文档库 最新最全的文档下载
当前位置:文档库 › 液晶高分子综述

液晶高分子综述

液晶高分子综述
液晶高分子综述

课程论文

论文题目: 液晶高分子合成设计综述

学院 : 理工学院

专业 : 材料科学与工程专业

指导老师 :

姓名:

学号 :

2012年1月2日

液晶高分子材料合成设计综述

题目:液晶高分子合成设计综述

单位:理工学院材料系

作者;

摘要简单介绍了高分子液晶材料的发展历史,性能及应用,对其制备方法及分子设计进行了叙述。

Abstract We briefly introduces the history of the development of liquid crystal polymer materials, performance and

application. Its preparation method and molecular

design are described in detail.

关键词液晶高分子合成分子设计研究进展综述

1引言

液晶高分子是近十几年迅速兴起的一类新型高分子材料]1[。它具有高强度、高模量、耐高温、低膨胀系数、低成型收缩率、低密度、良好的介电性、电致变色性、阻燃性和耐化学腐蚀性等一系列优异的综合性能,作为液晶自增强塑料、高性能纤维、板材、薄膜及光导纤维包覆层,LED显示材料,被广泛应用于电子电器、航天航空、国防军工、光通讯等高新技术领域以及汽车、机械、化工等国民经济各工业部门。正是由于其优异的性能和广阔的应用前景,使得高分子液晶成为当前高分子科学中颇有吸引力的一个研究领域。本文将对其制备合成方法的研究现状做出叙述和评价。

2 液晶高分子材料

从高分子科学本身来讲,其历史短于液晶研究的历史,早在1888年奥地利植物学家F.Reinitzer就发现了液晶,但直到1941年Kargin提出液晶态是聚合物体系的一种普遍存在状态,人们才开始了对高分子液晶的研究。1966年,杜邦公司首次使用各向异性的向列态聚合物溶液制备出了高强度、高模量的商品纤维——Fibre B,使高分子液晶研究走出了实验室。20世纪70年代,杜邦公司的Kevlar 纤维的问世和商品化开创了高分子液晶的新纪元。接着,美国人Economy和前苏联的Plate和Shibaev分别合成了热熔型主链聚酯液晶和侧链型液晶聚合物。20世纪80年代后期,德国的Rings-dorf合成了盘状主侧链型液晶聚合物。到目前为止,高分子液晶的研究已成为高分子学科发展的一个重要方向。目前,高分子液晶的分类方法主要有两种。一种从液晶的形成过程考虑,将其分为热熔型和溶液型两类;另一种是从高分子的分子结构入手,将其分为主链型和侧链型两类]2[。

图1 液晶高分子的分类示意图

3 液晶高分子材料合成设计方法

3.1 主链型LCP的分子设计及合成方法

图 2 主链型液晶高分子结构模型

主链型液晶高分子存在的问题是熔融温度太高,加工性能不好]3[。改性方法:

①在聚合物刚性连中引入柔性段

②共聚(降低分子间作用力;降低规整度)

③聚合单体之间进行非线性连接

3.1.1 主链型LCP的分子设计

①在刚性主链中引入柔性结构作为柔性间隔的结构单元除了聚烯烃链段外,常用的还有聚醚链段和聚硅氧烷链段等。然而这种方法可能会带来三个协同效应:

1).降低液晶聚合物的相转变温度;

2).导致相转变温度的奇-偶效应;

3).产生微观分子堆砌结构的变化,即液晶态类型的转变,如由向列型转变为近晶型。

上述几种协同效应是含柔性间隔的热致主链型LCP中存在的普遍现象,只是随着聚合物的不同,有时不很明显,有时较为明显而已。

②共聚合共聚合是改变聚合物分子主链化学结构的一种方法。对于柔性高分子,共聚合常破坏分子链的规整性,从而降低其结晶能力和熔点;对于刚性高分子,共聚合同样可以破坏分子链的规整性,并能降低链的刚性,从而降低熔点。

③在苯环上引入取代基

苯环上取代基对熔点的影响取决于空间位阻效应和极性效应二者的竞争。取代基体积越大,聚合物的熔点越低;取代基极性越大,熔点越高,但极性有利于提高液晶相的稳定性。

④在刚性主链中引入非线性结构单元非线性结构单元的引入破坏了刚性主链的线性结构,因而可以达到降低聚合物熔点的目的]64[ 。

3.1.2 合成方法

热致主链型LCP实际上都是通过缩聚反应制备的,主要采用熔融缩聚方法,有时也采用溶液缩聚和界面缩聚。热致主链型LCP种类很多,其中主要为芳香族聚酯及共聚酯,合成方法有以下几种:

①高温下的熔融缩聚这是目前工业化最常用的方法。

②溶液缩聚或界面缩聚主要是利用芳香族二酰氯与二元酚或二元胺的Schotten-Baumann反应合成液晶共聚酯或聚酯-酰胺,合成路线如下:

图 3 共聚合成路线

3.2侧链型SLCP分子

SCLCP是指液晶基元位于大分子侧链的LCP。通常是由介晶相(B)、柔性主链(A)、柔性间隔(C)末端基(D)组成,如下图。与主链LCP不同,SCLCP的液晶性质主要取决于含有液晶基元的侧链,受大分子主链影响的程度较小。由于液晶基元多是通过柔性链与主链相接,所以SCLCP接近于小分子液晶。主链型LCP主要用于高性能高分子材料,而SCLCP主要用作功能材料。按液晶基元结构分,液晶基元分为双亲液晶基元和非双亲液晶基元,相应的,SCLCP也可分为双亲SCLCP 和非双亲SCLCP两类。研究和应用较多的是非双亲SCLCP。

图 2 侧链型液晶高分子结构模型

3.2.1 侧链型SLCP的分子设计及合成方法

侧链型液晶高分子设计的基本问题如下

液晶基元为侧基刚性成分的LCP,如聚甲基丙烯酰氧己氧联苯腈,是SCLCP。指导SCLCP分子设计的基本模型是“柔性链段去偶合模型”]7[。该模型的核心思想是,如果将刚性液晶基元作为侧基直接接枝于柔性链高分子主链,则主链的无序热运动将干扰液晶基元的取向排列而阻碍液晶相的生成。解决矛盾的方法是,在主链与液晶基元之间插入一个柔性链段,该柔性链段能够解除主链和液晶基元两者运动间的“偶合”,使两者各自独立运动,互不干扰,从而在满足主链无序热运动的同时仍可保证液晶基元采取液晶相的有序排列]8[。

3.2.2 影响因素

1)主链影响:不能完全去偶,主链与侧链运动相互受影响。

2)间隔链长度的影响:间隔链长度增加,Tg下降,液晶态的有序性增大。

3)液晶基元影响:液晶基元长度增加,液晶的有序性和稳定性提高.

4)末端基的影响:末端基长度增长,液晶态有序性增大,Tg和Ti都提高。

3.2.2 SCLCP的合成方法

SCLCP主链一般都是柔性大分子链,主要有聚丙烯酸酯类、聚硅氧烷、聚苯乙烯和聚乙烯醇四类。SCLCP可通过加聚、缩聚及大分子反应制得。需要指出,各向异性单体的聚合过程对液晶有序性有很大影响,例如无论胆甾型单体还是近晶型单体,得到的聚合物均为近晶型聚合物。因此,要得到胆甾型LCP,就必须采用能形成液晶而各向同性的光活性单体。

丙烯酸酯类聚合物主链多是通过自由基聚合反应得到的,分子量分布较宽。近年来采用活性聚合的方法(如阳离子聚合)制备SCLCP以控制其分子量分布的

工作受到重视。共聚合反应是制备SCLCP最有效的方法。两种共聚单体或者都含有液晶基元,或者只有一种单体含液晶基元。采用共聚的方法可有效地调节聚合物的结构和性质。由于含有胆甾型液晶基元的单体得到的均聚物一般为近晶型,所以含有介晶基元的单体共聚是制备胆甾型LCP高分子的唯一方法。

除聚合反应外,另一种方法是使用含有活性官能团的聚合物链与含有液晶基元的小分子进行反应,如下:缩聚反应是合成SCLCP的另一种重要反应。通过缩聚反应还可以制得主链上及侧链上都含有液晶基元的混合结构的液晶高分子。对同一高分子物,两种不同液晶基元的相互作用会引起性质的变化,使LCP的分子设计增加了新的途径]11

9[ 。其他S C L C P 还有双亲型S C L C P 、腰接型SCLCP、甲壳型LCP、含柔性棒状液晶基元的SCLCP。

4液晶高分子材料性能

4.1取向方向的高拉伸强度和高模量

绝大多数商业化液晶高分子产品都具有这一特性。与柔性链高分子比较,分子主链或侧链带有介晶基元的液晶高分子,最突出的特点是在外力场中容易发生分子链取向。实验研究表明,液晶高分子处于液晶态时,无论是熔体还是溶液,都具有一定的取向度。液晶高分子液体流经喷丝孔、模口、流道的时候,即使在很低剪切速率下获得的取向,在大多数情况下,不再进行后拉伸,就能达到一般柔性链高分子经过后拉伸的分子取向度。因而即使不添加增强材料也能达到甚至超过普通工程材料用百分之十几玻纤增强后的机械强度,表现出高强度高模量的特性。如Kevlar的比强度和比模量均达到钢的10倍。

4.2耐热性突出

由于液晶高分子的介晶基元大多由芳环构成,其耐热性相对比较突出。如Xydar的熔点为421℃,空气中的分解温度达到560℃,其热变形温度也可达350℃,明显高于绝大多数塑料。此外液晶高分子还有很高的锡焊耐热性。

此外,液晶高分子具有高抗冲性和抗弯模量,蠕变性能很低,其致密的结构使其在很宽的温度范围内不溶于一般的有机溶剂和酸碱,具有突出的耐化学腐蚀性。当然,液晶高分子尚存在制品的机械性能各向异性、接缝强度低、价格相对

较高等缺点,这些都有待于进一步的改进。

5液晶高分子材料应用

液晶高分子主要应用在液晶显示器]12[,电子电器领域,汽车领域,纺织工业,光纤通讯领域等。

6总结与展望:

随着液晶高分子材料应用领域的增加,人们不断地研发新的单体,改进合成条件,以制备性能更加优良的LCP]15

[ 。与此同时,有人也开始研究合成新型液

13

晶高分子,如组合型LCP、树状LCP、“鱼骨型”及“划艇形”LCP、液晶超分子体系、液晶网络体和功能性LCP等。无论何种类型的LCP,其性能与分子结构都有密切的关系,也有规律可循。所以在合成液晶高分子的时候可以根据这些普遍性原则来进行分子设计,从而得到性能更优异的LCP。

7参考文献:

[1] 周其凤,王新久.液晶高分子[M].北京:科学出版社,1994,7.

[2] 王瑾菲,蒲永平,杨公安,杨文虎. 高分子液晶材料的应用及发展趋势[J].

陶瓷. 2009(03)

[3] 马会茹段华军,唐红.[J].液晶高分子分子复合材料的新进展. 复合材

料,2008,10.

[4] 李阔. [J]. 出口前景广阔的液晶高分子中间体2,6.酸化工中间体(科技产

业版). 2004,3.

[5] 吴璧耀,山下啓司,津田和一. 热致型光敏液晶高分子在液晶场中光交联

反应的研究[J]. 高分子学报. 1996(01)

[6] 黄毅萍,周冉. 液晶高分子的开发研究及进展[J]. 安徽化工. 1999(06)

[7] 周艳,贾德民,童身毅. 聚对羟基苯甲酸侧链液晶高分子的合成与表征[J].

塑料工业. 2002(04)

[8] 汤大新,杨钧,董玺娟,王卉,杨春才,赵英英,汤心颐. 液晶高分子

MMA/PNAA的热致相变与分子运动[J]. 原子与分子物理学报. 1992(03) [9] J. Zhu, L. P. Wu, Shi k, et al. Preparation of novel liquid crystalline

polymeric film material and its photo induced alignment behavior [J].

Reactive & Functional polymers, 2007, 67.

[10] Yu H B, Huang Z G, Yin B Z, et al. Chiral dimesogenic compounds having

cholesterol and 4-(trans-4-n-hexylcydohexyl) benzoic acid moieties [J].

Materials letters, 2008: 1~3

[11] Y ao D S, Zhang B Y, Zhang W W, et al. A new class of starshaped

cholesteric liquid crystal containing a 1,3,5-trihydroxybenzene unit as

a core [J]. Journal of molecular structure, 2007.

[12] 王斌,马样梅. [J].铁电性液晶高分子及其在液晶显示中的应用. 渭南师

范学院学报,2003,5(3):19

[13] 杨文虎,杨公安,蒲水平. [J] .高分子液晶材料的应用及发展趋势. 陶瓷

学报,2009,16:3.

[14] 王国建, 王德海, 邱军, 等.[M]. 功能高分子材料. 上海: 华东理工大

学出版社.2006, 8(1): 380-401

[15] 严兵,王飞,胡茂明.[J].液晶高分子的制备研究. 精细与专用化

学.2012,20(1).

磁性塑料的综述

1磁性塑料的介绍~~~~~~~ 磁性塑料是高分子磁性材料中的一种。高分子磁性材料是一种具有记录声、光、电等信息并能重新释放的功能高分子材料,是现代科学技术的重要基础材料之一。 有机高分子磁性材料作为一种新型功能材料,在超高频装置、高密度存储材料、吸波材料和微电子等需要轻质磁性材料的领域具有很好的应用前景。 磁性高分子材料的出现大大改善了烧结磁体的这些缺点,它具有重量轻、有柔性、加工温度不高、结构便于分子设计、透明、绝缘、可与生物体系和高分子共容、成本低等优点,但是磁性高分子材料的磁性能较低,如何提高其磁性能成为磁性高分子材料研究的主要热点。磁性高分子材料广泛应用于冰箱、冷藏柜、冷藏车的门封磁条,标识教材,广告宣传,电子工业以及生物医学等领域,是一种重要的功能材料 特点:有机磁性材料的优点:a、结构种类的多样性;b、可用化学方法合成;c、可得 到磁性能与机械、光、电等方面的综合性能;d、磁损耗小、质轻、柔韧性好、加工性能优越;用于超高频装置、高密度存储材料、吸波材料、微电子工业和宇航等需要轻质磁性材料的领域 2磁性塑料的分类及举例 高分子磁性材料分为结构型和复合型两种:结构型磁性材料是指高分子材料本身具有强性;复合型磁性材料是指以塑料或橡胶为黏结剂与磁粉混合黏结加工而制成的磁性体。 结构型磁性材料:结构型高分子磁性材料的种类主要有:高自旋多重度高分子磁性材料;自由基的高分子磁性材料;热解聚丙烯腈磁性材料;含富勒烯的高分子磁性材料;含金属的高分子磁性材料;多功能化高分子磁性材料等. 复合型磁性材料:复合型磁性塑料是指在塑料中添加磁粉和其他助剂,塑料起黏结剂作用。磁性塑料根据磁性填料的不同可以分为铁氧体类、稀土类和纳米晶磁类。根据不同方向磁性能的差异,又可以分为各向同性和各向异性磁性塑料。 3磁性材料的应用 3.1磁性橡胶 磁性橡胶铁氧体填充橡胶永磁体曾大量用于制造冷藏车、电冰箱、电冰柜门的垫圈。北京化工研究院曾研制出专用于风扇电机的磁性橡胶,应用于计算机散热风扇。日本铁道综合技术研究所开发出利用磁性橡胶的磁性复合型减振材料。德国大陆轮胎公司将磁粉混入轮胎侧胶料形成磁性胶条,再通过轮胎胎侧扭力测量装置采用传感器从旋转轮胎胎侧的磁性胶条上采集信号,以获取大量有关汽车和路面之间力的有用数据,有利于驾驶员在不同路况下对车的控制。 3.2磁性塑料 磁性塑料又称塑料磁铁,兼有磁性材料和塑料的特性。根据填充磁粉类型可分为铁氧体类磁性塑料和稀土类磁性塑料。由于磁性塑料机械加工性能好、易成型,且尺寸精度高、韧性好、重量轻、价格便宜、易批量生产,因此对电磁设备的小型化、轻量化、精密化和高性能化有重大意义。它可以记录声、光、电信息,因而广泛用于电子电气、仪器仪表、通讯、日用品等诸多领域,如制造彩色显像管会聚组件、微电机磁钢、汽车仪器仪表、分电器垫片和气动元件磁环等。 3.3医学、诊断学领域的应用 磁性高分子微球能够迅速响应外加磁场的变化,并可通过共聚赋予其表面多种功能基团(如

高分子材料环氧树脂综述

高分子材料环氧树脂综述 摘要:环氧树脂是指分子中含有两个以上环氧基团的一类聚合物的总称。它是环氧氯丙烷与双酚A或多元醇的缩聚产物。由于环氧基的化学活性,可用多种含有活泼氢的化合物使其开环,固化交联生成网状结构,因此它是一种热固性树脂。本文将简单介绍环氧树脂的结构、性能、应用及研究现状,重点介绍环氧树脂的应用前景和研究现状。 关键词:高分子材料;环氧树脂;结构;研究现状 一、前言 在世界范围内, 高分子材料的制品属于最年轻的材料.它不仅遍及各个工业领域, 而且已进入所有的家庭, 其产量已有超过金属材料的趋势, 将是 21 世纪最活跃的材料支柱. 面向21 世纪的高科技迅猛发展, 带动了社会经济和其他产业的飞跃, 高分子已明确地承担起历史的重任, 向高性能化、多功能化、生物化三个方向发展.21 世纪的材料将是一个光辉灿烂的高分子王国. 环氧树脂是指分子中含有两个以上环氧基团的一类聚合物的总称。它是环氧氯丙烷与双酚A或多元醇的缩聚产物。由于环氧基的化学活性,可用多种含有活泼氢的化合物使其开环,固化交联生成网状结构,因此它是一种热固性树脂。双酚A 型环氧树脂不仅产量最大,品种最全,而且新的改性品种仍在不断增加,质量正在不断提高。我国自1958年开始对环氧树脂进行了研究,并以很快的速度投入了工业生产,至今已在全国各地蓬勃发展,除生产普通的双酚A-环氧氯丙烷型环氧树脂外,也生产各种类型的新型环氧树脂,以满足国防建设及国家经济各部门的急需。 二、基本分类 1.分类标准 环氧树脂的分类目前尚未统一,一般按照强度、耐热等级以及特性分类,环氧树脂的主要品种有16种,包括通用胶、结构胶、耐高温胶、耐低温胶、水中及潮湿面用胶、导电胶、光学胶、点焊胶、环氧树脂胶膜、发泡胶、应变胶、软质材料粘接胶、密封胶、特种胶、潜伏性固化胶、土木建筑胶16种。 2.几种分类 对环氧树脂胶黏剂的分类在行业中还有以下几种分法: (1)按其主要组成分为纯环氧树脂胶黏剂和改性环氧树脂胶黏剂; (2)按其专业用途分为机械用环氧树脂胶黏剂、建筑用环氧树脂胶黏剂、电子环氧树脂胶黏剂、修补用环氧树脂胶黏剂以及交通用胶、船舶用胶等; (3)按其施工条件分为常温固化型胶、低温固化型胶和其他固化型胶; (4)按其包装形态可分为单组分型胶、双组分胶和多组分型胶等; 还有其他的分法,如无溶剂型胶、有溶剂型胶及水基型胶等。但以组分分类应用较多。 三、几种常见环氧树脂结构

【精品】液晶高分子材料在图形显示方面的发展与应用

液晶显示材料的发展与应用 郑磊 (安徽工业大学化学与化工学院安徽马鞍山) 摘要:液晶有许多特殊的性能,因而在许多领域得到应用。其中最常见是液晶显示技术.本文简述了液晶高分子材料在图形显示方面的发展历史、发展趋势以及研究与应用现状。 关键词:液晶;图形显示;显示材料;应用;发展 1引言 人们早已熟知液晶本身和液晶在电子显示器件方面、非线性光学方面的应用。液晶显示的手表、计算器、笔记本电脑和高清晰度彩色液晶电视都已经商品化,液晶的商业用途多达百余种,它使显示等技术领域发生重大的革命性变化. 2液晶显示技术的发展 经历4个阶段发展为液晶电视 “使用液晶可以制造超薄显示屏”。40多年前的1968年5月,美国RCA公司在纽约召开的液晶显示屏新闻发布会上的发言震惊了全世界。发现液晶可用于显示的是RCA公司的GeorgeHeilmeier,他甚至还表示,“梦想中的壁挂式电视只需数年即可实现”.自那之后,日本、英国、瑞士、德国的显示屏研发人员都开始参与液晶面板的开发工作,全球性开发的帷幕正式拉开。 但是,液晶显示屏的实用化并不容易.当时,液晶的使用寿命和可靠性等基

本问题都未能解决,使用不到1个小时显示就会消失,更别提要用液晶制造电视了. 之所以会存在使用寿命和可靠性方面的问题,主要是因为将直流电压加载到液晶上时,液晶材料及电极会发生氧化还原反应而变质。虽然也可以采用交流电来驱动液晶,但是显示性能较差。最终解决这一问题的是夏普公司。该公司发现,如果在液晶材料中加入离子性杂质,使其导电率升高,就可以采用交流驱动获得良好的显示特性。利用这项技术,1973年5月,夏普公司推出全球首款液晶应用产品——使用液晶显示屏作为显示部件的小型计算器EL—805.

磁性高分子材料的制备及应用

磁性高分子材料的制备及应用 摘要 磁性高分子材料分为复合型和结构型两类,分别阐述了复合型和结构型磁性高分子材料的研究和应用现状,强调了磁性高分子材料的发展意义,本文旨在探讨有关高分子磁性材料制备、性质及应用的最新研究成果。并对其理论和应用领域的开拓前景进行了展望。 关键字磁性高分子功能材料制备方法应用 前言 磁性材料是古老而用途十分广泛的功能材料,最早人们使用的磁性材料大多由天然磁石制成的,后来开始利用磁铁矿烧结成磁性材料,其中以含铁族和稀土元素为主,由于其资源丰富、价格低廉、磁性能好等原因,目前仍在工业电器以及电动设备中得到广泛应用,但是因其密度大、脆硬、变形大、难以制成精密制品等缺点,所以对高分子磁性材料的研究成为一个重要方向。近来对结构型磁性高分子材料的研究取得了进展,合成了许多有机磁性高分子材料磁性聚合物微球自70年代中后期以来便受到了国内外学者的普遍关注,有关磁性聚合物微球的制备和应用的研究论文逐年增加,国外学者针对磁性聚合物微球的制备及在生物医药工程靶向药物临床医学等领域的应用也申请了不少的专利,有些已经商品化。 磁性高分子材料的分类 磁性高分子材料通常可分为复合型和结构型两种。复合型磁性高分子材料是已实现商品化生产的重要磁性高分子材料,能够作为功能材料应用的主要有磁性橡胶、磁性塑料、磁性高分子微球磁性聚合物薄膜等。复合型磁性高分子材料中的磁性无机物主要是铁氧体类磁粉和稀土类磁粉。稀土磁粉出现后,树脂粘结磁体飞速发展。作粘结剂的高分子主要是橡胶、热固性树脂和热塑性树脂。橡胶类粘结剂主要用于柔性复合磁体的制造,但与塑料相比,一般成型加工困难。热固性粘结剂一般用环氧树脂、酚醛树脂。磁性高分子微球所采用的高分子材料主要是蛋白质、生物多糖、脂类等生物高分子和人工合成的接有各式各样功能基团的合成高分子。目前国内外研究较多的是以核径迹蚀刻膜为基板的纳米磁性材料,它实际上是采用模板法,以聚碳酸酷核径迹蚀刻膜为基体,在其中电沉积磁性粒子,利用其规整膜孔来控制得到的有序纳米磁性材料。 磁性高分子材料的研究现状 1复合型磁性高分子材料 复合型磁性高分子材料主要是指在塑料或橡胶中添加磁粉和其他助剂,均匀混合后加工而成的一种复合型材料。复合型磁性高分子材料根据磁性填料的不同可以分为:铁氧体类、稀土类和纳米晶磁粒类。根据不同方向上的磁性能的差异,又可以分为各向同性和各向异性磁性高分子材料。能够作为功能材料应用的主要有磁性橡胶、磁性塑料、磁性高分子微球、

有机高分子磁性材料研究综述

有机磁性材料研究综述 摘要:有机磁性材料是最近二十多年发展起来的新型的功能材料,因为其结构的多样性,可用化学方法合成,相比传统磁性材料具有比重低、可塑性强等等优点,因此在新型功能材料方面有着广阔的应用前景。本文综述了高分子有机磁性化合物的发展和研究近况,及其有机高分子磁性材料的分类及其应用前景。 关键词:有机磁性材料结构型复合型 Review on the research of organic magnetic material Abstract: organic magnetic material is a new functional material in recent twenty years, because of the diversity of its structure, synthetized by chemical method , compared with the traditional magnetic materials with a low specific gravity, high plasticity, and so on, so it has a broad application prospect in the new functional materials.This paper reviews the development and research status of high polymer organic magnetic materials’compounds, classification and its application prospect. Key word: organic magnetic material intrinsic complex

液晶高分子材料的现状及研究进展

液晶高分子材料的现状及研究进展 摘要:本文综述了液晶高分子材料的研究现状,包括简单介绍了液晶高分子的发展历史,结构及性能,介绍了液晶高分子研究的新进展,对液晶高分子早各个领域的应用和潜在的性能进展做了简要的阐述,并针对液晶高分子存在的问题提出了相应的建议。 关键词:液晶高分子研究应用 前言 高分子科学,以30年代H.staidinger建立高分子学说为开展.此后高分子化学有了飞跃的发展.与此同时,高分子物理化学也有相应的发展。高分子化学注重对高聚物合成以及性质的研究,而高分子物理则重点研究高聚物的结构与性能,二者相辅相成,近年来研究较多的高分子液晶材料就是两者结合的典范。 液晶现象是1888年奥地利植物学家F.Reintizer[1]在研究胆甾醇苯甲酯时首先发现的。研究表明,液晶是介于液体和晶体之间的一种特殊的热力学稳定相态,它既具有晶体的各相异性,又有液态的流动性,液晶高分子就是具有液晶性的高分子,大多数由小分子量基元键合而成,它是一种结晶态,既具有液体的流动性又具有晶体的各向异性特征。 这样人们自然会联想到具有这种结构的高分子材料。1937年Bawden和Pirie[1]在研究烟草花叶病病毒时,发现其悬浮液具有液晶的特性。这是人们第一次发现生物高分子的液晶特性,其后1950年,Elliott与Ambrose第一次合成了高分子液晶,溶致型液晶的研究工作至此展开。50年代到70年代,美国Duponnt公司投入大量人力才力进行高分子液晶发面的研究,取得了极大成就,1959年推出芳香酰胺液晶,但分子量较低,1963年,用低温溶液缩聚法合成全芳香聚酰胺,并制成阻燃纤维Nomex,1972年研制出强度优于玻璃纤维的超高强.高模量的Kevlar纤维,并付注实用,以后,高分子液晶的研究则从溶致型转向为热致型。在这一方面Jackson等作出了较大贡献,他们合成了对苯二甲酸已二醇酯与对羟基苯甲酸的共聚物,可注塑成型,这是一种模量极高的自增强液晶材料。 从应用领域分析,液晶高分子材料在电子电气行业中需求量最大且发展迅速,1998年可达3600 吨,平均年增长23.1 %;其次是通讯业,需求量约1540 吨,增长21.1%;工业界及运输业总需求量不到1700 吨,平均年增长率约为I1%。主要用于接插件、开关、继电器、模塑印刷电路板、光缆结构件、复合材料、机械手、泵/阀门组件、功能件等,极大地推动了液晶高分子技术及其它高新技术的发展。 从高分子液晶诞生到现在只有50多年的历史,是一门很年轻的学科。虽然高分子液晶[2]是具有高强度、高模量、耐高温、低膨胀系数、低成型收缩率、低密度、良好的介电性、阻燃性和耐化学腐蚀性等一系列优异的综合性能,作为液晶自增强塑料、高性能纤维、板材、薄膜及光导纤维包覆层,被广泛应用于电子电器、航天航空、国防军工、光通讯等高新技术领域以及汽车、机械、化工等国民经济各工业部门。但目前对它的研究仍处于较低的水平,理论研究较狭隘,液晶高分子尚存在制品的机械性能各向异性、接缝强度低、价格相对较高等缺点,这些都有待于进一步的改进,所以高分子液晶仍是高分子科学研究的一个热点。 1液晶高分子材料的特性[3] 1.1取向方向的高拉伸强度和高模量

关于磁性纳米材料的研究应用

关于磁性纳米材料的研究应用 文献综述 姓名:于辉 学号:2013155048 学院:理学院 专业:材料化学 年级:2013级

关于磁性纳米材料的研究应用 【前言】 磁性纳米材料的应用可谓涉及在机械,电子,光学,磁学,化学和生物学领域的应用前景,纳米科学技术的诞生将对人类社会产生深远的影响,并有可能从根本上解决人类面临的许多问题。 下一世纪初的主要任务是依据纳米材料各种新颖的物理和化学特性设计出顺应世纪的各种新型的材料和器件,通过纳米材料科学技术对传统产品的改性,增加其高科技含量以及发展纳米结构的新型产品[1]。磁性纳米材料将成为纳米材料科学领域一个大放异彩的明星,在新材料,能源,信息,生物医学等各个领域发挥举足轻重的作用。 磁性纳米材料由于其独特的磁学性能、小尺寸效应,在化学设计与合成、表面功能化方法,及其在核磁共振成像、磁控治疗、磁热疗和生物分离等领域都有应用[2]。

【磁性纳米材料的发展历程和现状】 (一)关于磁性纳米材料 纳米材料又称纳米结构材料,是指在三维空间中至少有一维处于纳米尺度范围内的材料(1-100nm),或由它们作为基本单元构成的材料,是尺寸介于原子、分子与宏观物体之间的介观体系,因此,纳米磁性材料的特殊磁性可以说是属于纳米磁性,而纳米磁性材料和纳米磁性又分别是纳米科学技术和纳米物性的一个组成部分。 (二)关于颗粒磁性的研究 颗粒的磁性,根据磁畴理论与实验表明:当磁性微粒处于单畴尺寸时,矫顽力将呈现极大值[3]。铁磁材料,在应用上,可以作为高矫顽力的永磁材料和磁记录材料。由于颗粒磁性与其尺寸有关,若尺寸进一步减小,颗粒将在一定的温度范围内将呈现出超顺磁性。利用微粒的超顺磁性,提出了磁宏观量子隧道效应的概念,并研制成了磁性液体。非晶态磁性材料的诞生为磁性材料增添了新的一页,也为纳米微晶磁性材料(纳米微晶软磁材料、纳米复合永磁材料)的问世铺平了道路。(三)磁性纳米材料的特点和制备方法[4] 磁性纳米材料有量子尺寸效应、小尺寸效应、宏观量子隧道效应的特点。 制备方法: <1>磁流体的制备方法 物理法:研磨法、热分解法、超声波法。 化学法:化学沉淀法、水热法。 <2>磁性微粒的制备方法 分散法、单体聚合法。 <3>纳米磁性微晶的制备方法 非晶化法、深度塑性变形法。 <4>纳米磁性结构复合材料的制备方法 溶胶-凝胶法、化学共沉淀法、磁控溅射法和激光脉冲沉积法。 (四)磁性纳米材料的应用范围[4] 磁记录方面的应用、纳米永磁材料方面的应用、纳米软磁材料方面的应用、纳米吸波材料领域的应用、生物医学领域的应用、金属有机高分子磁性材料方面的应用。

电致发光高分子材料综述

电致发光高分子材料综述 作者:张祺夏沣任彤尧汤伟 摘要:高分子发光二极管(PLED)是由英国剑桥大学的杰里米伯勒德及其同事首先发现的。聚合物大多由小的有机分子以链状方式结合在一起,以旋涂法形成高分子有机发光二极管,因其巨大的科学和商业价值而得到了广泛的关注,是近来国际上的研究热点。对于各种新材料的不断开发和深入研究,PLED器件日益实用化。本文主要综述了近几年国内外关于高分子聚合物在电致发光材料领域的研究进展,介绍了有机高分子发光材料的发展现状,概述了其市场前景及相关的应用,并展望了高分子电致发光材料的发展趋势。 关键词:高分子;电致发光;研究现状 Abstract:Polymer light-emitting diode (PLED) first discovered by Jerry Mibo Lede of the University of Cambridge and his colleagues. Most organic polymer molecules from the small ones to chain together by a spin-coating to form polymer organic light-emitting diodes, because of its great scientific and commercial value ,it has been widespread concerned, and becomes the recent international researchs’ focus. For the continuous development of new materials and in-depth researchs, PLED devices become increasingly practical. This paper mainly overviews the recent years’domestic and foreign polymer progress of research in electroluminescent materials, describes the recent status of the development of organic polymer light-emitting materials, overviews the market prospects and related applications, and prospects of polymer electroluminescent material trends. Keywords:Polymer; EL; Research status

液晶高分子的性质及应用

液晶高分子的性质及应用 作者:翟洪岩、杨怀斌、岳敏、尹国强、张家乐、张维液晶高分子自上世纪70年代被开发出以来,经历了一系列的发展,现已成为普遍使用的一种高分子材料。人们已对液晶高分子的结构、性质、合成方法以及液晶高分子的应用都有了较为深刻的认识。这篇文章讨论的主要关于高分子液晶的性质(物理性质)及其应用。 一、高分子液晶的物理性质。 液晶高分子作为一种特殊的高分子材料,自然具有与一般高分子材料不同的性质。液晶具有液体的流动性和固体的有序性,对外界刺激如光、机械压力、温度、电磁场及化学环境的变化具有较高的灵敏性。高分子液晶制品具有高强度、高模量,尺寸稳定性、阻燃性、绝缘性好,耐高温、耐辐射、耐化学药品腐蚀、线膨胀率低,并有良好的加工流动性等优异性能。 1、高弹性。 液晶对外场作用较为敏感,即使不大的电磁力、切变力、表面吸附等都能使液晶产生较大形变。液晶可独立存在展曲、扭曲、弯曲三种弹性形变。 2、粘滞性与流变性。 液晶存在取向有序性,这将影响流体力学行为。而液晶高分子还具有的高分子的粘滞特性,这与分子长度密切相关。一般液晶高分子为多畴状态,畴的大小在几微米之内,故在宏观上液晶高分子是各向同性的,其许多物理性质如力学性能等,表观上也是多向同性的。溶致型液晶高分子溶液在各向同性相时,粘度随浓度增大而增大。进入液晶相后,粘滞系数突然降低。分子量越大,进入液晶相浓度也越低,最大粘滞系数升高。 体系进入液晶相后,指向矢受切变流的影响而沿它的流动方向取向,从而迅速降低了粘滞系数。当切变流动停止一段时间后,样品会逐渐弛豫回原来的多畴状态。如果在此之前就使液晶高分子降温或溶剂移走成为固态,仍可获得相当好的宏观取向,即各向异性固体。 3、其他性质。 胆甾相液晶具有螺旋结构。因此有特殊的光学性质,如选择反射、圆二色性、强烈的旋光性及其色散、电光和磁光效应等。

表面含羧基磁性高分子复合微球的制备

第22卷第4期高分子材料科学与工程Vol.22,No.4 2006年7月POLYMER MAT ERIALS SCIENCE AND ENGINEERING Jul.2006表面含羧基磁性高分子复合微球的制备 赵吉丽1,韩兆让1,王 莉1,刘春丽1,余 娜1,张群利2 (1.吉林大学化学学院,吉林长春130023;2.东北林业大学包装工程系,黑龙江哈尔滨150040) 摘要:用化学共沉淀法制备了F e3O4纳米微粒,并对F e3O4微球表面进行改性,以磁性Fe3O4为核,通过苯乙烯和丙烯酸的乳液共聚,制备了粒径均匀、以苯乙烯和丙烯酸共聚物为壳、表面含有一定羧基的磁性高分子纳米复合微球。测定了此微球的形态、结构和粒径,探讨了聚合单体、乳化剂等因素对微球合成的影响。 关键词:纳米Fe3O4;乳液聚合;核壳粒子;磁性高分子复合微球 中图分类号:T Q316.33+4 文献标识码:A 文章编号:1000-7555(2006)04-0204-04 近几十年来,性质特殊的磁性高分子复合微球备受关注[1]。它是一种高分子生物材料,既保留了高分子的特性,又具有超顺磁性,因此可方便地利用磁场进行定位。当微球经过共聚或表面改性后,其表面可引入不同的功能基团(如-COOH、-NH2、-OH、-SO3H、-CH3Cl 等),从而使材料获得了新的性能,例如,可在室温下形成Schiff碱共价结合蛋白质、酶和细胞等生物活性物质,还可用于磁场分离,因而在细胞分离核酸分离、免疫检测以及靶向药物等生物化学和生物医学方面有着广泛的应用前景。 目前,人们已采用分散聚合[2]、悬浮聚合、乳液聚合、微乳液聚合[3]、双乳液聚合[4]、反相乳液聚合[5]等方法对磁性高分子微球的制备进行了广泛的研究。本文利用改进的乳液聚合法制备了磁性高分子微球,并对其制备过程的影响因素进行了考察。 1 实验部分 1.1 材料 FeCl2 4H2O:分析纯;FeCl3 6H2O:分析纯;无水Na2CO3:分析纯;十二烷基苯磺酸钠(SDBS):化学纯;油酸:化学纯;苯乙烯(St):分析纯;丙烯酸(AA):化学纯,单体经减压蒸馏除去阻聚剂;偶氮二异丁腈(AIBN):分析纯,重结晶后使用;二乙烯苯(DVB):分析纯;经碱洗除去阻聚剂;氨水(质量分数为25%~28%):分析纯;蒸馏水。 1.2 磁性高分子微球的合成 1.2.1 油酸改性的磁性Fe3O4的制备[3,6,7]:在500mL三口瓶中,加入27g FeCl3 6H2O和12 g FeCl2 4H2O,用100mL蒸馏水溶解,激烈搅拌下,快速加入80mL质量分数为25%~28%的浓氨水,反应10m in,然后加入11mL油酸,加热到70℃反应30min,继续加热到110℃,以除去水蒸汽和未反应的氨水,静置,冷却至室温,多次用蒸馏水(每次用150mL)洗涤,干燥,保存。 1.2.2 羧基磁性高分子微球的制备:将0.5g 上述制备的磁性纳米粒子(M P)、0.5m LDVB、0.1g无水Na2CO3和0.4g SDBS依次加入体积为60mL的蒸馏水中,在N2气氛下移入250 m L三颈圆底烧瓶中,充分搅拌乳化30min,升温至70℃,加入0.04g AIBN,保持N2气氛,加热到75℃时,滴加含有0.06g AIBN和体积比为10∶1的St与AA的混合液11mL,以300r/min的速度搅拌,反应10h。所得乳液呈棕色。 收稿日期:2005-06-20;修订日期:2005-09-08  联系人:韩兆让,主要从事高分子纳米材料与仿生材料研究,E-mail:hanz r@https://www.wendangku.net/doc/a211805662.html,

纳米结构高分子材料综述

纳米结构高分子材料的制备、表征、应用前景 花生 (湖南工程学院化学化工学院湖南湘潭 411104) 摘要:纳米结构高分子材料是由各种纳米单元与有机高分子材料以各种方式复合成型的一种新型复合材料。本文综述了纳米结构高分子材料的结构、性能和表征技术,并对其 应用进行了讨论。 关键字:纳米结构高分子材料插层复合溶胶-凝胶纳米改性 Preparation ,Characterization, Application of Nano-structural Polymer Materials huasheng (College of Chemistry and Chemical Engineering, Hunan Institute of Engineering,Xiangtan Hunan 411104,China ) Abstract:Nano-structural polymer materials are a class of composite materials which are Compound from polymer and nano-materials. This article introduces nano-structured polymer materials as follow: structure , properties , characterization techniques and its applications . Key word:Nano-structural polymer materials intercalation solution-gel modification of polymer 纳米结构聚合物材料由于具有独特的性能而在机械、光、电、 磁、微处理器件、药物控释、环境保护、纳米反应器及生物化学等方 面具有广阔的应用前景,近年来掀起了对纳米结构聚合物材料研究的 热潮。各国学者分别在化学分子设计、结构分析、组装方法和应用等 方面进行了广泛的研究。我国的科学工作者也对其开展了许多卓有成 效的工作。关于纳米结构超薄膜的综述文献已有很多,本文主要就

现代高分子材料综述(非常好!!)

现代高分子材料综述 材料学王晓梅学号:112408 摘要 高分子材料作为新时期的全新全能型材料,是现代人类发展的重要支柱,是发展高新科技的基础与先导,高分子材料的应用将会使人类支配改造自然的能力和社会生产力的发展带到一个新的水平,对人类的发展将会出现前所未有的促进。本文将从高分子材料的定义、主要种类、应用和以塑料为例介绍与人类生活息息相关的高分子材料的相关常识。本文综述了各类高分子材料的研究及发展,主要论述了导电高分子材料、功能高分子材料、工程高分子材料、复合高分子材料以及生物高分子材料等应用领域。 前言 高分子材料是由相对分子质量比一般有机化合物高得多的高分子化合物为主要成分制成的物质。一般有机化合物的相对分子质量只有几十到几百,高分子化合物是通过小分子单体聚合而成的相对分子质量高达上万甚至上百万的聚合物。巨大的分子质量赋予这类有机高分子以崭新的物理、化学性质:可以压延成膜;可以纺制成纤维;可以挤铸或模压成各种形状的构件;可以产生强大的粘结能力;可以产生巨大的弹性形变;并具有质轻、绝缘、高强、耐热、耐腐蚀、自润滑等许多独特的性能。于是人们将它制成塑料、橡胶、纤维、复合材料、胶粘剂、涂料等一系列性能优异、丰富多彩的制品,使其成为当今工农业生产各部门、科学研究各领域、人类衣食住行各个环节不可缺少、无法替代的材料[1]。 由于高分子化学反应和合成方法对高分子化学学科发展的推动,促进了高分子合成材料的广泛应用。同时,随着高分子材料的发展,纳米技术与生物技术之间的界限变得越来越小,并与更多的传统分子科学与技术相结合。因此,我们相信,高分子技术的发展促使使各类高分子材料得到更加迅速的发展,推广和应用。 1

高分子有机磁性材料

高分子有机磁性材料 1 引言 磁性材料是一簇新兴的基础功能材料。虽然早在3000多年前我国就已发现磁石相互吸引和磁石吸铁的现象, 并在世界上最先发明用磁石作为指示方向和校正时间的应用, 在《韩非子》和东汉王充著的《论衡》两书中所提到的“司南”就是指此, 但毕竟只是单一地应用了天然的磁性材料。人类注意于磁性材料的性能特点、制造、应用等的研究、开发的发展历史尚不到100年时间。经过近百年的发展, 磁性材料已经形成了一个庞大的家族,按材料的磁特性来划分, 有软磁、永磁、旋磁、记忆磁、压磁等; 按材料构成来划分, 有合金磁性材料, 铁氧体磁性材料, 分类情况如下: 上述材料尽管种类繁多, 庞杂交叉, 但都属于无机物质的磁性材料或以无机物质为主的混合物质磁性材料。 近年来, 由于一种全新的磁性材料的面世, 使磁性材料家族喜添新成员, 这就是高分子有机磁性材料,其独特之处在于它属于纯有机物质的磁性材料。过去

一般认为, 有机高分子化合物是难于具有磁性的, 因此本身具有磁性的有机高分子化合物的出现, 就是高分子材料研究领域的一个重大突破。有机高分子磁性材料的发现被国内外专家认为是80年代末科学技术领域最重要的成果之一, 它的发现在理论和应用上可与固体超导和有机超导相提并论。有可能在磁性材料领域产生一系列新技术。 2高分子有机磁性材料的主要性能特点 由于高分子有机磁性材料既属于高分子有机材料, 又属于磁性材料, 对这类材料的研究属于交叉科学,人们对这类新型材料的研究和认识尚处于起步阶段,因此尽管专家们已对其进行了多方面的测量、试验和分析、研究, 但对其特性的认识仍很不系统、很不准确、很不全面。从现已了解到的一些测试数据和分析情况可以初步看出其主要的性能特点: (1) 该材料是采用与过去所有磁性材料的制备方法完全不同的高分子化工工艺制成的高分子有机物质,是高分子有机物再加上二茂铁的络合物, 分子量高达数千。该类材料和元件制备的主要工艺流程如图1。 有机物的主要构成元素是碳、氢、氮,结构和化学性能十分稳定。将磁粉加工

磁性纳米材料的制备及应用前景

磁性纳米材料的制备及应用前景 摘要:磁性纳米材料因其具有独特的性质,在现代社会中有着广泛的应用,并越来越受到人们的关注。本文主要介绍了磁性纳米材料的制备及应用前景,概述了纳米磁性材料的制备方法,如机械球磨法,水热法,微乳,液法,超声波法等,总结了纳米磁性材料在实际中的应用,并对其研究前景进行了展望。 Abstract: magnetic nanomaterials due to their unique properties, in the modern society has a wide range of applications, and people pay more and more attention. This paper mainly introduces the magnetic nanometer material preparation and application prospect of nano magnetic materials, summarized the preparation methods, such as mechanical ball milling method, hydrothermal method, microemulsion, liquid method, ultrasonic method, summarizes the nanometer magnetic materials in practical application, and the research prospect.

前言 纳米材料因其尺寸小而具有普通块状材料所不具有的特殊性质,如表面效应、小尺寸效应、量子效应和宏观量子隧道效应等,从而与普通块状材料相比具有较优异的物理、化学性能。磁性纳米材料由于其在高密度信息存储,分离,催化,靶向药物输送和医学检测等方面有着广泛的应用,已经受到了广泛关注。磁性复合纳米材料是以磁性纳米材料为中心核,通过键合、偶联、吸附等相互作用在其表面修饰一种或几种物质而形成的无机或有机复合材料。由于社会的发展和科学的进步,磁性纳米材料的研究和应用领域有了很大的扩展。磁性材料在信息存储、传感器和磁流体等传统学科领域有着重要的应用。随着纳米材料科学与技术的发展,纳米磁性材料的应用开发日益引起人们的关注,特别是在提高 信息存储密度、微纳米器件和生物医学领域的应用潜力巨大。目前普遍采用化学法制备铁氧体磁性纳米颗粒,具体有溶胶~凝胶法、化学共沉淀法等,而由于生物合成的磁性纳米颗粒表现出更优良的性质。 1.磁性纳米材料的特点 量子尺寸效应:材料的能级间距是和原子数N 成反比的,因此,当颗粒尺度小到一定的程度,颗粒内含有的原子数N 有限,纳米金属费米能级附近的电子能级由准连续变为离散,纳米半导体微粒则存在不连续的最高被占据分子轨道和最低未被占据的分子轨道,能隙变宽。当这能隙间距大于材料物性的热能,磁能,静电能,光子能等等时,就导致纳米粒子特性与宏观材料物性有显著不同。例如,导电的金属在超微颗粒时可以变成绝缘体,磁矩的大小和颗粒中电子是奇数还是偶数有关,比热亦会反常变化,光谱线会产生向短波长方向的移动,这就是量子尺寸效应的宏观表现。 小尺寸效应:当粒子尺度小到可以与光波波长,磁交换长度,磁畴壁宽度,传导电子德布罗意波长,超导态相干长度等物理特征长度相当或更小时,原有晶体周期性边界条件破坏,物性也就表现出新的效应,如从磁有序变成磁无序,磁矫顽力变化,金属熔点下降等。 宏观量子隧道效应:微观粒子具有穿越势垒的能力,称为量子隧道效应。而在马的脾脏铁蛋白纳米颗粒研究中,发现宏观磁学量如磁化强度,磁通量等也具有隧道效应,这就是宏观量子隧道效应。它限定了磁存储信息的时间极限和微电子器件的尺寸极限。 2. 磁性复合纳米材料的制备方法 2.1水热合成法 水热合成法是液相中制备纳米粒子的一种新方法。一般是在100~300摄氏度温度下和高气压环境下使无机或有机化合物与水化合,通过对加速渗透析反应和物理过程的控制,得到改进的无机物,再过滤,洗涤,干燥,从而得到高纯,超细的各类微粒子。研究发现以FeC13为铁源,AOT为表面活性剂,N2H4·H20(50%)为还原剂水热合成 Fe3O4纳米颗粒时,反应温度和时间,表面活性剂和还原剂浓度对最终产物的尺寸形貌、分散性和磁性有明显影响。还有通过调节水热反

高分子液晶材料

高分子液晶材料 高分子1101 田原3110705027 摘要: 液晶高分子是在一定条件下能以液晶相态存在的高分子,高分子化合物的功能特性和液晶相序的有机结合赋予了液晶高分子以鲜明的个性和特色,以高强度、高模量、低热膨胀率、耐辐射和化学药品腐蚀等优异性能开辟了特种高分子材料的新领域。在机械、电子、航空航天等领域的应用已崭露头角,目前正向生命科学、信息科学、环境科学蔓延渗透,并将波及其它科技领域。 关键词:高分子液晶材料历史与发展结构与性能 一、概述 液晶LC D(L iq ui d Crysta l Display)对于许多人而言已经不是一个新鲜的名词。从电视到随身听的线控,它已经应用到了许多领域。液晶现象是1888年奥地利植物学家 F.Reintizer在研究胆甾醇苯甲酯时首先发现的。研究表明,液晶是介于液体和晶体之间的一种特殊的热力学稳定相态,它既具有晶体的各相异性,又有液态的流动性,液晶高分子就是具有液晶性的高分子,大多数由小分子量基元键结合而成,它是一种结晶态,既具有液体的流动性又具有晶体的各向异性特征。 二、液晶高分子材料的分类及其特性 目前,液晶高分子分类方法有三种。从液晶基元在分子中所处的位置可分为主链型和侧链型两类。从应用的角度可分为热致型和溶致型两类,这两种分类方法是相互交叉的,即主链型液晶高分子同样具有热致型和溶致型,而热致型液晶高分子又同样存在主链型和侧链型。从液晶高分子在空间排列的有序性不同,液晶高分又有近晶型、向列型、胆甾型三种不同的结构类型。 1、主链型液晶高分子 主链型高分子液晶是指介晶基元处于主链中的一类高分子材料。在20世纪70 年代中期以前,它们多是指天然大分子液晶材料。自从D upont 公司首次获得聚芳香酰胺的溶液型主链型高分子液晶性质的应用以来,主链型高分子液晶材料的合成、结构与性能关系和应用等都得以很大发展。按液晶形成过程,主链型高分子液晶可以分为溶液型主链高分子液晶和热熔型主链高分子液晶。a:溶液型主链高分子液晶 其研究最多的则是聚芳香酰胺类和聚芳香杂环类聚合物。酰胺为代表的一类溶液型高分子液晶而言,就必须借助于极强的溶剂,

磁性高分子材料的分类

磁性高分子材料的分类 磁性高分子材料通常可分为复合型和结构型两种。前者是指以高分子材料与各种无机磁性物质通过混合粘结、填充复合、表面复合、层积复合等方式加工制得的磁性体,如磁性橡胶、磁性树脂、磁性薄膜、磁性高分子微球等;后者是指不用加入无机磁性物,高分子结构自身具有强磁性的材料,由于比重小、电阻率高,其强磁性来源与传统无机磁性材料很不相同,因此具有重要的理论意义和应用前景。 1、复合型磁性高分子材料 复合型磁性高分子材料主要是指在塑料或橡胶中添加磁粉和其他助剂,均匀混合后加工而成的一种复合型材料。复合型高分子磁性材料分为树脂基铁氧体类高分子共混磁性材料和树脂基稀土填充类高分子共混磁性材料两类,简称为铁氧体类高分子磁性材料和稀土类高分子磁性材料,目前以铁氧体类高分子磁性材料为主。 (1)铁氧体类高分子磁性材料 铁氧体类高分子磁性材料具有质轻、柔韧、成型后收缩小、制品设计灵活等特点,可制成薄壁或复杂形状的制品。但是其磁性不仅比烧结磁铁的差,也比稀土类磁性塑料的差。如果大量填充磁粉,制品的加工性和强度都会下降。所以铁氧体类高分子磁性材料主要用于家电和日用品。 (2)稀土类高分子磁性材料 填充稀土类磁粉制作的高分子磁性材料属于稀土高分子磁性材料。它与烧结型稀土类磁铁相比,虽然在磁性和耐热性方面较差,但

其成型性和力学性能优良,组装和使用方便,废品率低。稀土类高分子磁性材料的磁性虽不如稀土类烧结磁铁,但优于铁氧体类烧结磁铁,其力学强度、耐热性能和磁性能均优于铁氧体类高分子磁性材料。稀土类高分子磁性材料的加工性能较出色,可以满足电子工业对电子电气元件小型化、轻量化、高精密化和低成本的要求,可应用于小型精密电机、通讯设备传感器、继电器、仪器仪表、音响设备等多种领域,将成为今后高分子磁性材料发展的方向。 (3)复合型磁性高分子材料的粘结剂 目前磁性塑料的粘结剂主要是橡胶、热固性树脂和热塑性树脂。橡胶类粘结剂包括天然橡胶和合成橡胶,主要用于柔性复合磁体制造;热固性粘结剂一般用环氧树脂和酚醛树脂;热塑性粘结剂主要为聚酰胺(PA)、聚丙烯和聚乙烯等,其中PA类最常见,目前最常用的PA基体是尼龙6、尼龙66和尼龙12等。 (4)影响复合型磁性高分子材料性能的影响因素 影响复合型高分子材料磁性能的主要是磁粉的用量和粒径。磁性高分子材料的磁性能基本上不受高分子种类的影响,而主要取决于磁粉的性质和用量;磁粉的粒径对磁性高分子材料的磁性能有较大的影响,一般如果磁粉粒径较大,粒度分布不均匀,则其在复合材料中的分散不均匀,导致内退磁现象增强,还会造成应力集中,降低物理机械性能。磁粉粒径较小时,磁粉在高分子材料中分散均匀,且退磁能力也越小。当粒径足够小时,各颗粒成为单畴,这样当磁粉的粒径接近磁畴的临界晶粒直径时,磁性材料的矫顽力会大大增加。因此从理

磁性功能高分子简介

磁性功能高分子简介 厦门大学化学化工学院温庆如 04300066 摘要综述磁性功能高分子的发展概况,简要介绍磁性功能高分子的分类及应用领域,展望磁性功能高分子的发展前景。 关键词磁性功能高分子复合型磁性高分子材料结构型磁性高分子材料 1、前言 进入20世纪80年代以来,一场与之相适应的“新材料革命”蓬勃兴起。新材料的开发 重点是功能材料、高性能陶瓷材料和复合材料。在功能材料中, 功能高分子材料占有举足轻重的地位,其内容丰富、品种繁多、发展迅速,已成为新技术革命必不可少的关键材料,并将对21世纪人类社会生活产生巨大影响。对功能高分子材料,目前尚无明确的定义,一般认为,是指除了具有一定的力学性能之外,还具有特定功能(如导电性、电磁性、催化性和生物活性等) 的高分子材料。现代多学科交叉的特点促进了功能高分子材料的研究与发展,从功能及应用 上可将功能高分子材料大致分为以下几类: 电磁功能高分子材料、生物医用高分子材料、化学功能高分子材料和光功能高分子材料。 在人类的材料发展史上,磁性材料领域曾长期为含铁或稀土金属元素的合金和氧化物等无机磁性材料所独占。但由于传统磁性材料必须经过高温冶炼才能得到应用,而且密度大,精密加工成型很困难,加工过程中的磁损耗很大等原因,使得传统磁性材料在高新技术和尖端科技应用受到很大限制。20世纪80年代中期出现了新的交叉学科——有机和高分子磁学。前苏联的科学家Ovchinnikov,西班牙的F.Palacio,日本的T.Sugano,法国的Kahn等为此作 出了巨大的贡献。高分子磁性材料因为其结构种类呈现多样性,较适合通过化学方法合成得 到磁性能与力学性能、光性能、电性能均较好的综合性能。这类磁性材料还具有磁损耗小和特轻质磁性等特点,很适合应用在超高频装置、超高密度存贮材料、吸波材料、微电子工业 和宇航等领域。随着社会发展和科技进步,磁性高分子材料的合成和应用研究成果层出不穷,已成为当今功能高分子材料研究领域中的热点之一。 2、磁性功能高分子材料的分类 磁性高分子材料主要分为复合型和结构型两大类。复合型磁性高分子材料[5]、[6]是指以 高分子材料与各种各种无机磁性材料通过混合粘结、填充复合、表面复合、层积复合等方式加工制得的磁性体从复合材料概念出发,通称为磁性树脂基复合材料。结构型磁性高分子材料[2]是指分子本身具有强磁性的聚合物,如聚双炔和聚炔类聚合物,含氮基团取代苯衍生物,聚丙稀热解产物等。 3、复合型磁性高分子材料[1]、[5] 复合型磁性高分子材料是已实现商品化生产的重要磁性高分子材料,可分为树脂基铁氧体类高分子共混磁性材料和树脂基稀土填充类高分子共混磁性材料两类, 简称为铁氧体类 高分子磁性材料和稀土类高分子磁性材料, 目前以铁氧体类高分子磁性材料为主。 3.1铁氧体类高分子磁性材料 与烧结磁铁相比,铁氧体类高分子磁性材料具有质轻、柔韧、成型后收缩小、制品设计灵活等特点,可制成薄壁或复杂形状的制品,可连续成型、批量生产,可加入嵌件而无需后加工,

相关文档