文档库 最新最全的文档下载
当前位置:文档库 › 燃料电池综合特性实验报告.doc

燃料电池综合特性实验报告.doc

燃料电池综合特性实验报告.doc
燃料电池综合特性实验报告.doc

燃料电池综合特性实验

【实验背景】燃料电池以氢和氧为燃料,通过电化学反应直接产生电力,能量转换效率高于燃烧燃料的热机。燃料电池的反应生成物为水,对环境无污染,单位体积氢的储能密度远高于现有的其它电池。因此它的应用从最早的宇航等特殊领域,到现在人们积极研究将其应用到电动汽车,手机电池等日常生活的各个方面,各国都投入巨资进行研发。按燃料电池使用的电解质或燃料类型,可将现在和近期可行的燃料电池分为碱性燃料电池,质子交换膜燃料电池,直接甲醇燃料电池,磷酸燃料电池,熔融碳酸盐燃料电池,固体氧化物燃料电池6种主要类型,本实验研究其中的质子交换膜燃料电池。

能源为人类社会发展提供动力,长期依赖矿物能源使我们面临环境污染之害,资源枯竭之困。为了人类社会的持续健康发展,各国都致力于研究开发新型能源。未来的能源系统中,太阳能将作为主要的一次能源替代目前的煤,石油和天然气,而燃料电池将成为取代汽油,柴油和化学电池的清洁能源。

【摘要】燃料电池尤其是质子交换膜燃料电池(PEM)以其高功率密度、高能量转换效率、可低温启动、环境友好等突出优点而受到瞩目。本实验包含太阳能电池发电(光能—电能转换),电解水制取氢气(电能—氢能转换),燃料电池发电(氢能—电能转换)几个环节,形成了完整的能量转换,储存,使用的链条。本实验通过研究燃料电池的工作原理,测量其输出特性,计算燃料电池的最大输出功率及效率并验证法拉第电解定律。测量太阳能电池的特性,做出所测太阳能电池的伏安特性曲线,电池输出功率随输出电压的变化曲线。获取太阳能电池的开路电压,短路电流,最大输出功率等。

【关键词】燃料电池,电解池,太阳能电池

【正文】

一、实验目的:

1、了解燃料电池的工作原理。

2、观察仪器的能量转换过程:

光能→太阳能电池→电能→电解池→氢能(能量储存)→燃料电池→电能

3、测量燃料电池输出特性,做出所测燃料电池的伏安特性(极化)曲线,电池输出功率随输出电压的变化曲线。计算燃料电池的最大输出功率及效率。

4、测量质子交换膜电解池的特性,验证法拉第电解定律。

5、测量太阳能电池的特性,做出所测太阳能电池的伏安特性曲线,电池输出功率随输出电压的变化曲线。获取太阳能电池的开路电压,短路电流,最大输出功率,填充因子等特性参数。

二、实验原理:

1、燃料电池

质子交换膜(PEM,Proton Exchange Membrane)燃料电池在常温下工作,具有启动快速,结构紧凑的优点,最适宜作汽车或其它可移动设备的电源,近年来发展很快,其基本结构如图l所示。目前广泛采用的全氟璜酸质子交换膜为固体聚合物薄腆,厚度0.05~0.lmm,它提供氢离子(质子)从阳极到达阴极的通道,而电子或气体不能通过。催化层是将纳米量级的铂粒子用化学或物理的方法附着在质子交换膜表面,厚度约0.03mm,对阳极氢的氧化和阴极氧的还原起催化作用。膜两边的阳极和阴极由石墨化的碳纸或碳布做成,厚度0.2~0.5mm,导电性能良好,其上的微孔提供气体进入催化层的通道,又称为扩散层。教学用燃料电池采用有机玻璃做流场板。

进入阳极的氢气通过电极上的扩散层到达质子交换膜。氢分子在阳极催化剂的作用下解离为2个氢离子,即质子,并释放出2个电子,阳极反应为:

H2=2H++2e (l)

氢离子以水合质子H+(nH2O)的形式,在质子交换膜中从一个璜酸基转移到另一个璜酸基,最后到达阴极,实现质子导电,质子的这种转移导致阳极带负电。

在电池的另一端,氧气或空气通过阴极扩散层到达阴极催化层,在阴极催化层的作用下,氧与氢离子和电子反应生成水,阴极反应为:

O2+4H++4e=2H2O (2)

阴极反应使阴极缺少电子而带正电,结果在阴阳极间产生电压,在阴阳极间接通外电路,就可以向负载输出电能。总的化学反应如下:

2H2+O2=2H2O (3)

(阴极与阳极:在电化学中,失去电子的反应叫氧化,得到电子的反应叫还原。产生氧化反应的电极是阳极,产生还原反应的电极是阴极。对电池而言,阴极是电的正极,阳极是电的负极。)

2、水的电解

将水电解产生氢气和氧气,与燃料电池中氢气和氧气反应生成水互为逆过程。

水电解装置同样因电解质的不同而各异,碱性溶液和质子交换膜是最好的电解质。若以质子交换膜为电解质,可在图1右边电极接电源正极形成电解的阳极,在其上产生氧化反应2H2O=O2+4H++4e。左边电极接电源负极形成电解的阴极,阳极产生的氢离子通过质子交换膜到达阴极后,产生还原反应2H++2e=H2O即在右边电极析出氧,左边电极析出氢。

作燃料电池或作电解器的电极在制造上通常有些差别,燃料电池的电极应利于气体吸纳,而电解器需要尽快排出气体。燃料电池阴极产生的水应随时排出,以免阻塞气体通道,而电解器的阳极必须被水淹没。

3、太阳能电池

太阳能电池利用半导体P-N结受光照射时的光伏效应发电,太阳能电池的基本结构就是一个大面积平面P-N结,图2为P-N结示意图。

P型半导体中有相当数量的空穴,几乎没有自由电子。N型半导体中有相当数量的自由电子,几乎没有空穴。当两种半导体结合在一起形成P-N结时,N区的电子(带负电)

向P区扩散,P区的空穴(带正电)向N区扩散,在P-N结附近形成空间电荷区与势垒电场。势垒电场会使载流子向扩散的反方向作漂移运动,最终扩散与漂移达到平衡,使流过P-N结的净电流为零。在空间电荷区内,P区的空穴被来自N区的电子复合,N区的电子被来自P区的空穴复合,使该区内几乎没有能导电的载流子,又称为结区或耗尽区。

当光电池受光照射时,部分电子被激发而产生电子一空穴对,在结区激发的电子和空穴分别被势垒电场推向N区和P区,使N区有过量的电子而带负电,P区有过量的空穴而带正电,P-N结两端形成电压,这就是光伏效应,若将P-N结两端接入外电路,就可向负载输出电能。

三、实验仪器

仪器的构成如图3所示。

图3 燃料电池综合实验仪

质子交换膜必需含有足够的水分,才能保证质子的传导。但水含量又不能过高,否则电极被水淹没,水阻塞气体通道,燃料不能传导到质子交换膜参与反应。如何保持良好的水平

衡关系是燃料电池设计的重要课题。为保持水平衡,我们的电池正常工作时排水口打开,在电解电流不变时,燃料供应量是恒定的。若负载选择不当,电池输出电流太小,未参加反应的气体从排水口泄漏,燃料利用率及效率都低。在适当选择负载时,燃料利用率约为90%。

气水塔为电解池提供纯水(2次蒸馏水),可分别储存电解池产生的氢气和氧气,为燃料电池提供燃料气体。每个气水塔都是上下两层结构,上下层之间通过插入下层的连通管连接,下层顶部有一输气管连接到燃料电池。初始时,下层近似充满水,电解池工作时,产生的气体会汇聚在下层顶部,通过输气管输出。若关闭输气管开关,气体产生的压力会使水从下层进入上层,而将气体储存在下层的顶部,通过管壁上的刻度可知储存气体的体积。两个气水塔之间还有一个水连通管,加水时打开使两塔水位平衡,实验时切记关闭该连通管。

风扇作为定性观察时的负载,可变负载作为定量测量时的负载。

测试仪面板如图4所示。测试仪可测量电流,电压。若不用太阳能电池作电解池的电源,可从测试仪供电输出端口向电解池供电。实验前需预热15分钟。

图4 燃料电池测试仪前面板示意图

如图4所示为燃料电池实验仪系统的测试仪前面板图。

区域l ——电流表部分:作为一个独立的电流表使用。其中:

两个档位:2A 档和200mA 档,可通过电流档位切换开关选择合适的电流档位测量电流。 两个测量通道:电流测量I 和电流测量II 。通过电流测量切换键可以同时测量两条通道的电流。

区域2——电压表部分:做为一个独立的电压表使用。共有两个档位:20V 档和2V 档,可通过电压档位切换开关选择合适的电压档位测量电压。

区域3——恒流源部分:为燃料电池的电解池部分提供一个从0~350mA 的可变恒流源。 四、实验内容与步骤:

1、质子交换膜电解池的特性测量

理论分析表明,若不考虑电解器的能量损失,在电解器上加1.48伏电压就可使水分解为氢气和氧气,实际由于各种损失,输入电压高于1.6伏电解器才开始工作。 电解器的效率为: η=

输入

U 48

.1×100% (4) 输入电压较低时虽然能量利用率较高,但电流小,电解的速率低,通常使电解器输入电压在2伏左右。

根据法拉第电解定律,电解生成物的量与输入电量成正比。在标准状态下(温度为零℃,电解器产生的氢气保持在1个大气压),设电解电流为I ,经过时间t 生产的氢气体积(氧气体积为氢气体积的一半)的理论值为: V 氢气=

F

It

2× 22.4升 (5) 式中F =e N= 9.65×104

库仑/摩尔为法拉第常数,e=1.602×1019

-库仑为电子电量,N

=6.022×10

23

为阿伏伽德罗常数,It/2F 为产生的氢分子的摩尔(克分子)数,22.4升为标

淮状态下气体的摩尔体积。

若实验时摄氏温度为T ,所在地区气压为P ,根据理想气体状态方程,可对(5)式作修正:

V 氢气=

升4.222t

16.27316.2730???+F

I P P T (6)

式中P0为标准大气压。自然环境中,大气压受各种因素的影响,如温度和海拔高度等,其中海拔对大气压的影响最为明显,由国家标准GB4797. 2-2005可查到,海拔每升高1000米,大气压下降约10%。

由于水的分子量为18,且每克水的体积为lcm3,故电解池消耗的水的体积为:

V

水= 3

5-

3cm

10

t

33

.9

cm

18

2

?

=

?I

F

It

(7)

应当指出,(6),(7)式的计算对燃料电池同样适用,只是其中的I代表燃料电池输出电流,V氢气代表燃料消耗量,V水代表电池中水的生成量。确认气水塔水位在水位上限与下限之间。将测试仪的电压源输出端串连电流表后接入电解池,将电压表并联到电解池两端。将气水塔输气管止水夹关闭,调节恒流源输出到最大(旋钮顺时针旋转到底),让电解池迅速的产生气体。当气水塔下层的气体低于最低刻度线的时候,打开气水塔输气管止水夹,排出气水塔下层的空气。如此反复2~3次后,气水塔下层的空气基本排尽,剩下的就足纯净的氢气和氧气了。根据表l中的电解池输入电流大小,调节恒流源的输出电流,待电解池输出气体稳定后(约1分钟),关闭气水塔输气管。测量输入电流,电压及产生一定体积的气体的时间,记入表1中。

由(6)式计算氢气产生量的理论值。与氢气产生量的测量值比较。若不管输入电压与电流大小,氢气产生量只与电量成正比,且测量值与理论值接近,即验证了法拉第定律。

2、燃料电池输出特性的测量

在一定的温度与气体压力下,改变负载电阻的大小,测量燃料电池的输出电压与输出电流之间的关系,如图5所示。电化学家将其称为极化特性曲线,习惯用电压作纵坐标,电流作横坐标。理论分析表明,如果燃料的所有能量都被转换成电能,则理想电动势为1.48伏。实际燃料的能量不可能全部转换成电能,例如总有一部分能量转换成热能,少量的燃料分子或电子穿过质子交换膜形成内部短路电流等,故燃料电池的开路电压低于理想电动势。

随着电流从零增大,输出电压有一段下降较快,主要是因为电极表面的反应速度有限,有电流输出时,电极表面的带电状态改变,驱动电子输出阳极或输入阴极时,产生的部分电压会被损耗掉,这一段被称为电化学极化区。

输出电压的线性下降区的电压降,主要是电子通过电极材料及各种连接部件,离子通过电解质的阻力引起的,这种电压降与电流成比例,所以被称为欧姆极化区。输出电流过大时,燃料供应不足,电极表面的反应物浓度下降;使输出电压迅速降低,而输出电流基本不再增加,这一段被称为浓差极化区。

综合考虑燃料的利用率(恒流供应燃料时可表示为燃料电池电流与电解电流之比)及输出电压与理想电动势的差异,燃料电池的效率为:

η=

48.1输出

电解电池U I I ?

×100% =电解

输出I P ?48.1×100% (8) 某一输出电流时燃料电池的输出功率相当于图5中虚线围出的矩形区,在使用燃料电池时,应根据伏安特性曲线,选择适当的负载匹配,使效率与输出功率达到最大。

实验时让电解池输入电流保持在300mA ,关闭风扇。将电压测量端口接到燃料电池输出端。打开燃料电池与气水塔之间的氢气、氧气连接开关,等待约10分钟,让电池中的燃料浓度达到平衡值,电压稳定后记录开路电压值。将电流量程按钮切换到200mA 。可变负载调至最大,电流测量端口与可变负载串联后接入燃料电池输出端,改变负载电阻的大小,使输出电压值如表2所示(输出电压值可能无法精确到表中所示数值.只需相近即可),稳定后记录电压电流值。

负载电阻猛然调得很低时,电流会猛然升到很高,甚至超过电解电流值,这种情况是不稳定的,重新恢复稳定需较长时间。为避免出现这种情况,输出电流高于2l0mA 后,每次调节减小电阻0.5Ω,输出电流高于240mA 后,每次调节减小电阻0.2Ω,每测量一点的平衡时间稍长一些(约需5分钟)。稳定后记录电压电流值。

作出所测燃料电池的极化曲线。作出该电池输出功率随输出电压的变化曲线。该燃料电池最大输出功率是多少?最大输出功率时对应的效率是多少?实验完毕,关闭燃料电池与气水塔之间的氢气氧气连接开关,切断电解池输入电源。 3、太阳能电池的特性测量

在一定的光照条件下,改变太阳能电池负载电阻的大小,测量输出电压与输出电流之间的关系,如图6所示。Uoc 代表开路电压,Isc 代表短路电流,图4中虚线围出的面积为太阳能电池的输出功率。与最大功率对应的电压称为最大工作电压Um ,对应的电流称为最大工作电流Im 。

表征太阳能电池特性的基本参数还包括光谱响应特性,光电转换效率,填充因子等。 填充因子FF 定义为: FF=

SC

OC m

m I U I U (9)

它是评价太阳能电池输出特性好坏的一个重要参数,它的值越高,表明太阳能电池输出特性越趋近于矩形,电池的光电转换效率越高。将电流测量端口与可变负载串联后接入太阳能电池的输出端,将电压表并联到太阳能电池两端。保持光照条件不变,改变太阳能电池负载电阻的大小,测量输出电压电流值,并计算输出功率,记入表3中。

作出所测太阳能电池的伏安特性曲线。作出该电池输出功率随输出电压的变化曲线。

该太阳能电池的开路电压Uoc ,短路电流Isc 是多少?最大输出功率Pm 是多少?最大工作电压Um ,最大工作电流Im 是多少?填充因子FF 是多少? 五、实验结果及数据处理:

表1 电解池的特性测量

输入电流I (A) 输入电压(V) 时间t (秒) 电量It (库仑) 氢气产生量

测量值(升) 氢气产生量

理论值 0.10 1.95 171.53 17.153 0.002 0.00199 0.20 2.01 183.23 36.646 0.004 0.00425 0.30

2.06

168..85

50.657

0.006

0.00588

三次氢气产生量的相对误差分别是: e1=0.50% e2=5.88% e3=2.00%

同时由上表可以看出氢气产生量的理论值与测量值接近。且不管输入电压与电流的大小,氢气产生量只与电量成正比,此即验证了法拉第定律。

表2 燃料电池输出特性的测量 电解电流= 300 mA

输出电流I (mA )

输出电压

U (V )

燃料电池极化曲线

输出电压U(V)

输出功率P (m W )

输出功率随电压的变化曲线

从图中看出,燃料电池在电压较大时,功率随着电压的增大而减小。此时燃料电池的内部存在一定内阻,消耗了部分功率。

当电压在0.65V 左右时,输出功率最大,最大输出功率为165.75mW ,此事的输出电流为255mA 。

综合考虑燃料的利用率及输出电压与理想电动势的差异,最大输出功率时对应的效率为: η=

48.1输出

电解电池U I I ?

×100% =电解

输出I P ?48.1×100% =43.9%

表3 太阳能电池输出特性的测量

0.51

1.52

2.53

3.5

00.05

0.1

0.15

0.2

0.250.3

0.35

输出电压U(V)

输出电流I (m A )

太阳能电池伏安特性曲线

0.51

1.52

2.53

3.5

输出电压U(V)

输出功率P (m W )

输出功率随输出电压的变化曲线

从曲线中可以分析发现,在输出电流较大时,电流下降很快,即曲线斜率的绝对值较大。

00.05

0.1

0.15

0.2

0.25

0.3

0.35

输出电压U(V)

输出电流I (m A )

太阳能电池的伏安特性曲线

该太阳能电池的开路电压Uoc 是_3.28V_, 短路电流Isc 是_0.286mA_, 最大输出功率Pm 是_0.74525mW_, 最大工作电压Um 是_2.71V_, 最大工作电流Im 是_0.275mA_, 填充因子FF=SC

OC m

m I U I U =79.44%

六、实验注意事项:

1.使用前应首先详细阅读说明书。

2.该实验系统必须使用去离子水或二次蒸馏水,容器必须清洁干净,否则将损坏系统。 3.PEM 电解池的最高工作电压为6V ,最大输入电流为l000mA ,否则将极大地伤害PEM 电解池。

4.PEM 电解池所加的电源极性必须正确,否则将毁坏电解池并有起火燃烧的可能。 5.绝不允许将任何电源加于PEM 燃料电池输出端,否则将损坏燃料电池。

6.气水塔中所加入的水面高度必须在上水位线与下水位线之间,以保证PEM 燃料电池

正常工作。

7.该系统主体系有机玻璃制成,使用中需小心,以免打坏和损伤。

8.太阳能电池板和配套光源在工作时温度很高,切不可用手触摸,以免被烫伤。

9.绝不允许用水打湿太阳能电池板和配套光源,以免触电和损坏该部件。

10.配套“可变负载”所能承受的最大功率是1W,只能使用于该实验系统中。

11.电流表的输入电流不得超过2A,否则将烧毁电流表。

12.电压表的最高输入电压不得超过25V,否则将烧毁电压表。

13.实验时必须关闭两个气水塔之间的连通管。

七、实验体会:

通过本次实验我和同组成员了解了燃料电池和太阳能电池的工作原理,转换效率等。对新能源有了一定的认识。

实验过程中,对实验本身也有一些细致的的认识。如:实验必须用去离子水而非自来水。表二中,每次读取示数时,必须等待平衡5分钟左右,因为通过实验可以发现,刚刚调节完电阻时,电压电流值不停变化,必须待稳定后才能读取数据。同时调节电阻时,应该注意输出电流高于2l0mA后,每次调节减小电阻0.5Ω,输出电流高于240mA后,每次调节减小电阻0.2Ω,不要猛然大幅度调节电阻。

实验数据的处理中,我采用了matlab绘图,matlab是我在暑假是学习的一款软件。通过这次的物理实验,不仅锻炼了我的动手操作物理实验的能力,对数据处理也是一个锻炼。

实验中,我们很注意两个成员之间的配合,如表一实验中,关闭气水塔输气管的同时记录产生气体的时间,我们分工明确,一人负责关闭气水塔输气管,另一人同时开始计时,保证数据的准确性。

在太阳能电池的实验中,室内灯光的存在和实验室其他人员的人影的晃动不能提供光强严格不变的条件,这同时也造成电表示数不稳定。

资料供参考,加油每一天。

燃料电池实验报告

竭诚为您提供优质文档/双击可除 燃料电池实验报告 篇一:燃料电池综合特性实验报告 燃料电池综合特性实验 【实验背景】燃料电池以氢和氧为燃料,通过电化学反应直接产生电力,能量转换效率高于燃烧燃料的热机。燃料电池的反应生成物为水,对环境无污染,单位体积氢的储能密度远高于现有的其它电池。因此它的应用从最早的宇航等特殊领域,到现在人们积极研究将其应用到电动汽车,手机电池等日常生活的各个方面,各国都投入巨资进行研发。按燃料电池使用的电解质或燃料类型,可将现在和近期可行的燃料电池分为碱性燃料电池,质子交换膜燃料电池,直接甲醇燃料电池,磷酸燃料电池,熔融碳酸盐燃料电池,固体氧化物燃料电池6种主要类型,本实验研究其中的质子交换膜燃料电池。 能源为人类社会发展提供动力,长期依赖矿物能源使我们面临环境污染之害,资源枯竭之困。为了人类社会的持续健康发展,各国都致力于研究开发新型能源。未来的能源系

统中,太阳能将作为主要的一次能源替代目前的煤,石油和天然气,而燃料电池将成为取代汽油,柴油和化学电池的清洁能源。 【摘要】燃料电池尤其是质子交换膜燃料电池(pem)以其高功率密度、高能量转换效率、可低温启动、环境友好等突出优点而受到瞩目。本实验包含太阳能电池发电(光能—电能转换),电解水制取氢气(电能—氢能转换),燃料电池发电(氢能—电能转换)几个环节,形成了完整的能量转换,储存,使用的链条。本实验通过研究燃料电池的工作原理,测量其输出特性,计算燃料电池的最大输出功率及效率并验证法拉第电解定律。测量太阳能电池的特性,做出所测太阳能电池的伏安特性曲线,电池输出功率随输出电压的变化曲线。获取太阳能电池的开路电压,短路电流,最大输出功率等。 【关键词】燃料电池,电解池,太阳能电池 【正文】 一、实验目的: 1、了解燃料电池的工作原理。 2、观察仪器的能量转换过程: 光能→太阳能电池→电能→电解池→氢能(能量储存)→燃料电池→电能 3、测量燃料电池输出特性,做出所测燃料电池的伏安

甲醇制芳烃实验报告doc

甲醇制芳烃实验报告 篇一:化工实训实验报告 吉林化工学院化工过程模拟实训报告 题目:甲醇-水精馏分离过程模拟计算 教学院石油化工学院专业班级化工1302班学生学号1310111218学生姓名何迪指导教师刘艳杰 XX 年12月8日 1、软件功能简介 (1)全面的单元操作:包括气/液,气/液/液,固体系统和用户模型。 (2)将工艺模型与真实的装置数据进行拟合,确保精确的和有效的真实装置模型。 (3) 优化功能:确定装置操作条件,最大化任何规定的目标,如收率、能耗、物流纯度和工艺经济条件。 (4) Design Specification 功能: 自动计算操作条件或设备参数,满足指定的性能目标。 2、已知基础数据及分离任务 (1)已知基础数据 F1:35?C ,101kPa,1080 kg/hr的甲醇(52%w)-水(48%w)。F2:20?C ,150kPa,1000kg/hr 的甲醇(40%w)-水(60%w)。F3:25?C ,120kPa,1420kg/hr 的甲醇(60%w)-水(40%w)。精馏塔进料流量:3000 kg/hr,进料温度60?C,压力150kPa。(2)分离任务 塔顶产品甲醇含量不低于99.9%(w),塔底产品水含量

不低于99.9%(w)。甲醇回收率不低于99.1%,水回收率不低于99.5%。 3、流程叙述 将温度为35 ?C,压力为101kPa,流量为1080 kg/hr 的甲醇(52%w)-水(48%w) 与温度为20 ?C,压力为150kPa,流量为1000 kg/hr的甲醇(40%w)-水(60%w)及温度为25 ?C,压力为120kPa,流量为1420kg/hr的甲醇(60%w)-水(40%w)在混合器M0101中混合。将混合后的物料经分流器S0101分流出3000kg/hr由泵P0101打入换热器E0101,在换热器中将物料加热至60 ?C后,进入精馏塔T0101进行甲醇-水混合液的精馏分离,经精馏后塔顶得到99.9%的甲醇,塔釜得到99.9%的水。流程图见图1所示。 图1 甲醇-水分离流程图 4、模拟计算过程的简述 4.1 模拟的全局设置(1)启动ASPEN 双击桌面的aspen软件快捷方式打开aspen。(2)单位制的选择 在新建页面选择General with Metric Units选项 (3)运行类型的确定 运行类型选择 Flowsheet,确认创建aspen文件。 (4)组分的输入 将本组流程命名为学号18,并且Input Data为METCHE,Output Result为METCHE。

电力电子技术A实验讲义

实验四三相半波可控整流电路的研究一.实验目的 了解三相半波可控整流电路的工作原理,研究可控整流电路在电阻负载和电阻—电感性负载时的工作情况。 二.实验线路与原理 三相半波可控整流电路用三只晶闸管,与单相电路比较,输出电压脉动小,输出功率大,三相负载平衡。不足之处是晶闸管电流即变压器的二次电流在一个周期内只有1/3时间有电流流过,变压器利用率低。 实验线路见图4-1。 1) 电源控制屏位于MEL-002T; 2) L平波电抗器位于NMCL-331挂件; 3) 可调电阻R位于NMEL-03/4挂件 4) G给定(Ug)位于NMCL-31调速系统控制单元中; 5) Uct位于NMCL-33F挂件; 6) 晶闸管位于NMCL-33F挂件。 图4-1 三.实验内容

1.研究三相半波可控整流电路供电给电阻性负载时的工作情况。 2.研究三相半波可控整流电路供电给电阻—电感性负载时的工作情况。 四.实验设备与仪表 1.教学实验台主控制屏 2.触发电路与晶闸主回路组件 3.电阻负载组件 4.示波器 五.注意事项 整流电路与三相电源连接时,一定要注意相序。 六.实验方法 1. 三相半波可控整流电路带电阻性负载。 合上主电源,接上电阻性负载R。 ⑴改变给定电压U g,观察在不同触发移相角α(30°、60°)时,可控整流电路的输出电压U d的波形,并记录相应的U d、I d 值。 ⑵改变给定电压U g,当α=30°时,记录晶闸管A、K间端电压U VT=f(t)的波形。 2. 三相半波可控整流电路带电阻—电感性负载。 接入的电抗器L=700mH。 ⑴改变给定电压U g,观察在不同触发移相角α(30°、60°)时,可控整流电路的输出电压U d的波形,并记录相应的U d、I d 值。 ⑵改变给定电压U g,当α=30°时,记录晶闸管的端电压U VT=f(t)(电阻性负载、电阻—电感性负载)、I d=f(t)(电阻—电感性负载)的波形。 实验方法的具体内容,可参照表4进行。 七. 实验报告

燃料电池的应用及发展状况

简述燃料电池的应用及发展状况 摘要:燃料电池是一种高效、清洁的电化学发电装置,近年来得到国内外普遍重视。目前燃料电池在宇宙飞船、航天飞机及潜艇动力能源方面已得到应用,在汽车、电站及便携式电源等民用领域成功地示范,但低成本、长寿命仍是商业化面临的瓶颈问题。而且我国在燃料电池方面的研究与外国还有一定差距,需要科研工作者更多的努力。 关键字:燃料电池分类应用发展状况 1. 燃料电池的概念 燃料电池(Fuel Cell)是一种电化学设备,它直接、高效地将持续供给的燃料和氧化剂中的化学能连续不断地转化为电能。燃料电池的基本物理结构由一个 电解质层组成,它的一边与一个多孔渗透 的阳极相连,另一边与一个多孔渗透的阴 极相连,气态燃料电池连续不断地输入阳 极(负电极),同时氧化剂连续不断地输 入阴极(正电极),在两个电极上发生电 化学反应,产生电流[1]。其基本结构如图 所示: 2. 燃料电池的分类及其优点 随着现代文明发展,人们逐渐认识到传统的能源利用方式存在两大弊病:一是储存于燃料中的化学能要首先转变成热能后才能被转变成电能或机械能,受卡诺循环及现代材料的限制,转化效率低(33~35%),造成严重的能源浪费;二是传统的能源利用方式造成了大量的废水、废气、废渣、废热和噪声污染,严重威胁着人类的生存环境。现代社会所建立起来的庞大的能源系统已无法适应未来社会对高效、清洁、经济、安全的能源体系的要求,能源发展正面临着巨大的挑战:能源短缺与环境污染,因此探索新能源以及新的能源利用方式,是全球可持续发展迫切需要解决的重大课题。 燃料电池是一种电化学发电装置,等温地按电化学方式将化学能转化为电

电路理论实验讲义

实验一电路元器件伏安特性的测试 一、实验目的 1、认识常用电路元件。 2、掌握线性电阻、非线性电阻元件伏安特性的测绘。 3、掌握仪器、仪表的使用方法。 二、实验仪器 1、RXDI-1A电路原理实验箱1台 2、万用表1台 三、实验原理 任何一个二端元件的特性可用该元件上的端电压U与通过该元件的电流I 之间的函数关系I=f(U)来表示,即用I-U平面上的一条曲线来表示,这条曲线称为该元件的伏安特性曲线。 图1 1、线性电阻器的伏安特性曲线是一条通过坐标原点的直线,图1中a曲线所示,该直线的斜率的倒数等于该电阻器的电阻值。 2、一般的半导体二极管是一个非线性电阻元件,其伏安特性如图1中b所示。正向压降很小(一般的锗管约为0.2~0.3V,硅管约为0.5~0.7V),正向电流随正向压降的升高而急骤上升,而反向电压从零一直增加到十几伏至几十伏时,其反向电流增加很小,粗略地可视为零。可见,二极管具有单向导电性,如果反向电压加得过高,超过管子的极限值,则会导致管子击穿损坏。 3、稳压二极管是一种特殊的半导体二极管,其正向特性与普通二极管类似,但

其反向特性特别,如图1中c所示。在反向电压开始增加时,其反向电流几乎为零,但当反向电压增加到某一数值时(称为管子的稳压值,有各种不同稳压值的稳压管)电流将突然增加,以后它的端电压将维持恒定,不再随外加的反向电压升高而增大。注意:流过二极管或稳压二极管的电流不能超过管子的极限值,否则管子会被烧坏。 四、实验内容及步骤 1、测定线性电阻器的伏安特性 按图2接线,调节直流稳压电源的输出电压U,从0V开始缓慢地增加,记下相应的电压表和电流表的读数。 图2 图3 2、测定半导体二极管IN4007的伏安特性 按图3接线,R为限流电阻,测二极管的正向特性时,其正向电流不得超过35mA,正向压降可在0~0.75V之间取值。特别0.5~0.75V之间应多取几个测量点。测反向特性实验时,只需将图3中的二极管D反接,且其反向电压可加至24V。 3、测定稳压二极管的伏安特性 将图3中的二极管IN4007换成稳压二极管2CW55,重复实验内容2的测量。 4、根据各实验数据(数据见表1、表2、表3、表4、表5),分别在方格纸上绘制出光滑的伏安特性曲线。(其中二极管和稳压管的正、反向特性均要求画在同一张图中,正、反向电压可取为不同的比例尺),根据实验结果,总结、归纳被测各元件的特性,做必要的误差分析。 五、实验数据及结果 表1线性电阻特性实验数据 U(V) I(mA)

氢氧燃料电池性能测试实验报告

氢氧燃料电池性能测试 实验报告 Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998

氢氧燃料电池性能测 试实验报告 学号: 姓名:冯铖炼 指导老师:索艳格 一、实验目的 1.了解燃料电池工作原理 2.通过记录电池的放电特性,熟悉燃料电池极化特性 3.研究燃料电池功率和放电电流、燃料浓度的关系 4.熟悉电子负载、直流电源的操作 二、工作原理 氢氧燃料电池以氢气作燃料为还原剂,氧气作氧化剂氢氧燃料电池,通过燃料的燃烧反应,将化学能转变为电能的电池,与原电池的工作原理相同。 氢氧燃料电池工作时,向氢电极供应氢气,同时向氧电极供应氧气。氢、氧气在电极上的催化剂作用下,通过电解质生成水。这时在氢电极上有多余的电子而带负电,在氧电极上由于缺少电子而带正电。接通电路后,这一类似于燃烧的反应过程就能连续进行。

工作时向负极供给燃料(氢),向正极供给氧化剂(氧气)。氢在负极上的催化剂的作用下分解成正离子H+和电子e-。氢离子进入电解液中,而电子则沿外部电路移向正极。用电的负载就接在外部电路中。在正极上,氧气同电解液中的氢离子吸收抵达正极上的电子形成水。这正是水的电解反应的逆过程。 氢氧燃料电池不需要将还原剂和氧化剂全部储藏在电池内的装置氢氧燃料电池的反应物都在电池外部它只是提供一个反应的容器 氢气和氧气都可以由电池外提供燃料电池是一种化学电池,它利用物质发生化学反应时释出的能量,直接将其变换为电能。从这一点看,它和其他化学电池如锌锰干电池、铅蓄电池等是类似的。但是,它工作时需要连续地向其供给反应物质——燃料和氧化剂,这又和其他普通化学电池不大一样。由于它是把燃料通过化学反应释出的能量变为电能输出,所以被称为燃料电池。 具体地说,燃料电池是利用水的电解的逆反应的"发电机"。它由正极、负极和夹在正负极中间的电解质板所组成。最初,电解质板是利用电解质渗入多孔的板而形成,2013年正发展为直接使用固体的电解质。 工作时向负极供给燃料(氢),向正极供给氧化剂(空气,起作用的成分为氧气)。氢在负极分解成正离子H+和电子e-。当氢离子进入电解液中,而电子就沿外部电路移向正极。用电的负载就接在外部电路中。在正极上,空气中的氧同电解液中的氢离子吸收抵达正极上的电子形成水。这正是水的电解反应的逆过程。此过程水可以得到重复利用,发电原理与可夜间使用的太阳能电池有异曲同工之妙。 燃料电池的电极材料一般为惰性电极,具有很强的催化活性,如铂电极、活性碳电极等。 利用这个原理,燃料电池便可在工作时源源不断地向外部输电,所以也可称它为一种"发电机"。 一般来讲,书写燃料电池的化学反应方程式,需要高度注意电解质的酸碱性。在正、负极上发生的电极反应不是孤立的,它往往与电解质溶液紧密联系。如氢—氧燃料电池有酸式和碱式两种: 若电解质溶液是碱、盐溶液则

数字电子技术实验讲义(试用)

数字电子技术实验 简要讲义 适用专业:电气专业 编写人:于云华、何进 中国石油大学胜利学院机械与控制工程学院 2015.3

目录 实验一:基本仪器熟悉使用和基本逻辑门电路功能测试 (3) 实验二:小规模组合逻辑电路设计 (4) 实验三:中规模组合逻辑电路设计 (5) 实验四:触发器的功能测试及其应用 (7) 实验五:计数器的功能测试及其应用 (8) 实验六:计数、译码与显示综合电路的设计 (9)

实验一:基本仪器熟悉使用和常用门电路逻辑功能测试 (建议实验学时:2学时) 一、实验目的: 1、熟悉实验仪器与设备,学会识别常用数字集成芯片的引脚分配; 2、掌握门电路的逻辑功能测试方法; 3、掌握简单组合逻辑电路的设计。 二、实验内容: 1、测试常用数字集成逻辑芯片的逻辑功能:74LS00,74LS02,74LS04,74LS08,74LS20,74LS32,74LS86等(预习时查出每个芯片的逻辑功能、内部结构以及管脚分配)。 2、采用两输入端与非门74LS00实现以下逻辑功能: ① F=ABC ② F=ABC③ F=A+B ④ F=A B+A B 三、实验步骤:(学生根据自己实验情况简要总结步骤和内容)主要包括: 1、实验电路设计原理图;如:实现F=A+B的电路原理图: 2、实验真值表; 3、实验测试结果记录。如: 输入输出 A B F3 00灭

四、实验总结: (学生根据自己实验情况,简要总结实验中遇到的问题及其解决办法)注:本实验室提供的数字集成芯片有: 74LS00, 74LS02,74LS04,74LS08,74LS20,74LS32,74LS74,74LS90,74LS112, 74LS138,74LS153, 74LS161 实验二:小规模组合逻辑电路设计 (建议实验学时:3学时) 一、实验目的: 1、学习使用基本门电路设计、实现小规模组合逻辑电路。 2、学会测试、调试小规模组合逻辑电路的输入、输出逻辑关系。 二、实验内容: 1、用最少的门电路设计三输入变量的奇偶校验电路:当三个输入端有奇数个1时,输出为高,否则为低。(预习时画出电路原理图,注明所用芯片型号) 2、用最少的门电路实现1位二进制全加器电路。(预习时画出电路原理图,注明所用芯片型号) 3、用门电路实现“判断输入者与受血者的血型符合规定的电路”,测试其功能。要求如下:人类由四种基本血型:A、B、AB、O 型。输血者与受血者的血型必须符合下述原则: O型血可以输给任意血型的人,但O型血的人只能接受O型血; AB型血只能输给AB型血的人,但AB血型的人能够接受所有血型的血; A 型血能给A型与AB型血的人;但A型血的人能够接受A型与O型血; B型血能给B型与AB型血的人,而B型血的人能够接受B型与O型血。 试设计一个检验输血者与受血者血型是否符合上述规定的逻辑电路,如果符合规定电路,输出高电平(提示:电路只需要四个输入端,它们组成一组二进制数码,每组数码代表一对输血与受血的血型对)。 约定“00”代表“O”型 “01”代表“A”型 “10”代表“B”型 “11”代表“AB”型(预习时画出电路原理图,注明所用芯片型号) 三、实验步骤:(学生根据自己实验情况简要总结步骤和内容),与实验一说明类似。

燃料电池综合特性实验报告

燃料电池综合特性实 验论文 作者:宋东辉 学号:03482015010 单位:二十二连二区队A组

燃料电池综合特性实验 一、实验目的: 1.了解燃料电池的工作原理 2.观察仪器的能量转换过程:电能→电解池→氢能(能量储存)→燃料电池→电 能 3.测量燃料电池输出特性,作出所测燃料电池的伏安特性(极化)曲线,电池 输出功率随输出电压的变化曲线。计算燃料电池的最大输出功率及效率 4.测量质子交换膜电解池的特性,验证法拉第电解定律 二、实验原理: 1、燃料电池 质子交换膜燃料电池(如上图)在常温下工作,其基本结构如图1所示。 目前广泛采用的全氟璜酸质子交换膜为固体聚合物薄膜,厚度0.05~0.1mm,它提供氢离子(质子)从阳极到达阴极的通道,而电子或气体不能通过。

膜两边的阳极和阴极由石墨化的碳纸或碳布做成,厚度0.2~0.5mm,导电性能良好,其上的微孔提供气体进入催化层的通道,又称为扩散层。 进入阳极的氢气通过电极上的扩散层到达质子交换膜。氢分子在阳极催化剂的作用下解离为2个氢离子,即质子,并释放出2个电子, 阳极反应为:H2 = 2H++2e (1) 氢离子以水合质子H+(nH2O)的形式,在质子交换膜中从一个璜酸基转移到另一个璜酸基,最后到达阴极,实现质子导电,质子的这种转移导致阳极带负电。 在电池的另一端,氧气或空气通过阴极扩散层到达阴极催化层,在阴极催化层的作用下,氧与氢离子和电子反应生成水, 阴极反应为:O2+4H++4e = 2H2O (2) 阴极反应使阴极缺少电子而带正电,结果在阴阳极间产生电压,在阴阳极间接通外电路,就可以向负载输出电能。 总的化学反应如下:2H2+O2 = 2H2O (3) 2、水的电解 将水电解产生氢气和氧气,与燃料电池中氢气和氧气反应生成水互为逆过程。水电解装置同样因电解质的不同而各异,碱性溶液和质子交换膜是最好的电解质。若以质子交换膜为电解质,可在图1右边电极接电源正极形成电解的阳极,在其上产生氧化反应2H2O = O2+4H++4e。左边电极接电源负极形成电解的阴极,阳极产生的氢离子通过质子交换膜到达阴极后,产生还原反应2H++2e = H2。即在右边电极析出氧,左边电极析出氢。 作燃料电池或作电解器的电极在制造上通常有些差别,燃料电池的电极应利

碳载铂、钌催化剂对甲醇燃料电池阳极电催化性能的研究实验报告

碳载铂、钌催化剂对甲醇燃料电池阳极电催化性能的研究 学院:化学学院 班级:化学03班 姓名:艾丽莎 学号:33090331

碳载铂、钌催化剂对甲醇燃料电池阳极电催化性能的研究【实验目的】 甲醇燃料电池阳极催化剂的合成及其电化学催化性能的表征,此实验过程设计无机合成、物理化学及电化学等学科方向内容,对同学熟练运用化学实验基本理论、基本方法和操作具有很好的促进作用。燃料电池是一类连续地将燃料氧化过程的化学能直接转换为电能的电化学电池,直接甲醇燃料电池(DMFC)由于其结构简单、操作方便和比能量高等优点,具有十分诱人的应用前景,引起广泛的研究兴趣,已经成为燃料电池领域的研究热点。把相关研究作为实验内容对同学开阔视野,培养科学的思维方式及勇于创新意识具有促进作用。 1. 了解碳载铂与铂钌阳极催化剂的制备方法。 2. 了解甲醇燃料电池的工作原理,掌握催化剂电催化性能的测试方法。 3. 了解甲醇燃料电池阳极电催化反应机理。 【实验原理】 一.什么是燃料电池。 燃料电池(Fuel Cell, 简称FC)发电是继水力、火力和核能发电之后的第四类发电技术。由于它是一种不经过燃烧直接以电化学反应方式将燃料的化学能转化为电能的发电装置,从理论上讲,只要连续供给燃料,燃料电池便能连续发电。但是,与一般电池不同,FC所用的燃料和氧化剂并不是储存在电池内,而是储存在电池外。在这一点上,与内燃机相似。因此,FC又被形象地称为“电化学发电机”。 二.燃料电池的分类。 燃料电池的分类方式有很多种,可依据所用解质性、工作温度燃料电池的分类方式有很多种,可依据所用解质性、工作温度燃料电池的分类方式有很多种,可依据所用解质性、工作温度燃料的种类以及使用方式等进行分。目前广为采纳法是燃料的种类以及使用方式等进行分。目前广为采纳法是依据燃料电池中所用的电解质类型来进行分,即为六燃料: ①碱性燃料电池(AFC)碱性燃料电池采用氢氧化钾溶液作为电解液,电池的工作温度一般在60 -220 ℃之间。 ②质子交换膜燃料电池(PEMFC)质子交换膜燃料电池采用能够传导质子的聚合物膜作为电解质,比如全氟磺酸膜(Nafion 膜),其主链为聚四氟乙烯链,支链上带有磺酸基团,可以传导质子。 ③磷酸燃料电池(PAFC)磷酸燃料电池是目前最为成熟的燃料电池,已经实现了一定规模的商品化。其采用是100%的磷酸作为电解液,其具有稳定性好和腐蚀性低的特点。 ④熔融碳酸盐燃料电池(MCFC)熔融碳酸盐燃料电池是一种中高温燃料电池,其电解质是Li2CO3-Na2CO3或者Li2CO3-K2CO3的混合物熔盐,浸在用LiAlO2制成的多孔膜中,高温时呈熔融状态对碳酸根离子具有很好的传导作用。 ⑤固体氧化物燃料电池(SOFC)其是一种全固体的燃料电池,电解质是固态致密无孔的复合氧化物,最常使用钇掺杂锆简写为YSZ,这样的电解质材料在高温下具有很好的氧离子传导性。 ⑥直接甲醇燃料电池(DMFC)直接甲醇燃料电池是近年来开发起的,用PEM 作为电解质的新型燃料电池。其直接使用液体甲醇作为燃料,大幅度的简化了发电系统和结构。三.甲醇燃料电池(DMFC)的工作原理。 直接以液态或气态甲醇为燃料的FC称为DMFC,直接甲醇燃料电池是质子交换膜燃料电池(PEMFC)的一种变种,它直接使用甲醇而勿需预先重整。甲醇在阳极转换

2020年燃料电池行业分析报告

2020年燃料电池行业 分析报告 2020年3月

目录 一、国内:商业化早期阶段,长远规划可期 (4) 1、产业情况:商业化早期阶段,有望与锂电形成互补 (4) 2、政策引导:借鉴锂电池发展经验,搭建规划框架雏形 (6) (1)高层重视程度持续提升,重磅氢能发展规划即将出台 (6) (2)国补维持较高水平,新补贴标准值得期待 (6) (3)地方政策顺势跟进,氢能产业蓬勃发展 (7) 二、海外:他山之石,以日本氢能发展经验为鉴 (8) 1、起因:能源自给率低,倒逼氢能革命 (8) 2、规划:三步走战略目标明确,未来氢能社会可期 (9) 3、研发:产学研一体化,掌握全产业链核心技术 (10) 4、能源供应:打造海外氢能供应体系 (12) 5、应用:优先开拓车用市场,完善加氢站等配套设施 (13) 6、应用:积极探索多元化应用场景 (14) 三、地方:多点开花,培育氢能产业集群 (15) 1、长三角:以长三角一体化为契机,打造氢能产业集群 (16) 2、环渤海:张家口基地“以点带面”,迎合北方商用车市场 (18) 3、珠三角:广东多城联动,省级层面加强顶层设计 (19)

政策框架初成,长远规划可期。燃料电池已初步达到产业化标准,而当前氢能基础设施短板是限制燃料电池汽车产业快速发展的主要 因素之一。国家对氢能/燃料电池的重视程度不断提升,发改委要求在2021年前完成氢能发展的标准规范和支持政策。未来随着国家级氢能规划的出台,有望引导行业有序、健康发展,进一步推动绿色能源转型,为燃料电池产业发展提供有力保障。补贴层面,纯电动汽车珠玉在前,我国已形成了“购置补贴为主、税收减免为辅”的补贴模式,国补与地补相结合,推动新能源汽车产业发展。 借鉴日本发展经验,推动产业健康成长。日本政府首先在国家层面明确了氢能源战略定位,随后配合推出了氢能产业战略方向和目标,并不断更新发布实现战略目标的路线图,一系列“组合拳”对氢能产业的前期培育和健康发展具有重要的指引作用。研发方面,大力支持产学研一体化,掌握全产业链核心技术;氢能支持方面,打造海外氢能供应体系,完善国内加氢站等配套设施;应用领域,优先开拓车用市场,积极探索多元化应用场景。 全国多点开花,培育区域产业集群。近年地方政府对氢燃料电池汽车产业的扶持也在加速推进,已有17个省/直辖市出台了针对氢燃料电池的扶持政策,从产业规划、地方补贴、技术进步等多维度全方位推动氢能产业发展。产业初期投资额大、经济效益慢,政府需提供财政支持、终端运营订单、基金直投、研发平台建设等多维度支持,因此国内氢能产业主要集中在经济发达的东部沿海地区,现已形成了长三角、环渤海、珠三角三大氢能产业集群。

模拟电路实验讲义..

实验一 单级交流放大电路 一、实验目的 1、 学会放大器静态工作点的调试方法,分析静态工作点对放大器性能的影响。 2、 掌握放大器电压放大倍数、输入电阻、输出电阻及最大不失真输出电压的测试方法。 3、 熟悉常用电子仪器及模拟电路实验设备的使用。 二、实验原理 图1-1为电阻分压式工作点稳定单管放大器实验电路图。它的偏置电路采用R B1和R B2组成的分压电路,并在发射极中接有电阻R E ,以稳定放大器的静态工作点。当在放大器的输入端加入输入信号u i 后,在放大器的输出端便可得到一个与u i 相位相反,幅值被放大了的输出信号u 0,从而实现了电压放大。 图1-1 共射极单管放大器实验电路 在图1-1电路中,当流过偏置电阻R B1和R B2 的电流远大于晶体管T 的 基极电流I B 时(一般5~10倍),则它的静态工作点可用下式估算 CC B2 B1B1 B U R R R U +≈ U CE =U CC -I C (R C +R E ) 电压放大倍数 C E BE B E I R U U I ≈-≈

be L C V r R R β A // -= 输入电阻 R i =R B1 // R B2 // r be 输出电阻 R O ≈R C 由于电子器件性能的分散性比较大,因此在设计和制作晶体管放大电路时,离不开测量和调试技术。在设计前应测量所用元器件的参数,为电路设计提供必要的依据,在完成设计和装配以后,还必须测量和调试放大器的静态工作点和各项性能指标。一个优质放大器,必定是理论设计与实验调整相结合的产物。因此,除了学习放大器的理论知识和设计方法外,还必须掌握必要的测量和调试技术。 放大器的测量和调试一般包括:放大器静态工作点的测量与调试,消除干扰与自激振荡及放大器各项动态参数的测量与调试等。 1、 放大器静态工作点的测量与调试 1) 静态工作点的测量 测量放大器的静态工作点,应在输入信号u i =0的情况下进行, 即将放大器输入端与地端短接,然后选用量程合适的直流毫安表和直流电压表,分别测量晶体管的集电极电流I C 以及各电极对地的电位U B 、U C 和U E 。一般实验中,为了避免断开集电极,所以采用测量电压U E 或U C ,然后算出I C 的方法,例如,只要测出U E ,即可用 E E E C R U I I = ≈算出I C (也可根据C C CC C R U U I -=,由U C 确定I C ), 同时也能算出U BE =U B -U E ,U CE =U C -U E 。 为了减小误差,提高测量精度,应选用内阻较高的直流电压表。 2) 静态工作点的调试 放大器静态工作点的调试是指对管子集电极电流I C (或U CE )的调整与测试。静态工作点是否合适,对放大器的性能和输出波形都有很大影响。如工作点偏高,放大器在加入交流信号以后易产生饱和失真,此时u O 的负半周将被削底,如图1-2(a)所示;如工作点偏低则易产生截止失真,即u O 的正半周被缩顶(一般截止失真不如饱和失真明显),如图1-2(b)所示。这些情况都不符合不失真放大

OUC燃料电池综合实验

燃料电池综合实验 王忠成,宋鹏,吴宝兰 中国海洋大学,海洋地球科学学院,地球信息科学与技术专业,山东省青岛市 26610 摘要:燃料电池以氢和氧为燃料,通过电化学反应直接产生电力,能量转换效率高于燃烧燃料的电机。燃料电池的反应生成物为水,对环境无污染,单位体积氢的储能密度远高于现有的其他电池。燃料电池的燃料氢(反应所需的氧可从空气中获得)可电解水获得,也可由矿物或生物原料转化制成。本实验包含太阳能电池发电(光能-电能转换),电解水制取氢气(电能-氢能转换),燃料电池发电(氢能-电能转换)几个环节,形成了完整的能量转换,储存,使用的链条。实验内含物理内容丰富,实验内容紧密结合科技发展热点与实际应用,实验过程清洁环保。 关键词:空气热机;卡诺定理;实际效率 中图法分类号: xxx 文献标志码:A文章编号: 1672-5174(xxxx)xx-xxx-xx 1 实验原理 (1)燃料电池 在电池的两极一端通入氢气另一端通入氧气,通入氢气的一端在催化剂的作用下解离为两个氢离子,即质子,并释放出两个电子,阳极反应为: O 2 =2H++2e (1) 在电池的另一端,氧气或空气通过阴极扩散层到达阴极催化层,在阴极催化层的作用下,氧与氢离子和电子反应生成水,阴极反应为: O 2+4H++4e=2H 2 O (2) 阴极反应使阴极缺少电子而带正电,结果在阴阳极间产生电压,在阴阳极间接通外电路,就可以向负载输出电能。 (2)2水的电解 将水电解生成氢气和氧气,与燃料电池中氢气和氧气的反应生成水互为逆过程。电源正极形成电解的阳极,在其上产生的反应为2H2O=O2+4H++4e。电源负极形成点解的阴极,阳极产生的氢离子通过质子交换膜到达阴极后,产生还原反应2H++2e=H2。 (3)太阳能电池 P型半导体中有相当数量的空穴,几乎没有自由电子。N型半导体中有相当数量的自由电子,几乎没有空穴。当两种半导体结合在一起形成P-N结时,N区的电子(带负电)向P区扩散, P区的空穴(带正电)向N 区扩散,在P-N结附近形成空间电荷区与势垒电场。势垒电场会使载流子向扩散的反方向作漂移运动,最终扩 散与漂移达到平衡,使流过P-N结的净电流为零。在空间电荷区内,P区的空穴被来自N区的电子复合,N 区 的电子被来自P区的空穴复合,使该区内几乎没有能导电的载流子,又称为结区或耗尽区。 当光电池受光照射时,部分电子被激发而产生电子-空穴对,在结区激发的电子和空穴分别被势垒电场推向N 区和P区,使N区有过量的电子而带负电,P区有过量的空穴而带正电,P-N结两端形成电压,这就是光 伏效应,若将P-N结两端接入外电路,就可向负载输出电能。 2、实验内容及实验步骤 (1)质子交换膜电解池的特性测量 确认水塔水位在水位上限和下限之间,将测试仪的电压输出端串联电流表后接入电解池,将电压表并连接 入电解池两端。 将气水塔输气管止水夹关闭,调解恒流源输出到最大(旋钮顺时针旋转到底),让电解池迅速的产生气体。当气水塔下层的气体低于最低刻度线的时候,打开气水塔输气管止水夹,排除气水塔下层的空气。如此反复 2~3次后,气水塔下层的空气基本排尽,剩下的就是纯净的氢气和氧气了。根据表1中的电解池输入电流的大小,调解恒流源的输出电流,待电解池输出气体稳定后(约1分钟),关闭气水塔输气管。测量输入电流,电 压及产生一定体积的气体的时间,记入表1中。

(完整word版)实验报告5燃料电池电堆测试

《燃料电池电堆测试与分析》实验报告 一.实验目的: 1.掌握PEMFC电堆测试台的基本结构和操作方法; 2.通过实测,掌握电堆极化曲线的测试方法,学会绘制极化曲线、功率曲线等图谱; 3.能将燃料电池电堆的实测性能应用于燃料电池系统的构建上;锻炼运用理论分析、解决实际问题的能力和方法。 二.实验原理: 将所需测量的PEMFC电堆与NBT燃料电池测试系统连接,通过控制平台调节燃料电池的氢气和空气流量,设置负载的电流值(也就是燃料电池电堆的电流值),观察记录电压值和功率值得变化,利用所记录的数据画出燃料电池的i-V和i-P曲线。 三.实验仪器设备和器材 四.测试平台开机顺序测试 1.打开气源,检查氢气、空气(外部供应时)的压力是否正常、去离子水的液位是否正常;室内氢气泄露报警系统是否正常;氢气、空气与水的排放口是否连接妥当,氢气管路的出口必须接于室外。注意测试时的人员与设备的安全。 2.给测试平台上电,380V AC。 3.开启电脑,与设备联机。 4.手动设置适当的氢、空、冷却水温度(注意不应超过80℃)、各流体最低流量、电堆片数、活性面积等参数。 5.设定数据保存路径和文件名,开始记录数据。

6.测试极化曲线。根据电堆所需要氢空流量,手动设置电流,测试极化曲线。 7.实验结束。 五.提前制作电堆运行所需氢气和空气的流量表,如下表所示。 已知条件:电堆片数:19片,单电池活性面积250cm2; 阴/阳极化学计量比:3.5/1.5; 常压 六.绘制电堆的极化曲线和功率密度曲线,需要标明必要的测试条件。

七.绘制上述极化曲线上最大功率时的单片电池电压柱状图,并计算电压的 标准偏差。 学生(签名): 实验日期:2015.5.25

2015年燃料电池汽车行业分析报告

2015年燃料电池汽车行业分析报告 2015年1月

目录 一、FCEV是未来汽车发展的最理想方向 (5) 1、节能减排压力巨大 (5) 2、汽车多技术轨道并行 (6) 3、FCEV兼具传统汽车和新能源汽车优点,是未来汽车发展的最理想方向.. 7 二、燃料电池汽车概况 (8) 1、燃料电池汽车工作原理 (8) 2、燃料电池 (9) 3、燃料电池汽车发展历史 (11) (1)技术创新阶段(1959年~1993年) (11) (2)技术验证阶段(1994~2007年) (12) (3)商业化前夕(2008年~) (14) 三、燃料电池汽车产业链解析 (16) 1、燃料电池产业链分析 (17) (1)质子交换膜 (18) (2)催化剂 (18) (3)扩散层 (19) (4)双极板(阴、阳极板) (19) 2、氢产业链分析 (20) (1)制氢 (21) ①电解水 (21) ②甲烷蒸汽重整 (22) (2)储氢 (22) (3)加氢站 (23) 3、产业链上的优势企业 (23) 4、产业链上的中国企业 (24) (1)新源动力:中国燃料电池领域规模最大的企业 (24)

(2)神力科技:中国燃料电池技术研发和产业化的领先者 (25) (3)中科同力:致力于质子膜燃料电池中质子膜的研制与生产 (26) (4)贵研铂业:燃料电池催化剂提供商 (26) 四、国内外燃料电池汽车发展现状 (27) 1、各国政府大力发展燃料电池汽车 (28) (1)日本:FCCJ计划2015年实现燃料电池汽车商业化 (28) (2)德国:欧洲氢燃料电池汽车最活跃的国家 (30) (3)英国:H2 Mobility Roadmap (31) (4)美国:以加州为代表的零排放汽车计划(Zero Emission Vehicles) (33) (5)中国:扶持力度相对较弱,尚处于技术验证阶段 (34) 2、各大汽车制造商致力于燃料电池汽车的研究与推广 (35) (1)戴姆勒(DAIMLER):率先将PEMFC应用于汽车 (35) (2)福特(FORD):与燃料电池汽车若即若离 (36) (3)通用(GM):在燃料电池汽车领域研究历史最长 (37) (4)本田(Honda):推出世界第一辆商业化燃料电池汽车FCX Clarity (38) (5)现代(Hyundai):全球率先批量生产燃料电池汽车——ix35 FECV (38) (6)日产(Nissan):进入燃料电池汽车领域相对较晚,电池技术领先 (39) (7)丰田(Toyota):燃料电池汽车领域投入力度最大、技术最先进 (40) (8)大众(Volkswagen):近年开始涉足燃料电池汽车 (41) (9)上汽集团(SAIC):中国目前唯一可产业化燃料电池汽车的企业 (41) 3、三大燃料电池汽车集团联盟 (42) (1)戴姆勒/福特/雷诺-日产联盟 (43) (2)宝马/丰田联盟 (43) (3)通用/本田联盟 (43) 五、燃料电池汽车产业化黎明到来 (44) 1、技术:现有燃料电池汽车性能与传统汽车相当 (45) 2、成本:燃料电池系统成本持续下降 (45) 3、基础设施:加氢站建设先行,加速建设中 (47)

电力系统分析实验讲义(稳态)汇编

电力系统分析(上)实验讲义

学习-----好资料 实验一:节电导纳矩阵的形成 .实验目的 掌握节点导纳矩阵形成的方法 .实验学时:2学时 n 个独立节点的网络,n 个节点方程 Y B ^ ll 0式中的Y B 即为节点导纳矩阵 具体说,Y ii 就等于与节点i 相连的所有支路导纳的和。 2.互导纳 j Y ji 丁 丫》=丫门=—yj \ i ,Uj 舟护 即给节点i 加单位电压,其余节点全部接地,由节点 j 注入网络的电流。 节点导纳矩阵的特点: (1) 直观易得 阶数:等于除参考节点外的节点数 n ;对角元:等于该节点所连导纳的总和; 非对角元Yij :等于连接节点i 、j 支路导纳的负值。 (2) 稀疏矩阵,非对角元素中有大量的零元素。 (3) 对称矩阵。 3 .非标准变比变压器 在包括变压器的输电线路中,变压器线圈匝数比为标准变比时,变压器的高、 低压两侧的电压和电流值用线圈匝数比来换算是不成问题的。但是变压器线圈匝数 比为不等于标准变比时需要加以注意。 图中山^2, 是按标准变比换算出来的变压器高、低压侧的电压和电流,理 想变压器的线圈匝数比k : 1表示变压器线圈匝数比对标准变比的比值 由图可得: ”1十 .实验原理与方法 1 .自导纳

对于用导纳表示的二形等值网络,从1-1'端口看进去的节点自导纳为: 论(1 -k)Y r =齐,和k 等于1时相同。 从2-2'端口看进去的节点自导纳为: 丫22二kY T ?k(k-1)Y T 二k 2 V r ,是标准变比时导纳的 k 2倍 互导纳Y ,2二丫2i kY 「是标准变比时导纳的k 倍。 由以上可见,当有非标准变比变压器时,可按如下次序形成节点导纳矩阵。 (1) 先不考虑非标准变比(认为k=1),求导纳矩阵。 (2) 再把接入非标准变比变 压器的节点的自导纳加上 (k 2-1)Y r ,其中Y T 是 从变压器相连接的另一端节点来看变压器的漏抗的倒数。 (3) 由接入非标准变比变压器的对端节点来看自导纳不变。 (4) 变压器两节点间的互导纳加上-(k -1)Y T 4.系统变更时的修正 (1) 从原有的节点上引出新的支路(输电线路或变压器),在这一支路另一端设新 的节点。 (2) 在原有的支路上并联新的支路。 (3) 在没有支路直接相连的两个原有节点间附加新的支路。 (4) 原有变压器的变比或者分接头位置发生变化时。 下面分别讨论这几种变更情况。 (1) 从原节点i 增加新的节点j 和新的阻抗为z 的支路时,节电导纳矩阵的阶次 增加一 阶。自导纳和互导纳变化如下: 1 Y j =Y ji … z Y i =Y i (0 )+1 z U l kU 2 TU I 三5 4?3U Z T Z T kU , k 2 U Z T 上面的电压电流关系用-形等值网络表示有两种: a) (a) 1 1 Z o Z Z o

燃料电池综合特性研究

燃料电池综合特性研究

————————————————————————————————作者:————————————————————————————————日期:

燃料电池综合特性研究 2014级光电信息科学与工程李盼园摘要 燃料电池是基于氧化还原反应的能源产生装置,包括基于质子交换膜的水电解过程和燃料电池反应。本实验利用电解、气水塔等试验装置对质子交换膜电解池特性及燃料电池输出特性进行验证。 实验目的: 1.了解燃料电池的工作原理; 2.测量质子交换膜电解池特性,验证法拉第电解定律; 3.测量燃料电池的输出特性。 实验原理: 1.燃料电池 质子交换膜(PEM)燃料电池,在原理上相当于电解水的逆装置,其单电池由阳极、阴极和质子交换膜组成,阳极为氢燃料发生氧化的场所,阴极为氧化剂还原的场所,两级都含有加速电极电化学反应的

催化剂,质子交换膜作为电解质。工作时相当于直流电源,其阳极为电源正极,阴极为电源负极。基本结构如图1-1. 阳极的化学反应:进入阳极的氢气通过电极上的扩散层到达质子交换膜。氢分子在阳极催化剂的作用下解离成两个氢离子,即质子,并释放出两个电子,阳极反应式为:+=-H H 2e 22 (1-1) 氢离子以水合质子+H (nH 2O)的形式,通过质子交换膜到达阴极,实现质子导电,质子的转移使阳极带负电。 阴极化学反应:氧气或者空气通过阴极扩散层到达阴极催化层,在阴极催化层的作用下,氧和氢离子和电子反应生成水,阴极反应式为:O H e H O 22244=+++ (1-2). 阴极反应使氧气得到氢离子和电子变成水,由于阴极上缺少电子而带正电,在阴极和阳极之间产生电压,如果阴阳极接通外电路,就可以向负载输出电能。 总的化学反应式为:O H O H 22222=+ (1-3)

直接甲醇燃料电池实验报告

研究生专业实验报告 实验项目名称:被动式直接甲醇燃料电池学号: 姓名:张薇 指导教师:陈蓉 动力工程学院

被动式直接甲醇燃料电池 一、实验目的 1、了解和掌握被动式空气自呼吸直接甲醇燃料电池(DMFC)的基本工作原理; 2、了解和掌握对燃料电池进行性能测试的基本方法; 3、了解和掌握燃料电池性能评价方法; 4、观察和认识影响燃料电池性能的主要因素。 二、实验意义 燃料电池是一种将燃料的化学能直接转化为电能的能源转化装置,具有环境友好、效率高、工作安静可靠等显着优点,被誉为继核能之后新一代的能源装置。在众多燃料电池种类中,空气自呼吸式直接甲醇燃料电池(DMFC)因具有系统结构简单、能量密度高、环境友好、更换燃料方便、可在常温下工作等优点,成为便携式设备最有前景的可替代电源,是电化学和能源科学领域的研究热点。本实验旨在对被动式空气自呼吸直接甲醇燃料电池进行实验研究,使同学们了解和掌握燃料电池测试的基本方法,加深对燃料电池基本工作原理的认识和理解。 三、实验原理 燃料电池是将燃料的化学能直接转化为电能的能源转化装置。一个典型的直 接甲醇燃料电池的示意图如图1所示。 图1: 直接甲醇燃料电池的典型结构 从图1中可以看出,典型的直接甲醇燃料电池包括阳极扩散层、阴极扩散层、阳极催化剂层、阴极催化剂层、质子交换膜、集流体等部件。在被动式空气自呼吸直接甲醇燃料电池中,电池阳极发生的是甲醇的氧化反应: CH 3OH+H 2 O→CO 2 +6H++6e-,E0=0.046 V (1) 电池阴极发生的是氧气的还原反应: 3/2O 2+6H++6e-→3H 2 O,E0=1.229 V (2) 总反应式为: CH 3OH+3/2O 2 →CO 2 +2H 2 O,△ E=1.183 V (3) 在被动式直接甲醇燃料电池阳极,甲醇水溶液扩散通过阳极扩散层到达阳极催化层,甲醇在阳极催化层被氧化,生成二氧化碳、氢离子和电子,如式(1)所示。氢离子通过质子交换膜迁移到阴极,电子通过外电路传递到阴极;在阴极侧,氧气通过暴露在空气中的阴极扩散层传输至阴极催化层,在电催化剂的作用下,氧气与从阳极迁移过来的质子以及从外电路到达的电子发生还原反应生成水,如式(2)所示。理论上直接甲醇燃料电池的开路电压能达到1.183 V,但实际上DMFC 的开路电压一般只有0.7 V左右,其主要原因是部分燃料(甲醇)在浓度差的作

相关文档
相关文档 最新文档