文档库 最新最全的文档下载
当前位置:文档库 › 三点式正弦波振荡器(高频电子线路实验报告)

三点式正弦波振荡器(高频电子线路实验报告)

三点式正弦波振荡器(高频电子线路实验报告)
三点式正弦波振荡器(高频电子线路实验报告)

三点式正弦波振荡器

一、实验目的

1、 掌握三点式正弦波振荡器电路的基本原理,起振条件,振荡电路设计及电路参数计

算。

2、 通过实验掌握晶体管静态工作点、反馈系数大小、负载变化对起振和振荡幅度的影

响。

3、 研究外界条件(温度、电源电压、负载变化)对振荡器频率稳定度的影响。

二、实验内容

1、 熟悉振荡器模块各元件及其作用。

2、 进行LC 振荡器波段工作研究。

3、 研究LC 振荡器中静态工作点、反馈系数以及负载对振荡器的影响。

4、 测试LC 振荡器的频率稳定度。

三、实验仪器

1、模块 3 1块

2、频率计模块 1块

3、双踪示波器 1台

4、万用表 1块

四、基本原理

实验原理图见下页图1。

将开关S 1的1拨下2拨上, S2全部断开,由晶体管N1和C 3、C 10、C 11、C4、CC1、L1构成电容反馈三点式振荡器的改进型振荡器——西勒振荡器,电容CCI 可用来改变振荡频率。

)

14(121

0CC C L f +=

π

振荡器的频率约为4.5MHz (计算振荡频率可调范围) 振荡电路反馈系数

F=

32.0470

220220

3311≈+=+C C C

振荡器输出通过耦合电容C 5(10P )加到由N2组成的射极跟随器的输入端,因C 5容量

很小,再加上射随器的输入阻抗很高,可以减小负载对振荡器的影响。射随器输出信号经N3调谐放大,再经变压器耦合从P1输出。

图1 正弦波振荡器(4.5MHz )

五、实验步骤

1、根据图1在实验板上找到振荡器各零件的位置并熟悉各元件的作用。

2、研究振荡器静态工作点对振荡幅度的影响。

(1)将开关S1拨为“01”,S2拨为“00”,构成LC 振荡器。

(2)改变上偏置电位器W1,记下N1发射极电流I eo (=11

R V e ,R11=1K)(将万用表

红表笔接TP2,黑表笔接地测量V e ),并用示波测量对应点TP4的振荡幅度V P-P ,填于表1中,分析输出振荡电压和振荡管静态工作点的关系,测量值记于表2中。 3、测量振荡器输出频率范围

将频率计接于P1处,改变CC1,用示波器从TP8观察波形及输出频率的变化情况,记录最高频率和最低频率填于表3中。

六、实验结果

1、步骤2振荡幅度V P-P 见表1.

表1

2、输出振荡电压和振荡管静态工作点分析测量数据见表2

表2

3、最高频率和最低频率测量结果见表3

表3

4、分析静态工作点、反馈系数F对振荡器起振条件和输出波形振幅的影响,并用所学理论加以分析。

5、计算实验电路的振荡频率fo,并与实测结果比较。

压控振荡器实验报告

微波与天线实验报告 实验名称:压控振荡器 实验指导:黎鹏老师 一、实验目的: 1.了解变容二极管的基本原理与压控振荡器的设计方法。 2.利用实验模组的实际测量使学生了解压控振荡器的特性。 3.学会使用微波软件对压控振荡器进行设计和仿真,并分析结果。 二、预习内容: 1.熟悉VCO的原理的理论知识。 2.熟悉VCO的设计的有关的理论知识。

三、实验设备: 项次设备名称数量备注 1 MOTECH RF2000 测量仪1套亦可用网络分析仪 2 压控振荡器模组1组RF2KM9-1A 3 50Ω BNC及1MΩ BNC 连接线4条CA-1、CA-2 、CA-3、CA-4 4 直流电源连接线1条DC-1 5 MICROWAVE软件1套微波软件 四、实验步骤 1、硬件测量: 1.对MOD-9,压控振荡器的频率测量以了解压控振荡电路的特性。 2.准备电脑、测量软件、RF-2000,相关模组,若干小器件等。 3.测量步骤: MOD-9之P1端子的频率测量: ⑴设定 RF-2000测量模式:COUNTER MODE. ⑵用DC-1连接线将RF-2000后面12VDC 输出端子与待测模组之12VDC 输入端子连接起来。 ⑶针对模组P1端子做频率测量。 ⑷调整模组之旋钮,并记录所量测频率值: 最大_623_______ MHZ。 最小___876_____ MHZ。 4.实验记录:填写各项数据即可。 5.硬件测量的结果建议如下为合格: RF2KM9-1A MOD-9 fo 600-900MHZ Pout≥5dBm 6.待测模组方框图: 2、软件仿真: 1、进入微波软件。 2、在原理图上设计好相应的电路,设置好端口,完成频率设置、尺寸规范、 器件的加载、仿真图型等等的设置。

课程设计--四花样彩灯控制器

课程设计--四花样彩灯控制器

2012 ~ 2013 学年第二学期 《数字电子技术》 课程设计报告 题目:四花样彩灯控制器 专业:电子信息工程 班级: 11 电信一班 姓名:孙叶林陶轮汪宏俊汪义涛王安 亚 王劲松王亮亮王向阳魏伟指导教师:周旭胜 电气工程系 2013年5月30日

任务书 课题名称四花样彩灯控制器 指导教师(职称)周旭胜 执行时间2012~ 2013 学年第 2学期第 14 周学生姓名学号承担任务 王安亚1109121033 设计总电路图1 汪宏俊1109121031 设计总电路图2 陶轮1109121030 负责对比两个总电路图 汪义涛1109121032 设计555时钟脉冲产生电路 王向阳1109121036 设计四种码产生电路 王劲松1109121034 设计输出电路 魏伟1109121037 设计开关电路 王亮亮1109121035 查找参考资料 孙叶林1109121029 负责写课程设计报告 设计目的 通过设计方案的比较,对比电路的复杂与简单,器件的市场价格等方面因素,来选择一种比较好的可行性设计方案 设计要求(1) 彩灯一亮一灭,从左向右移动; (2) 彩灯两亮两灭,从左向右移动; (3) 四亮四灭,从左向右移动; (4) 从1~8从左到右逐次点亮,然后逐次熄灭; (5) 四种花样自动变换。

摘要 随着人们生活环境的不断改善和美化,在许多场合可以看到彩色霓虹灯。LED彩灯由于其丰富的灯光色彩,低廉的造价以及控制简单等特点而得到了广泛的应用,用彩灯来装饰街道和城市建筑物已经成为一种时尚。但目前市场上各式样的LED彩灯控制器大多数用全硬件电路实现,电路结构复杂、功能单一,这样一旦制作成品只能按照固定的模式闪亮,不能根据不同场合、不同时间段的需要来调节亮灯时间、模式、闪烁频率等动态参数。优易LED全彩灯光控制系统由Color Edit编辑软件、主控器、分控器和LED光源组成,广泛应用于城市景观、风景名胜、道路桥梁、建筑轮廓、娱乐场所、户外广告、室内装饰等美化、亮化工程。 四花样自动切换的彩灯控制器,其电路简单、取材容易,而且被广泛地应用与现实生活当中。例如用于店面装饰可以增加其美观,吸引更多顾客。 在经过了几天紧张的电路焊接和调试,期间还进行了部分方案的修改和改进,现已实现了课程设计的主要任务和具体要求。 关键字:LED彩灯硬件电路

高频电子线路实验说明书

高频电子线路实验 说明书

实验要求(电信111班) l.实验前必须充分预习,完成指定的预习任务。预习要求如下: 1)认真阅读实验指导书,分析、掌握实验电路的工作原理,并进行必要的估算。 2)完成各实验“预习要求”中指定的内容。 3)熟悉实验任务。 4)复习实验中所用各仪器的使用方法及注意事项。 2.使用仪器和学习机前必须了解其性能、操作方法及注意事项,在使用时应严格遵守。 3.实验时接线要认真,相互仔细检查,确定无误才能接通电源,初学或没有把握应经指导教师审查同意后再接通电源。 4.高频电路实验注意: 1)将实验板插入主机插座后,即已接通地线,但实验板所需的正负电源则要另外使用导线进行连接。 2)由于高频电路频率较高,分布参数及相互感应的影响较大。因此在接线时连接线要尽可能短。接地点必须接触良好。以减少干扰。 3)做放大器实验时如发现波形削顶失真甚至变成方波,应检查工作点设置是否正确,或输入信号是否过大。

5.实验时应注意观察,若发现有破坏性异常现象(例如有元件冒烟、发烫或有异味)应即关断电源,保持现场,报告指导教师。找出原因、排除故障,经指导教师同意再继续实验。 6.实验过程中需要改接线时,应关断电源后才能拆、接线。 7.实验过程中应仔细观察实验现象,认真记录实验结果(数据、波形、现象)。所记录的实验结果经指导教师审阅签字后再拆除实验线路。 8.实验结束后,必须关断电源、拔出电源插头,并将仪器、设备、工具、导线等按规定整理。 9.实验后每个同学必须按要求独立完成实验报告。 实验一调谐放大器 一、实验目的

1、熟悉电子元器件和高频电路实验箱。 2、熟悉谐振回路的幅频特性分析一通频带与选择性。 3、熟悉信号源内阻及负载对谐振回路的影响,从而了解频带扩展。 4、熟悉和了解放大器的动态范围及其测试方法。 二、实验仪器 1、双踪示波器 2、扫频仪 3、高频信号发生器 4、毫伏表 5、万用表 6、实验板1 三、预习要求 1、复习谐振回路的工作原理。 2、了解谐振放大器的电压放大倍数、动态范围、通频带及选择性相互之间关系。 3、实验电路中,若电感量L=1uh,回路总电容C=220pf (分布电容包括在内),计算回路中心频率 f 0 。图1-1 单调谐回路谐振放大器原理图 四、实验内容及步骤 (一)单调谐回路谐振放大器

正弦波振荡器总结

正弦波振荡器总结 模块参数要求:设计制作20MHZ石英晶体振荡器、30MHZ克拉泼(串联改进型电容三点式振荡器)震荡器,40MHZ西勒(并联改进型电容三点式振荡器)震荡器频率,工作电压+5V。 模块完成情况:设计制作了20MHZ石英晶体振荡器、克拉泼震荡器、西勒震荡器 模块涉及的理论知识:振荡器是一种能自动地将直流电源能量转换为一定波形的交变振荡信号能量的转换电路,它无需外加激励信号。 为了使振荡器在接通直流电源后能够自动起振,要求反馈电压在相位上与放 大器输入电压同相在幅度上则要求U f >Ui,即 F 2n n=0 ,1,2, A0F 1 式中,A0为振荡器起振时放大器工作于甲类状态时的电压放大倍数。振荡建立起来之后,振荡幅度会无限制地增长下去吗不会的,因为随着振荡幅度的增长,放大器的动态范围就会延伸到非线性区,放大器的增益将随之下降,振荡幅度越大,增益下降越多,最后当反馈电压正好等于原输入电压时,振荡幅度不再增大而进入平衡状态。 AF 1 综上所述,为了确保振荡器能够起振,设计的电路参数必须满足A0F>1 的条件。而后,随着振荡幅度的不断增大,A0就向A 过渡,直到AF=1时,振荡达到平衡状态。显然,A0F 越大于1,振荡器越容易起振,并且振荡幅度也较大。但A0F 过大,放大管进入非线性区的程度就会加深,那么也就会引起放大管输出电流波形的严重失真。所以当要求输出波形非线性失真很小时,应使A0F 的值稍大于1 。 当振荡器受到外部因素的扰动(如电源电压波动、温度变化、噪声干扰等),将引起放大器和回路的参数发生变化破坏原来的平衡状态。如果通过放大和反馈的不断循环,振荡器越来越偏离原来的平衡状态,从而导致振荡器停振或突变到新的平衡状态,则表明原来的平衡状态是不稳定的。反之,如果通过放大和反馈的不断循环,振荡器能够产生回到原平衡点的趋势,并且在原平衡点附近建立新的平衡状态,则表明原平衡状态是稳定的。 一个振荡器除了它的输出信号要满足一定的幅度和频率外,还必须保证输出信号的幅度和频率的稳定,而频率稳定度更为重要。

BZ振荡反应-实验报告

B-Z 振荡反应 实验日期:2016/11/24 完成报告日期:2016/11/25 1 引言 1.1 实验目的 1. 了解Belousov-Zhabotinski 反应(简称B-Z 反应)的机理。 2. 通过测定电位——时间曲线求得振荡反应的表观活化能。 1.2 实验原理 对于以B-Z 反应为代表的化学振荡现象,目前被普遍认同的是Field ,kooros 和Noyes 在1972年提出的FKN 机理,,他们提出了该反应由萨那个主过程组成: 过程A ① ② 式中 为中间体,过程特点是大量消耗。反应中产生的能进一步反应,使 有机物MA 如丙二酸按下式被溴化为BrMA, (A1) (A2) 过程B ③ ④ 这是一个自催化过程,在消耗到一定程度后, 才转化到按以上③、④两式 进行反应,并使反应不断加速,与此同时,催化剂氧化为。在过程B 的③和④中,③的正反应是速率控制步骤。此外, 的累积还受到下面歧化反应的制约。 ⑤ 过程C MA 和使离子还原为,并产生(由)和其他产物。 这一过程目前了解得还不够,反应可大致表达为: ⑥2++f +2+其他产物 式中f 为系数,它是每两个离子反应所产生的数,随着与MA 参加反应 的不同比例而异。过程C 对化学振荡非常重要。如果只有A 和B ,那就是一般的自催化反应或时钟反应,进行一次就完成。正是由于过程C ,以有机物MA 的消耗为代价,重新得到和,反应得以重新启动,形成周期性的振荡。 322BrO Br H HBrO HOBr --+++→+22HBrO Br H HOBr -+++→2 HBrO Br - HOBr 22HOBr Br H Br H O -+++→+2Br MA BrMA Br H -+ +→++32222BrO HBrO H BrO H O -++++342222222BrO Ce H HBrO Ce ++ ++→+Br - 2 HBrO 3Ce + 4Ce + 2 HBrO 232HBrO BrO HOBr H -+ →++BrMA 4Ce + 3Ce + Br - BrMA 4Ce + MA BrMA →Br - 3Ce + 4Ce + Br - BrMA Br - 3Ce +

555多谐震荡器-实验报告

实验题目:用555定时器设计一个时钟信号源,频率为f=1KHz,占空比为60%。 实验报告: 一、实验相关信息 1、实验日期: 2、实验地点: 二、实验内容 用555定时器设计一个时钟信号源,频率为f=1KHz,占空比为60%。 三、实验目的 1、了解555定时器的工作原理和电路结构; 2、掌握555定时器的典型应用。 三、实验设备、元器件 1、实验仪器:(写清型号) 2、实验元器件: 四、理论计算 (1)555多谐震荡器电路结构 图1 多谐振荡器 (2)工作波形

(3)工作过程简述 接通电源后,电容C 被充电,νc 上升,当νc 上升到 Vcc 32 时,触发器被复位,同时 放电T 导通,此时 νo 为低电平,电容C 通过R 2 和T 放电,使νc 下降,当νc 下降到Vcc 31 时,触发器又被复位,νo 为高电平。电容C 放电所需时间为 C R C R t PL 227.02ln ≈= (1) 当电容C 放电结束时,T 截止,Vcc 将通过R 1、R 2向电容C 充电,νc 由Vcc 31上升到Vcc 32所需时间为 C R R C R R t PH )(7.02ln )(2121+≈+= (2) 当νc 上升到Vcc 32 时,触发器由发生翻转,如此周而服始,在输出端就得到一个周期 性的方波,其频率为 C R R t t f PH PL )2(43.1121+≈+= (3) %100)2((%)212 1X R R R R t t t q PH PL PH ++=+= (4) (4)占空比可调电路结构 对于图1电路结构占空比固定不变,要得到占空比可调的周期方波,对其电路改进,如图2所示。 由(4)式可知,占空比始终大于50%,要得到占空比小于50%的方波,只要在输出端加一个反向器即可。

正弦波振荡器归纳

正弦波振荡器总结 模块参数要求:设计制作20MHZ 石英晶体振荡器、30MHZ 克拉泼(串联改进型电容三点式振荡器)震荡器,40MHZ 西勒(并联改进型电容三点式振荡器)震荡器频率,工作电压+5V 。 模块完成情况:设计制作了20MHZ 石英晶体振荡器、24.1MHZ--38.7MHZ 克拉泼震荡器、38.9MHZ--40.5MHZ 西勒震荡器。 模块涉及的理论知识: 振荡器是一种能自动地将直流电源能量转换为一定波形的交变振荡信号能量的转换电路,它无需外加激励信号。 为了使振荡器在接通直流电源后能够自动起振,要求反馈电压在相位上与放大器输入电压同相在幅度上则要求U f >Ui ,即 π??n F A 2=+ n=0,1,2,… 10>F A 式中,A0为振荡器起振时放大器工作于甲类状态时的电压放大倍数。 振荡建立起来之后,振荡幅度会无限制地增长下去吗?不会的,因为随着振荡幅度的增长,放大器的动态范围就会延伸到非线性区,放大器的增益将随之下降,振荡幅度越大,增益下降越多,最后当反馈电压正好等于原输入电压时,振荡幅度不再增大而进入平衡状态。 1=AF

综上所述,为了确保振荡器能够起振,设计的电路参数必须满足A0F>1的条件。而后,随着振荡幅度的不断增大,A0就向A过渡,直到AF=1时,振荡达到平衡状态。显然,A0F越大于1,振荡器越容易起振,并且振荡幅度也较大。但A0F过大,放大管进入非线性区的程度就会加深,那么也就会引起放大管输出电流波形的严重失真。所以当要求输出波形非线性失真很小时,应使A0F的值稍大于1。 当振荡器受到外部因素的扰动(如电源电压波动、温度变化、噪声干扰等),将引起放大器和回路的参数发生变化破坏原来的平衡状态。如果通过放大和反馈的不断循环,振荡器越来越偏离原来的平衡状态,从而导致振荡器停振或突变到新的平衡状态,则表明原来的平衡状态是不稳定的。反之,如果通过放大和反馈的不断循环,振荡器能够产生回到原平衡点的趋势,并且在原平衡点附近建立新的平衡状态,则表明原平衡状态是稳定的。 一个振荡器除了它的输出信号要满足一定的幅度和频率外,还必须保证输出信号的幅度和频率的稳定,而频率稳定度更为重要。 评价振荡器频率的主要指标有两个,即准确度和稳定度。 LC振荡器振荡频率主要取决于谐振回路的参数,也与其它电路元器件参数有关。因此,任何能够引起这些参数变化的因素,都将导致振荡频率的不稳定。这些因素有外界的和电路本身的两个方面。其中,外界因素包括:温度变化、电源电压变化、负载阻抗变化、机械振动、湿度和气压的变化、外界磁场感应等。这些外界因素的影响,一是改变振荡回路元件参数和品质因数;二是改变晶体管及其它电路元件参数,而使振荡频率发生变化的。因此要提高振荡频率的稳外界因素定度可以从两方面入手:一是尽可能减小外界因素的变化;二是尽可能提高

路灯控制器课程设计

电子技术课程设计 课程设计任务书 20 16 - 20 17学年第一学期第18周—19周 题目《路灯控制器》 内容及要求 ①设计一个路灯控制自动照明的电路 ②当日照光亮到一定程度时使灯自动熄灭,而日照光暗到一定程度时又能自 动点亮。开启和关断的日照光照度根据用户进行调节。 ③设计计时电路,用数码管显示路灯当前一次的连续开启时间。 ④设计计数显示电路,统计路灯的开启次数。 进度安排 1、查资料,确定方案(三 天) 2、方案设计(天) 3、仿真调试 (二 天) 4、硬件实现与调试 (三 天) 5 、 撰写课程设计报告并答辩(天)学生姓名:

目录 前言 (3) 一选题背景 (4) 1.1 设计要求 (4) 1.2 指导思想 (4) 二方案论证 (5) 2.1 方案说明 (5) 2.2 方案原理 (5) 三电路的设计与分析 (6) 3 . 1 电路原理框图. (6) 3.2单元电路的设计与分析. (6) 四. 电路的调试与分析 (13) 4.1调试使用的仪器. (13) 4.2 电路的调试 (13) 五.总结 (15) 5.1 设计体会 (15) 5.2 改进提高 (15) 六. 附录及参考文献 (16) 6.1 附录1 元器件清单. (16) 6.2 附录2 电路的原理图. (16)

6.3 附录3 实物图 (17) 6.4 参考文献 (18) 、八、- 前言 在现代城市中,效率意识日益突出,人们希望不需要人力资源的浪费,希望使效率合理使用最大化。因此,自动路灯控制器是实现无人管理自动开关的重要设计。本课程设计的任务就是设计一个路灯控制器。鼓励学生在熟悉基本原理的前提下,与实际应用相联系,提出自己的方案,完善设计。

三点式正弦波振荡器(高频电子线路实验报告)

三点式正弦波振荡器 一、实验目的 1、 掌握三点式正弦波振荡器电路的基本原理,起振条件,振荡电路设计及电路参数计 算。 2、 通过实验掌握晶体管静态工作点、反馈系数大小、负载变化对起振和振荡幅度的影 响。 3、 研究外界条件(温度、电源电压、负载变化)对振荡器频率稳定度的影响。 二、实验内容 1、 熟悉振荡器模块各元件及其作用。 2、 进行LC 振荡器波段工作研究。 3、 研究LC 振荡器中静态工作点、反馈系数以及负载对振荡器的影响。 4、 测试LC 振荡器的频率稳定度。 三、实验仪器 1、模块 3 1块 2、频率计模块 1块 3、双踪示波器 1台 4、万用表 1块 四、基本原理 实验原理图见下页图1。 将开关S 1的1拨下2拨上, S2全部断开,由晶体管N1和C 3、C 10、C 11、C4、CC1、L1构成电容反馈三点式振荡器的改进型振荡器——西勒振荡器,电容CCI 可用来改变振荡频率。 ) 14(121 0CC C L f += π 振荡器的频率约为4.5MHz (计算振荡频率可调范围) 振荡电路反馈系数 F= 32.0470 220220 3311≈+=+C C C 振荡器输出通过耦合电容C 5(10P )加到由N2组成的射极跟随器的输入端,因C 5容量很小,再加上射随器的输入阻抗很高,可以减小负载对振荡器的影响。射随器输出信号经

N3调谐放大,再经变压器耦合从P1输出。 图1 正弦波振荡器(4.5MHz ) 五、实验步骤 1、根据图1在实验板上找到振荡器各零件的位置并熟悉各元件的作用。 2、研究振荡器静态工作点对振荡幅度的影响。 (1)将开关S1拨为“01”,S2拨为“00”,构成LC 振荡器。 (2)改变上偏置电位器W1,记下N1发射极电流I eo (=11 R V e ,R11=1K)(将万用表红 表笔接TP2,黑表笔接地测量V e ),并用示波测量对应点TP4的振荡幅度V P-P ,填于表1中,分析输出振荡电压和振荡管静态工作点的关系,测量值记于表2中。 3、测量振荡器输出频率范围 将频率计接于P1处,改变CC1,用示波器从TP8观察波形及输出频率的变化情况,记录最高频率和最低频率填于表3中。 六、实验结果 1、步骤2振荡幅度V P-P 见表1.

实验2正弦波振荡器(LC振

实验2 正弦波振荡器(LC振荡器和晶体振荡器) 一.实验目的 1.掌握电容三点式LC振荡电路和晶体振荡器的基本工作原理,熟悉其各元件的功能; 2.掌握LC振荡器幅频特性的测量方法; 3.熟悉电源电压变化对振荡器振荡幅度和频率的影响; 4.了解静态工作点对晶体振荡器工作的影响,感受晶体振荡器频率稳定度高的特点。二.实验内容 1.用示波器观察LC振荡器和晶体振荡器输出波形,测量振荡器输出电压峰-峰值,并以频率计测量振荡频率; 2.测量LC振荡器的幅频特性; 3.测量电源电压变化对振荡器的影响; 4.观察并测量静态工作点变化对晶体振荡器工作的影响。 三.实验步骤 1.实验准备 插装好LC振荡器和晶体振荡器模块,接通实验箱电源,按下模块上电源开关,此时模块上电源指示灯点亮。 2.LC 振荡实验(为防止晶体振荡器对LC振荡器的影响,应使晶振停振,即将3W03顺时针调到底。) (1)西勒振荡电路幅频特性的测量 3K01拨至LC振荡器,示波器接3TP02,频率计接振荡器输出口3P02。调整电位器3W02,使输出最大。开关3K05拨至“P”,此时振荡电路为西勒电路。四位拨动开关3SW01分别控制3C06(10P)、3C07(50P)、3C08(100P)、3C09(200P)是否接入电路,开关往上拨为接通,往下拨为断开。四个开关接通的不同组合,可以控制电容的变化。例如开关“1”、“2”往上拨,其接入电路的电容为10P+50P=60P。按照表2-1电容的变化测出与电容相对应的振荡频率和输出电压(峰-峰值V P-P),并将测量结果记于表中。 表2-1 根据所测数据,分析振荡频率与电容变化有何关系,输出幅度与振荡频率有何关系,并

NE555多谐振荡电路课程设计要点

目录要....................................................................................................................................................... 2摘......................................................................................................................................... 41 设计任务和要求...................................................................................................................................... 4.1.1:设计任务.................................................................................................................................... 4:设计要求.1.2 ........................................................................................................................................ 4方案比较与论证.2 .......................................................................................................................... 4 .:稳压电源通常由 2.1.................................................................................................................................... 8 .2.2 :方案论证错误!未定义书签。硬件设计. (3) .................................................................................................. 错误!未定义书签。3.1 :设计思想............................................................................................... 错误!未定义书签。3.2 :称功能模块.系统仿真.. (84) .................................................................................................................... 8:仿真原理图如下:.4.1 错误!未定义书签。................................................................................................................ 5系统的组装............................................................................................... 错误!未定义书签。PCB版板图.:5.1 ......................................................................................................................................................... 96 结论:错误!未定义书签。参考文献:................................................................................................................... .................................................................................................. 错误!未定义书签。附录一:电路原理图.错误!未定义书签。:元件列表...................................................................................................................

中北大学高频电子线路实验报告

中北大学 高频电子线路实验报告 班级: 姓名: 学号: 时间: 实验一低电平振幅调制器(利用乘法器)

一、实验目的 1.掌握用集成模拟乘法器实现全载波调幅和抑制载波双边带调幅的方法与 过程,并研究已调波与二输入信号的关系。 2.掌握测量调幅系数的方法。 3.通过实验中波形的变换,学会分析实验现象。 二、预习要求 1.预习幅度调制器有关知识。 2.认真阅读实验指导书,了解实验原理及内容,分析实验电路中用1496乘 法器调制的工作原理,并分析计算各引出脚的直流电压。 3.分析全载波调幅及抑制载波调幅信号特点,并画出其频谱图。 三、实验仪器设备 1.双踪示波器。 2.SP1461型高频信号发生器。 3.万用表。 4.TPE-GP4高频综合实验箱(实 验区域:乘法器调幅电路) 四、实验电路说明 图 幅度调制就是载波的振幅受 调制信号的控制作周期性的变化。 变化的周期与调制信号周期相同。 即振幅变化与调制信 号的振幅成正比。通常称高频信号为载波5-1 1496芯片内部电路图 信号,低频信号为调制信号,调幅器即为 产生调幅信号的装置。 本实验采用集成模拟乘法器1496来构成调幅器,图5-1为1496芯片内部电路图,它是一个四象限模拟乘法器的基本电路,电路采用了两组差动对由V1-V4组成,以反极性方式相连接,而且两组差分对的恒流源又组成一对差分电路,即V5与V6,因此恒流源的控制电压可正可负,以此实现了四象限工作。D、V7、V8为差动放大器V5、V6的恒流源。进行调幅时,载波信号加在V1-V4的输入端,即引脚的⑧、⑩之间;调制信号加在差动放大器V5、V6的输入端,即引脚的①、④之间,②、③脚外接 1KΩ电阻,以扩大调制信号动态范围,已调制信号取自双差动放大器的两集

高频电子线路实验正弦波振荡器

. 太原理工大学现代科技学院 高频电子线路课程实验报告 专业班级信息13-1 学号2013101269 姓名 指导教师颖

实验名称 正弦波振荡器(LC 振荡器和晶体振荡器) 专业班级 信息13-1 学号 2013100 0 成绩 实验2 正弦波振荡器(LC 振荡器和晶体振荡器) 2-1 正弦波振荡器的基本工作原理 振荡器是指在没有外加信号作用下的一种自动将直流电源的能量变换为一定的波形的交变振荡能量的装置。 正弦波振荡器在电子领域中有着广泛的应用。在信息传输系统的各种发射机中,就是把主振器(振荡器)所产生的载波,经过放大、调制而把信息发射出去。在超外差式的各种接收机中,是由振荡器产生的一个本地振荡信号,送入混频器,才能将高频信号变成中频信号。 振荡器的种类很多。从所采用的分析方法和振荡器的特性来看,可以把振荡器分为反馈式振荡器和负阻式振荡器两大类。我们只讨论反馈式振荡器。根据振荡器所产生的波形,又可以把振荡器氛围正弦波振荡器和非正弦波振荡器。我们只介绍正弦波振荡器。 常用正弦波振荡器主要是由决定振荡频率的选项网络和维持振荡的正反馈放大器组成,这就是反馈振荡器。按照选频网络所采用的元件不同,正弦波振荡器可以分为LC 振荡器、RC 振荡器和晶体振荡器等类型。 一、反馈型正弦波自激振荡器基本工作原理 以互感反馈振荡器为例,分析反馈型正弦自激振荡器的基本原理,其原理电路如图2-1所示; 当开关K 接“1”时,信号源Vb 加到晶体管输入端,这就是一个调谐放大器电路,集电极回路得到了一 ……………………………………装………………………………………订…………………………………………线………………………………………

实验三多谐振荡器

实验三多谐振荡器和计数器的设计 一、实验目的 1、学会用Multisim7 的总线功能设计电路; 2、学会Multisim7 虚拟仪器逻辑分析仪的使用; 3、掌握用555 电路设计振荡器的方法; 4、掌握集成同步十进制计数器74LS160 的逻辑功能,用置零法和置数法设计其它 进制计数器。 二、实验原理及参考图 1、555 定时器是一种多用途的数字—模拟混合集成电路,利用它能极方便地构成施密特触发器、单稳态触发器和多谐振荡器,其管脚图如图4-3.1 所示。 2、集成同步十进制计数器74LS160 除了十进制加法功能之外,还有同步预置数、异步置零和保持功能,其管脚图如图4-3.2 所示,其功能表如表4-3.2 所示。74LS160通过置零法和置数法可以构成其它进制计数器。 置零法的原理:当计数器从零开始,计数到某个状态时,令它跳过后面的其它状态,直接置零,重新开始计数。 置数法的原理:通过给计数器重复置入某个数值,使计数器跳过若干个状态。 图 4-3.1 图4-3.2 三、实验内容与步骤 1、多谐振荡器的设计

(1)、用555 电路设计一个输出频率可调范围为100Hz~10KHz 的多谐振荡器;(2)、根据设计值,选择元件并设置好参数、连接好电路; ( 3)、用示波器观察输出波形,并测量输出信号的频率范围,与设计值进行比较,讨论产生误差的原因。 当输入电阻为R2=4997500Ω 时,获取100HZ的振荡器。 实际输出波形的周期为T=10.038ms; 其误差为(100-1/10.038*1000)/100*100%=0.38%;

当输入电阻为R2=47500Ω 时,获取10KHZ的振荡器; 实际输出波形的周期为T=117.424us; 其误差为(10000-1/117.424*1000000)/10000*100%=14.84%; 误差分析:当输入频率较小时,相对误差小;频率大,则具有较大的误差。如上原理图显示,电容C1的取值Q=1/(Ln3-Ln1.5),而实际取值为1.4427nF,无法消除所有的计算误差。所以,在获取较大频率值时,误差得到放大,使实际产生的数据不准确。这就是100HZ和10KHZ误差大小的原因之一。二来实现硬件电路的元器件本身数值不是准确的,存在相对误差,从而引起波形频率不准确。 2、计数器的设计 (1)、用置零法将74LS160 连接成七进制计数器,输出QD、QC、QB、QA 接数码管 及逻辑分析仪;

正弦波振荡器实验报告(高频) (2)

高频电子线路实验 随堂实验报告 学院计算机与电子信息学院 专业电子信息工程班级电信11-2 姓名梁景友学号 11034030223 指导教师谢胜 实验报告评分:_______

正弦波振荡器仿真实验 实验目的: 1、进一步熟悉正弦波振荡器的组成原理; 2、观察输出波形,分析影响振荡器起振、稳定的条件; 3、比较改进型正弦波振荡器与克拉泼振荡器的性能,分析电路结构及元件参数的变化对振荡器性能的影响。 实验内容: 实验电路1:西勒振荡器 (1)设置各元件参数,打开仿真开关,从示波器上观察振荡波形,读出振荡频率f0,并作好记录。 (2)改变电容C7的容量,分别为最大或最小(100%或0%)时,观察振荡频率变化,并作好记录。 (3)改变电容C4的容量,分别为0.33μF和0.001μF,从示波器上观察起振情况和振荡波形的好坏(与C4为0.033μF时进行比较),并分析原因。 (4)将C4恢复为0.033μF,分别调节R P为最大和最小时,观察输出波形振幅的变化,并说明原因。 实验分析: 1、电路的直流电路图和交流电路图分别如下: (1):直流通路图 (2)交流通路图

2、改变电容C 7的值时所测得的频率f 的值如下: (1)、当C4=0.033uF 时: C6=270pF 时,f=1/T=1000000/2.0208=494853.5HZ C6=470pF 时,f=1/T=1000000/2.4768=403746.8HZ C6=670pF 时,f=1/T=1000000/2.6880=372023.8HZ (2)、当C4=0.33uF 时: C6=270pF 时,f=1/T=1000000/30.5280=32756.8H C6=470uF 时,f=1/T=1000000/30.5921=32688.2HZ C6=670uF 时,f=1/T=1000000/30.4744=32814.4HZ

lc压控振荡器实验报告doc

lc压控振荡器实验报告 篇一:实验2 振荡器实验 实验二振荡器 (A)三点式正弦波振荡器 一、实验目的 1. 掌握三点式正弦波振荡器电路的基本原理,起振条件,振荡电路设计及电路参数计算。 2. 通过实验掌握晶体管静态工作点、反馈系数大小、负载变化对起振和振荡幅度的影响。 3. 研究外界条件(温度、电源电压、负载变化)对振荡器频率稳定度的影响。 二、实验内容 1. 熟悉振荡器模块各元件及其作用。 2. 进行LC振荡器波段工作研究。 3. 研究LC振荡器中静态工作点、反馈系数以及负载对振荡器的影响。 4. 测试LC振荡器的频率稳定度。 三、基本原理 图6-1 正弦波振荡器(4.5MHz) 【电路连接】将开关S2的1拨上2拨下, S1全部断开,由晶体管Q3和C13、C20、C10、CCI、L2构成电容反馈三点式振荡器的改进型振荡器——西勒振荡器,电容CCI可用来改变振 荡频率。振荡频率可调范围为:

?3.9799?M??f0??? ? ?4.7079?M? CCI?25p CCI? 5p 调节电容CCI,使振荡器的频率约为4.5MHz 。振荡电路反馈系数: F= C1356 ??0.12 C20470 振荡器输出通过耦合电容C3(10P)加到由Q2组成的射极跟随器的输入端,因C3容量很小,再加上射随器的输入阻抗很高,可以减小负载对振荡器的影响。射随器输出信号Q1调谐放大,再经变压器耦合从J1输出。 四、实验步骤 根据图6-1在实验板上找到振荡器各零件的位置并熟悉各元件的作用。 1. 调整静态工作点,观察振荡情况。 1)将开关S2全拨下,S1全拨下,使振荡电路停振 调节上偏置电位器RA1,用数字万用表测量R10两端的静态直流电压UEQ(即测量振荡管的发射极对地电压UEQ),使其为5.0V(或稍小,以振荡信号不失真为准),这时表明振荡管的静态工作点电流IEQ=5.0mA(即调节W1使

多谐振荡器设计报告

多谐振荡器设计报告 一、实验要求 产生矩形波的频率可以通过电压控制,实现压控振荡。并且在电压调整的过程中波形不会出现振荡、过冲、毛刺等不稳定现象,能够稳定地产生方波。设计报告中应该包括电路截图、仿真截图、仿真分析等实验数据。 二、多谐振荡器相关简介 随着电子产业的发展以及要求,各种稳定的波形产生器成为不可缺少的一部分,而方波是其中比较有代表性的一个波形。方波在各个行业及日常生活中得到了广泛的应用,如电路中的定时器、分频器、脉冲信号发生器等都需要方波产生电路。而多谐振荡器则是一种在接通电源后,就能产生一定频率和一定幅值矩形波的自激振荡器,常作为脉冲信号源。由于多谐振荡器在工作过程中没有稳定状态,故又称为无稳态电路。尽管多谐振荡器有多种电路形式,但它们都具有以下结构特点:电路由开关器件和反馈延时环节组成。开关器件可以是逻辑门、电压比较器、定时器等,其作用是产生脉冲信号的高、低电平。反馈延时环节一般为RC电路,RC电路将输出电压延时后,恰当地反馈到开关器件输入端,以改变其输出状态。 三、实验方案确定 本次实验是通过施密特触发器与晶体管来构成多谐振荡器电路的开关器件,RC电路来构成反馈延时环节,再加入电压控制部分实现振荡频率的控制。

四、实验内容 1、施密特触发器的制作 a、原理图简要分析。电路主要部分为Q2管与Q3管两个导向器相连,再在输入与输出两个端口加上Q1管与Q4管构成的射极跟随器进行隔离,从而得到更好的频率特性,使输出的波形不会出现毛刺、过冲、振荡等不稳定现象,并且在压控电路中不会对其它部分有较大影响。其电路图如下: b、施密特电路调试。为了使电路能够很好地工作,分析原理图可知,电路的上下门限电压由电阻RC1、RC2、RE决定,而射极跟随器的射极电阻RE1与RE2主要影响电路的输入与输出阻抗,同时对电路的频率特性也有一定的影响。因此,在电路仿真调试的过程可以有目的性的进行元器件参数设置。电路调试的截图如下:

RC振荡电路实验报告(特选资料)

广州大学学生实验报告 院(系)名称 物理与信息工程系 班别 姓名 专业名称 学号 实验课程名称 模拟电路实验 实验项目名称 RC 串并联网络(文氏桥)振荡器 实验时间 实验地点 实验成绩 指导老师签名 【实验目的】 1.进一步学习RC 正弦波振荡器的组成及其振荡条件。 2.学会测量、调试振荡器。 【实验原理】 从结构上看,正弦波振荡器是没有输入信号的,带选频网络的正反馈放大器。若用R 、C 元件组成选频网络,就称为RC 振荡器, 一般用来产生1Hz ~1MHz 的低频信号。 RC 串并联网络(文氏桥)振荡器 电路型式如图6-1所示。 振荡频率 RC 21 f O π= 起振条件 |A &|>3 电路特点:可方便地连续改变振荡频率,便于加负反馈稳幅,容易得到良好的振荡波形。 图6-1 RC 串并联网络振荡器原理图 注:本实验采用两级共射极分立元件放大器组成RC 正弦波振荡器。 【实验仪器与材料】 模拟电路实验箱 双踪示波器 函数信号发生器 交流毫伏表 万用电表 连接线若干

【实验内容及步骤】 1.RC 串并联选频网络振荡器 (1)按图6-2组接线路 图6-2 RC 串并联选频网络振荡器 (2)接通RC 串并联网络,调节R f 并使电路起振,用示波器观测输出电压u O 波形,再细调节R f ,使获得满意的正弦信号,记录波形及其参数,即,测量振荡频率,周期并与计算值进行比较。 (3) 断开RC 串并联网络,保持R f 不变,测量放大器静态工作点,电压放大倍数。 (4)断开RC 串并联网络,测量放大器静态工作点及电压放大倍数。(输入小信号:f=1KHz,峰峰值为100mV 正弦波)用毫伏表测量u i 、u 0 就可以计算出电路的放大倍数。 (5)改变R 或C 值,观察振荡频率变化情况。 将RC 串并联网络与放大器断开,用函数信号发生器的正弦信号注入RC 串并联网络,保持输入信号的幅度不变(约3V ),频率由低到高变化,RC 串并联网络输出幅值将随之变化,当信号源达某一频率时,RC 串并联网络的输出将达最大值(约1V 左右)。且输入、输出同相位,此时信号源频率为 2πRC 1 f f ο== 【实验数据整理与归纳】 (1)静态工作点测量 U B (V ) U E (V ) U C (V) 第一级 2.48 2.96 4.66 第二级 0.84 11.51 1.01 (2)电压放大倍数测量: u i (mV) u o (V) Av 788 2.80 3.60

实验二 自激多谐振荡器闪光灯

实验二自激多谐振荡器闪光灯 ---多谐振荡电路的原理 一、实验目的: 1.了解多谐振荡电路的内部结构及各部件的作用, 2.通过实验验证巩固所学理论知识 二、实验仪器: 1. 示波器一台 2. 2. 发光二极管两个 3.电容器两个 4.可变电阻四个 5.三极管两个 三、实验原理:

多谐振荡电路是一种矩形波产生电路。这种电路不需要外加触发信号,便能连续地, 周期性地自行产生矩形脉冲。该脉冲是由基波和多次谐波构成,因此称为多谐振荡器电路。(可以用门作比喻,多谐振荡器输出端时开时闭的状态可以把多谐振荡器比作宾馆的自动旋转门,它不需要人去推动,总是不停的关门开门)(图1为电路结构原理图) 图 1 工作状态图 它是一个典型的分立元件集基耦合多谐振荡器。它有两个晶体管反相器经RC电路交叉耦合接成正反馈电路组成。两个电容器交替冲放电使两管交替导通和截止,使电路自动地从一个状态自动翻转到另个状态,形成自激振荡。此电路可由双稳态触发器电路中的两支电阻耦合支路改为电容耦合支路得到。那么双稳态电路就变成没有稳定状态,即多谐振荡电路为无稳电路。 电路两边是对称的。接通电源后,两管均应导通。为便于分析,假定因某种因素影响,i C1有上升趋势,那么就会发生如下的正反馈循环过程: i C1↑→uR C1↑→u A1↓→u b2↓→i b2↓→i C2↓→uR C2↓→u A2↑┐ ↑---------------------------------------------------------i b1↑←u b1↑←┘ 致使T1迅速饱和,VC1由+EC突变到接近于零,u A1为低电平;T2迅速截止,迫使BG2的基极电位VB2瞬间下降到接近-EC,u A2为高电平。此后,一方面C2将通过R C2、T1的be结构成的回路充电(电压极性左负右正);另一方

相关文档
相关文档 最新文档