文档库 最新最全的文档下载
当前位置:文档库 › 高中物理第十三章光4实验用双缝干涉测量光的波长杨氏双缝干涉实验报告素材选修3-4讲解

高中物理第十三章光4实验用双缝干涉测量光的波长杨氏双缝干涉实验报告素材选修3-4讲解

高中物理第十三章光4实验用双缝干涉测量光的波长杨氏双缝干涉实验报告素材选修3-4讲解
高中物理第十三章光4实验用双缝干涉测量光的波长杨氏双缝干涉实验报告素材选修3-4讲解

杨氏双缝干涉实验报告

一实验目的:通过杨氏双缝干涉实验求出钠光的波长。

二实验器材:钠光灯,双缝,延伸架测微目镜,3个二维平移底座,2个升降调节座, 透镜L1,二维架,可调狭缝S,透镜架,透镜L2,双棱镜调节架.

三实验原理:波在某点的强度是波在该点所引起的振动的强度,因此正比于振幅的平方。如果两波在P点引起的振动方向沿着同一直线。那么,根据△φ=2π/λδ=2π/(r2-r1)=k (r2-r1)k为波数。则对应2πj即r2-r1=2jλ/2(j=0,±1,±2…)(1—14)差按等于λ/2的整数倍,两波叠加后的强度为最大值,而对应于△φ=(2j+1) λ\2(j=0,±1,±2…) (1—15)式那些点,光程差等于λ/2的奇数倍,称为干涉相消。如果两波从s1,s2向一切方向传播,则强度相同的空间各点的几何位置。满足 r2-r1=常量, r2-r1≈s2s1=d满足下列条件的各点,光强为最大值r2-r1≈ d=jλ考虑到r<

r0λ/d

四实验步骤:1使钠光通过透镜L1汇聚到狭缝上,用透镜L2将S成像于测微目镜分划板M上,然后将双缝D置于L2近旁.在调节好S,D和M的刻线平行,并适当调窄S之后,目镜视场出现便于观察的杨氏条纹.

2 用测微目镜测量干涉条纹的间距△x,用米尺测量双缝的间距d,根据△x=roλ/d计算钠光的波长.

五实验数据记录与处理:

注:n为X1、X2间的条纹数

由上表可得:

条纹间距平均值:△X≈0.2631mm

测量得有关数据:

测微目镜位置:122.30cm 双缝位置:56.70cm

ro=122.30-56.70=65.60cm=656mm

双缝间距:d≈0.938mm

由以上数据得出:

△y=ro入/d =>入=△yd/ro=(0.938×0.2631)÷656×1000000=376.2nm

所以:钠光的波长大约为376.2nm

六误差分析:

⑴由于实验所测量的数据较小,测量和计算式会出现误差。

⑵由于实验仪器的精确度的关系以及镜片的清晰程度,读数十会导致误差。

⑶由于实验时操作的不当影响实验效果的准确度,也会导致部分误差。

⑷在误差允许的范围内,此实验正确。

杨氏模量实验报告

实验十拉伸法测金属杨氏模量 【实验简介】 杨氏模量是工程材料的重要参数,它是描述材料刚性特征的物理量,杨氏模量越大,材料越不易发生变形,杨氏模量可以用动态法来测量,也可以用静态法来测量。本实验采用静态法。对于静态法来说,既可以用金属丝的伸长与外力的关系来测出杨氏模量,也可以用梁的弯曲与外力的关系来测量。静态法的关键是要准确测出试件 的微小变形量。杨氏模量是重要的物理量,它是选定构件材料的 依据之一,是工程技术常用参数,在工程实际中有着重要意义。 托马斯.杨生平简介、 托马斯.杨生(Thomas Young ,1773-1829)是英国物理学家,考古学家, 医生。光的波动说的奠基人之一。1773年6月13日生于米尔费顿,曾在伦 敦大学、爱丁堡大学和格丁根大学学习,伦敦皇家学会会员,巴黎科学院院 士。1829年5月10日去世。早期提出和证明了声波和光波的干涉现象(著名杨氏双缝干涉实验),并用光的干涉原理解释了牛顿环现象等。1807年提出了表征弹性体的量——杨氏模量。 【实验目的】 1、学会测量杨氏模量的一种方法(静态法); 2、掌握用光杠杆法测量微小长度变化的原理(放大法); 3、学习用逐差法处理实验数据。图10-1 托马斯.杨 【实验仪器及装置】 杨氏模量测定仪、光杠杆、望远镜标尺组、螺旋测 微器(25mm、0.01mm)、游标卡尺(125mm、0.02mm) 及钢卷尺(2m、1mm)等 图10-2 望远镜标尺图10-3 杨氏模量测定仪图10-4 实验装置放置图

【实验原理】 1、静态法测杨氏模量 一根均匀的金属丝或棒,设其长度为L ,截面积为S,在受到沿长度方向的外力F 的作用下伸长L ?。根据胡克定律可知,在材料弹性范围内,其相对伸长量 L L /?(应变)与外力造成的单位 面积上受力F/S(应力)成正比,两者的比值 L L S F Y //?= (10-1) 称为该金属丝的弹性模量,也称杨氏模量,它的单位为2/N m (牛顿/平方米)。 实验证明,杨氏模量与外力F 、物体的长度L 和截面积S 的大小无关,只取决于被测物的材料特性,它是表征固体性质的一个物理量。设金属丝的直径为d ,则24 1 d S π=,杨氏模量可表示为: 2 4FL Y d L π= ? (10-2) 式(2)表明:在长度L 、直径d 和外力F 相同的情况下,杨氏模量大的金属丝的伸长量较小,而一般金属材料的杨氏模量均达到211/10m N 的数量级,所以当FL/2d 的比值不太大时,绝对伸长量L ?就很小,用通常的测量仪(游标卡尺、螺旋测微器等)就难以测量。实验中可采用光学放大法将微小长度转换成其他量测量,用一种专门设计的测量装置—— 光杠杆来进行测量。光杠杆及测量装置如图10-5、图10-6所示。 图10-5 光杠杆图 前足 后足 镜面M M M L

杨氏双缝干涉实验的改进

广东技术师范学院学报(自然科学) 2012年第2期Journal of Guangdong Polytechnic Normal University No .2,2012 杨氏双缝干涉实验的改进 彭小兰王红成刘敏霞 (东莞理工学院,广东东莞523808) 摘 要:传统的杨氏双缝干涉测量光波波长实验是采用钠灯作为光源.光通过单缝衍射后照射到双缝上,并通 过测微目镜测量条纹宽度,双缝间距则直接采用读数显微镜进行测量.但这种方法观察干涉现象需在较暗环境中进行,且测量结果和理论值差别较大.因此改用激光光源,直接在光屏上观察读数,并且改进测量双缝宽度的方法,测量误差就会大大降低. 关键词:杨氏双缝干涉实验;实验改进;波长测量中图分类号:G 642.0 文献标识码:A 文章编号:1672-402X (2012)02-0006-04 收稿日期:2012-04-30 基金项目:东莞理工学院教育教学改革与研究资助项目(201203,201005). 作者简介:彭小兰(1970-),女,湖南衡阳人,东莞理工学院电子工程学院实验师.研究方向:光学及大学物理实验. 0引言 光是自然界的一种基本现象,对于光的本性的认识经历了一个漫长而曲折的过程.中17世纪存在着以牛顿为代表的微粒说和以惠更斯为代表的波动理论的争论.微粒说主张“光是微粒流”,利用该理论可以解释光的直线传播、反射和折射定律.而惠更斯的波动说认为光是“以太”中传播的波,但由于当时没有实验的验证使得整个18世纪人们对光的本性的认识停滞不前.1801年托马斯·杨演示了著名的双孔干涉实验.此实验通过巧妙的设计把单个波阵面分解为两个波阵面以锁定两个光源之间的相位差的方法来研究光的干涉现象,使光的干涉现象成功地被实验演示出来,并用波动理论做了很好的解释,初步测定了光波波长,有力地验证和支持了惠更斯等人的光的波动理论.杨氏双孔干涉实验是光学发展史上具有里程碑意义的实验之一,为波动光学奠定了基础[1].目前,各高校都利用双缝代替双孔进行实验,即杨氏双缝干涉实验,并作为光学实验课程的必开实验,让学生了解光的干涉现象,掌握光的波动特性.一般地,该实验都是使用钠灯作为光源,用测微目镜观察实验现象.然而根据多年的实验教学实践,我们发现利用该实验方法进行测量光波波长虽然原理比较简单,但需要在比较黑暗的实验环境中完成[2],且实验中用测微目镜读取数据时很容易引起 视觉疲劳,再加上学生还没有掌握很好的光学实验技术,要想获得比较理想的实验效果存在一定的难度.基于这一点,本文将钠灯改为激光光源,并对该实验进行相应改进,取得了较好的效果. 1杨氏双缝干涉实验原理 空间两列波在相遇处要发生干涉现象,这两列波必须满足以下三个相干条件:振动方向相同;频率相同;相位差恒定.杨氏双缝干涉属于分波阵面干涉,实验原理如图1所示.用单色光照射到开有小孔S 的不透明的光阑上,透过小孔的光作为点光源,在点光源后面放置另一块光阑,开有两个很靠近的小孔S 1和S 2,它们构成一对相干光[3-4].在观察屏P 上显示出两束光的交叠区出现一系列明暗相间的直条纹,即干涉条纹.通常,为了提高干涉条纹的亮度,S 、 S 1和S 2常用3条互相平行的狭缝来代替,而且不用 图1 杨氏双缝干涉实验原理

杨氏双缝干涉实验报告

实验报告 班级:XX级物理学学号:XXXXXXXXXXX 姓名:XXX 成绩: 实验内容:杨氏双缝干涉实验指导老师:XXX 一实验目的:通过杨氏双缝干涉实验求出钠光的波长。 二实验器材:钠光灯,双缝,延伸架测微目镜,3个二维平移底座,2个升降调节座, 透镜L1,二维架,可调狭缝S,透镜架,透镜L2,双棱镜调节架. 三实验原理:波在某点的强度是波在该点所引起的振动的强度,因此正比于振幅的平方。如果两波在P点引起的振动方向沿着同一直线。那么,根据△φ=2π/λδ=2π/(r2-r1)=k (r2-r1)k为波数。则对应2πj即r2-r1=2jλ/2(j=0,±1,±2…)(1—14)差按等于λ/2的整数倍,两波叠加后的强度为最大值,而对应于△φ=(2j+1) λ\2(j=0,±1,±2…) (1—15)式那些点,光程差等于λ/2的奇数倍,称为干涉相消。如果两波从s1,s2向一切方向传播,则强度相同的空间各点的几何位置。满足r2-r1=常量,r2-r1≈s2s1=d满足下列条件的各点,光强为最大值r2-r1≈ d=jλ考虑到r<

用双缝干涉实验测波长

用双缝干涉实验测光的波长教学设计 一、设计思想 本堂课主要利用光的干涉现象测量光的波长。通过本实验,我们可以更进一步地了解光波产生稳定的干涉现象的条件,观察白光及单色光的干涉图样,并测定单色光的波长。学生在实验中,通过了解每个实验元件的作用,学会科学设计实验仪器和实验方案的思维方法;同时培养学生的实践能力、自学能力,培养学生的科学态度,让学生体验探究科学的艰辛与喜悦。 二、教学目标 1.知识目标: ⑴知道波长是光的重要参数 ⑵通过实验,学会运用光的干涉测定光的波长 ⑶更进一步理解光产生干涉的条件及探究干涉条纹的间距与哪些因素有关 ⑷认识物理实验和数学工具在物理学发展过程中的作用,掌握物理实验的一些基本技能,会使用基本的实验仪器,培养学生独立完成实验的能力。 2.能力目标: 学会为达到实验目的而设计各种实验元件,培养学生的创造性思维和实践能力;学习科学探究方法,发展自主学习能力,养成良好的思维习惯,能运用物理知识和科学探究方法解决一些问题。 3.情感目标: 通过本节课,培养学生的科学研究态度,体验探索科学的艰辛与喜悦。 三、重点与难点 经历科学探究过程,自己设计实验、完成实验并测定光的波长。 第 1 页共6 页

四、教学过程 1.实验装置的介绍——双缝干涉仪。 它由各部分光学元件在光具座上组成。如图—1所示。 光源滤光片单缝双缝遮光筒屏 图—1 双缝干涉仪 2.观察双缝干涉图样——探究干涉条纹的间距与哪些因素有关 光源发出的光经滤光片成为单色光,单色光通过单缝后,相当于线光源,经双缝产生稳定的干涉图样,干涉条纹可从屏上观察到。 把直径约10cm、长约1m的遮光筒水平放在光具座上,筒的一端装有双缝,另一端装有毛玻璃屏,在筒的观察端装上测量头。取下双缝,打开光源,调节光源的高度,使它发出的一束光能够沿着遮光筒的轴线把屏照亮,然后放好单缝和双缝。单缝和双缝间的距离约为5cm~10cm,使缝相互平行,中心大致位于遮光筒的轴线上。这时在屏上就会看到白光的双缝干涉图样(如图—2)。 图—2 白光的双缝干涉图样 在单缝和光源间放上滤光片就可见到单色光的双缝干涉图样(如图—3)。 第 2 页共6 页 图—3 单色光的双缝干涉图样

实验报告-杨氏模量测量

实验报告:杨氏模量的测定

杨氏模量的测定(伸长法) 【实验目的】 1.用伸长法测定金属丝的杨氏模量 2.学习光杠杆原理并掌握使用方法 【实验仪器】 伸长仪;光杆杆;螺旋测微器;游标尺;钢卷尺和米尺;望远镜(附标尺)。 【实验原理】 物体在外力作用下或多或少都要发生形变,当形变不超过某一限度时,撤走外力之后形变能随之消失,这种形变叫弹性形变,发生弹性形变时物体内部将产生恢复原状的内应力。 设有一截面为S ,长度为l 的均匀棒状(或线状)材料,受拉力F 拉伸时,伸长了δ,其单位面积截面 所受到的拉力S F 称为胁强,而单位长度的伸长量l δ称为胁变。根据胡克定律,在弹性形变范围内,棒状 (或线状)固体胁变与它所受的胁强成正比: F E S l δ = 其比例系数E 取决于固体材料的性质,反应了材料形变和内应力之间的关系,称为杨氏弹性模量。 Fl E S δ = (1) 右图是光杠杆镜测微小长度变化量的原理图。左侧曲尺状物为光杠杆镜,M 是反射镜,b 为光杠杆镜短臂的杆长,B 为光杆杆平面镜到尺的距离,当加减砝码时,b 边的另一端则随被测钢丝的伸长、缩短而下降、上升,从而改变了M 镜法线的方向,使得钢丝原长为l 时,从一个调节好的位于图右侧的望远镜看M 镜中标尺像的读数为0h ;而钢丝受力伸长后,光杠杆镜的位置变为虚线所示,此时从望远镜上看到的标尺像的读数变为i h 。这样,钢丝的微小伸长量δ,对应光杠杆镜的角度变化量θ,而对应的光杠杆镜中标尺读数变化则为Δh 。由光路可逆可以得知,h ?对光杠杆镜的张角应为θ2。从图中用几何方法可以得出: tg b δ θθ≈= (1) tg22h B θθ?≈= (2) 将(1)式和(2)式联列后得: 2b h B δ= ? (3) 考虑到2 =/4S D π,F mg = 所以:2 8Bmgl E D b h π=? 这种测量方法被称为放大法。由于该方法具有性能稳定、精度高,而且是线性放大等优点,所以在设计各类测试仪器中有着广泛的应用。 图 光杠杆原理 A

用双缝干涉测量光的波长(含答案)

实验十五用双缝干涉测量光的波长 一、实验目的 1.理解双缝干涉的原理,能安装和调试仪器. 2.观察入射光分别为白光和单色光时双缝干涉的图样. 3.掌握利用公式Δx=l d λ测波长的方法. 二、实验原理 单色光通过单缝后,经双缝产生稳定的干涉图样,图样中相邻两条亮(暗)条纹间的距离Δx与双缝间的距离d、双缝到屏的距离l、单色光的波长λ之间满足λ=d·Δx/l. 三、实验器材 双缝干涉仪,即:光具座、光源、滤光片、单缝、双缝、遮光筒、毛玻璃屏、测量头,另外还有学生电源、导线、刻度尺. 附:测量头的构造及使用 如图1甲所示,测量头由分划板、目镜、手轮等构成,转动手轮,分划板会向左右移动,测量时,应使分划板的中心刻度对齐条纹的中心,如图乙,记下此时手轮上的读数.然后转动测量头,使分划板中心刻线与另一条纹的中心对齐,再次记下手轮上的刻度.两次读数之差就表示这两个亮条纹间的距离. 图1 实际测量时,要测出n条亮条纹(暗条纹)的宽度,设为a,那么Δx= a n-1 . 四、实验步骤 1.安装仪器 (1)将光源、遮光筒、毛玻璃屏依次安放在光具座上,如图2所示. 图2 (2)接好光源,打开开关,使白炽灯正常发光.调节各部件的高度,使光源灯丝发出的光能沿 轴线到达光屏.

(3)安装单缝和双缝,中心位于遮光筒的轴线上,使双缝和单缝相互平行. 2.观察与记录 (1)调整单缝与双缝间距为几厘米时,观察白光的干涉条纹. (2)在单缝和光源间放上滤光片,观察单色光的干涉条纹. (3)调节测量头,使分划板中心刻度线对齐第1条亮条纹的中心,记下手轮上的读数a1; 转动手轮,使分划板向一侧移动,当分划板中心刻度线与第n条相邻的亮条纹中心对齐时,记下手轮上的刻度数a2,则相邻两条纹间的距离Δx=\f(|a1-a2|,n-1). (4)换用不同的滤光片,测量其他色光的波长. 3.数据处理 用刻度尺测量出双缝到光屏间的距离l,由公式λ=错误!Δx计算波长.重复测量、计算,求出波长的平均值. 五、误差分析 测定单色光的波长,其误差主要由测量引起,条纹间距Δx测量不准,或双缝到屏的距离测不准都会引起误差,但都属于偶然误差,可采用多次测量取平均值的方法来减小误差. 六、注意事项 1.调节双缝干涉仪时,要注意调整光源的高度,使它发出的一束光能够沿着遮光筒的轴线把屏照亮. 2.放置单缝和双缝时,缝要相互平行,中心大致位于遮光筒的轴线上. 3.调节测量头时,应使分划板中心刻线和条纹的中心对齐,记清此时手轮上的读数,转动手轮, 使分划板中心刻线和另一条纹的中心对齐,记下此时手轮上的读数,两次读数之差就表示这两条纹间的距离. 4.不要直接测Δx,要测多个亮条纹的间距再计算得Δx,这样可以减小误差. 5.白光的干涉观察到的是彩色条纹,其中白色在中央,红色在最外层. 记忆口诀 亮光源、滤光片,单缝双缝成一线; 遮光筒、测量头,中间有屏把像留; 单缝双缝平行放,共轴调整不能忘; 分划线、亮条纹,对齐平行测得准; n条亮纹读尺数,相除可得邻间距; 缝距筒长记分明,波长公式要记清. 例1在“用双缝干涉测光的波长”实验中:

杨氏双缝实验实验报告

杨氏双缝干涉 一、实验目的 (1) 观察杨氏双缝干涉现象,认识光的干涉。 (2) 了解光的干涉产生的条件,相干光源的概念。 (3) 掌握和熟悉各实验仪器的操作方法。 二、实验仪器 1:钠灯(加圆孔光阑) 2:透镜L 1(f=50mm ) 3:二维架(sz-07) 4:可调狭缝s (sz-27) 5:透镜架(sz-08,加光阑) 6:透镜L 2(f=150mm ) 7:双棱镜调节架(sz-41) 8:双缝 三、实验原理 由光源发出的光照射在单缝s 上,使单缝s 成为实施本实验的缝光源。由杨氏双 缝干涉的基本原理可得出关系式△x= L λ/d ,其中△x 是像屏上条纹的宽度──相邻两条亮纹间的距离,单位用mm ;L 是从第二级光源(杨氏狭缝)到显微镜焦平面的距离,单位用mm ;λ是所用光线的波长,单位用nm ;d 是第二级光源(狭缝)的缝距(间隔),单位用mm 。 9 :延伸架 10:测微目镜架 11:测微目镜 12:二维平移底座(sz-02) 13:二维平移底座(sz-02) 14:升降调节座(sz-03) 15:二维平移底座(sz-02) 16:升降调节座(sz-03)

四、实验步骤 (1)调节各仪器使光屏上出现明显的明暗相间的条纹。 (2)使钠光通过透镜L1汇聚到狭缝s上,用透镜L2将s成像于测微目镜分划板M 上,然后将双缝D置于L2近旁。在调节好s,D和M的mm刻线平行,并适当调窄s之 后,目镜视场出现便于观察的杨氏条纹。 (3)用测微目镜测量干涉条纹的间距△x,用米尺测量双缝至目镜焦面的距离L,用显微镜测量双缝的间距d,根据△x=Lλ/d计算钠黄光的波长λ。 五:数据记录与处理 数据表如下: M/条x1(mm)x2(mm x(mm)λ(mm) r1(cm) r2(cm) d1(mm) d2(mm) r(cm) d(mm) r的平均值:d的平均值: 根据公式△x=L*λ/d求得λ(如表所示),最后求得λ的平均值为 六:误差分析

杨氏模量实验报告记录

杨氏模量实验报告记录

————————————————————————————————作者:————————————————————————————————日期:

南昌大学物理实验报告 课程名称:大学物理实验 实验名称:金属丝杨氏模量的测定 学院:食品学院专业班级:食品科学与工程152班学生姓名:彭超学号: 5603115045 实验地点:基础实验大楼B106 座位号: 实验时间:第四周星期二下午十六点开始

一、实验目的:1.学会测量杨氏模量的一种方法,掌握“光杠杆镜”测量微小长度变化的原理 2.学会用“对称测量”消除系统误差 3.学习如何依实际情况对各个测量进行误差估算 4.练习用逐差法、作图法处理数据 二、实验原理: 在外力作用下,固体材料所发生的形状变化称之为形变。形变分为弹性形变和范性形变。如果加在物体上的外力停止作用后,物体能完全恢复原状的形变称之为弹性形变;如果加在物体上的外力停止作用后,物体不能完全恢复原状的形变称之为范性形变。 在许多种不同的形变中,伸长(或缩短)形变是最简单、最普遍的形变之一。本实验是针对连续、均匀、各向同性的材料做成的丝,进行拉伸试验。设细丝的原长为L ,横截面积为S ,两端受拉力(或 压力)F 后,物体伸长(或缩短)L ?。而单位长度的伸长量L L ?称为应变,单位横截面积所承受的力S F 称 为应力。根据胡克定律,在弹性限度内,应力与应变成正比关系,即 L L E S F ?= 式中比例系数E 称为杨氏弹性模量,简称杨氏模量。实验证明,杨氏模量与外力F 、物体的长度L 和截面积S 的大小无关,而只决定于物体的材料。杨氏模量是表征固体材料性质的一个重要物理量,是选定机械构件材料的依据之一。 由上式得 L S FL E ?=0 在国际单位制(SI)中,E 的单位为2-m ?N 实验证明,杨氏模量与外力F 、物体长度L 和横截面积S 的大小无关,只取决于被测物的材料特性,它是表征固体性质的一个物理量 设金属丝的直径为d ,则 2d 41 π=S L FL E ?=2d 4π 而L ?是一个微小长度变化(在此实验中 ,当L ≈1m时,F 每变化1kg 相应的L ?约为0.3mm)。因此,本实验利用光杠杆的光学放大作用实现对钢丝微小伸长量L ?的间接测量。

用双缝干涉测光的波长

十八 用双缝干涉测光的波长 (一)目的 了解光波产生稳定的干涉现象的条件;观察双缝干涉图样;测定单色光的波长。 (二)原理 据双缝干涉条纹间距λd L x =?得,波长x L d ??=λ。已知双缝间距d ,再测出双缝到屏的距离L 和条纹间距Δx ,就可以求得光波的波长。 (三)器材 实验装置采用双缝干涉仪,它由各部分光学元件在光具座上组成,如图实18-1所示,各部分元件包括光源、滤光片、单缝、双缝、遮光筒、光屏。 (四)步骤 1.将光源和遮光筒安装在光具座上,调整光源的位置,使光源发出的光能平行地进入遮光筒并照亮光屏. 2.放置单缝和双缝,使缝相互平行,调整各部件的间距,观察白光的双缝干涉图样. 3.在光源和单缝间放置滤光片,使单一颜色的光通过后观察单色光的双缝干涉图样. 4.用米尺测出双缝到光屏的距离L,用测量头测出相邻的两条亮(或暗)条纹间的距离Δx. 5.利用表达式x L d ??= λ,求单色光的波长. 6.换用不同颜色的滤光片,观察干涉图样的异同,并求出相应的波长. (五)注意事项 1.放置单缝和双缝时,必须使缝平行,并且双缝和单缝间的距离约为5~10cm. 2.要保证光源、滤光片、单缝、双缝、遮光筒和光屏的中心在同一条轴线上。 3.测量头的中心刻线要对应着亮(或暗)条纹的中心. 4.为减小实验误差,先测出n 条亮(或暗)条纹中心间的距离a,则相邻两条亮(或暗)条纹间的距离1 -=?n a x . (六)例题 例1.(1)如图实18-2所示,在“用双缝干涉测光的波长”实验中,光具座上放 光源 滤光片 单缝 双缝 遮光筒 屏 图实18-1 图实18-2

用matlab实现杨氏双缝干涉的实验仿真

用MATLAB实现杨氏双缝干涉实验仿真摘要: 实验室中,做普通光学实验,受到仪器和场所的限制;实验参数的改变引起干涉图样的改变不明显,难以体现实验的特征。本文利用MATLAB仿真杨氏双缝干涉实验,创建用户界面,实现人机交互,输入不同实验参数,使干涉现象直观表现出来。 关键词: MATLAB;杨氏双缝干涉实验;用户界面设计;程序编写;仿真。 1. 引言: 在计算机迅猛发展的今天,光学实验的仿真越来越多的受科研工作者和教育工作者关注。其应用主要有两个方面:一是科学计算方面,利用仿真实验的结果指导实际实验,减少和避免贵重仪器的损害;二是在光学教学方面,将抽象难懂的光学概念和规律,由仿真实验过程直观的描述,使学生对学习感兴趣。在科学计算方面,国外的光学实验仿真是模拟设计和优化光学系统的过程中发展起来的,在这方面美国走在最前,其中最具代表性的是劳伦斯利和弗莫尔实验光传输模拟计算机软件Prop92及大型总体优化设计软件CHAINOP和PROPSUITE;另外法国也开发完成其具有自身特点的光传输软件Miro。在光学教学方面,国外已有相关的配有光盘演示光学实验的教材。我国用于科学研究的光学实验计算机数值仿真软件随开发较晚,但也已经取得了显著成绩。特别是1999年,神光——III原型装置TLL分系统集成实验的启动为高功率固体激光驱动器的计算机数值模拟的研究创造了条件。目前已基本完成SG99光传输模拟计算软件的开发,推出的标准版本基本能稳定运行。目前该软件已经应用于神光——III主机可行性论证的工作中。计算机仿真具有观测方便,过程可控等优点,可以减少系统对外界条件对实验本身的限制,方便设置不同的参数,借助计算机的高数运算能力,可以反复改变输入的实验条件系统参数,大大提高实验效率。MATLAB是MatlabWorks公司于1982年推出的一套高性能的数值计算和可视化软件。具有可扩展性,易学易用性,高效性等优势。 通过对目前计算机仿真光学实验的现状和相关研究的分析,本文将用Matlab编程实现杨氏双缝干涉实验的仿真。利用Matlab GUI建立用户界面,实

13.3实验:用双缝干涉实验测光的波长教案

用双缝干涉实验测光的波长 ㈠设计思想 本堂课主要利用光的干涉现象测量光的波长。通过本实验,我们可以更进一步地了解光波产生稳定的干涉现象的条件,观察白光及单色光的干涉图样,并测定单色光的波长。学生在实验中,通过了解每个实验元件的作用,学会科学设计实验仪器和实验方案的思维方法;同时培养学生的实践能力、自学能力,培养学生的科学态度,让学生体验探究科学的艰辛与喜悦。 ㈡教学目标 1.知识目标: ⑴知道波长是光的重要参数 ⑵通过实验,学会运用光的干涉测定光的波长 ⑶更进一步理解光产生干涉的条件及探究干涉条纹的间距与哪些因素有关 ⑷认识物理实验和数学工具在物理学发展过程中的作用,掌握物理实验的一些基本技能,会使用基本的实验仪器,培养学生独立完成实验的能力。 2.能力目标: 学会为达到实验目的而设计各种实验元件,培养学生的创造性思维和实践能力;学习科学探究方法,发展自主学习能力,养成良好的思维习惯,能运用物理知识和科学探究方法解决一些问题。 3.情感目标: 通过本节课,培养学生的科学研究态度,体验探索科学的艰辛与喜悦。 ㈢重点与难点 经历科学探究过程,自己设计实验、完成实验并测定光的波长。 ㈣教学过程 1.实验装置的介绍——双缝干涉仪。 它由各部分光学元件在光具座上组成。如图—1所示。 图—1 双缝干涉仪

2.观察双缝干涉图样——探究干涉条纹的间距与哪些因素有关 光源发出的光经滤光片成为单色光,单色光通过单缝后,相当于线光源,经双缝产生稳定的干涉图样,干涉条纹可从屏上观察到。 把直径约10cm 、长约1m 的遮光筒水平放在光具座上,筒的一端装有双缝,另一端装有毛玻璃屏,在筒的观察端装上测量头。取下双缝,打开光源,调节光源的高度,使它发出的一束光能够沿着遮光筒的轴线把屏照亮,然后放好单缝和双缝。单缝和双缝间的距离约为5cm~10cm ,使缝相互平行,中心大致位于遮光筒的轴线上。这时在屏上就会看到白光的双缝干涉图样(如图—2)。 在单缝和光源间放上滤光片就可见到单色光的双缝干涉图样(如图—3)。 单色光的双缝干涉图样:明暗相间、等距分布。 3. 猜测: 相邻的两条明(暗)条纹的间距△x 与哪些因素有关? 图—3 单色光的双缝干涉图样 图—2 白光的双缝干涉图样 S 1S 2图—4 实验示意图

杨氏双缝干涉实验讲义

杨氏双缝干涉 一、实验目的 1、理解干涉的原理; 2、掌握分波阵面法干涉的方法; 3、掌握干涉的测量,并且利用干涉法测光的波长。 二、实验原理 图1 杨氏双缝干涉原理图 杨氏双缝干涉原理如图1所示,其中S为单缝,S1和S2为双缝,P为观察屏。如果S 在S1和S2的中线上,则可以证明双缝干涉的光程差为 式中,d为双缝间距,θ是衍射角,l是双缝至观察屏的间距。当 由干涉原理可得,相邻明纹或相邻暗纹的间距可以证明是相等的,为 ,因此,用厘米尺测出l,用测微目镜测双缝间距d和相邻条纹的间距Δx,计算可得光波的波长。 三、实验仪器 1:钠灯(加圆孔光阑);2:透镜L1(f’=50mm);3:二维架(SZ-07);4:可调狭缝(SZ-27);5:透镜架(SZ-08);6:透镜L2(f’=150mm);7:双棱镜调节架(SZ-41);8:双缝;9:延伸

架(SZ-09);10:测微目镜架(SZ-36);11:测微目镜(SZ-03)12、13、15:二维平移底座(SZ-02);14、16:升降调节座(SZ-03) 图2 实验装置图 四、实验内容及步骤 1、参考图2安排实验光路,狭缝要铅直,并与双缝和测微目镜分划版的毫尺刻线平行。双缝与目镜距离适当,以获得适于观测的干涉条纹。 2、调单缝、双缝,测微目镜平行且共轴,调节单缝的宽度,三者之间的间距,以便在目镜中能看到干涉条纹。 3、用测微目镜测量干涉条纹的间距△x以及双缝的间距d,用米尺测量双缝至目镜焦面的距离l,计算钠黄光的波长λ,并记录结果。 4、观察单缝宽度改变,三者间距改变时干涉条纹的变化,分析变化的原因。 五、实验数据及结果 1、测钠光波长数据表 次数△x(mm)d(mm)l(mm) (nm) 1 2 3

实验用双缝干涉测量光的波长教案

实验:用双缝干涉测量光的波长 【教案目标】 (一)知识与技能 1.掌握明条纹(或暗条纹)间距的计算公式及推导过程。 2.观察双缝干涉图样,掌握实验方法。 (二)过程与方法 培养学生的动手能力和分析处理“故障”的能力。 (三)情感、态度与价值观 体会用宏观量测量微观量的方法,对学生进行物理方法的教育。 【教案重点】 双缝干涉测量光的波长的实验原理及实验操作。 【教案难点】 x ?、L 、d 、λ的准确测量。 【教案方法】 复习提问,理论推导,实验探究 【教案用具】 双缝干涉仪、光具座、光源、学生电源、导线、滤光片、单缝、双缝、遮光筒、毛玻璃屏、测量头、刻度尺 【教案过程】 (一)引入新课 师:在双缝干涉现象中,明暗条纹出现的位置有何规律 生:当屏上某点到两个狭缝的路程差Δ=2n ·2 λ ,n =0、1、2…时,出现明纹;当Δ=(2n +1) 2 λ,n =0、1、2…时,出现暗纹。 师:那么条纹间距与波长之间有没有关系呢下面我们就来推导一下。 (二)进行新课 1.实验原理 师:[投影下图及下列说明]

设两缝S 1、S 2间距离为d ,它们所在平面到屏面的距离为l ,且l >>d ,O 是S 1S 2的中垂线与屏的交点,O 到S 1、S 2距离相等。 推导:(教师板演,学生表达) 由图可知S 1P =r 1 师:r 1与x 间关系如何 生:r 12=l 2+(x - 2d )2 师:r 2呢 生:r 22=l 2+(x +2 d )2 师:路程差|r 1-r 2|呢(大部分学生沉默,因为两根式之差不能进行深入运算) 师:我们可不可以试试平方差 r 22-r 12=(r 2-r 1)(r 2+r 1)=2dx 由于l >>d ,且l >>x ,所以r 1+r 2≈2l ,这样就好办了,r 2-r 1=Δr =l d x 师:请大家别忘了我们的任务是寻找Δx 与λ的关系。Δr 与波长有联系吗 生:有。 师:好,当Δr =2n ·2λ,n =0、1、2…时,出现亮纹。 即l d ·x =2n ·2 λ时出现亮纹,或写成x =d l n λ 第n 条和第(n -1)条(相邻)亮纹间距离Δx 为多少呢 生:Δx =x n -x n -1 =[n -(n -1)] d l λ 师:也就是Δx =d l ·λ 我们成功了!大家能用语言表述一下条纹间距与波长的关系吗 生:成正比。 师:对,不过大家别忘了这里l 、d 要一定。暗纹间距大家说怎么算 生:一样。 师:结果如何 生:一样。 师:有了相邻两个亮条纹间距公式Δx = d l ·λ,我们就可以用双缝干涉实验来测量光的波长了。 2.观察双缝干涉图样 (教师指导学生按步骤进行观察,也可引导学生先设计好步骤,分析研究后再进行,教师可将实验步骤投影)

杨氏双缝干涉实验探究及其应用

《光学测量》课之科普调研报告 指导老师:黎小琴 学生姓名:安晶晶 学生学号:201311010115 专业班级:物理13101 布置日期:2015.11.17 截止日期:2015.12.1 完成日期:2015.11.25

杨氏双缝干涉实验探究及其应用 一、杨氏双缝干涉实验的结果 1801年,杨氏巧妙地设计了一种把单个波阵面分解为两个波阵面以锁定两个光源之间的相位差的方法来研究光的干涉现象。杨氏用叠加原理解释了干涉现象,在历史上第一次测定了光的波长,为光的波动学说的确立奠定了基础。 实验中我们根据光的干涉原理,即光程差等于波长的整数倍时,P点有光强最大值,光程差等于半波长的奇数倍时,P点的光强最小。当光源为单色光时,在屏上出现一系列平行等距的明暗直条纹组成,干涉条纹是一组平行等间距的明、暗相间的直条纹。中央为零级明纹,上下对称,明暗相间,均匀排列。而且干涉条纹不仅出现在屏上,凡是两光束重叠的区域都存在干涉,故杨氏双缝干涉属于非定域干涉。当D、λ一定时,e与d成反比,d越小,条纹分辨越清。λ1与λ2为整数比时,某些级次的条纹发生重叠。 当用白光作实验, 则除了中央亮纹仍是白色的外,其余各级条纹形成从中央向外由紫到红排列的彩色条纹—光谱。 二、对杨氏双缝干涉实验的结果的讨论分析 1、狭缝s的存在有没有必要

在“杨氏实验”中,s是一很小的狭缝(或小孔),通过s的光照射到s1和s2上,在光屏上形成明暗相间的干涉条纹.同学们往往提出,这个狭缝s的存在是否有必要?若用一个普通光源代替s去照射s1和s2,光屏上能否出现干涉条纹?回答当然是狭缝s的存在是必要的.用普通光源代替s,光屏上不可能出现干涉条纹.因为干涉条件要求,只有同一波列自身之间才能发生干涉,不同的光源之间,以及同一光源的不同部分发出的光都不满足相干条件.由于狭缝s的存在,且s很小.光波到达s1、s2就成为发射柱面波(s若为小孔,则发射球面波)的波源.它们又各发出一个柱面(或球面)形次波.由于这两个次波来自同一个波面,因此它们的频率相同;由于s1与s2距离很近,因此振动方向近似一致;又由于s1和s2的振动位相差保持一定.所以这两列光波满足相干条件,这是利用分波阵面法获得相干光波的典型方法. 2、为什么白光也能产生双缝干涉 相干条件要求两相干光的频率相同,而在白光中各种波长都有,为什么会发生干涉?确实,白光中包含着各种频率的可见光,不同频率的光波是不相干的.但以两缝射出的白光中,相同频率的单色光之间能够发生干涉现象.s为白光光源时,由s发出的任一波长的任一列光波都照s1和s2上,所以s1中的任一列光波都能在s2中找到与其相干的一列波.s1和s是相干的白光光源,每一种波长的光在观察屏上都得到一组杨氏条纹.各种波长的杨氏条纹叠加起来便得到白光杨氏干涉图样分布.由于各种单色光在中央线上,相位差都等于零,振动都要加强,于是各单色的光在中央线上都显示明纹,因此中央明纹仍是白色的.又因中央明纹的宽度与波长成正比,所以各单色光的中央明纹宽度不同.于是在白色明纹的边缘彩带,紫光靠里,红光靠外.其它各级明纹也因单色光波长不同而分开,形成七色光带,有次序地循环排列. 3、波长及装置结构变化时干涉条纹的移动和变化 (1)光源S位置改变:S下移时,零级明纹上移,干涉条纹整体向上平移;S上移时,干涉条纹整体向下平移,条纹间距不变。 (2)双缝间距d改变:当d增大时,e减小,零级明纹中心位置不变,条纹变密。当d 减小时,e增大,条纹变稀疏。 (3)双缝与屏幕间距D改变:当D 减小时,e减小,零级明纹中心位置不变,条纹变密。当D 增大时,e增大,条纹变稀疏。 (4)入射光波长改变:当λ增大时,△x增大,条纹变疏;当λ减小时,△x减小,条纹变密。 4、在小孔后加透明介质薄膜,干涉条纹变化

动态法测杨氏模量实验报告讲解

动态法测量杨氏模量 一、 实验目的 1. 理解动态法测量杨氏模量的基本原理。 2. 掌握动态法测量杨氏模量的基本方法,学会用动态法测量杨氏模量。 3. 了解压电陶瓷换能器的功能,熟悉信号源和示波器的使用。学会用示波器观察判断样品共振的方法。 4. 培养综合运用知识和使用常用实验仪器的能力。 二、 实验原理: 在一定条件下,试样振动的固有频率取决于它的几何形状、尺寸、质量以及它的杨氏模量。如果在实验中测出试样在不同温度下的固有频率,就可以计算出试样在不同温度下的杨氏模量。 根据杆的横振动方程式 02 244=??+??t y EJ S x y ρ (1) 式中ρ为杆的密度,S 为杆的截面积,?= s dS y J 2 称为惯量矩(取决于截面的形状),E 即为杨氏模量。 如图1所示,长度L 远远大于直径d (L >>d )的一细长棒,作微小横振动(弯曲振动)时满足的动力学方程(横振动方程)为 02244=??+??t EJ y S x y ρ (1) 棒的轴线沿x 方向,式中y 为棒上距左端x 处截面的y 方向位 移,E 为杨氏模量,单位为Pa 或N/m 2;ρ为材料密度;S 为 截面积;J 为某一截面的转动惯量,??=s ds y J 2。 横振动方程的边界条件为:棒的两端(x =0、L )是自由端,端点既不受正应力也不受切向力。用分离变量法求解方程(1),令)()(),(t T x X t x y =,则有 2 24411dt T d T EJ S dx X d X ?-=ρ (2) 由于等式两边分别是两个变量x 和t 的函数,所以只有当等式两边都等于同一个常数时等式才成立。假设此常数为K 4,则可得到下列两个方程 044 4=-X K dx X d (3) 0422=+T S EJ K dt T d ρ (4) 如果棒中每点都作简谐振动,则上述两方程的通解分别为 图1 细长棒的弯曲振动

高中物理-实验:用双缝干涉测量光的波长练习

高中物理-实验:用双缝干涉测量光的波长练习 1.(江苏徐州市高二下学期期末)双缝干涉的实验装置如图所示,双缝之间的距离是0.2mm 。关于该实验,下列说法正确的是( B ) A .毛玻璃上的干涉条纹与双缝垂直 B .将毛玻璃远离双缝,相邻两亮条纹中心的距离变大 C .改用间距为0.3mm 的双缝,相邻两亮条纹中心的距离变大 D .把红色滤光片换成绿色滤光片,相邻两亮条纹中心的距离变大 解析:屏上的干涉条纹与双缝平行,A 错;根据Δx =L d λ可知B 正确,C 、D 错误。 2.(四川省资阳市高二下学期期末)“利用双缝干涉测定光的波长”实验中,双缝间距d =0.4mm ,双缝到光屏的距离L =0.5m ,用某种单色光照射双缝得到干涉条纹如图所示,分划板在图中A 、B 位置时游标卡尺读数也如图中所示,则: (1)分划板在图中A 、B 位置时游标卡尺读数x A =11.1mm ,x B =__15.6___mm ,相邻两条纹间距Δx =__0.75___mm ; (2)波长的表达式λ=__d L Δx __(用Δx 、L 、d 表示),该单色光的波长λ=__6.0×10-7___m ; (3)若改用频率较高的单色光照射,得到的干涉条纹间距将__变小___(填“变大”、“不变”或“变小”)。 解析:(1)由游标卡尺读数规则读出x B =15.6mm ,相邻两条纹间距Δx = x B -x A 6=0.75mm (2)波长表达式λ=d L Δx ,将数据代入得λ=6×10-7 m (3)频率变大则波长变小,所以Δx 将变小。 3.(河北省衡水中学高二下学期期中)用双缝干涉测光的波长。实验装置如图a 所示,已知单缝与双缝的距离为L 1,双缝与屏的距离为L 2,单缝宽为d 1,双缝间距为d 2。用测量头来测量光屏上干涉亮条纹中心的距离,测量头由分划板、目镜、手轮等构成,转动手轮,使分划板左右移

《实验:用双缝干涉测量光的波长》测试题

《实验:用双缝干涉测量光的波长》测试题 一、实验:用双缝干涉测量光的波长实验题 1.某同学在做“用双缝干涉测光的波长”实验时,第一次分划板中心刻度线对齐A条纹中心时(如图甲),游标卡尺的示数如图丙所示,第二次分划板中心刻度线对齐B条纹中心线时(如图乙),游标卡尺的示数如图丁所示,A与B间有3条条纹,已知双缝间距为0.5 mm,从双缝到屏的距离为1 m,则图丙中游标卡尺的示数为____________mm.图丁中游标卡尺的示数为__________mm.实验时测量多条干涉条纹宽度的目的是________________,所测光波的波长为________m.(保留两位有效数字) 2.(1)在“单摆测重力加速度”实验中,测量周期时,秒表指针如图1所示,读数为_____秒 (2)在“双缝干涉测量光的波长”实验中,某同学观察到如图2所示的干涉条纹,于是他使分划板中心刻线与亮条纹中央对齐,移动测量头进行测量,在这种情况下光的波长的测量值(__________) A.偏小 B.偏大 C.不变 3.在利用双缝干涉测量光的波长的实验中,需要从标尺上读出某条亮纹的位置.图甲中所示的读数是________mm.

若缝与缝间相距d,双缝到屏间的距离为L,相邻两个亮条纹中心的距离为x ?,则光的波长可表示为λ= ________(字母表达式),某同学在两个亮条纹之间测量,测出以下结果,其他数据为:0.20d mm =, 700L mm =,测量x ?的情况如图乙所示.由此可计算出该光的波长为λ=________m . 4.某同学设计一个测定激光波长的实验,装置如甲图所示. 激光器发出的直径很小的红色激光进入一个一端装有双孔、另一端装有感光片的遮光筒,感光片上出现一排等距的亮点. ①这个现象说明激光具有____性.(选填“波动”或“粒子”). ②通过量出相邻光点的距离可算出激光的波长.设双孔间距离为a =0.22mm ,双孔到感光片的距离为L =1.0000m ,用带10分度游标的卡尺测量感光片上的点的距离时,第1个光点到第4个光点的距离如乙图所示,相邻光点间的距离是_____mm.该激光的波长λ=___m.(保留2位有效数字) 5.在“用双缝干涉测量光的波长”实验中某同学将所有器材安装在如图甲所示的光具座上,已知实验中选用缝间距d =0.2mm 的双缝,屏与双缝之间的距离L =0.60m 。然后接通电源使光源正常工作。 (1)以上安装的各器件位置存在的问题是:______________________。 (2)已知测量头主尺的分度值是毫米,游标卡尺为10分度。图乙为分划板中心刻线与明条纹1和明条纹6对齐时游标卡尺示数,A 对应的读数为___________m ,相邻两个亮条纹之

双缝干涉测波长测试题

基础训练46 测定玻璃的折射率 双缝干涉实验(实验七) (时间60分钟,赋分100分) 训练指要 “插针法”测玻璃的折射率是几何光学的重要实验,用双缝干涉实验测光的波长提供了测微小长度的方法,并进一步证实了光的波动性.通过训练,熟悉两实验的原理和方法,并在此基础上,熟悉其他的测量方法.第15题、第16题为创新题,启发我们积极思考,寻找出 更多更好的实验方法. 一、选择题(每小题5分,共35分) 1.测定玻璃的折射率时,为了减小实验误差,应该注意的是 A.玻璃砖的宽度宜大些 B.入射角应适当小些 C.大头针应垂直地插在纸面上 D.大头针P1、P2及P3、P4之间的距离应适当大些 2.某同学用插针法测定玻璃的折射率n,如图1—46—1所示,他的实验方法和操作步骤正确无误,但事后发现玻璃砖的两个光学面aa′与bb′不平行,那么下列说法中正确的是 图1—46—1 A.P1P2与P3P4两条直线不平行 B.P1P2与P3P4两条直线一定平行 C.他测出的n值一定偏大 D.他测出的n值不受影响 3.图1—46—2是双缝干涉的实验装置,其屏上P处发现明条纹,则双缝S1和S2到屏上P 点的距离之差一定是 图1—46—2 A.光波的半波长的奇数倍 B.光波的波长的奇数倍 C.光波的半波长的偶数倍

D.光波的波长的偶数倍 4.在光的干涉实验中,如果两条狭缝间的距离增加一倍,光的波长减半,则相邻两暗 条纹间的距离是原来的 A.4倍 B.0.5倍 C.0.25倍 D.不变 5.在双缝干涉实验中,用黄光得到一个干涉图样,若要使其干涉条纹间的距离变宽,可以采取的办法是 A.换用绿色的滤光片 B.换用红色的滤光片 C.使光源发出的光更强一些 D.使光屏向双缝靠拢一些 6.某同学按实验装置安装好仪器后,观察光的干涉现象,获得成功,若他在此基础上对仪器的安装作如下改动,但还能使实验成功的是 A.将遮光筒内的光屏,向靠近双缝的方向移动少许,其他不动 B.将滤光片移至单缝和双缝之间,其他不动 C.将单缝向双缝移动少许,其他不动 D.将单缝与双缝的位置互换,其他不动 7.分别用a、b两种单色光在同一装置上做光的干涉实验时,观察到a光的干涉条纹中相邻两明条纹间距较大,则 A.a光的频率较大 B.a光的波长较大 C.a光子的能量较大 D.在玻璃中a光的速度较大 二、填空题(共65分) 8.(6分)根据“测定玻璃砖的折射率”实验的要求,请回答下列问题: (1)某同学完成了实验的准备阶段,在图1—46—3中的线段AO上竖直地插上大头针P 和P2,此后,该同学准备在b b′一侧插上大头针P3和P4,则插P3和P4的要求是: 1 ___________________________________________. 图1—46—3 (2)在实验中,有两位同学各设计了一个记录表格,而且都已完成了计算,根据他们设计的表格所反应的信息,判断他们论证做得是否正确.

相关文档