文档库 最新最全的文档下载
当前位置:文档库 › (完整版)一元一次不等式组知识点和题型总结

(完整版)一元一次不等式组知识点和题型总结

(完整版)一元一次不等式组知识点和题型总结
(完整版)一元一次不等式组知识点和题型总结

一元一次不等式与一元一次不等式组

一、不等式

考点一、不等式的概念

题型一 会判断不等式

下列代数式属于不等式的有 .

① -x ≥5 ② 2x-y <0 ③ ④ -3<0 ⑤ x=3 ⑥ ⑦ x ≠5

⑧02x 3-x 2>+ ⑨ 题型二 会列不等式

根据下列要求列出不等式

①.a 是非负数可表示为

.

②.m 的5倍不大于3可表示为 . ③.x 与17的和比它的2倍小可表示为 . ④.x 和y 的差是正数可表示为 .

⑤.x 的 与12的差最少是6可表示为__________________.

考点二、不等式基本性质

1、不等式两边都加上(或减去)同一个数或同一个整式,不等号的方向不变。

2、不等式两边都乘以(或除以)同一个正数,不等号的方向不变。

逆定理:不等式两边都乘以(或除以)同一个数,若不等号的方向不变,则这个数是正数.

基本训练:若a >b ,ac >bc ,则c 0.

3、不等式两边都乘以(或除以)同一个负数,不等号的方向改变。

逆定理:不等式两边都乘以(或除以)同一个数,若不等号的方向改变,则这个数是负数。

基本训练:若a >b ,ac <bc ,则c 0.

4、如果不等式两边同乘以0,那么不等号变成等号,不等式变成等式。

练习:1、指出下列各题中不等式的变形依据

①.由3a>2得a> 理由: .

②. 由a+7>0得a>-7 理由: .

③.由-5a<1得a> 理由: .

④.由4a>3a+1得a>1 理由: . 352

≥+x 53325

1

-2

2y x y x ++0

y x ≥+

2、若x >y ,则下列式子错误的是( )

A.x-3>y-3

B. >

C. x+3>y+3

D.-3x >-3y

3、判断正误 ①. 若a >b ,b <c 则a >c. ( ) ②.若a >b ,则ac >bc. ( ) ③.若 ,则a >b. ( ) ④. 若a >b ,则 . ( )

⑤.若a >b ,则 ( )

⑥. 若a >b ,若c 是个自然数,则ac >bc. ( )

考点三、不等式解和解集

1、不等式的解:对于一个含有未知数的不等式,任何一个适合这个不等式的未知数的值,都叫做这个不等式的解。

练习:1、判断下列说法正确的是( )

A.x=2是不等式x+3<2的解

B.x =3是不等式3x <7的解。

C.不等式3x <7的解是x <2

D.x=3是不等式3x ≥9的解 2.下列说法错误的是( ) A.不等式x <2的正整数解只有一个 B.-2是不等式2x-1<0的一个解 C.不等式-3x >9的解集是x >-3 D.不等式x <10的整数解有无数个

2、不等式的解集:对于一个含有未知数的不等式,它的所有解的集合叫做这个不等式的解的集合,简称这个不等式的解集。 题型一 会求不等式的解集

练习:1、不等式x-8>3x-5的解集是 . 2、不等式x ≤4的非负整数解是 . 3、不等式2x-3≤0的解集为 .

题型二 知道不等式的解集求字母的取值范围

2、如果不等式(a-1)x <(a-1)的解集是x <1,那么a 的取值范围是 .

3、若(a-1)x >1,,则a 的取值范围是 .

考点四、解不等式

1、解不等式:求不等式的解集的过程,叫做解不等式。 22bc ac >)()>(1c b 1c a 22++3

x

3y 22bc ac >1

-a 1

x <

练习1、将下列不等式的解集在数轴上表示出来。

x ≥2 x < - x <3的非负整数解 -2<x ≤3

2、已知实数a 、b 、c 在数轴上的对应点如图,则下列式子正确的是( ) A cb>ab B ac>ab C cb

3、将函数 的自变量x 的取值范围在数轴上表示出来.

二、一元一次不等式

考点一、一元一次不等式的概念

一元一次不等式的定义:一般地,不等式中只含有一个未知数,未知数的次数是1,且不等式的两边都是整

式,这样的不等式叫做一元一次不等式。

练习:1、判断下列各式是一元一次不等式的是 .

2.若 是关于x 的一元一次不等式,则m= .

3.若 是关于x 的一元一次不等式,则m= . 考点二、解一元一次不等式 解一元一次不等式的一般步骤:

(1)去分母(2)去括号(3)移项(4)合并同类项(5)将x 项的系数化为1

练习:1、解不等式3x-2<7,将解集在数轴上表示出来,并写出他的正整数解.

2.解下列不等式

① 4352+>-x x ② )1(2)3(410-≤--x x

③ ④

03-x

1x

23x 2

>②>①+y 23-x >③3-3y x 51-x >⑤π④≥1-x 1

y =3

251

-3x 1

m 2>+8x 1m 3x 3m 2<)

(++6

x 3-43x 2-1≥31-x 2-122x ≤+

考点三、一元一次不等式的解和解集

1.一元一次不等式的解和解集

练习:1.已知关于x 的方程2x+4=m-x 的解为负数,则m 的取值范围是( )

A. B. C. m <4 D. m >4 2.不等式3x+2>5的解集是( )

A. x >1

B.x <1

C. x >0

D.x ≥1 3、若不等式x-3(x-2)≤a 的解集为x ≥-1,则a=( )

4.若

51-x 2-m 1m 2>)( 是关于x 的一元一次不等式,则该不等式的解集为 . 2、一元一次不等式的特殊解

练习:1、求x+3<6的所有正整数解.

2、求10-4(x-3)≥2(x-1)的非负整数解,并在数轴上表示出来.

3、设不等2x-a ≤0只有3个正整数解,求这三个正整数.

4、不等式4x-1≤19的非负整数解的和是多少?

3、已知一元一次不等式的解或解集求不等式中的字母取值

练习:1、已知不等式x+8>4x+m (m 是常数)的解集是x <3,则m= . 2、已知x=3是关于x 的不等式3x-a >5的解,则a 的取值范围是 . 3、已知关于x 的方程2x+4=m-x 的解为负数,则m 的取值范围是 . 4、关于x 的不等式2x-a≤-1的解集如图,求a的取值范围。

5、已知在不等式3x -a ≤0的正整数解是1,2,3,求a 的取值范围。 34m <

34m >

考点四、一元一次不等式和方程的综合题

练习:1、若不等式ax-2>0的解集为x<-2,则关于y的方程ay+2=0的解为()

A. y=-1

B.y=1

C. y=-2

D. y=2

2、已知关于x的方程5x-6=3(x+m)的解为非负数,则m取何值?

考点五、一元一次不等式的应用

练习:1、福林制衣厂现有24名制作服装工人,?每天都制作某种品牌衬衫和裤子,每人每天可制作衬衫3件或裤子5条.

(1)若该厂要求每天制作的衬衫和裤子数量相等,则应安排制作衬衫和裤子各多少人?

(2)已知制作一件衬衫可获得利润30元,制作一条裤子可获得利润16元,?若该厂要求每天获得利润不少于2100元,则至少需要安排多少名工人制作衬衫?

1、小颖准备用21元买笔和笔记本.已知每支笔3元,每个笔记本2.2元,她买了2个笔记本。请你帮她算一算,他还可能买几支笔?最多能买几支笔呢?

2、某种商品进价150元,标价200元,但销量较小.为了促销,商场决定打折销售,若为了保证利润率不低于20%,那么至多打几折? .

3

考点六、一元一次不等式与一次函数

练习:1、如图1所示,一次函数y=kx+b 的图象经过A 、B 两点,则不等式kx+b <0的解集是( ) A.x <0 B.0<x <1 C.x <1 D.x >1

2、如图2所示,直线y=kx+b 与x 轴交于点A (-4,0),则当y >0时,x 的取值范围是( )

3、一次函数y= 的图象如图3所示,当-3<y <3时,x 的取值范围是( )

4、已知直线y=2x+k 与x 轴的交点为(-2,0),则关于x 的不等式2x+k <0的解集是

5、若一次函数y=kx=b(k,b 为常数,且k ≠0)的图像如图4所示,则关于x 的不等式kx+b >3的解集为 .

6、如图所示,已知函数y=-3x+6 ①当x 时,y >0 ②当x 时,y <0 ③当x 时,y=0 ④当x 时,y >6

⑤当x 时,0<y <6

⑥如果函数值y 满足-6≤y ≤6,求相应的x 的取值范围.

7、如图所示,直线L1: =2x 与直线L2: =kx+3在同一直角坐标系内交于点P.

(1)写出不等式2x >kx+3的解集.

(2)写出

的自变量x 的取值范围. (3)设直线L2与x 轴交于点A,求三角形OAP 的面积.

3

x 2

3-+1y 2y 21y y ≥

三、一元一次不等式组

考点一、一元一次不等式组

1、一元一次不等式组的概念:几个一元一次不等式合在一起,就组成了一个一元一次不等式组。

2、一元一次不等式组的解集:几个一元一次不等式的解集的公共部分,叫做它们所组成的一元一次不等式组的解。

3、一元一次不等式组的解法

(1)分别求出不等式组中各个不等式的解集

(2)利用数轴求出这些不等式的解集的公共部分,即这个不等式组的解集。 记:

时,x >b ;(同大取大) 当时,x <a ;(同小取小)

当时,a <x <b ;(大小小大取中间) 当时无解,(大大小小无解)

题型一 求不等式组的解集

1、在平面直角坐标系中,若点P(m -3,m +1)在第二象限,则m 的取值范围为( ) A .-1<m <3 B .m >3 C .m <-1 D .m >-1

2、解下列不等式

① ②

③⑥-2<1- x <53 ④

???

??≥+x

3

2

-13x 3

41-x 37-2x )(<51?

??+≥--≥+x x x x 2236523???

??->+≥--13214)2(3x x x x

3、解不等式组并写出该不等式组的最大整数解.

题型二用数轴表示不等式组的解集

1、把不等式组的解集表示在数轴上正确的是()

2、把某不等式组中两个不等式的解集表示在数轴上,如图所示,则这个不等式组可能是()A.B.C.D.

3、不等式组的解集在数轴上表示正确的是()

4、把不等式组的解集表示在数轴上,正确的为图中的()

A.B.C.D.

题型三知道不等式组的解集,求字母取值

①已知不等式组的解集为x>3,则a的取值范围是.

??

?

?

?

+

+

<1

x

3

1-

x

5

1

2

1

x5

-

3

1-x2

?

?

?

3

x

a

x

②已知不等式组 的解集为x >a ,则a 的取值范围 .

③已知不等式组 无解,则a 的取值范围 .

④已知不等式组 有解,则a 的取值范围 .

变式:1、不等式组 的解集是x >2,求m 的取值范围.

2、不等式组 无解,求实数a 的取值范围.

题型四 不等式组与方程的综合题

1、若方程组 的解满足-1<x+y <3,求a 的取值范围.

2、如果关于x 、y 的方程组 的解满足x >0且y <0,求a 取值范围. .

3、若关于x 、y 的方程组 的解x 、y 的值均为正数,求a 取值范围. .

???3

x a

x <>???3

x a

x <>???+++1

m x 1

x 59x ><???≥+2

-x 2x -10

a x >???=+-=+7

2y x 1

y x 2a ???=+=-5a

y 3x 10

y x 2?

??+=-+=+159

3a y x a y x

题型五 确定方程或不等式组中的字母取值

1、已知关于x 的不等式组 只有2个非负整数解,则实数a 的取值范围是?

2、若方程组{ 的解中x>y ,求k 的范围。

3、如果

的整数解为1、2、3,求整数a 、b 的值。

题型六 不等式组的应用

练习:1、甲,乙两家超市以相同的价格出售同样的商品,为了吸引顾客,?各自推出不同的优惠方案:在甲超市累计购买商品超出300元之后,?超出部分按原价8折优惠;在乙超市累计购买商品超出200元之后,超过部分按原价8.5折优惠.设顾客预计累计购物x 元(x>300). (1)请用含x 的代数式分别表示顾客在两家超市购物所付的费用; (2)试比较顾客到哪家超市购物更优惠?说明你的理由.

???≥0b -8x 0a -9x <k y x y x =-=+345

32???≥-1

2x -50

>a x

(完整版)数列题型及解题方法归纳总结

知识框架 111111(2)(2)(1)( 1)()22()n n n n n n m p q n n n n a q n a a a q a a d n a a n d n n n S a a na d a a a a m n p q --=≥=?? ←???-=≥?? =+-??-?=+=+??+=++=+??两个基等比数列的定义本数列等比数列的通项公式等比数列数列数列的分类数列数列的通项公式函数角度理解 的概念数列的递推关系等差数列的定义等差数列的通项公式等差数列等差数列的求和公式等差数列的性质1111(1)(1) 11(1)() n n n n m p q a a q a q q q q S na q a a a a m n p q ---=≠--===+=+???? ? ???????????????? ??? ???????????? ???? ????????????? ?????? ? ?? ?? ?? ?? ??? ???????? 等比数列的求和公式等比数列的性质公式法分组求和错位相减求和数列裂项求和求和倒序相加求和累加累积 归纳猜想证明分期付款数列的应用其他??????? ? ? 掌握了数列的基本知识,特别是等差、等比数列的定义、通项公式、求和公式及性质,掌握了典型题型的解法和数学思想法的应用,就有可能在高考中顺利地解决数列问题。 一、典型题的技巧解法 1、求通项公式 (1)观察法。(2)由递推公式求通项。 对于由递推公式所确定的数列的求解,通常可通过对递推公式的变换转化成等差数列或等比数列问题。 (1)递推式为a n+1=a n +d 及a n+1=qa n (d ,q 为常数) 例1、 已知{a n }满足a n+1=a n +2,而且a 1=1。求a n 。 例1、解 ∵a n+1-a n =2为常数 ∴{a n }是首项为1,公差为2的等差数列 ∴a n =1+2(n-1) 即a n =2n-1 例2、已知{}n a 满足11 2 n n a a +=,而12a =,求n a =? (2)递推式为a n+1=a n +f (n ) 例3、已知{}n a 中112a = ,121 41 n n a a n +=+-,求n a . 解: 由已知可知)12)(12(11-+= -+n n a a n n )1 21 121(21+--=n n 令n=1,2,…,(n-1),代入得(n-1)个等式累加,即(a 2-a 1)+(a 3-a 2)+…+(a n -a n-1) 2 43 4)1211(211--= --+=n n n a a n ★ 说明 只要和f (1)+f (2)+…+f (n-1)是可求的,就可以由a n+1=a n +f (n )以n=1,2,…,(n-1)代 入,可得n-1个等式累加而求a n 。 (3)递推式为a n+1=pa n +q (p ,q 为常数) 例4、{}n a 中,11a =,对于n >1(n ∈N )有132n n a a -=+,求n a . 解法一: 由已知递推式得a n+1=3a n +2,a n =3a n-1+2。两式相减:a n+1-a n =3(a n -a n-1) 因此数列{a n+1-a n }是公比为3的等比数列,其首项为a 2-a 1=(3×1+2)-1=4 ∴a n+1-a n =4·3n-1 ∵a n+1=3a n +2 ∴3a n +2-a n =4·3n-1 即 a n =2·3n-1 -1 解法二: 上法得{a n+1-a n }是公比为3的等比数列,于是有:a 2-a 1=4,a 3-a 2=4·3,a 4-a 3=4·32,…,a n -a n-1=4·3n-2 , 把n-1个等式累加得: ∴an=2·3n-1-1 (4)递推式为a n+1=p a n +q n (p ,q 为常数) )(3211-+-= -n n n n b b b b 由上题的解法,得:n n b )32(23-= ∴n n n n n b a )31(2)21(32-== (5)递推式为21n n n a pa qa ++=+

数列知识点总结及题型归纳

数列 一、数列的概念 (1)数列定义:按一定次序排列的一列数叫做数列; 数列中的每个数都叫这个数列的项。记作n a ,在数列第一个位置的项叫第1项(或首项),在第二个位 置的叫第2项,……,序号为n 的项叫第n 项(也叫通项)记作n a ; 数列的一般形式:1a ,2a ,3a ,……,n a ,……,简记作 {}n a 。 例:判断下列各组元素能否构成数列 (1)a, -3, -1, 1, b, 5, 7, 9; (2)2010年各省参加高考的考生人数。 (2)通项公式的定义:如果数列}{n a 的第n 项与n 之间的关系可以用一个公式表示,那么这个公式就 叫这个数列的通项公式。 例如:①:1 ,2 ,3 ,4, 5 ,… ②:5 14131211 ,,,,… 数列①的通项公式是n a = n (n ≤7,n N +∈), 数列②的通项公式是n a = 1 n (n N +∈)。 说明: ① {}n a 表示数列,n a 表示数列中的第n 项,n a = ()f n 表示数列的通项公式; ② 同一个数列的通项公式的形式不一定唯一。例如,n a = (1)n -=1,21 ()1,2n k k Z n k -=-?∈? +=?; ③不是每个数列都有通项公式。例如,1,1.4,1.41,1.414,…… (3)数列的函数特征与图象表示: 序号:1 2 3 4 5 6 项 :4 5 6 7 8 9 上面每一项序号与这一项的对应关系可看成是一个序号集合到另一个数集的映射。从函数观点看,数列 实质上是定义域为正整数集N +(或它的有限子集)的函数()f n 当自变量n 从1开始依次取值时对应的一系列函数值 (1),(2),(3),f f f ……,()f n ,…….通常用n a 来代替()f n ,其图象是一群孤立点。 例:画出数列12+=n a n 的图像. (4)数列分类:①按数列项数是有限还是无限分:有穷数列和无穷数列;②按数列项与项之间的大小关系分:单调数列(递增数列、递减数列)、常数列和摆动数列。 例:下列的数列,哪些是递增数列、递减数列、常数列、摆动数列? (1)1,2,3,4,5,6,… (2)10, 9, 8, 7, 6, 5, … (3) 1, 0, 1, 0, 1, 0, … (4)a, a, a, a, a,… (5)数列{n a }的前n 项和n S 与通项n a 的关系:1 1 (1)(2)n n n S n a S S n -=?=?-?≥ 例:已知数列}{n a 的前n 项和322+=n s n ,求数列}{n a 的通项公式

数列必会常见题型归纳

数列必会基础题型 题型一:求值类的计算题(多关于等差等比数列) A )根据基本量求解(方程的思想) 1、已知n S 为等差数列{}n a 的前n 项和,63,6,994=-==n S a a ,求n ; 2、等差数列{}n a 中,410a =且3610a a a ,,成等比数列,求数列{}n a 前20项的和20S . 3、设{}n a 是公比为正数的等比数列,若16,151==a a ,求数列{}n a 前7项的和. 4、已知四个实数,前三个数成等差数列,后三个数成等比数列,首末两数之和为37, 中间两数之和为36,求这四个数. 5在等差数列{a n }中, (1)已知a 15=10,a 45=90,求a 60; (2)已知S 12=84,S 20=460,求S 28; (3)已知a 6=10,S 5=5,求a 8和S 8. 6、有四个数,其中前三个数成等差数列,后三个数成等比数列,并且第一个数与第四个数的和是16,第二个数与第三个数的和是12,求这四个数. 7、已知△ABC 中,三内角A 、B 、C 的度数成等差数列,边a 、b 、c 依次成等比数列.求证:△ABC 是等边三角形. B )根据数列的性质求解(整体思想) 1、已知n S 为等差数列{}n a 的前n 项和,1006=a ,则=11S ; 2、设n S 、n T 分别是等差数列{}n a 、 {}n a 的前n 项和,327++=n n T S n n ,则=5 5b a . 3、设n S 是等差数列{}n a 的前n 项和,若 ==5 935,95S S a a 则( ) 4、等差数列{}n a ,{}n b 的前n 项和分别为n S ,n T ,若231n n S n T n =+,则n n a b =( ) 5、已知n S 为等差数列{}n a 的前n 项和,)(,m n n S m S m n ≠==,则=+n m S .. 6、已知等比数列{a n }中,a 1·a 9=64,a 3+a 7=20,则a 11= .

导数及其应用(知识点总结)

导数及其应用 知识点总结 1、函数()f x 从1x 到2x 的平均变化率:()()2121 f x f x x x -- 2、导数定义:()f x 在点0x 处的导数记作x x f x x f x f y x x x ?-?+='='→?=)()(lim )(00000;. 3、函数()y f x =在点0x 处的导数的几何意义是曲线 ()y f x =在点()()00,x f x P 处的切线的斜率. 4、常见函数的导数公式: ①'C 0=; ②1')(-=n n nx x ;③x x cos )(sin '=; ④x x sin )(cos '-=; ⑤a a a x x ln )('=;⑥x x e e =')(; ⑦a x x a ln 1)(log '=;⑧x x 1)(ln '= 5、导数运算法则: ()1 ()()()()f x g x f x g x '''±=±????; ()2 ()()()()()()f x g x f x g x f x g x '''?=+????; ()3()()()()()()()()()20f x f x g x f x g x g x g x g x '??''-=≠????????. 6、在某个区间(),a b 内,若()0f x '>,则函数()y f x =在这个区间内单调递增; 若()0f x '<,则函数()y f x =在这个区间内单调递减. 7、求解函数()y f x =单调区间的步骤: (1)确定函数()y f x =的定义域; (2)求导数'' ()y f x =; (3)解不等式'()0f x >,解集在定义域内的部分为增区间; (4)解不等式'()0f x <,解集在定义域内的部分为减区间. 8、求函数()y f x =的极值的方法是:解方程()0f x '=.当()00f x '=时: ()1如果在0x 附近的左侧()0f x '>,右侧()0f x '<,那么()0f x 是极大值; ()2如果在0x 附近的左侧()0f x '<,右侧()0f x '>,那么()0f x 是极小值. 9、求解函数极值的一般步骤: (1)确定函数的定义域 (2)求函数的导数f ’(x) (3)求方程f ’(x)=0的根 (4)用方程f ’(x)=0的根,顺次将函数的定义域分成若干个开区间,并列成表格 (5)由f ’(x)在方程f ’(x)=0的根左右的符号,来判断f(x)在这个根处取极值的情况 10、求函数()y f x =在[],a b 上的最大值与最小值的步骤是: ()1求函数()y f x =在(),a b 内的极值; ()2将函数()y f x =的各极值与端点处的函数值()f a ,()f b 比较,其中最大的一个是最大值,最小的一个是最小值.

指数函数与对数函数知识点总结

指数函数与对数函数知识点总结 (一)指数与指数幂的运算 1.根式的概念:一般地,如果a x n =,那么x 叫做a 的n 次 方根,其中n >1,且n ∈N * . 当n 是奇数时, a a n n =,当n 是偶数时, ?? ?<≥-==) 0() 0(||a a a a a a n n 2.分数指数幂 正数的分数指数幂的意义,规定: ) 1,,,0(*>∈>=n N n m a a a n m n m )1,,,0(1 1*>∈>= = - n N n m a a a a n m n m n m 3.实数指数幂的运算性质 (1)r a ·s r r a a += ),,0(R s r a ∈>; (2)rs s r a a =)( ),,0(R s r a ∈>; (3)s r r a a ab =)( ),,0(R s r a ∈>. (二)指数函数及其性质 1、指数函数的概念:一般地,函数)1,0(≠>=a a a y x 且叫做指数函数,其中x 是自变量,函数的定义域为R . 二、对数函数 (一)对数 1.对数的概念:一般地,如果N a x =)1,0(≠>a a ,那么数x 叫做以.a 为底..N 的对数, 记作:N x a log =(a — 底数,N — 真数,N a log — 对数式) 两个重要对数: ○ 1 常用对数:以10为底的对数N lg ; ○ 2 自然对数:以无理数 71828.2=e 为底的对数的对数N ln . 指数式与对数式的互化 幂值 真数 (二)对数的运算性质 如果0>a ,且1≠a ,0>M ,0>N ,那么: ○ 1 M a (log ·=)N M a log +N a log ; ○ 2 =N M a log M a log -N a log ; ○ 3 n a M log n =M a log )(R n ∈. 注意:换底公式 a b b c c a log log log = (0>a ,且1≠a ;0>c ,且1≠c ; 0>b ). 利用换底公式推导下面的结论 (1)b m n b a n a m log log =; (2)a b b a log 1log =. (二)对数函数

1.高考数学考点与题型全归纳——集合

第一章 集合与简易逻辑 第一节 集 合 ? 基础知识 1. 集合的有关概念 1.1.集合元素的三个特性:确定性、无序性、互异性. 1. 2.集合的三种表示方法:列举法、描述法、图示法. 1.3.元素与集合的两种关系:属于,记为∈;不属于,记为?. 1.4.五个特定的集合及其关系图: N *或N +表示正整数集,N 表示自然数集,Z 表示整数集,Q 表示有理数集,R 表示实数集. 2. 集合间的基本关系 2.1.子集:一般地,对于两个集合A ,B ,如果集合A 中任意一个元素都是集合B 中的元素,则称A 是B 的子集,记作A ?B(或B ?A). 2.2.真子集:如果集合A 是集合B 的子集,但集合B 中至少有一个元素不属于A ,则称A 是B 的真子集,记作AB 或B A. A B ?? ???? A ? B ,A≠B.既要说明A 中任何一个元素都属于B ,也要说明B 中存在一个元素不属于A. 2.3.集合相等:如果A ?B ,并且B ?A ,则A =B. 两集合相等:A =B ?? ??? ? A ? B ,A ?B.A 中任意一个元素都符合B 中元素的特性,B 中任意一个元素也符合A 中元素的特性. 2.4.空集:不含任何元素的集合.空集是任何集合A 的子集,是任何非空集合B 的真子集.记作?. ?∈{?},??{?},0??,0?{?},0∈{0},??{0}.

3. 集合间的基本运算 (1)交集:一般地,由属于集合A 且属于集合B 的所有元素组成的集合,称为A 与B 的交集,记作A∩B ,即A∩B ={x|x ∈A ,且x ∈B}. (2)并集:一般地,由所有属于集合A 或属于集合B 的元素组成的集合,称为A 与B 的并集,记作A ∪B ,即A ∪B ={x|x ∈A ,或x ∈B}. (3)补集:对于一个集合A ,由全集U 中不属于集合A 的所有元素组成的集合称为集合A 相对于全集U 的补集,简称为集合A 的补集,记作?U A ,即?U A ={x |x ∈U ,且x ?A }. 求集合A 的补集的前提是“A 是全集U 的子集”,集合A 其实是给定的条件.从全集U 中取出集合A 的全部元素,剩下的元素构成的集合即为?U A . ? 常用结论 (1)子集的性质:A ?A ,??A ,A ∩B ?A ,A ∩B ?B . (2)交集的性质:A ∩A =A ,A ∩?=?,A ∩B =B ∩A . (3)并集的性质:A ∪B =B ∪A ,A ∪B ?A ,A ∪B ?B ,A ∪A =A ,A ∪?=?∪A =A . (4)补集的性质:A ∪?U A =U ,A ∩?U A =?,?U (?U A )=A ,?A A =?,?A ?=A . (5)含有n 个元素的集合共有2n 个子集,其中有2n -1个真子集,2n -1个非空子集. (6)等价关系:A ∩B =A ?A ?B ;A ∪B =A ?A ?B . 考点一 集合的基本概念 [典例] 1. (2017·全国卷Ⅲ)已知集合A ={(x ,y )|x 2+y 2=1},B ={(x ,y )|y =x },则A ∩B 中元素的个数为( ) A .3 B .2 C .1 D .0 2. 已知a ,b ∈R ,若? ?? ? ??a ,b a ,1={a 2,a +b,0},则a 2 019+b 2 019的值为( ) A .1 B .0 C .-1 D .±1 [解析] (1)因为A 表示圆x 2+y 2=1上的点的集合,B 表示直线y =x 上的点的集合,直线y =x 与圆x 2+y 2=1有两个交点,所以A ∩B 中元素的个数为2. (2)由已知得a ≠0,则b a =0,所以 b =0,于是a 2=1,即a =1或a =-1.又根据集合中元素的互异性可 知a =1应舍去,因此a =-1,故a 2 019+b 2 019=(-1)2 019+02 019=-1. [答案] (1)B (2)C [提醒] 集合中元素的互异性常常容易忽略,求解问题时要特别注意. [题组训练]

数列常见题型分析与方法总结

数列常见题型分析与做法 一、等差、等比数列的概念与性质 1、已知等比数列432,,,}{a a a a n 中分别是某等差数列的第5项、第3项、第2项,且1,641≠=q a 公比,求n a ; (I )依题意032),(32244342=+--+=a a a a a a a 即 03213131=+-∴q a q a q a 2 1101322 = =?=+-∴q q q q 或2 11= ∴≠q q 1)2 1 (64-?=n n a 故 二、求数列的通项 类型1 )(1n f a a n n +=+ 解法:把原递推公式转化为)(1n f a a n n =-+,利用累加法(逐差相加法)求解。 例:已知数列{}n a 满足2 11=a ,n n a a n n ++ =+2 11,求n a 答案:n n a n 12 3112 1- = - += ∴ 类型2 n n a n f a )(1=+ 解法:把原递推公式转化为)(1n f a a n n =+,利用累乘法(逐商相乘法)求解。 例:已知数列{}n a 满足321= a ,n n a n n a 1 1+= +,求n a 答案:n a n 32= ∴ 类型3 q pa a n n +=+1(其中p ,q 均为常数,)0)1((≠-p pq )。 解法(待定系数法):把原递推公式转化为:)(1t a p t a n n -=-+,其中p q t -=1,再利用换元 法转化为等比数列求解。 例:已知数列{}n a 中,11=a ,321+=+n n a a ,求n a . 提示:)3(231+=++n n a a 答案:321-=+n n a . 类型4 递推公式为n S 与n a 的关系式。(或()n n S f a =) 解法:这种类型一般利用???≥???????-=????????????????=-) 2() 1(11n S S n S a n n n 与)()(11---=-=n n n n n a f a f S S a 消去n S )2(≥n 或与)(1--=n n n S S f S )2(≥n 消去n a 进行求解。 例:已知数列{}n a 前n 项和2 2 14---=n n n a S . (1)求1+n a 与n a 的关系;(2)求通项公式n a . 解:(1)由2 2 14-- -=n n n a S 得:1 112 14-++- -=n n n a S 于是) 2 12 1( )(1 2 11--++- +-=-n n n n n n a a S S 所以1 112 1 -+++ -=n n n n a a a n n n a a 2 12 11+ = ?+.

指数函数知识点总结

指数函数知识总结 (一)指数与指数幂的运算 1.根式的概念: 一般地,如果a x n =,那么x 叫做a 的n 次方根,其中n >1,且n ∈N * . ①负数没有偶次方根;②0的任何次方根都是0,记作00=n 。 ③当n 是奇数时,a a n n =, 当n 是偶数时,???<≥-==) 0() 0(||a a a a a a n n 2.分数指数幂 正数的分数指数幂的意义,规定: ) 1,,,0()1(*>∈>=n N n m a a a n m n m )1,,,0(1 1)2(*>∈>= = - n N n m a a a a n m n m n m (3)0的正分数指数幂等于0,0的负分数指数幂没有意义 3.实数指数幂的运算性质 (1)r a ·s r r a a += ),,0(R s r a ∈>; (2)rs s r a a =)( ),,0(R s r a ∈>; (3) s r r a a ab =)( ),,0(R s r a ∈>. 题型一、计算 1.44 等于( ) A 、16a B 、8a C 、4a D 、2 a 2.⑴ 33 )2(-= ⑵ 44 )2(-= ⑶ 66)3(π-= ⑷ 2 22y xy x ++= 3.① 625625++- ② 335252-++ 4.计算(1 + 2048 21)(1 + 1024 21)…(1 + 421)(1 + 2 21)(1 + 21 ). 5. 计算(0.0081)4 1-- [3×(87)0]1-·[8125 .0-+(38 3)31-]21 -.

题型二、化简 1. 3 2 13 2b a b a ?- ÷3 2 11- --??? ? ? ?a b b a 2. 322a a a ?(a >0). 3.化简: 3 32 b a a b b a (a >0,b >0). 题型三、带附加条件的求值问题 1. 已知a 2 1+ a 2 1-= 3,求下列各式的值: ⑴ a + a 1 - ⑵ a 2+ a 2 - ⑶ 2 12 1232 3- - --a a a a 2. 已知2a x x =+-2(常数),求8x x -+8的值。 3. 已知x + y = 12, xy = 9,且x <y ,求 2 12 1 212 1y x y x +-的值。 4.已知a 、b 是方程x 2 - 6x + 4 = 0的两根,且a >b >0,求b a b a +-的值。

高中数学集合基础知识及题型归纳复习

集合基础知识及题型归纳总结 1、集合概念与特征: 例:1.下列各项中,不可以组成集合的是( ) A .所有的正数 B .等于2的数 C .接近于0的数 D .不等于0的偶数 例:下列命题正确的有( ) (1)很小的实数可以构成集合; (2)集合{}1|2-=x y y 与集合(){} 1|,2-=x y y x 是同一个集合; (3)36 11,,,,0.5242 -这些数组成的集合有5个元素; (4)集合(){}R y x xy y x ∈≤,,0|,是指第二和第四象限内的点集。 A .0个 B .1个 C .2个 D .3个 2、元素与集合、集合与集合间的关系 元素集合的关系:∈?或 集合与集合的关系=?或 例:下列式子中,正确的是( ) A .R R ∈+ B .{}Z x x x Z ∈≤?-,0| C .空集是任何集合的真子集 D .{}φφ∈ 3、集合的子集:(必须会写出一个集合的所有子集) 例:若集合}8,7,6{=A ,则满足A B A =?的集合B 的个数是 4、集合的运算:(交集、并集、补集) 例1:已知全集}{5,4,3,2,1,0=U ,集合}{5,3,0=M ,}{5,4,1=N ,则=N C M U I 例2:已知 {}{}=|3217,|2A x x B x x -<-≤=< (1)求A ∩B ; (2)求(C U A )∪B 例3:已知{25}A x x =-≤≤,{121}B x m x m =+≤≤-,B A ?,求m 的取值范围 例4:某班有学生55人,其中体育爱好者43人,音乐爱好者34人,还有4人既不爱好体育也不爱好音乐,则该班既爱好体育又爱好音乐的人数为 人 例5:方程组? ??=-=+9122y x y x 的解集是( ) A .()5,4 B .()4,5- C .(){}4,5- D .(){}4,5-

数列题型及解题方法归纳总结

知识框架 掌握了数列的基本知识,特别是等差、等比数列的定义、通项公式、求和公式及性质,掌握了典型题型的解法和数学思想法的应用,就有可能在高考中顺利地解决数列问题。 一、典型题的技巧解法 1、求通项公式 (1)观察法。(2)由递推公式求通项。 对于由递推公式所确定的数列的求解,通常可通过对递推公式的变换转化成等差数列或等比数列问题。 (1)递推式为a n+1=a n +d 及a n+1=qa n (d ,q 为常 数) 例1、已知{a n }满足a n+1=a n +2,而且a 1=1。求a n 。 例1、解∵a n+1-a n =2为常数∴{a n }是首项为1,公差为2的等差数列 ∴a n =1+2(n-1)即a n =2n-1 例2、已知{}n a 满足11 2n n a a +=,而12a =,求 n a =? (2)递推式为a n+1=a n +f (n ) 例3、已知{}n a 中112 a = ,12 141 n n a a n +=+ -,求n a . 解:由已知可知 )12)(12(11-+= -+n n a a n n )1 21 121(21+--=n n 令n=1,2,…,(n-1),代入得(n-1)个等式累加,即(a 2-a 1)+(a 3-a 2)+…+(a n -a n-1) ★ 说明只要和f (1)+f (2)+…+f (n-1)是可求的,就可以由a n+1=a n +f (n )以n=1,2,…,(n-1)代入,可得n-1个等式累加而求a n 。 (3)递推式为a n+1=pa n +q (p ,q 为常数) 例4、{}n a 中,11a =,对于n >1(n ∈N )有 132n n a a -=+,求n a . 解法一:由已知递推式得a n+1=3a n +2,a n =3a n-1+2。两式相减:a n+1-a n =3(a n -a n-1) 因此数列{a n+1-a n }是公比为3的等比数列,其首项为a 2-a 1=(3×1+2)-1=4 ∴a n+1-a n =4·3n-1∵a n+1=3a n +2∴3a n +2-a n =4·3n-1 即a n =2·3n-1-1 解法二:上法得{a n+1-a n }是公比为3的等比数列,于是有:a 2-a 1=4,a 3-a 2=4·3,a 4-a 3=4·32,…,a n -a n-1=4·3n-2, 把n-1个等式累加得:∴an=2·3n-1-1 (4)递推式为a n+1=pa n +qn (p ,q 为常数) )(3 2 11-+-=-n n n n b b b b 由上题的解法, 得:n n b )3 2(23-=∴ n n n n n b a )31(2)21(32 -== (5)递推式为21n n n a pa qa ++=+ 思路:设21n n n a pa qa ++=+,可以变形为: 211()n n n n a a a a αβα+++-=-, 想 于是{a n+1-αa n }是公比为β的等比数列,就转化 为前面的类型。 求n a 。 (6)递推式为S n 与a n 的关系式 系;(2)试用n 表示a n 。 ∴)2121( )(1 2 11 --++- +-=-n n n n n n a a S S ∴1 11 2 1 -+++ -=n n n n a a a ∴ n n n a a 2 1 211+= + 上式两边同乘以2n+1得2n+1a n+1=2n a n +2则{2n a n }是公差为2的等差数列。 ∴2n a n =2+(n-1)·2=2n 数列求和的常用方法: 1、拆项分组法:即把每一项拆成几项,重新组合分成几组,转化为特殊数列求和。

指数函数及对数函数复习(有详细知识点及习题详细讲解)

指数函数与对数函数总结与练习 一、指数的性质 (一)整数指数幂 1.整数指数幂概念: a n n a a a a 个???= )(* ∈N n ()010a a =≠ ()1 0,n n a a n N a -*= ≠∈ 2.整数指数幂的运算性质:(1)(),m n m n a a a m n Z +?=∈ (2)() (),n m mn a a m n Z =∈ (3)()()n n n ab a b n Z =?∈ 其中m n m n m n a a a a a --÷=?=, ()1n n n n n n a a a b a b b b --??=?=?= ??? . 3.a 的n 次方根的概念 一般地,如果一个数的n 次方等于a ( )* ∈>N n n ,1,那么这个数叫做a 的n 次方根, 即: 若a x n =,则x 叫做a 的n 次方根, ()* ∈>N n n ,1 说明:①若n 是奇数,则a 的n 次方根记作n a ; 若0>a 则0>n a ,若o a <则0a 则a 的正的n 次方根记作n a ,a 的负的n 次方根,记作: n a -;(例如:8的平方根228±=± 16的4次方根2164±=±) ③若n 是偶数,且0a <则n a 没意义,即负数没有偶次方根; ④( )* ∈>=N n n n ,100 0=; ⑤式子n a 叫根式,n 叫根指数,a 叫被开方数。 ∴ n a =. . 4.a 的n 次方根的性质 一般地,若n 是奇数,则a a n n =; 若n 是偶数,则???<-≥==0 0a a a a a a n n . 5.例题分析: 例1.求下列各式的值: (1)( )33 8- (2)() 2 10- (3)()44 3π- (4) 例2.已知,0<N n n ,1, 化简:()()n n n n b a b a ++-. (二)分数指数幂

(完整版)一元一次不等式组知识点及题型总结(可编辑修改word版)

x 一元一次不等式与一元一次不等式组 一、不等式 考点一、不等式的概念 不等式:用不等号表示不等关系的式子,叫做不等式。不等号包括 . 题型一 会判断不等式 下列代数式属于不等式的有 . ① -x≥5 ② 2x -y <0 ③ 2 + 5 ≥ 3 ④ -3<0 ⑤ x=3 ? x 2 + xy + y 2 ⑦ x≠5 ⑧ x 2 - 3x + 2>0 ⑨x + y ≥ 0 题型二 会列不等式 根据下列要求列出不等式 ①.a ②.m 的 5 倍不大于 3 可表示为 . ③.x 与 17 的和比它的 2 倍小可表示为 . ④.x 和 y 的差是正数可表示为 . ⑤. x 的3 5 与 12 的差最少是 6 可表示为 . 考点二、不等式基本性质 1、不等式两边都加上(或减去)同一个数或同一个整式,不等号的方向不变。 2、不等式两边都乘以(或除以)同一个正数,不等号的方向不变。 逆定理:不等式两边都乘以(或除以)同一个数,若不等号的方向不变,则这个数是正数. 基本训练:若 a >b ,ac >bc ,则 c 0. 3、不等式两边都乘以(或除以)同一个负数,不等号的方向改变。 逆定理:不等式两边都乘以(或除以)同一个数,若不等号的方向改变,则这个数是负数。 基本训练:若 a >b ,ac <bc ,则 c 0. 4、如果不等式两边同乘以 0,那么不等号变成等号,不等式变成等式。 练习:1、指出下列各题中不等式的变形依据 ①.由 3a>2 得 a> 2 理 3 由: . ②. 由 a+7>0 得 a>-7 理 由: -1 . 5 ③.由-5a<1 得 a> 理

由:. ④.由 4a>3a+1 得 a>1 理 由:. 2、若x>y,则下列式子错误的是() A.x-3>y-3 B.x > y 3 3 3、判断正误 ①. 若a>b,b<c 则a>c. () ②.若a>b,则ac>bc. () ③.若ac2>bc2,则a>b. () ④.若a>b,则ac2>bc2. () ⑤.若 a>b,则a(c2+1)>b(c2+1) C. x+3>y+3 D.-3x>-3y () ?. 若a>b,若c 是个自然数,则ac>bc. () 考点三、不等式解和解集 1、不等式的解:对于一个含有未知数的不等式,任何一个适合这个不等式的未知数的值,都叫做这个不等式的解。 练习:1、判断下列说法正确的是() A.x=2 是不等式x+3<2 的解 B.x =3 是不等式3x<7 的解。 C.不等式3x<7 的解是x<2 D.x=3 是不等式3x≥9的解 2.下列说法错误的是() A.不等式 x<2 的正整数解只有一个 B.-2 是不等式 2x-1<0 的一个解 C. 不等式-3x>9 的解集是 x>-3 D.不等式 x<10 的整数解有无数个 2、不等式的解集:对于一个含有未知数的不等式,它的所有解的集合叫做这个不等式的解的集合,简称这个不等式的解集。 题型一会求不等式的解集 练习:1、不等式x-8>3x-5 的解集是. 2、不等式x≤4的非负整数解是. 3、不等式2x-3≤0的解集为. 题型二知道不等式的解集求字母的取值范围 2、如果不等式(a-1)x<(a-1)的解集是x<1,那么a 的取值范围是. x< 1

(完整版)数列常见题型总结经典(超级经典)

高中数学《数列》常见、常考题型总结 题型一 数列通项公式的求法 1.前n 项和法(知n S 求n a )?? ?-=-11n n n S S S a )2()1(≥=n n 例1、已知数列}{n a 的前n 项和212n n S n -=,求数列|}{|n a 的前n 项和n T 1、若数列}{n a 的前n 项和n n S 2=,求该数列的通项公式。 2、若数列}{n a 的前n 项和32 3-= n n a S ,求该数列的通项公式。 3、设数列}{n a 的前n 项和为n S ,数列}{n S 的前n 项和为n T ,满足22n S T n n -=, 求数列}{n a 的通项公式。 2.形如)(1n f a a n n =-+型(累加法) (1)若f(n)为常数,即:d a a n n =-+1,此时数列为等差数列,则n a =d n a )1(1-+. (2)若f(n)为n 的函数时,用累加法. 例 1. 已知数列{a n }满足)2(3 ,1111≥+==--n a a a n n n ,证明2 13-=n n a

1. 已知数列{}n a 的首项为1,且*12()n n a a n n N +=+∈写出数列{}n a 的通项公式. 2. 已知数列}{n a 满足31=a ,)2() 1(11≥-+ =-n n n a a n n ,求此数列的通项公式. 3.形如 )(1n f a a n n =+型(累乘法) (1)当f(n)为常数,即:q a a n n =+1(其中q 是不为0的常数),此数列为等比且n a =11-?n q a . (2)当f(n)为n 的函数时,用累乘法. 例1、在数列}{n a 中111,1-+= =n n a n n a a )2(≥n ,求数列的通项公式。 1、在数列}{n a 中1111,1-+-= =n n a n n a a )2(≥n ,求n n S a 与。 2、求数列)2(1232,11 1≥+-==-n a n n a a n n 的通项公式。

集合知识点总结

集合知识点总结 Prepared on 22 November 2020

辅导讲义:集合与常用逻辑用语 1、集合:一定范围内某些确定的、不同的对象的全体构成一个集合。集合中的每一个对象称为该集合的元素。 集合的常用表示法:列举法、描述法。 集合元素的特征:确定性、互异性、无序性。 2、子集:如果集合A 的任意一个元素都是集合B 的元素,那么集合A 称为集合B 的子集,记为 A ? B ,或B ?A ,读作“集合A 包含于集合B ”或“集合B 包含集合A ”。 即:若A a ∈则B a ∈,那么称集合A 称为集合B 的子集 注:空集是任何集合的子集。 3、真子集:如果A ?B ,并且B A ≠,那么集合A 成为集合B 的真子集,记为A ?B 或B ?A ,读作“A 真包含于B 或B 真包含A ”,如:}{}{b a a ,?。 4、补集:设A ?S ,由S 中不属于A 的所有元素组成的集合称为S 的子集A 的补集,记为A C s ,读作“A 在S 中的补集”,即A C s =}{A x S x x ?∈且,|。 5、全集:如果集合S 包含我们所要研究的各个集合,这时S 可以看作一个全集。通常全集记作 U 。 6、交集:一般地,由所有属于集合A 且属于B 的元素构成的集合,称为A 与B 的交集,记作 B A ?(读作“A 交B ”),即:B A ?=}{B x A x x ∈∈且,|。 B A ?=A B ?,B A ?B B A A ???,。 7、并集:一般地,由所有属于集合A 或属于B 的元素构成的集合,称为A 与B 的并集,记作 B A ?(读作“A 并B ”),即:B A ?=}{B x A x x ∈∈或,|。 B A ?=A B ?,?A B A ?,?B B A ?。 8、元素与集合的关系:有属于和不属于两种,集合与集合间的关系,用包含、真包含

复变函数第六章留数理论及其应用知识点总结

第六章留数理论及其应用 §1.留数1.(定理柯西留数定理): 2.(定理):设a为f(z)的m阶极点, 其中在点a解析,,则 3.(推论):设a为f(z)的一阶极点, 则 4.(推论):设a为f(z)的二阶极点 则 5.本质奇点处的留数:可以利用洛朗展式 6.无穷远点的留数:

即,等于f(z)在点的洛朗展式中这一项系数的反号 7.(定理)如果函数f(z)在扩充z平面上只有有限个孤立奇点(包括无穷远点在内),设为,则f(z)在各点的留数总和为零。 注:虽然f(z)在有限可去奇点a处,必有,但是,如果点为f(z)的可去奇点(或解析点),则可以不为零。 8.计算留数的另一公式: §2.用留数定理计算实积分 一.→引入 注:注意偶函数 二.型积分 1.(引理大弧引理):上 则 2.(定理)设

为互质多项式,且符合条件: (1)n-m≥2; (2)Q(z)没有实零点 于是有 注:可记为 三.型积分 3.(引理若尔当引理):设函数g(z)沿半圆周 上连续,且 在上一致成立。则 4.(定理):设,其中P(z)及Q(z)为互质多项式,且符合条件:(1)Q的次数比P高; (2)Q无实数解; (3)m>0 则有 特别的,上式可拆分成:

及 四.计算积分路径上有奇点的积分 5.(引理小弧引理): 于上一致成立,则有 五.杂例 六.应用多值函数的积分 §3.辐角原理及其应用 即为:求解析函数零点个数 1.对数留数: 2.(引理):(1)设a为f(z)的n阶零点,则a必为函数的一阶极点,并且 (2)设b为f(z)的m阶极点,则b必为函数的一阶极点,并且 3.(定理对数留数定理):设C是一条周线,f(z)满足条件: (1)f(z)在C的内部是亚纯的;

指数函数知识点汇总

指数函数知识点汇总

————————————————————————————————作者:————————————————————————————————日期:

指数函数 (一)指数与指数幂的运算 1.根式的概念:一般地,如果a x n =,那么x 叫做a 的n 次方根,其中n >1,且n ∈N * . 负数没有偶次方根;0的任何次方根都是0,记作00=n 。 当n 是奇数时, a a n n =,当n 是偶数时, ? ? ?<≥-==)0()0(||a a a a a a n n 2.分数指数幂 正数的分数指数幂的意义,规定: ) 1,,,0(*>∈>=n N n m a a a n m n m ) 1,,,0(1 1*>∈>= = - n N n m a a a a n m n m n m 0的正分数指数幂等于0,0的负分数指数幂没有意义 3.实数指数幂的运算性质 (1)r a ·s r r a a += ),,0(R s r a ∈>; (2)rs s r a a =)( ),,0(R s r a ∈>; (3) s r r a a ab =)( ),,0(R s r a ∈>. (二)指数函数及其性质 1、指数函数的概念:一般地,函数 )1,0(≠>=a a a y x 且叫做指数函数,其中x 是自 变量,函数的定义域为R . 注意:指数函数的底数的取值范围,底数不能是负数、零和1. 2、指数函数的图象和性质 a >1 0

高考集合知识点总结与典型例题

集合 一.【课标要求】 1.集合的含义与表示 (1)通过实例,了解集合的含义,体会元素与集合的“属于”关系; (2)能选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题,感受集合语言的意义和作用; 2.集合间的基本关系 (1)理解集合之间包含与相等的含义,能识别给定集合的子集; (2)在具体情境中,了解全集与空集的含义; 3.集合的基本运算 (1)理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集; (2)理解在给定集合中一个子集的补集的含义,会求给定子集的补集; (3)能使用Venn图表达集合的关系及运算,体会直观图示对理解抽象概念的作用二.【命题走向】 有关集合的高考试题,考查重点是集合与集合之间的关系,近年试题加强了对集合的计算化简的考查,并向无限集发展,考查抽象思维能力,在解决这些问题时,要注意利用几何的直观性,注意运用Venn图解题方法的训练,注意利用特殊值法解题,加强集合表示方法的转换和化简的训练。考试形式多以一道选择题为主。 预测高考将继续体现本章知识的工具作用,多以小题形式出现,也会渗透在解答题的表达之中,相对独立。具体 三.【要点精讲】 1.集合:某些指定的对象集在一起成为集合 a∈;若b不是集合A的元素,(1)集合中的对象称元素,若a是集合A的元素,记作A b?; 记作A (2)集合中的元素必须满足:确定性、互异性与无序性; 确定性:设A是一个给定的集合,x是某一个具体对象,则或者是A的元素,或 者不是A的元素,两种情况必有一种且只有一种成立;

互异性:一个给定集合中的元素,指属于这个集合的互不相同的个体(对象),因此,同一集合中不应重复出现同一元素; 无序性:集合中不同的元素之间没有地位差异,集合不同于元素的排列顺序无关; (3)表示一个集合可用列举法、描述法或图示法; 列举法:把集合中的元素一一列举出来,写在大括号内; 描述法:把集合中的元素的公共属性描述出来,写在大括号{}内。 具体方法:在大括号内先写上表示这个集合元素的一般符号及取值(或变化)范围,再画一条竖线,在竖线后写出这个集合中元素所具有的共同特征。 注意:列举法与描述法各有优点,应该根据具体问题确定采用哪种表示法,要注意,一般集合中元素较多或有无限个元素时,不宜采用列举法。 (4)常用数集及其记法: 非负整数集(或自然数集),记作N ; 正整数集,记作N *或N +; 整数集,记作Z ; 有理数集,记作Q ; 实数集,记作R 。 2.集合的包含关系: (1)集合A 的任何一个元素都是集合B 的元素,则称A 是B 的子集(或B 包含A ),记作A ?B (或B A ?); 集合相等:构成两个集合的元素完全一样。若A ?B 且B ?A ,则称A 等于B ,记作A =B ;若A ?B 且A ≠B ,则称A 是B 的真子集,记作A B ; (2)简单性质:1)A ?A ;2)Φ?A ;3)若A ?B ,B ?C ,则A ?C ;4)若集合A 是n 个元素的集合,则集合A 有2n 个子集(其中2n -1个真子集); 3.全集与补集: (1)包含了我们所要研究的各个集合的全部元素的集合称为全集,记作U ; (2)若S 是一个集合,A ?S ,则,S C =}|{A x S x x ?∈且称S 中子集A 的补集; (3)简单性质:1)S C (S C )=A ;2)S C S=Φ,ΦS C =S 4.交集与并集:

相关文档
相关文档 最新文档