个需要该结果的地方。

动态分支预测技术

在程序运行时,根据分支指令过去的表现来预测其将来的行为。如果分支行为发生了变化,预测结果也跟着改变。动态分支预测技术的目的有两个:预测分支是否成功和尽快找到分支目标地址(或指令),从而避免因控制相关而造成流水线停顿。

分支历史表BHT

记录分支指令最近一次或几次的执行情况(成功或不成功),并据此进行预测。

BTB

分支目标缓冲器。用专门的硬件实现的一张表格。表格中的每一项至少有两个字段:①执行过的成功分支指令的地址;②预测的分支目标地址。

前瞻执行

对分支指令的结果进行猜测,并假设这个猜测总是对的,然后按这个猜测结果继续取、流出和执行后续的指令。只是执行指令的结果不是写回到寄存器或存储器,而是放到一个称为ROB的缓冲器中。等到相应的指令得到“确认”(即确实是应该执行的)后,才将结果写入寄存器或存储器。

ROB

再定序缓冲器。在指令操作完成后到指令被确认的这一时间段内,为指令保存数据。

多流出技术

在每个时钟周期流出多条指令。

超标量处理机

一种多流出处理机。在每个时钟周期流出的指令条数不固定,依代码的具体情况而定,不过

有个上限。设这个上限为n,就称该处理机为n流出。

超长指令字VLIW技术

一种多指令流出技术。在每个时钟周期流出的指令条数是固定的,这些指令构成一条长指令或者一个指令包,在这个指令包中,指令之间的并行性是通过指令显式地表示出来的。

超流水线处理机

在一个时钟周期内能够分时流出多条指令的处理机。

循环展开技术

开发循环级并行的一种基本技术。它将循环体展开若干次,将循环级并行转化为指令级并行。这个过程既可以通过编译器静态完成,也可以通过硬件动态进行。

第5章存储层次

存储器的三个主要指标

从用户的角度来看,存储器的三个主要指标是:容量、速度和价格。

多级存储层次

由若干个采用不同实现技术的存储器构成的存储器系统。各存储器处在离CPU不同距离的层次上。其目标是速度接近于离CPU最近的存储器的速度,容量达到离CPU最远的存储器的容量。

命中率H

CPU在第一级存储器中找到所需数据的概率。

不命中率或失效率F

CPU在第一级存储器中找不到所需数据的概率。

失效开销

CPU向第二级存储器发出访问请求到把这个数据块调入第一级存储器所需的时间。

平均访问时间T A

T A=命中时间+失效率×失效开销

“Cache-主存”层次

在CPU和主存之间增加一级速度快、但容量较小而每位价格较贵的高速缓冲存储器。借助于辅助软硬件,它与主存构成一个有机的整体,以弥补主存速度的不足。

“主存-辅存”层次

“主存—辅存”层次的目的是为了弥补主存容量的不足。它是在主存外面增加一个容量更大、

每位价格更便宜、但速度更慢的存储器。它们依靠辅助软硬件的作用,构成一个整体。

全相联映像

当把一个块从主存调入Cache时,它可以被放置到Cache中的任意一个位置。

直接映像

当把一个块从主存调入Cache时,它只能被放置到Cache中唯一的一个位置。

组相联映像

当把一个块从主存调入Cache时,它可以被放置到Cache中唯一的一个组中的任何一个位置(Cache被等分为若干组,每组由若干个块构成)。

n路组相联

在组相联映像中,如果每组中有n个块,则称该映像规则为n路组相联。

相联度

组相联映像中每组中的块数。

目录表

目录表所包含的项数与Cache的块数相同,每一项对应于Cache中的一个块,用于指出当前该块中存放的信息是哪个主存块的。

候选位置

一个主存块可能映像到Cache中的一个或多个Cache块位置,这些Cache块位置称为候选位置。

随机法

随机地选择被替换的块。

先进先出法(FIFO)

选择最早调入的块作为被替换的块。

最近最少使用法(LRU)

选择近期最少被访问的块作为被替换的块。

写直达法

在执行“写”操作时,不仅把信息写入Cache中相应的块,而且也写入下一级存储器中相应的块。

写回法

在执行“写”操作时,只把信息写入Cache中相应的块。该块只有在被替换时,才被写回主存。

按写分配法

写失效时,先把所写单元所在的块调入Cache,然后再进行写入。

不按写分配法

写失效时,直接写入下一级存储器中,而不把相应的块调入Cache。

分离Cache

将单一的Cache分为两个Cache:一个专门存放指令,另一个专门存放数据。

混合Cache

将指令和数据放在一个统一的Cache中。

强制性失效

当第一次访问一个块时,该块不在Cache中,需从下一级存储器中调入Cache,这就是强制性失效。

容量失效

如果程序执行时所需的块不能全部调入Cache中,则当某些块被替换后,若又重新被访问,就会发生失效。这种失效称为容量失效。

冲突失效

在组相联或直接映像Cache中,若太多的块映像到同一组(块)中,则会出现该组中某个块被别的块替换(即使别的组或块有空闲位置),然后又被重新访问的情况。这就发生了冲突失效。

2:1的Cache经验规则

大小为N的直接映像Cache的失效率约等于大小为N/2的两路组相联Cache的失效率。

Victim Cache

在Cache与下一级存储器的数据通路之间增设一个全相联的小Cache,用来存放由于失效而被丢弃(替换)的那些块。

伪相联

一种既能获得多路组相联Cache的低失效率,又能获得直接映像Cache的命中速度的相联办法。采用这种方法时,在命中情况下,访问Cache的过程和直接映像Cache中的情况相同;而发生失效时,在访问下一级存储器之前,会先检查Cache另一个位置(块),看是否匹配。确定这个“另一块”的一种简单的方法是将索引字段的最高位取反,然后按照新索引去寻找“伪相联组”中的对应块。如果这一块的标识匹配,则称发生了“伪命中”。否则,就只好访问下一级存储器。

寄存器预取

预取时,把数据取到寄存器中。

Cache预取

预取时,只将数据取到Cache中,不放入寄存器。

故障性预取

在预取时,若出现虚地址故障或违反保护权限,则会发生异常。

非故障性预取或非绑定预取

预取时,若出现虚地址故障或违反保护权限,则不会发生异常。

非阻塞Cache或非锁定Cache

Cache在等待预取数据返回的同时,还能继续提供指令和数据。

子块放置技术

把一个Cache块划分为若干个小块,称为子块。为每一个子块赋一位有效位,用于说明该子块中的数据是否有效。失效时只从下一级存储器调入一个子块。

请求字

当从存储器向CPU调入一块时,块中只有一个字是CPU立即需要的,这个字称为请求字。

尽早重启动

在请求字没有到达时,CPU处于等待状态。一旦请求字到达,就立即发送给CPU,让等待的CPU尽早重启动,继续执行。

请求字优先

调块时,首先向存储器请求CPU所要的请求字。请求字一旦到达,就立刻送往CPU,让CPU 继续执行,同时从存储器调入该块的其余部分。

失效下的命中

Cache在失效时仍允许CPU进行其它的命中访问。

局部失效率

对于某一级Cache来说:

局部失效率=该级Cache的失效次数/到达该级Cache的访存次数

全局失效率

对于某一级Cache来说:

全局失效率=该级Cache的失效次数/CPU发出的访存总次数

虚拟Cache

访问Cache的索引和标识都是虚拟地址的一部分。

物理Cache

访问Cache的索引和标识都是物理地址的一部分。

进程标识符字段(PID)

虚拟Cache中,为了减少清空Cache的次数,在地址标识中增加一个进程标识符字段,指出

计算机体系结构论文

计算机体系结构论文 论文题目:计算机系统结构中多处理机技术姓名:XXX 班级:XXX 学号:XXXX

摘要:多处理机是指能同时执行多个进程的计算机系统.多处理机通过共享的主存或输入/输出子系统或高速通信网络进行通信。利用多台处理机进行多任务处理,协同求解一个大而复杂的问题来提高速度,或者依靠冗余的处理机及其重组能力来提高系统的可靠性、适应性和可用行。该文介绍了微处理器的发展、多处理机的总线以及处理机系统中通信和存储技术的发展和两种特殊的多处理机系统结构,以及现今几种典型的并行计算机体系结构及处理机分配与调度策略。而本篇论文主要根据所阅读的文章进行扩展延伸,主要介绍了多处理机技术,它的总线以及分配调度方面。 关键字:多处理机;体系结构;总线;调度 引言: 微电子技术和封装技术的进步,使得高性能的VLSI微处理器得以大批量生产,性能价格比不断合理,这为并行多处理机的发展奠定了重要的物质基础。计算机系统性能增长的根本因素有两个:一个是微电子技术,另一个是计算机体系结构技术。五十年代以来,人们先后采用了先行控制技术、流水线技术、增加功能部件甚至多机技术、存储寻址和管理能力的扩充、功能分布的强化、各种互联网络的拓扑结构以及支持多道、多任务的软件技术等_系列并行处理技术,提高计算机处理速度,增强系统性能。多处理机体系结构是计算机体系结构发展中的一个重要内容,已成为并行计算机发展中人们最关注的结构。 多处理机的介绍: 多处理机是指能同时执行多个进程的计算机系统。 由于超大规模集成电路(VLSI)技术迅速发展的结果,多处理技术能够充分地发挥高性能的32位微处理机的有效性,用大量低价格的部件配置高性能的计算机结构系统.以典型的

计算机体系结构期末复习

计算机体系结构期末复习资料 1.并行性:是指在同一时刻或者是同一时间间隔内完成两种或两种以上性质相同或不同的工作。 2.CPI:每条指令执行时所花费的平均时钟周期。 3.体系结构:即计算机的属性,即概念性结构与功能特性。 4.Amdahl定理:加快某部件执行速度所获得的系统性能加速比,受限于该部件在系统中所占的重要性。 5.信息存储的整数边界:信息在主存中存放的起始地址必须是该信息(字节数)的整数倍。 6.指令系统的正交性:指在指令中各个不同含义的字段,在编码时应互不相关,相互独立。 7.流水线技术:是指将一个重复的时序过程,分解成为若干子过程,而每个过程都可有效在其专用功能段上与其他子过程同时执行。 8.定向技术:在某条指令产生一个结果之前,其他指令并不直接需要该计算结果,如果能将该计算结果从其他产生的地方直接送到其他指令需要它的地方,那么就可以避免暂停的技术就叫定向技术。 9.相关:衡量两个随机变量之间相关程度的指标。 10.向量流水处理机:是指处理机具有向量数据表示并通过向量指令对向量的各元素进行处理。、

11.定向:将计算结果从其产生的地方直接送到其他指令需要它的地方,或所有需要它的功能单元,避免暂停。 12.指令集的并行:当指令之间不存在相关时,它们在流水线中是可以重叠起来并行执行。 13.记分牌技术:流出和读操作数。在没有结构冲突时,尽可能早地执行没有数据冲突的指令,实现每个时钟周期执行一条指令。如果某条指令被暂停,而后面的指令与流水线中正在执行或被暂停的指令都不相关,是这些指令可以跨越它,继续流出和执行下去。 14.Tomasulo算法:寄存器换名是通过保留站和流出逻辑来共同完成,当指令流出时,如果其操作数还没有计算出来,则该指令中相应的寄存器换名将产生这个操作数的保留站的标识。因此,指令流出到保留站后,其操作数寄存器或者换成了数据本身,或换成了保留站的标识,和寄存器无关。后面指令对该寄存器的写入操作就不会产生WAR冲突。 15.替换算法:由于主存中的块比Cache中的块多,所以当要从主存中调一个块到Cache中时,会出现该块所映象到的一组(或一个)Cache块已全部被占用的情况。这时,需要被迫腾出其中的某一块,以接纳新调入的块。

软件体系结构总结

第一章:1、软件体系结构的定义 国内普遍看法: 体系结构=构件+连接件+约束 2、软件体系结构涉及哪几种结构: 1、模块结构(Module) 系统如何被构造为一组代码或数据单元的决策 2、构件和连接件结构(Component-And-Connector,C&C) 系统如何被设计为一组具有运行时行为(构件)和交互(连接件)的元素 3、分配结构(Allocation) 展示如何将来自于模块结构或C&C结构的单元映射到非软件结构(硬件、开发组和文件系统) 3、视图视点模型 视点(View point) ISO/IEC 42010:2007 (IEEE-Std-1471-2000)中规定:视点是一个有关单个视图的规格说明。 视图是基于某一视点对整个系统的一种表达。一个视图可由一个或多个架构模型组成 架构模型 架构意义上的图及其文字描述(如软件架构结构图) 视图模型 一个视图是关于整个系统某一方面的表达,一个视图模型则是指一组用来构建 4、软件体系结构核心原模型 1、构件是具有某种功能的可复用的软件结构单元,表示了系统中主要的计算元素和数据存储。 2.连接件(Connector):表示构件之间的交互并实现构件

之间的连接 特性:1)方向性2)角色3)激发性4)响应特征 第二章 1、软件功能需求、质量属性需求、约束分别对软件架构产生的影响 功能性需求:系统必须实现的功能,以及系统在运行时接收外部激励时所做出的行为或响应。 质量属性需求:这些需求对功能或整个产品的质量描述。 约束:一种零度自由的设计决策,如使用特定的编程语言。 质量原意是指好的程度,与目标吻合的程度,在软件工程领域,目标自然就是需求。 对任何系统而言,能按照功能需求正确执行应是对其最基本的要求。 正确性是指软件按照需求正确执行任务的能力,这无疑是第一重要的软件质量属性。质量属性的优劣程度反映了设计是否成功以及软件系统的整体质量。 系统或软件架构的相关视图的集合,这样一组从不同视角表达系统的视图组合在一起构成对系统比较完整的表达

系统结构期末考试试题及答案

得分 评分人 填空题: (20分,每题2 分) 单选题:(10分,每题1分) A.任何虚页都可装入主存中任何实页的位置 B. 一个虚页只装进固定的主存实页位置 《计算机系统结构》期末考试试卷(A ) 得分 注:1、共100分,考试时间120分钟。 2、此试卷适用于计算机科学与技术本科专业。 1、."启动I/O"指令是主要的输入输出指令,是属于( A. 目态指令 B.管态指令 C.目态、管态都能用的指令 D.编译程序只能用的指令 2、 输入输出系统硬件的功能对 (B )是透明的 A.操作系统程序员 B.应用程序员 C.系统结构设计人员 D.机器语言程序设计员 3、 全相联地址映象是指(A ) C. 组之间固定,组内任何虚页可装入任何实页位置 D.组间可任意装入,组内是固定装入 4、( C ) 属于MIMD 系统结构 A.各处理单元同时受一个控制单元的管理 B.各处理单元同时受同个控制单元送来的指令 C.松耦合多处理机和多计算机系统 D. 阵列处理机 5、多处理机上两个程序段之间若有先写后读的数据相关,则( B ) A.可以并行执行 B.不可能并行 C.任何情况均可交换串行 D.必须并行执行 6、 计算机使用的语言是(B ) A.专属软件范畴,与计算机体系结构无关 B.分属于计算机系统各个层次 C.属于用以建立一个用户的应用环境 D. 属于符号化的机器指令 7、 指令执行结果出现异常引起的中断是( C ) A.输入/输出中断 B.机器校验中断 C.程序性中断 D.外部中断 &块冲突概率最高的 Cache 地址映象方式是(A ) A.直接 B .组相联 C .段相联 D .全相联 9、 组相联映象、LRU 替换的Cache 存储器,不影响 Cache 命中率的是(B ) A.增大块的大小 B .增大主存容量 C .增大组的大小 D .增加Cache 中的块数 10、 流水处理机对全局性相关的处理不 包括(C ) A.猜测法 B.提前形成条件码 C.加快短循环程序的执行 D.设置相关专用通路

计算机系统结构复习总结

计算机系统结构复习总结

计算机系统结构复习总结 一、计算机系统结构概念 1.1 计算机系统结构:程序员所看到的计算机的基本属性,即概念性结构与功能特性。 *注意:对不同层次上的程序员来说,由于使用的程序设计语言不同,可能看到的概念性结构和功能特性会有所不同。 1.2 计算机系统的层次结构 现代计算机是一种包括机器硬件、指令系统、系统软件、应用程序和用户接口的集成系统。 现代计算机结构图 *注意:计算机结构的层次模型 依据计算机语言广义的理解,可将计算机系统看成由多级“虚拟”计算机所组成。

从语言层次上画分可得下图: 计算机结构的层次模型 1.3计算机系统结构组成与实现 计算机系统结构:是计算机系统的软件与硬件直接的界面 计算机组成:是指计算机系统结构的逻辑实现 计算机实现:是指计算机组成的物理实现*计算机系统结构、组成与实现三者间的关系: 计算机系统结构不同会影响到可用的计算机组成技术不同,而不同的计算机组成又会反过来影响到系统结构的设计。因此,计算机系统结构的设计必须结合应用来考虑,要为软件和算法的实现提供更多更好的硬件支持,同时要考虑可

能采用和准备采用哪些计算机组成技术,不能过多或不合理地限制各种计算机组成、实现技术的采用与发展。 计算机组成与计算机实现可以折衷,它主要取决于器件的来源、厂家的技术特长和性能价格比能否优化。应当在当时的器件技术条件下,使价格不增或只增很少的情况下尽可能提高系统的性能。 1.4 计算机系统结构的分类 计算机结构分类方式主要有三种: (1)按“流”分类 按“流”分类法是Flynn教授在1966年提出的一种分类方法,它是按照计算机中 指令流(Instruction Stream)和数据流(Data Stream)的多倍性进行分类。指令流是指机 器执行的指令序列,数据流是指指令流调用 的数据序列。多倍性是指在计算机中最受限 制(瓶颈最严重)的部件上,在同一时间单 位中,最多可并行执行的指令条数或处理的 数据个数。 *注意:按“流”分类法,即Flynn分类法的逻

计算机系统结构论文

计算机系统结构论文 计算机系统结构中多处理机技术 摘要:多处理机通过共享的主存或输入/输出子系统或高速通信网络进行通信。利用多台处理机进行多任务处理,协同求解一个大而复杂的问题来提高速度,或者依靠冗余的处理机及其重组能力来提高系统的可靠性、适应性和可用行。该文介绍了微处理器的发展、多处理机的总线以及处理机系统中通信和存储技术的发展和两种特殊的多处理机系统结构。 关键词:多处理机;体系结构;总线 微电子技术和封装技术的进步,使得高性能的VLSI 微处理器得以大批量生产,性能价格比不断合理,这为并行多处理机的发展奠定了重要的物质基础。 计算机系统性能增长的根本因素有两个:一是微电子技术,另一个是计算机体系结构技术。五十年代以来,人们先后采用了先行控制技术、流水线技术、增加功能部件甚至多机技术、存储寻址和管理能力的扩充、功能分布的强化、各种互联网络的拓扑结构以及支持多道、多任务的软件技术等一系列并行处理技术,提高计算机处理速度,增强系统性能。多处理机体系结构是计算机体系结构发展中的一个重要内容,已成为并行计算机发展中人们最关注的结构。

1 微处理器的发展 20 世纪80 年代中期,RISC 精简指令集计算机,用20%指令的组合实现了CISC 计算机指令系统不常用的80%指令的功能。在提高性能方面,RISC 采用了超级流水线、超级标量、超长指令字并行处理结构;多级指令Cache;编译优化等技术,充分利用RISC 的内部资源,发挥其内部操作的并行性,从而提高流水线的执行效率。20 世纪80 年代后期,RISC 处理机的性能指标几乎以每年翻一番的速度发展,它对于提高计算机系统的性能和应用水平起着巨大的作用。 目前,由Intel 和HP 两家公司联合开发的基于IA—64 架构的Merced 芯片,并由其共同定义的显式并行指令计算技术EPIC(Explicitly Parallel Instruction Computing ),将为微处理器技术的发展带来突破性进展。EPIC 技术主要指编译器在微处理器执行指令之前就对整个程序的代码作出优化安排,编译器分析指令间的依赖关系,将没有依赖关系的指令(最多3 个)组成一“组”,由Merced内置的执行单元读入被分成组的指令群并执行。从理论上讲,EPIC 可以并行执行3 倍于执行单元数的指令。64 位体系结构的Merced 芯片还采用了指令预测、数据预装等技术,可以显著地减少实际执行程序的长度,同时增强语句执行的并行性,经过代码的重组,程序的执行时间比基于传统体系结构

计算机体系结构知识点

目录 第一章计算机系统结构基本概念 (2) (一) 概念 (2) (二) 定量分析技术 (3) (三) 计算机系统结构发展 (4) (四) 计算机的并行性 (5) 第二章计算机指令集结构 (7) 一. 指令集结构的分类 (7) 二. 寻址方式 (7) 三. 指令集结构的功能设计 (8) 四. 指令格式的设计 (10) 五. MIPS指令集结构 (10) 第三章流水线技术 (14) 一. 流水线的基本概念 (14) 二. 流水线的性能指标 (14) 三. 流水线的相关与冲突 (16) 四. 流水线的实现 (18) 第四章指令集并行 (18) 付志强

第一章计算机系统结构基本概念 (一)概念 什么是计算机系统结构:程序员所看到的计算机属性,即概念性结构与功能特性. 透明性:在计算机技术中,把本来存在的事物或属性,但从某种角度看又好像不存在的概念成为透明性. 常见计算机系统结构分类法 冯氏分类法(冯泽云):按最大并行度对计算机进行分类. Flynn分类法:按指令流和数据流多倍性进行分类 ①单指令流单数据流 ②单指令流多数据流 ③多指令流单数据流(不存在) ④多指令流多数据流 付志强

(二)定量分析技术 Amdahl定律:加快某部件执行速度所能获得的系统性能加速比,受限于该部件的执行时间占系统中总执行时间的百分比. 加速比=系统性能 改进后 系统性能 改进前 = 总执行时间 改进前 总执行时间 改进后 加速比依赖于以下两个因素 ①可改进比例 ②部件加速比 CPU性能公式 CPU时间 CPU时间=执行程序所需时间的时钟周期数x时钟周期时间(系统频率倒数) CPI(Cycles Per Instruction) CPI =执行程序所需时钟周期数/所执行指令条数 ∴CPU时间= IC x CPI x 时钟周期时间 可知CPU性能取决于一下三个方面 ①时钟周期时间:取决于硬件实现技术和计算机组成 付志强

计算机系统结构期末考试题目

第一章: 1.计算机系统结构的定义 答:由程序设计者看到的一个计算机系统的属性,即概念性结构和功能特性。 2.透明性概念 答:在计算机技术中,一种本来是存在的事物或属性,但从某种角度看似乎不存在,称为透明性现象。 3.兼容性向后兼容 兼容性:同一个软件可以不加修改地运行于系统结构相同的各档机器,可获得相同的结果,差别只在于不同的运行时间。 向后兼容:按某个时期投入市场的某种型号机器编制的程序,不加修改就能运行于在它之后投入市场的机器。 4.Amdahl定律 答:系统中某一部件由于采用某种更快的执行方式后整个系统性能的提高与这种执行方式的使用频率或占总执行时间的比例有关。 5.CPI 答:每条指令的平均时钟周期数。 6.MIPS 答:每秒百万条指令数!MIPS=时钟频率/(CPI*10^6) 7.MFLOPS 答:每秒百万次浮点操作次数。MFLOPS=程序中的浮点操作次数/(执行时间*10^6) 8.命中率的概念 答: 9.Flynn分类法是按指令流和数据流的多倍性特征进行计算机系统结构的划分 答:①单指令流单数据流SISD ②单指令流多数据流SIMD ③多指令流单数据流MISD(实际不存在)④多指令流多数据流MIMD 10.计算机系统设计的定量原理(四个) 答:①加快经常性事件的速度②Amdahl定律③CPU性能公式④访问的局部性原理11.CPI和加速比的计算 答:CPI=CPU时钟周期数/IC CPU时间=CPU时钟周期数/频率 CPU时间=CPU时钟周期*时钟周期长 加速比=(采用改进措施后的性能)/(没有采用改进措施前的性能) =(没有采用改进措施前执行某任务的时间)/(采用改进措施后执行某任务的时间) 12.软硬件实现的特点 硬件实现:速度快、成本高;灵活性差、占用内存少 软件实现:速度低、复制费用低;灵活性好、占用内存多 13.系统评价的标准 ①运算速度②存储器系统③其他性能④成本标准

计算机系统结构学习心得

计算机系统结构学习心得 姓名: 班级: 学号:

在大四上学期课程中对于计算机系统结构的学习已经结束,老师细心的讲解,耐心的辅导,是我从中学到很多的知识。 从中我了解到计算机系统结构(Computer Architecture)也称为计算机体系结构,它是由计算机结构外特性,内特性,微外特性组成的。经典的计算机系统结构结构的定义是指计算机系统多级层次结构中机器语言机器级的结构,它是软件和硬件固件的主要交界面,是由机器语言程序、汇编语言源程序和高级语言源程序翻译生成的机器语言目标程序能在机器上正确运行所应具有的界面结构和功能。计算机系统结构指的是什么? 是一台计算机的外表? 还是是指一台计算机内部的一块块板卡安放结构? 都不是,那么它是什么? 计算机系统结构就是计算机的的机器语言程序员或编译程序编写者所看到的外特性。所谓外特性,就是计算机的概念性结构和功能特性。用一个不恰当的比喻一,比如动物吧,它的"系统结构"是指什么呢? 它的概念性结构和功能特性,就相当于动物的器官组成及其功能特性,如鸡有胃,胃可以消化食物。至于鸡的胃是什么形状的、鸡的胃部由什么组成就不是"系统结构"研究的问题了。系统结构只管到这一层。关于计算机系统的多层次结构,用"人"这种动物的不恰当的例子列表对比如下。计算机系统,人,应用语言级,为人民服务级,高级语言级,读书、学习级,汇编语言级,语言、思维级,操作系统级,生理功能级,传统机器级,人体器官级,微程序机器级,细胞组织级,电子线路级,分子级。传统机器级以上的所有机

器都称为虚拟机,它们是由软件实现的机器。软硬件的。功能在逻辑上是等价的,即绝大多部分硬件的功能都可用软件来实现,反之亦然。计算机系统结构的外特性,一般应包括以下几个方面(这也就是我们要分章学习的几个章节)把这几个方面弄清了,系统结构也就基本明确了:(1)指令系统 (2)数据指令 (3)作数的寻址方式 (4)寄存器的构成定义 (5)中断机构和例外条件 (6)存 储体系和管理 (7)I/O结构 (8)机器工作状态定义和切换 (9)信息保护。所以在以后的学习中常回头想想这是系统结构的哪一方面,这对把握全局有好处。这里提一下计算机系统结构的内部特性,计算机系统结构的内特性就是将那些外特性加以"逻辑实现"的基本属性。所谓"逻辑实现"就是在逻辑上如何实现这种功能,比如"上帝"给鸡设计了一个一定大小的胃,这个胃的功能是消化食物,这就是鸡系统的某一外特性,那怎么消化呢,就要通过鸡喙吃进食物和砂石,再通过胃的蠕动、依靠砂石的研磨来消化食物,这里的吃和蠕动等操作就是内特性。还有一个就是计算机实现,也就是计算机组成的物理实现。它主要着眼于器件技术和微组装技术。拿上面的例子来说,这个胃由哪些组织组成几条肌肉和神经来促使它运动就是"鸡实现"。据此我们可以分清计算机系统的外特性、内特性以及物理实现之间的关系。在所有系统结构的特性中,指令系统的外特性是最关键的。因此,计算机系统结构有时就简称为指令集系统结构。我们这门课注重学习的是计算机的系统结构,传统的讲,就是处在硬件和软件之间介面的描述,

计算机测试系统发展综述

计算机测试系统发展综述 来源:牌技研究中心 https://www.wendangku.net/doc/a09226573.html, 摘要: 计算机测试系统通常作为设备或武器系统的一个不可缺少的组成部分,其测试性能是衡量设备或武器系统优劣的一项重要指标。其应为基于标准总线的、模块化的开放式体系结构且具备虚拟仪器特点。通过分析和比较VXI总线和PXI总线特点,给出了计算机测试系统的发展方向。归纳出了计算机测试系统应具备的9个方面功能。给出了设计和研制计算机测试系统应遵循的基本原则。 关键词: 测试系统;VXI总线; PXI总线 测试技术涉及到众多学科专业领域,如传感器、数据采集、信息处理、标准总线、计算机硬件和软件、通信等等。测试技术与科学研究、工程实践密切相关,两者相辅相成,科学技术的发展促进了测试技术的发展,测试技术的发展反过来又促进了科学技术的进步。 测试仪器发展至今,大体经历了5 代: 模拟仪器、分立元件式仪器、数字化仪器、智能仪器和虚拟仪器。自上个世纪80年代以来,伴随微电子技术和计算机技术飞速发展,测试技术与计算机技术的融合已引起测试领域一场新的革命。1986 年美国国家仪器公司提出“虚拟仪器”即“软件就是仪器”的概念。虚拟仪器是卡式仪器的进一步发展,是计算机技术应用于仪器领域而产生的一种新的仪器类型,它以标准总线作为测试仪器和系统的基本结构框架,配置测量模块,通过软件编程实现强大的测量功能。在虚拟仪器系统中,用灵活、强大的计算机软件代替传统仪器的某些硬件,用人的智力资源代替物质资源,特别是系统中应用计算机直接参与测试信号的产生和测量特征的解析,使仪

器中的一些硬件、甚至整件仪器从系统中“消失”,而由计算机的硬软件资源来完成它们的功能。另外,通过软件可产生许多物理设备难以产生的激励信号以检测并处理许多以前难以捕捉的信号。虚拟仪器是计算机技术和测试技术相结合的产物,是传统测试仪器与测试系统观念的一次巨大变革。 测试技术和设备涉及国民经济和国防建设的各行各业,先进的电子测试设备在众多行业的科研、生产和设备维护使用过程中起着举足轻重的作用。特别是在电子产品、航空航天、武器装备、工业自动化、通信、能源等诸多领域,只要稍微复杂一点的涉及到弱电的系统(或装置)都要考虑测试问题。测试系统是设备或装备的一个必不可少的组成部分,如武器系统的维护维修离不开测试设备。一个系统(或装置)测试功能的完备与否已成为衡量其设计是否合理和能否正常运行的关键因素之一。 测试仪器和系统在国民经济和国防建设中起着把关和指导者的作用,它们广泛应用于炼油、化工、冶金、电力、电子、轻工和国防科研等行业。测试仪器和系统从生产现场各个环节获得各种数据,进行处理、分析和综合,通过各种手段或控制装置使生产环节得到优化,进而保证和提高产品质量。在武器系统科研试验现场,测试仪器和系统可获得试验中各个阶段和最终试验数据,用于及时发现试验中出现的问题和给出试验结论,并为后续相关试验提供依据。因此,测试仪器与系统对于提高科研和试验效率,加快武器试验进程和保证试验安全至关重要。以雷达、综合电子战为代表的军事电子领域,以预警机、战斗机、卫星通信、载人航天和探月工程为代表的航空、航天领域及以导弹武器系统为代表的兵器领域等都离不开测试设备,它是这些装备和系统正常使用和日常维护及维修所必备的。 1 系统类型 现代的测试系统主要是计算机化系统,它是计算机技术与测量技术深层次结合的产物。随着计算机技术的发展,构成测试系统的可选择性不断加大,按照测试功能要求,可构成多种类型的计算机测试系统。在计算机测试系统分类问题上并没有严格的统

2020.4《计算机体系结构》期末试卷A含答案

《计算机体系结构》期末考试A卷 (总分:100分,时间:100分钟) 姓名:周元华 专业:计算机科学与技术 学号: 18260070164016 学习中心:上海弘成 一、填空题(每空1分,共14分) 1.高速缓冲存储器的地址映象方式有三种,它们分别是:全向量方式,直接相联方式,组相连方式。 2.虚拟存储器的三种管理方式是段式管理,页式管理和 段页式管理。 3.从主存的角度来看,“Cache—主存”层次的目的是为了提高速度,而“主存—辅存”层次的目的是为了扩大容量 4.根据指令间的对同一寄存器读和写操作的先后次序关系,数据相关冲突可分为读与写(RAM)、写与读(WAR)和写与写(WAW)三种类型。 5.当代计算机体系结构的概念包括指令集结构、计算机组成和计算机实现三个方面的内容 二、名词解释(每题2分,共16分) 计算机体系结构: 计算机体系结构是指根据属性和功能不同而划分的计算机理论组成部分及计算机基本工作原理、理论的总称。其中计算机理论组成部分并不单与某一个实际硬件相挂钩,如存储部分就包括寄存器、内存、硬盘等。 兼容机: 兼容机,就是由不同公司厂家生产的具有相同系统结构的计算机。简单点说,就是非厂家原装,而改由个体装配而成的机器,其中的元件可以是同一厂家出品,但更多的是整合各家之长的 计算机。 写直达法: 写直达法一般指全写法。全写法(write-through):又称写直达法、写穿法,透写法,Cache使 用方式之一。 高速缓冲存储器: 高速缓冲存储器(Cache)其原始意义是指存取速度比一般随机存取记忆体(RAM)来得快 的一种RAM,一般而言它不像系统主记忆体那样使用DRAM技术,而使用昂贵但较快速的SRAM 技术,也有快取记忆体的名称。 高速缓冲存储器是存在于主存与CPU之间的一级存储器,由静态存储芯片(SRAM)组成, 容量比较小但速度比主存高得多,接近于CPU的速度。在计算机存储系统的层次结构中,是介 于中央处理器和主存储器之间的高速小容量存储器。它和主存储器一起构成一级的存储器。高速 缓冲存储器和主存储器之间信息的调度和传送是由硬件自动进行的。 高速缓冲存储器最重要的技术指标是它的命中率。 延迟转移技术: 在转移指令之后插入一条或几条有效的指令。当程序执行时,要等这些插入的指令执行完成 之后,才执行转移指令,因此,转移指令好像被延迟执行了,这种技术称为延迟转移技术。 线性流水线: 线性流水线就是由一整套工艺串联而成的生产线。 流水线又称为装配线,一种工业上的生产方式,指每一个生产单位只专注处理某一个片段的工 作,以提高工作效率及产量;按照流水线的输送方式大体可以分为:皮带流水装配线、板链线、 倍速链、插件线、网带线、悬挂线及滚筒流水线这七类流水线。 输送线的传输方式有同步传输的/(强制式),也可以是非同步传输/(柔性式),根据配置的 选择,可以实现装配和输送的要求。输送线在企业的批量生产中不可或缺。 流水线的吞吐率: 流水线的吞吐率是单位时间内流水线处理的任务数。 并行性: 并行性是指计算机系统具有可以同时进行运算或操作的特性,在同一时间完成两种或两种以 上工作。它包括同时性与并发性两种含义。同时性指两个或两个以上事件在同一时刻发生。并发 性指两个或两个以上事件在同一时间间隔发生。 三、简答题(每题5分,共30分) 1.如有一个经解释实现的计算机,可以按功能划分成4级。每一 级为了执行一条指令需要下一级的N条指令解释。若执行第一 级的一条指令需K(ns)时间,那么执行第2、3、4级的一条指 令各需要用多少时间(ns)? 答:第1级:1条1级指令 K ns 第2级:1条2级指令N条1级指令 1*N*K ns = NK ns 第3级:1条3级指令N条2级指令 1*N*NK ns =N2K ns 第4级:1条4级指令N条3级指令 1*N*NNK ns =N3K ns 2.根据Amdahl定律,系统加速比由哪两个因素决定? 答:系统加速比依赖于两个因素: (1)可改进比例:可改进部分在原系统计算时间中所占的比例 (2)部件加速比:可改进部分改进以后的性能提高 3.简述组相联映象规则。 答:(1)主存与缓存分成相同大小的数据块。(2)主存和Cache 按同样大小划分成组。(3)主存容量 是缓存容量的整数倍,将主存空间按缓冲区的大小分成区,主存中每一区的组数与缓存的组数相同 4.引起Cache与主存内容不一致的原因是什么?为了保持Cache 的一致性,在单计算机系统中一般采取哪些措施? 答:不一致的原因:(1)由于CPU写Cache,没有立即写主存 (2)由于I/O处理机或I/O设备写主存 采取措施: (1)全写法,亦称写直达法(WT法-Write through) 方法:在对Cache进行写操作的同时,也对主存该内容进行写入 (2)写回法(WB法-Write back) 方法:在CPU执行写操作时,只写入Cache,不写入主存。 5.按照同一时间内各段之间的连接方式来分,流水线可分为哪两 类? 答:(1)静态流水线:在同一时间内,流水线的各段只能按同一种功能的连接方式工作。 (2)动态流水线:在同一时间内,当某些段正在实现某种运算时,另一些段却在实现另一种运算。 6.Flynn分类法是根据什么对计算机进行分类的?将计算机分 成哪几类? 答:Flynn分类法,根据计算机中指令和数据的并行状况把计算机分成: (1)单指令流单数据流(SISD.; (2)单指令流多数据流(SIMD.; (3)多指令流单数据流(MISD.; (4)多指令流多数据流(MIMD.。 四、问答与计算题(第1题10分,第2、3题每题15分共40分) 1.一个有快表和慢表的页式虚拟存储器,最多有64个用户,每 个用户最多要用1024个页面,每页4K字节,主存容量8M字节。 (1)写出多用户虚地址的格式,并标出各字段的长度。 (2)写出主存地址的格式,并标出各字段的长度。

计算机网络体系结构论文

计算机网络体系结构 摘要:计算机冈络体系结构描述了计算机网络功能实体的划分原则及其相互之间协同工作的方法和规则。本文主要介绍的是现在应用比较广泛的层次型网络体系结构,OSI基本参考模型,计算机网络的七层通信协议的主要功能及其之间的关系,并简单介绍了TCP/IP四层通信模型。 关键字:计算机网络,层次型网络体系结构,OSI,TCP/IP 上世纪60年代末期,早期的网络都是各公司根据用户的要求而设计的。虽然用户的应用要求千变万化,但对网络(通信)的要求相对一致。为使公司的产品可以适应千变万化的应用要求,尤其是适应用户扩充应用的要求,同时也是为了满足市场的要求,保证新老产品的兼容性和可操作性,各公司提出了基于本公司产品的计算机网络体系结构。 随着计算机技术和通信技术的发展,通用的计算机网络体系结构逐渐浮出水面。现在应用比较广泛的网络体系结构为层次型网络体系结构。层次型网络体系结构是计算机网络出现以后第一个被提出并实际使用的网络体系结构。直到目前,其产生和发展的过程始终与计算机网络产生和发展的过程保持协调一致。为了简化网络设计与实现的复杂性,层次型网络体系结构将复杂的网络问题分解为若干个不同的小问题,每个层次专注于解决特定的同题,这样就比较容易对所解决本层次涉及的同题实现模块化和标准化,标准化的层次间的通信规则被称为协议。层次型网络体系结构是层和协议的集合。典型的层次型网络体系结构通信模型如下图所示 层次型网络体系结构首先提出了模块化的设计实现思想:将复杂的网络问题分解为较为单纯易于解决的小问题;用不同的模块解决不同的问题。不同的模块之间接口简单明确,因此可以各自独立地制定标准和进行开发。这一思路即使在后来出现的其他网络体系结构中仍然得到了遵循。 国际标准化组织ISO为层次型网络体系结构设计了OSI参考模型。该模型将网络自底向上划分为物理层、数据链路层、网络层、传输层、会话层、表示层和应用层七个层次,每

软件体系结构综述

软件体系结构研究综述 班级:软件092 学号:17 姓名:陈世华摘要: 近年来,软件体系结构逐渐成为软件工程领域的研究热点以及大型软件系统与软件产品线开发中的关键技术之一.归纳了软件体系结构技术发展过程及其主要研究方向.在分析了典型的软件体系结构概念之后,给出了软件体系结构的定义.通过总结软件体系结构领域的若干研究活动,提出了软件体系结构研究的两大思路,并从7个方面介绍了软件体系结构研究进展.探讨了软件体系结构研究中的不足之处,并分析其原因.作为总结,给出了软件体系结构领域最有前途的发展趋势. 关键词: 软件体系结构;基于体系结构的软件开发;软件体系结构描述语言;软件体系结构描述方法;软件体系结构演化;软件体系结构发现;软件体系结构分析;软件体系结构验证;特定域软件体系结构(DSSA) Abstract: Software architecture (SA) is emerging as one of the primary research areas in software engineering recently and one of the key technologies to the development of large-scale software-intensive system and software product line system. The history and the major direction of SA are summarized, and the concept of SA is brought up based on analyzing and comparing the several classical definitions about SA. Based on summing up the activities about SA, two categories of study about SA are extracted out, and the advancements of researches on SA are subsequently introduced from seven aspects. Additionally, some disadvantages of study on SA are discussed, and the causes are explained at the same time. Finally, it is concluded with some significantly promising tendency about research on SA. Key words: software architecture; architecture-based development; architecture description language; architectural representation and description; architectural evolution and reuse; architectural discovery; architectural analysis; architectural verification and evaluation; domain-specific software architecture (DSSA)

计算机体系结构期末试卷及答案

课程测试试题( A 卷) ----------------------以下为教师填写-------------------- I、命题院(部):信息科学与工程学院 II、课程名称:计算机体系结构 III、测试学期:2014-2015学年度第2学期 IV、测试对象:信息学院计算机、网络专业 2012 级班 V、问卷页数(A4): 3 页 VI、答卷页数(A4): 4 页 VII、考试方式:闭卷(开卷、闭卷或课程小论文,请填写清楚) VIII、问卷内容: 一、填空题(共30分,20空,每空分) 1、现代计算机系统是由()和()组成的十分复杂的系统。 2、计算机系统应能支持软件可移植,实现可移植性的常用方法有3种,即(),(), 统一高级语言。 3、可以将当前大多数通用寄存器型指令集结构进一步细分为3种类型,即()、() 和存储器-存储器型指令集结构。 4、MIPS指令DADDIU R14,R5,#6属于()类型的指令格式;MIPS指令 SD R4,300(R5)属于()类型的指令格式。 5、描述流水线的工作,常采用时空图的方法。在时空图中,横坐标表示(),纵坐 标代表()。 6、在MIPS指令实现的简单数据通路中,在WB周期中,有两大类指令执行操作:() 和()指令。 7、存储器的层次结构中,“Cache-主存”层次是为了弥补主存()的不足,“主 存-辅存”层次是为了弥补主存()的不足。 8、Cache实现的映像规则有全相联映像、()和()三种。 9、反映存储外设可靠性能的参数有可靠性、()和()。 10、根据系统中处理器个数的多少,可把现有的MIMD计算机分为两类,每一类代表 了一种存储器的结构和互连策略。第一类机器称为()结构,第二类机器具有()。 二、判断题(每小题1分,共10分) 1、从计算机语言的角度,系统结构把计算机系统按功能划分成多级层次结构,其中, 第2级是操作系统虚拟机,第3级是汇编语言虚拟机。() 2、计算机系统中提高并行性的3种途径中,资源重复是在并行性概念中引入时间因 素,加快硬件周转而赢得时间。() 3、指令集结构中采用多种寻址方式可能会增加实现的复杂度和使用这些寻址方式的 指令的CPI。() 4、指令条数多,通常超过200条,是设计RISC的原则之一。() 5、根据流水线中各功能段之间是否有反馈回路,可把流水线分为线性流水线和非线 性流水线。() 6、在多级存储体系中,“cache——主存”层次的存储管理实现主要由软件件实现。

计算机体系结构知识点汇总

第一章计算机体系结构的基本概念 1.计算机系统结构的经典定义 程序员所看到的计算机属性,即概念性结构与功能特性。 2.透明性 在计算机技术中,把这种本来存在的事物或属性,但从某种角度看又好像不存在的概念称为透明性。 3.系列机 由同一厂家生产的具有相同系统结构、但具有不同组成和实现的一系列不同型号的计算机。 4.常见的计算机系统结构分类法有两种:Flynn分类法、冯氏分类法Flynn分类法把计算机系统的结构分为4类: 单指令流单数据流(SISD) 单指令流多数据流(SIMD) 多指令流单数据流(MISD) 多指令流多数据流(MIMD) 5. 改进后程序的总执行时间

系统加速比为改进前与改进后总执行时间之比 6.CPI(Cycles Per Instruction):每条指令执行的平均时钟周期数 CPI = 执行程序所需的时钟周期数/IC 7.存储程序原理的基本点:指令驱动 8.冯·诺依曼结构的主要特点 1.以运算器为中心。 2.在存储器中,指令和数据同等对待。 指令和数据一样可以进行运算,即由指令组成的程序是可以修改的。 3.存储器是按地址访问、按顺序线性编址的一维结构,每个单元的位数是固定的。 4.指令的执行是顺序的 5.指令由操作码和地址码组成。 6.指令和数据均以二进制编码表示,采用二进制运算。 9.软件的可移植性 一个软件可以不经修改或者只需少量修改就可以由一台计算机移植到另一台计算机上正确地运行。差别只是执行时间的不同。我们称这两台计算机是软件兼容的。 实现可移植性的常用方法:采用系列机、模拟与仿真、统一高级语言。 软件兼容: 向上(下)兼容:按某档机器编制的程序,不加修改就能运行于比它高(低)档的机器。 向前(后)兼容:按某个时期投入市场的某种型号机器编制的程序,不加修改地就能运行于在它之前(后)投入市场的机器。 向后兼容是系列机的根本特征。 兼容机:由不同公司厂家生产的具有相同系统结构的计算机。

计算机系毕业论文

计算机系毕业论文 计算机系毕业论文篇一:计算机系统结构简述 摘要:计算机系统结构是一个有多个层次组合而成的有机整体,随着科技的不断发展,未来的计算机将会朝着微型化、网络化和智能化的方向发展,为了使大家对计算机系统结构有一个大概的了解,本文主要介绍了计算机系统结构的一些基本概念、计算机系统结构的发展、计算机系统结构的分类方法和计算机系统设计的方法。 关键词:计算机系统结构;冯诺依曼结构;Flynn分类法;冯氏分类法 世界上第一台电子计算机ENIAC诞生于1946年,在问世将近70年的时间里,计算机共历经电子管计算机时代、晶体管计算机时代、中小规模集成电路计算机时代、大规模和超大规模集成电路计算机时代和巨大规模集成电路计算机时代,计算机更新换代的一个重要指标就是计算机系统结构。 1 计算机系统结构的基本概念 1.1 计算机系统层次结构的概念 现代计算机系统是由硬件和软件组合而成的一个有机整体,如果继续细分可以分成7层。L0:硬联逻辑电路;L1:微程序机器级;L2:机器语言级;L3:操作系统级;L4:汇编语言级;L5:高级语言级;L6:应用语言级。其中L0级由硬件实现;L1级的机器语言是微指令级,用固件来实现;L2级的机器语言是机器指令集,用L1级的微程序进行解释执行;L3级的机器语言由传统机器指令集和操作系统级指令组成,除了操作系统级指令由操作系统解释执行外,其余用这一级语言编写的程序由L2和L3共同执行;L4级的机器语言是汇编语言,该级语言编写的程序首先被翻译成L2或L3级语言,然后再由相应的机器执行;L5级的机器语言是高级语言,用该级语言编写的程序一般被翻译到L3或L4上,个别的高级语言用解释的方法实现;L6级的机器语言适应用语言,一般被翻译到L5级上。 1.2 计算机系统结构的定义 计算机系统结构较为经典的定义是Amdahl等人在1964年提出的:由程序设计者所看到的一个计算机系统的属性,即概念性结构和功能特性。由于计算机具有不同的层次结构,所以处在不同层次的程序设计者所看到的计算机的属性显然不同。

第一部分计算机系统组成及说明

第一部分:计算机系统组成及说明 一、计算机系统组成 一个完整的计算机系统通常是由硬件系统和软件系统两大部分组成的。(一)硬件(hardware) 硬件是指计算机的物理设备,包括主机及其外部设备。具体地说,硬件系统由运算器、控制器、存储器、输入设备和输出设备五大部件组成。 ①存储器。存储器是计算机用来存放程序和原始数据及运算的中间结果和最后结果的记忆部件。 ②运算器。运算器对二进制数码进行算术或逻辑运算。 ③控制器。控制器是计算机的“神经中枢”。它指挥计算机各部件按照指令功能的要求自动协调地进行所需的各种操作。 ④输入/输出设备(简称I/O设备)。计算机和外界进行联系业务要通过输入输出设备才能实现。输入设备用来接受用户输入的原始数据和程序,并将它们转换成计算机所能识别的形式(二进制)存放到内存中。输出设备的主要功能是把计算机处理的结果转变为人们能接受的形式,如数字、字母、符号或图形。 (二)软件(software) 软件是指系统中的程序以及开发、使用和维护程序所需要的所有文档的集合。包括计算机本身运行所需的系统软件和用户完成特定任务所需的应用软件(三)硬件和软件的关系

硬件是计算机的基础,软件对硬件起辅助支持作用,二者相辅相成,缺一不可,只有有了软件的支持,硬件才能充分发挥自己的作用。 二、计算机工作原理 (一)冯·诺依曼设计思想 计算机问世50年来,虽然现在的计算机系统从性能指标、运算速度、工作方式、应用领域和价格等方面与当时的计算机有很大的差别,但基本体系结构没有变,都属于冯·诺依曼计算机。 冯·诺依曼设计思想可以简要地概括为以下三点: ①计算机应包括运算器、存储器、控制器、输入和输出设备五大基本部件。 ②计算机内部应采用二进制来表示指令和数据。每条指令一般具有一个操作码和一个地址码。其中,操作码表示运算性质,地址码指出操作数在存储器的位置。 ③将编好的程序和原始数据送入内存储器中,然后启动计算机工作,计算机应在不需操作人员干预的情况下,自动逐条取出指令和执行任务。 冯·诺依曼设计思想最重要之处在于他明确地提出了“程序存储”的概念。他的全部设计思想,实际上是对“程序存储”要领的具体化。

相关文档
相关文档 最新文档