文档库 最新最全的文档下载
当前位置:文档库 › 生物医学工程专业英语及其翻译

生物医学工程专业英语及其翻译

生物医学工程专业英语及其翻译
生物医学工程专业英语及其翻译

1 Unit 1 Biomedical Engineering Lesson 1

A History of Biomedical Engineering

In its broadest sense, biomedical engineering has been with us for centuries, perhaps even thousands of years. In 2000, German archeologists uncover a 3,000-year-old mummy from Thebes with a wooden prosthetic tied to its foot to serve as a big toe. Researchers said the wear on the bottom surface suggests that it could be the oldest known limb prosthesis. Egyptians also used hollow reeds to look and listen to the internal goings on of the human anatomy. In 1816, modesty prevented French physician Rene Laennec from placing his ear next to a young woman’s bare chest, so he rolled up a newspaper and listened through it, triggering the idea for his invention that led to today’s ubiquitous stethoscope.

广义上来说,生物医学工程与我们已经几个世纪以来,甚至数千年。2000年,德国考古学家发现一个3000岁高龄的木乃伊从底比斯木制假肢与作为大脚趾的脚。研究人员说,穿底部表面上表明它可能是最古老的下肢义肢。埃及人也用空心的芦苇外观和听人类解剖学的内部行为。1816年,谦虚阻止法国医生雷奈克把他的耳朵旁边一个年轻女人的裸胸,所以他卷起报纸和听它,引发他的发明的想法,导致今天无处不在的听诊器。

No matter what the date, biomedical engineering has provided advances in medical technology to improve human health. Biomedical engineering achievements range from early devices, such as crutches, platform shoes, wooden teeth, and the ever-changing cache of instruments in a doctor’s black bag, to more modern marvels, including pacemakers, the heart-lung machine, dialysis machines, diagnostic equipment, imaging technologies of every kind, and artificial organs, implants and advanced prosthetics. The National Academy of Engineering estimates that there are currently about 32,000 bioengineers working in various areas of health technology.

无论什么日期,生物医学工程提供了先进的医疗技术来改善人类健康。生物医学工程成就范围从早期设备,如拐杖,松糕鞋,木制的牙齿,和不断变化的缓存工具在医生的黑包,更现代的奇迹,包括心脏起搏器、人工心肺机,透析机器,诊断设备,各种成像技术,和人造器官,移植和先进的假肢。美国国家工程学院的估计,目前大约有32000生物各领域工作的卫生技术。

As an academic endeavor, the roots of biomedical engineering reach back to early developments in electrophysiology, which originated about 200 years ago. An early landmark in electrophysiology occurred in 1848 when DuBois Reymond published the widely recognized Ueber die tierische Elektrizitaet. Raymond’s contemporary, Hermann von Helmholtz, is credited with applying engineering principles to a problem in physiology and dentifying the resistance of muscle and nervous tissues to direct current.

作为一个学术努力,生物医学工程的根源及早期电生理学的发展,起源于约200年前。电生理学的早期具有里程碑意义的发生在1848年当杜布瓦Reymond发表了公认Ueber死tierische Elektrizitaet。赫尔曼·冯·雷蒙德?当代亥姆霍兹因应用工程原则问题在生理学和dentifying 电阻直流的肌肉和神经组织。

In 1895, Wilhelm Roentgen accidentally discovered that a cathode-ray tube could make a sheet of paper coated with barium platinocyanide glow, even when the tube and the paper were in separate rooms. Roentgen decided the tube must be emitting some kind of penetrating rays, which he called “X”rays for unknown. This set off a flurry of research into the tissue-penetrating and tissue-destroying properties of X-rays, a line of research that ultimately produced the modern array of medical imaging technologies and virtually eliminated the need for exploratory surgery.

1895年,威廉伦琴偶然发现,阴极射线管可以与氰亚铂酸盐钡一张纸涂布发光,即使管和纸是在单独的房间。伦琴决定管必须发出某种穿透光线,他称为“X”光线不明。这引发了一系列tissue-penetrating和专治属性的研究x射线,一系列的研究,最终得出了现代医学影像技术和几乎消除了探索性手术的必要性。

Biomedical engineering’s unique mix of engineering, medicine and science emerged 2 alongside biophysics and medical physics early this century. At the outset, the three were virtually indistinguishable and none had formal training programs.

生物医学工程的独特工程、医学和科学出现2与生物物理学和医学物理学在本世纪初。开始的时候,三人几乎无法区分,没有正式的培训计划。

Between World War I and World War II a number of laboratories undertook research in biophysics and biomedical engineering. Only one offered formal training: the Oswalt Institute for Physics in Medicine, established in 1921 in Frankfurt, Germany, forerunner of the Max Planck Institute for Biophysics.

在第一次世界大战和第二次世界大战的实验室进行了生物物理学和生物医学工程的研究。只有一个提供正式的培训:Oswalt物理医学研究所,成立于1921年在法兰克福,德国马克斯普朗克生物物理学的先驱。

The Institute’s founder, Friedrich Dessauer, pioneered research into the biological effects of ionizing radiation. The Oswalt Institute and the University in Frankfurt soon established formal ties that led to a Ph.D. program in biophysics by 1940. Research topics included the effects of X-rays on tissues and the electrical properties of tissues. The staff of 20 included university lecturers, research fellows, assistants and technicians.

研究所的创始人,弗里德里希·德绍,率先研究电离辐射的生物效应。Oswalt研究所和大学在法兰克福很快建立了正式的关系,在1940年导致了生物物理学博士学位项目。研究主题包括x射线的影响在组织和组织的电特性。员工20包括大学教师、研究员、助理和技术人员。Following the Second World War, administrative committees began forming around the combined areas of engineering, medicine and biology. A biophysical society was formed in Germany in 1943. Five years later, the first conference of engineering in medicine and biology convened in the United States, under the auspices of the Institute of Radio Engineers (forerunner of the Institute of Electrical and Electronics Engineers), the American Institute for Electrical Engineering, and the Instrument Society of America. It was a small meeting. About 20 papers were delivered to an audience of fewer than 100. The first 10 annual conferences paid most of their attention to ionizing radiation and its implications. As conference topics broadened, so did attendance. The topic of the 1958 conference, Computers in Medicine and Biology, drew 70 papers and more than 300 attendees. By 1961, conference attendance swelled to nearly 3,000.

第二次世界大战之后,行政委员会开始在工程领域相结合,形成医学和生物学。生物物理协会于1943年在德国成立。五年后,工程在医学和生物学的第一次会议召开,在美国的支持下的无线电工程师学会(电气和电子工程师协会的前身),美国电子工程研究所和美国社会工具。这是一个小型的会议。大约20个文件是少于100的传递给观众。前10年会大部分关注电离辐射及其影响。作为会议主题扩大,出席。1958会议的主题、计算机在医学和生物学,吸引了70篇论文和70多名与会者。参加会议,到1961年增加到近3000人。

The 1951 IRE convention generated enough interest in medical electronics that the IRE formed a Professional Group on Medical Electronics. An early action of this group was to collaborate on the Annual Conference on Electronic Instrumentation and Nucleonics in Medicine, which the AIEE[1] began about 1948. In 1954, the AIEE, the IRE and the ISA formed the Joint Executive Committee

on Medicine and Biology, which began organizing the annual conferences.

1951愤怒的约定产生足够的兴趣,医疗电子产品的愤怒形成一个专业小组医疗电子产品。本集团的早期行动是合作的年度会议上电子仪器和原子核物理学在医学、AIEE[1]大约始于1948年。1954年,AIEE,愤怒和ISA形成联合执行委员会医学和生物学,开始组织的年度会议。In 1963, the AIEE and the IRE merged to form the Institute of Electrical and Electronics Engineering. Contributing forces for the merger were the members of the AIEE and IRE technical committees for biomedical engineering. Most members favored it and had been collaborating with their counterparts in the other society for years.

1963年,AIEE和愤怒合并形成了电气与电子工程学院。贡献力量的合并是成员AIEE和愤怒为生物医学工程技术委员会。大多数成员支持,在其他社会和同行合作多年。

At the merger it was decided to carry over to the IRE system of Professional Groups. The IRE Professional Group on Medical Electronics became the IEEE Professional Group on 3 Bio-Medical Engineering (PGBME), the name change reflecting the fact that many members, particularly former AIEE members, were concerned with non-electronic topics.

Also in the early 1960s the NIH[2] took three significant steps to support biomedical engineering. First, it created a program-project committee under the General Medical Sciences Institute to evaluate program-project applications, many of which served biophysics and biomedical engineering. Then it set up a biomedical engineering training study section to evaluate training-grant applications, and it established two biophysics study sections. A special “floating”study section processed applications in bioacoustics and biomedical engineering. Many applications did not make it to the biomedical engineering study section and ended up in radiology, physiology or other panels.

The diversity of work in biomedical engineering and the diversity of background of the people contributing to this field made it difficult for a single organization to represent everyone[3]. In the 1960s there were efforts by some leaders of the PGBME, which became the IEEE Engineering in Medicine and Biology Society, to achieve greater autonomy within the IEEE in order to accommodate a more diverse membership. Because there were quite a few professional groups, several umbrella organizations were established to facilitate cooperation. In the late 1960s the Alliance for Engineering in Medicine and Biology was formed. In 1968, the Biomedical Engineering Society was formed to give "equal status to representatives of both biomedical and engineering interests and promote the increase of biomedical engineering knowledge and its utilization". Initially, the membership of the society consisted of 171 founding members and 89 charter members. Membership now numbers nearly 1,200 professional biomedical engineers, with another 1,600 student members.

在合并决定继续愤怒系统的专业团体。医疗电子产品成为了IEEE愤怒专业小组3生物医学工程专业小组(PGBME),许多成员名称更改反映了事实,尤其是前AIEE成员关心非电子的话题。

也在1960年代初美国国立卫生研究院[2]花了三个重要的步骤来支持生物医学工程。首先,它创建了一个项目委员会一般医学科学研究所评估项目应用程序,其中很多生物物理学和生物医学工程。然后建立了一个生物医学工程训练研究部分,评估培训应用,和它建立了两个生物物理学研究部分。一个特殊的“漂浮”在生物声学研究部分加工应用和生物医学工程。许多应用程序没有生物医学工程研究部分,最终在放射学,生理学或其他面板。

在生物医学工程工作的多样性和背景的多样性导致这一领域使一个组织难以代表每个人[3]。在1960年代有PGBME的一些领导人,努力成为IEEE工程在医学和生物学的社会,为了实现更大的自治权在IEEE为了适应更多元化的会员。因为有不少专业团体,建立了几个伞组织促进合作。在1960年代后期工程在医学和生物学联盟成立。1968年,生物医学工程学会成立给“地位平等的代表生物医学和工程利益和促进生物医学工程知识的增加,其利用率”。最初,

社会的成员包括171创始成员和89宪章》的成员。现在会员数量近1200专业生物医学工程师,1600年与另一个学生成员。

The society awarded the Alza Distinguished Lectureship from 1971 to 1993 to encourage the theory and practice of biomedical engineering. The BMES Distinguished Lectureship Award was founded in 1991 to recognize outstanding achievements in biomedical engineering. Other honors include a young investigator award, the BMES Distinguished Service Award, and the Presidential Award, established in 1999 to enable BMES presidents to recognize extraordinary leadership within the society.

In addition to the professional societies, the field of biomedical engineering received a large ally when The Whitaker Foundation was created in 1975, upon the death of U.A. Whitaker. As an engineer and philanthropist, Whitaker recognized that major contributions to improving human health would come from the merging of medicine and engineering. Since its inception, the foundation has primarily supported interdisciplinary medical research and 4 education, with the principal focus being on biomedical engineering. The foundation has become the nation’s largest private benefactor of biomedical engineering. By 2002, it had contributed more than $615 million to universities and medical schools to support faculty research, graduate students, program development, and construction of facilities.

In 1990 the National Science Foundation and The Whitaker Foundation observed that in spite of the numerous academic programs calling themselves "bioengineering" or "biomedical engineering", there was no structure for this widely diversified field. Because many advances in biomedical engineering were generated through the collaboration of engineers and clinical scientists in a number of different fields, the evolution of biomedical engineering as a profession in the 1970s and 1980s was characterized by the emergence of separate professional societies with a focus on applications within their own field.

协会授予Alza杰出讲师职务从1971年到1993年,鼓励生物医学工程的理论和实践。博雅杰出讲师职务奖表彰杰出成就的成立于1991年在生物医学工程。其他荣誉还包括一个年轻调查员奖,bme杰出服务奖,和总统奖,成立于1999年,使bme总统认识到非凡的领导在社会。

除了专业的社会,生物医学工程领域时收到一大笔盟友惠特克基金会成立于1975年,在U.A.惠特克的死亡。作为一个工程师和慈善家,惠特克承认,改善人类健康主要贡献来自医学和工程学的合并。自成立以来,该基金会主要支持跨学科医学研究和教育,主要集中在生物医学工程上。基金会已成为美国最大的私人捐助者生物医学工程。到2002年,它已经贡献了超过6.15亿美元的大学和医学院支持教师研究,研究生,项目开发和建设的设施。

1990年,美国国家科学基金会和惠特克基金会指出,尽管许多学术项目自称“生物工程”或“生物医学工程”,没有结构广泛多样化的领域。因为许多生物医学工程的进步通过协作生成工程师和临床科学家在许多不同的领域,生物医学工程的发展作为一个行业在1970年代和1980年代的独立的专业协会,专注于应用程序的出现在自己的领域。

As a step toward unification, the American Institute for Medical and Biological Engineering was created in 1992. AIMBE was born from the realization that an umbrella organization was needed to address the issues of public policy and public and professional education that comprise these engineering sciences. Ten societies saw the virtue of this approach and formed the original members of AIMBE. Today, its 17 society members work to "establish a clear and comprehensive identity for the field of medical and biological engineering, and improve intersociety relations and cooperation within the field of medical and biological engineering".

The earliest academic programs began to take shape in the 1950s. Their establishment was aided by Sam Talbot of Johns Hopkins University, who petitioned the National Institutes of Health for funding to support a group discussion of approaches to teaching biomedical engineering. Ultimately three universities were represented in these discussions: The Johns Hopkins University, the University of Pennsylvania and the University of Rochester. These three institutions, along with Drexel University, were among the first to win important training grants for biomedical engineering from the National Institutes of Health.

In 1973, discussions started about broadening the base of Pennsylvania’s graduate Department of Biomedical Electronic Engineering by including other activities and adopting and undergraduate curriculum. Its present graduate program is an extension of the earlier one.

During the late 1960s and early 1970s, development at other institutions followed similar paths, but occurred more rapidly in most cases due to the growing opportunities of the field and in response to the important NIH initiative to support the development of the field. The earlier institutions were soon followed by a second generation of biomedical engineering programs and departments. These included: Boston University in 1966; Case Western 5 Reserve University in 1968; Northwestern University in 1969; Carnegie Mellon, Duke University, Renssselaer and a joint program between Harvard and MIT[4] in 1970; Ohio State University and University of Texas, Austin, in 1971; Louisiana Tech, Texas A&M and the Milwaukee School of Engineering in 1972; and the University of Illinois, Chicago in 1973.

一步统一,美国医学和生物工程研究所成立于1992年。AIMBE诞生于意识到伞组织需要解决问题的公共政策和公共和专业教育,包括这些工程科学。十个社会看到这种方法的优点,形成了原始AIMBE的成员。今天,17个社会成员努力”建立一个清晰的和全面的医学和生物工程领域的身份,并改善intersociety合作关系在医学和生物工程领域”。

最早的学术项目在1950年代开始成型。他们的建立是在约翰霍普金斯大学的萨姆·塔尔博特的帮助下,他请求美国国立卫生研究院的资金支持生物医学工程教学方法的小组讨论。最终三所大学在这些讨论代表:约翰霍普金斯大学,宾夕法尼亚大学和罗彻斯特大学的。这三个机构,随着德雷塞尔大学,是首批获得重要的培训基金从美国国立卫生研究院生物医学工程。

1973年,开始讨论扩大宾夕法尼亚的基础生物医学电子工程系毕业的包括其他活动,采用和本科课程。目前的研究生课程是早期的一种扩展。

在1960年代末和1970年代初,发展其他机构沿着这条路走下去,但发生更快在大多数情况下,由于日益增长的机会,为了应对重要NIH行动来支持这一领域的发展。早些时候机构很快就接着第二代生物医学工程项目和部门。包括:波士顿大学;1966年5凯斯西储大学;1968年西北大学;1969年卡内基梅隆大学,杜克大学,Renssselaer和哈佛和麻省理工学院联合项目[4];1970年俄亥俄州立大学和德克萨斯大学奥斯汀;1971年路易斯安那理工大学,德克萨斯A&M大学和密尔沃基工程学院;1972年1973年芝加哥和伊利诺斯州大学的。

The number of departments and programs continued to rise slowly but steadily in the 1980s and early 1990s. In 1992, The Whitaker Foundation initiated large grant programs designed to help institutions establish or develop biomedical engineering departments or programs. Since then, the numbers of departments and programs have risen to more than 90. Some of the largest and most prominent engineering institutions in the country, such as the Georgia Institute of Technology, have

established programs and emerged as leaders in the field. Many other new and existing programs have benefited from the foundation

’s support.

A major development took place in late 2000 when President Clinton signed a bill creating the National Institute of Biomedical Imaging and Bioengineering at the NIH. According to NIBIB’s website, its mission is to "improve health by promoting fundamental discoveries, design and development, and translation and assessment of technological capabilities". The Institute coordinates with biomedical imaging and bioengineering programs of other agencies and NIH institutes to support imaging and engineering research with potential medical applications and facilitates the transfer of such technologies to medical applications.

The newest of the NIH institutes, NIBIB spent much of 2001 building program and administrative staff, preparing a budget request, setting up office space, determining funding and grant identification codes and procedures, and identifying program (research, training, and communication) focus areas and opportunities. NIBIB assumed administration of the NIH's Bioengineering Consortium (BECON) in September 2001, and awarded its first research grant in April 2002.

部门和项目的数量继续增长缓慢但稳步在1980年代和1980年代初。1992年,惠特克基金会发起大型格兰特计划旨在帮助机构建立或发展生物医学工程部门或项目。从那时起,部门和项目的数量已经上升到超过90人。一些最大和最著名的工程机构,如美国乔治亚理工学院(Georgia Institute of Technology),建立了项目和领域成为领导者。许多其他新的和现有项目受益于基金会的支持。

一个主要的发展发生在2000年晚些时候,克林顿总统签署了一项法案创建国家生物医学成像和生物工程研究所美国国立卫生研究院。根据NIBIB的网站,它的使命是“改善健康通过促进基本发现,设计和开发,和翻译和技术能力评估”。生物医学成像和生物工程研究所坐标与项目的其他机构和国家卫生研究院机构支持成像和工程研究与潜在的医学应用和促进这些技术在医学应用上的转移。

最新的美国国立卫生研究院的机构,NIBIB 2001建设项目和行政人员,大部分时间都在准备预算要求,建立办公空间,确定资金和格兰特识别代码和程序,并确定项目(研究、培训和交流)重点领域和机会。NIBIB认为政府的美国国立卫生研究院生物工程协会(BECON)2001年9月和2002年4月首次获得科研资助。

Lesson 2 What is a Biomedical Engineer?

A Biomedical Engineer uses traditional engineering expertise to analyze and solve problems in biology and medicine, providing an overall enhancement of health care. Students choose the biomedical engineering field to be of service to people, to partake of the excitement of working with living systems, and to apply advanced technology to the complex problems of medical care. The biomedical engineer works with other health care professionals including physicians, nurses, therapists and technicians. Biomedical engineers may be called upon in a wide range of capacities: to design instruments, devices, and software, to bring together knowledge from many technical sources to develop new procedures, or to conduct research needed to solve clinical problems.

生物医学工程师使用传统的工程技术在生物学和医学分析问题和解决问题,提供一个卫生保健的整体提高。学生选择生物医学工程领域服务的人来说,参加工作与生活系统的兴奋,并将先进的技术应用到医疗保健的复杂问题。生物医学工程师的工作与其他卫生保健专业人员包括医生、护士、理疗师和技术人员。生物医学工程师可能要求在范围广泛的能力:设计工具,设备和软件,汇集知识外,还可以从许多技术资源开发新程序,或进行研究需要解决的临床问题。

What are Some of the Specialty Areas?

In this field there is continual change and creation of new areas due to rapid advancement in technology; however, some of the well established specialty areas within the field of biomedical engineering are: bioinstrumentation; biomaterials; biomechanics; cellular, tissue and genetic engineering; clinical engineering; medical imaging; orthopaedic surgery; rehabilitation engineering; and systems physiology.

Bioinstrumentation is the application of electronics and measurement techniques to develop devices used in diagnosis and treatment of disease. Computers are an essential part of bioinstrumentation, from the microprocessor in a single-purpose instrument used to do a variety of small tasks to the microcomputer needed to process the large amount of information in a medical imaging system.

Biomaterials include both living tissue and artificial materials used for implantation. Understanding the properties and behavior of living material is vital in the design of implant materials. The selection of an appropriate material to place in the human body may be one of the most difficult tasks faced by the biomedical engineer. Certain metal alloys, ceramics, polymers, and composites have been used as implantable materials. Biomaterials must be nontoxic, non-carcinogenic, chemically inert, stable, and mechanically strong enough to withstand the repeated forces of a lifetime. Newer biomaterials even incorporate living cells in order to provide a true biological and mechanical match for the living tissue. 在这个领域有持续的变化和创造新领域由于技术的快速进步,然而,一些良好的生物医学工程领域内的专业领域是:生物仪器;生物材料;生物力学;细胞,组织和基因工程;临床工程;医学成像;骨科手术;改造工程、系统生理学。

生物仪器是电子测量技术的应用开发设备用于疾病的诊断和治疗。计算机是生物仪器的重要组成部分,从微处理器专用仪器用来做各种小任务所需的微机处理大量的信息在医学成像系统中。

生物材料包括活组织和人工材料植入。理解生活的属性和行为材料植入材料的设计是至关重要的。选择一个合适的材料放置在人体可能面临的最困难的任务之一,生物医学工程师。某些金属合金、陶瓷、聚合物和复合材料作为植入材料。生物材料必须无毒,non-carcinogenic、惰性、稳定,机械强大到足以承受一生的重复的力量。新的生物材料甚至把活细胞提供一个真正的生物活组织和机械匹配。

Biomechanics applies classical mechanics (statics, dynamics, fluids, solids, thermodynamics, and continuum mechanics) to biological or medical problems. It includes the study of motion, material deformation, flow within the body and in devices, and transport of chemical constituents across biological and synthetic media and membranes. Progress in biomechanics has led to the development of the artificial heart and heart valves, artificial joint replacements, as well as a better understanding of the function of the heart and lung, blood vessels and capillaries, and bone, cartilage, intervertebral discs, ligaments and tendons of the musculoskeletal systems.

Cellular, Tissue and Genetic Engineering involve more recent attempts to attack biomedical problems at the microscopic level. These areas utilize the anatomy, biochemistry and mechanics of cellular and sub-cellular structures in order to understand disease processes and to be able to intervene at very specific sites. With these capabilities, miniature devices deliver compounds that can stimulate or inhibit cellular processes at precise target locations to promote healing or inhibit disease formation and progression.

Clinical Engineering is the application of technology to health care in hospitals. The clinical engineer is a member of the health care team along with physicians, nurses and other hospital staff[1]. Clinical engineers are responsible for developing and maintaining computer databases of medical instrumentation and equipment records and for the purchase and use of sophisticated medical instruments. They may also work with physicians to adapt instrumentation to the specific needs of the physician and the hospital. This often involves the interface of instruments with computer systems and customized software for instrument control and data acquisition and analysis[2]. Clinical engineers are involved with the application of the latest technology to health care.

生物力学应用经典力学(静力学、动力学、液体、固体、热力学和连续介质力学)生物或医学问题。它包括运动的研究,材料变形、流在身体和设备,和运输的化学成分在生物和合成媒体和膜。生物力学的进展已经导致人工心脏和心脏瓣膜的发展,人工关节置换,以及更好地了解心脏和肺的功能,血管和毛细血管、骨、软骨、椎间盘、韧带和肌腱的肌肉骨骼系统。

细胞、组织和基因工程涉及最近试图攻击生物医学在微观层面的问题。这些地区利用解剖学,生物化学和细胞和亚细胞结构的力学为了了解疾病过程和能够干预非常具体的地点。这些功能,小型设备提供化合物可以刺激或抑制细胞过程精确的目标位置,促进愈合或抑制疾病的形成和发展。

临床工程技术医疗在医院的应用。临床工程师是健康护理小组的成员以及医生、护士和其他医护人员[1]。临床工程师负责开发和维护计算机的数据库记录和医疗仪器、设备的购买和使用复杂的医疗器械。他们也可能与医生合作,使仪器适应特定需求的医生和医院。这通常涉及仪器与计算机系统的接口和定制软件仪器控制和数据采集和分析[2]。临床工程师参与卫生保健的最新技术的应用。

Medical Imaging combines knowledge of a unique physical phenomenon (sound, radiation, magnetism, etc.) with high speed electronic data processing, analysis and display to generate an image. Often, these images can be obtained with minimal or completely noninvasive procedures, making them less painful and more readily repeatable than invasive techniques.

Orthopaedic Bioengineering is the specialty where methods of engineering and computational mechanics have been applied for the understanding of the function of bones, 9 joints and muscles, and for the design of artificial joint replacements. Orthopaedic bioengineers analyze the friction, lubrication and wear characteristics of natural and artificial joints; they perform stress analysis of the musculoskeletal system; and they develop artificial biomaterials (biologic and synthetic) for replacement of bones, cartilages, ligaments, tendons, meniscus and intervertebral discs. They often perform gait and motion analyses for sports performance and patient outcome following surgical procedures. Orthopaedic bioengineers also pursue fundamental studies on cellular function, and mechano-signal transduction.

Rehabilitation Engineering is a growing specialty area of biomedical engineering. Rehabilitation engineers enhance the capabilities and improve the quality of life for individuals with physical and cognitive impairments. They are involved in prosthetics, the development of home, workplace and transportation modifications and the design of assistive technology that enhance seating and positioning, mobility, and communication. Rehabilitation engineers are also developing hardware and software computer adaptations and cognitive aids to assist people with cognitive difficulties.

医学成像结合知识的独特的物理现象(声音、辐射、磁场等)与高速电子数据处理、分析和显示生成一个图像。通常,这些图像可以获得最小的或完全非侵入性程序,让他们不那么痛苦并且更容易重复的非侵入性技术。

骨科生物工程的专业工程和计算力学方法已经申请了骨骼的功能的理解,9关节和肌肉,人工关节置换的设计。骨科生物分析的摩擦、润滑和磨损特征的自然和人工关节;他们执行肌肉骨骼系统的应力分析;他们发展人工生物材料(生物和合成)替代骨骼、软骨、韧带、肌腱、半月板和椎间盘。他们经常对体育进行步态和运动分析性能和病人手术后的结果。骨科生物也追求基本细胞功能研究,和mechano-signal转导。

康复工程是一个日益增长的生物医学工程专业。康复工程师提高能力,提高个人的生活质量与物理和认知障碍。它们参与假肢,家乡的发展,工作场所和交通的设计修改和辅助技术,提高座位和定位,移动和通信。康复工程师也在开发硬件和软件计算机适应性和认知艾滋病协助人们认知的困难。

Systems Physiology is the term used to describe that aspect of biomedical engineering in which engineering strategies, techniques and tools are used to gain a comprehensive and integrated understanding of the function of living organisms ranging from bacteria to humans[3]. Computer modeling is used in the analysis of experimental data and in formulating mathematical descriptions of physiological events. In research, predictor models are used in designing new experiments to refine our knowledge. Living systems have highly regulated feedback control systems that can be examined with state-of-the-art techniques. Examples are the biochemistry of metabolism and the control of limb movements.

These specialty areas frequently depend on each other. Often, the biomedical engineer who works in an applied field will use knowledge gathered by biomedical engineers working in other areas. For example, the design of an artificial hip is greatly aided by studies on anatomy, bone biomechanics, gait analysis, and biomaterial compatibility. The forces that are applied to the hip can be considered in the design and material selection for the prosthesis. Similarly, the design of systems to electrically stimulate paralyzed muscle to move in a controlled way uses knowledge of the behavior of the human musculoskeletal system. The selection of appropriate materials used in these devices falls within the realm of the 10 biomaterials engineer.

系统生理学方面的术语用来描述生物医学工程的工程策略,技术和工具被用来获得全面、综合的了解生物体的功能从细菌到人类[3]。使用计算机模拟实验数据的分析和制定生理事件的数学描述。在研究中,预测模型用于设计新的实验来完善我们的知识。生命系统高度监管的反馈控制系统,可以与最先进的检测技术。的例子是代谢的生化和肢体动作的控制。

这些专业领域经常互相依赖。通常,一个应用领域的生物医学工程师工作将使用在其他领域知识收集的生物医学工程师的工作。例如,人工髋关节的设计极好地研究解剖学、骨生物力学、步态分析、生物兼容性。应用到臀部的力量可以被认为是在假体的设计和材料的选择。同样,系统的设计电刺激瘫痪肌肉控制的方式移动使用的知识人体肌肉骨骼系统的行为。选择适当的材料用于这些设备属于10生物材料领域的工程师。

Examples of Specific Activities

(完整版)医学专业英语翻译及答案

Chapter 1 Passage 1 Human Body In this passage you will learn: 1. Classification of organ systems 2. Structure and function of each organ system 3. Associated medical terms To understand the human body it is necessary to understand how its parts are put together and how they function. The study of the body's structure is called anatomy; the study of the body's function is known as physiology. Other studies of human body include biology, cytology, embryology, histology, endocrinology, hematology, immunology, psychology etc. 了解人体各部分的组成及其功能,对于认识人体是必需的。研究人体结构的科学叫解剖学;研究人体功能的科学叫生理学。其他研究人体的科学包括生物学、细胞学、胚胎学、组织学、内分泌学、血液学、遗传学、免疫学、心理学等等。 Anatomists find it useful to divide the human body into ten systems, that is, the skeletal system, the muscular system, the circulatory system, the respiratory system, the digestive system, the urinary system, the endocrine system, the nervous system, the reproductive system and the skin. The principal parts of each of these systems are described in this article. 解剖学家发现把整个人体分成骨骼、肌肉、循环、呼吸、消化、泌尿、内分泌、神经、生殖系统以及感觉器官的做法是很有帮助的。本文描绘并阐述了各系统的主要部分。 The skeletal system is made of bones, joints between bones, and cartilage. Its function is to provide support and protection for the soft tissues and the organs of the body and to provide points of attachment for the muscles that move the body. There are 206 bones in the human skeleton. They have various shapes - long, short, cube - shaped, flat, and irregular. Many of the long bones have an interior space that is filled with bone marrow, where blood cells are made. 骨骼系统由骨、关节以及软骨组成。它对软组织及人体器官起到支持和保护作用,并牵动骨胳肌,引起各种运动。人体有206根骨头。骨形态不一,有长的、短、立方的、扁的及不规则的。许多长骨里有一个内层间隙,里面充填着骨髓,这即是血细胞的制造场所。 A joint is where bones are joined together. The connection can be so close that no movement is possible, as is the case in the skull. Other kinds of joints permit movement: either back and forth in one plane - as with the hinge joint of the elbow - or movement around a single axis - as with the pivot joint that permits the head to rotate. A wide range of movement is possible when the ball - shaped end of one bone fits into a socket at the end of another bone, as they do in the shoulder and hip joints. 关节把骨与骨连接起来。颅骨不能运动,是由于骨与骨之间的连接太紧密。但其它的关节可允许活动,如一个平面上的前后屈伸运动,如肘关节;或是绕轴心旋转运动,如枢轴点允许头部转动。如果一根骨的球形末端插入另一根骨的臼槽里,大辐度的运动(如肩关节、髋关节)即成为可能。 Cartilage is a more flexible material than bone. It serves as a protective, cushioning layer where bones come together. It also connects the ribs to the breastbone and provides a structural base for the nose and the external ear. An infant's skeleton is made of cartilage that is gradually replaced by bone as the infant grows into an adult. 软骨是一种比一般骨更具韧性的物质。它是骨连结的保护、缓冲层。它把肋骨与胸骨连结起来,也是鼻腔与内耳的结构基础。一个婴儿的骨骼就是由软骨组成,然后不断生长、

工业设计专业英语英文翻译

工业设计原著选读 优秀的产品设计 第一个拨号电话1897年由卡罗耳Gantz 第一个拨号电话在1897年被自动电器公司引入,成立于1891年布朗强,一名勘萨斯州承担者。在1889年,相信铃声“中央交换”将转移来电给竞争对手,强发明了被拨号系统控制的自动交换机系统。这个系统在1892年第一次在拉波特完成史端乔系统中被安装。1897年,强的模型电话,然而模型扶轮拨条的位置没有类似于轮齿约170度,以及边缘拨阀瓣。电话,当然是被亚历山大格雷厄姆贝尔(1847—1922)在1876年发明的。第一个商业交换始建于1878(12个使用者),在1879年,多交换机系统由工程师勒罗伊B 菲尔曼发明,使电话取得商业成功,用户在1890年达到250000。 直到1894年,贝尔原批专利过期,贝尔电话公司在市场上有一个虚拟的垄断。他们已经成功侵权投诉反对至少600竞争者。该公司曾在1896年,刚刚在中央交易所推出了电源的“普通电池”制度。在那之前,一个人有手摇电话以提供足够的电力呼叫。一个连接可能仍然只能在给予该人的名义下提出要求达到一个电话接线员。这是强改变的原因。 强很快成为贝尔的强大竞争者。他在1901年引进了一个桌面拨号模型,这个模型在设计方面比贝尔的模型更加清晰。在1902年,他引进了一个带有磁盘拨号的墙面电话,这次与实际指孔,仍然只有170度左右在磁盘周围。到1905年,一个“长距离”手指孔已经被增加了。最后一个强的知名模型是在1907年。强的专利大概过期于1914年,之后他或他的公司再也没有听到过。直到1919年贝尔引进了拨号系统。当他们这样做,在拨号盘的周围手指孔被充分扩展了。 强发明的拨号系统直到1922年进入像纽约一样的大城市才成为主流。但是一旦作为规规范被确立,直到70年代它仍然是主要的电话技术。后按键式拨号在1963年被推出之后,强发明的最初的手指拨号系统作为“旋转的拨号系统”而知名。这是强怎样“让你的手指拨号”的。 埃姆斯椅LCW和DCW 1947 这些带有复合曲线座位,靠背和橡胶防震装置的成型胶合板椅是由查尔斯埃姆斯设计,在赫曼米勒家具公司生产的。 这个原始的概念是被查尔斯埃姆斯(1907—1978)和埃罗沙里宁(1910—1961)在1940年合作构想出来的。在1937年,埃姆斯成为克兰布鲁克学院实验设计部门的领头人,和沙里宁一起工作调查材料和家具。在这些努力下,埃姆斯发明了分成薄片和成型胶合板夹板,被称作埃姆斯夹板,在1941年收到了来自美国海军5000人的订单。查尔斯和他的妻子雷在他们威尼斯,钙的工作室及工厂和埃文斯产品公司的生产厂家一起生产了这批订单。 在1941年现代艺术博物馆,艾略特诺伊斯组织了一场比赛用以发现对现代生活富有想象力的设计师。奖项颁发给了埃姆斯和沙里宁他们的椅子和存储碎片,由包括埃德加考夫曼,大都会艺术博物馆的阿尔弗雷德,艾略特诺伊斯,马尔塞布鲁尔,弗兰克帕里什和建筑师爱德华达雷尔斯通的陪审团裁决。 这些椅子在1946年的现代艺术展览博物馆被展出,查尔斯埃姆斯设计的新的家具。当时,椅子只有三条腿,稳定性问题气馁了大规模生产。 早期的LCW(低木椅)和DWC(就餐木椅)设计有四条木腿在1946年第一次被埃文斯产品公司(埃姆斯的战时雇主)生产出来,被赫曼米勒家具公司分配。这些工具1946年被乔治纳尔逊为赫曼米勒购买,在1949年接手制造权。后来金属脚的愿景在1951年制作,包括LCW(低金属椅)和DWC(就餐金属椅)模型。配套的餐饮和咖啡桌也产生。这条线一直

《土木工程专业英语》段兵延第二版全书文章翻译精编版

第一课 土木工程学土木工程学作为最老的工程技术学科,是指规划,设计,施工及对建筑环境的管理。此处的环境包括建筑符合科学规范的所有结构,从灌溉和排水系统到火箭发射设施。 土木工程师建造道路,桥梁,管道,大坝,海港,发电厂,给排水系统,医院,学校,公共交通和其他现代社会和大量人口集中地区的基础公共设施。他们也建造私有设施,比如飞机场,铁路,管线,摩天大楼,以及其他设计用作工业,商业和住宅途径的大型结构。此外,土木工程师还规划设计及建造完整的城市和乡镇,并且最近一直在规划设计容纳设施齐全的社区的空间平台。 土木一词来源于拉丁文词“公民”。在1782年,英国人John Smeaton为了把他的非军事工程工作区别于当时占优势地位的军事工程师的工作而采用的名词。自从那时起,土木工程学被用于提及从事公共设施建设的工程师,尽管其包含的领域更为广阔。 领域。因为包含范围太广,土木工程学又被细分为大量的技术专业。不同类型的工程需要多种不同土木工程专业技术。一个项目开始的时候,土木工程师要对场地进行测绘,定位有用的布置,如地下水水位,下水道,和电力线。岩土工程专家则进行土力学试验以确定土壤能否承受工程荷载。环境工程专家研究工程对当地的影响,包括对空气和地下水的可能污染,对当地动植物生活的影响,以及如何让工程设计满足政府针对环境保护的需要。交通工程专家确定必需的不同种类设施以减轻由整个工程造成的对当地公路和其他交通网络的负担。同时,结构工程专家利用初步数据对工程作详细规划,设计和说明。从项目开始到结束,对这些土木工程专家的工作进行监督和调配的则是施工管理专家。根据其他专家所提供的信息,施工管理专家计算材料和人工的数量和花费,所有工作的进度表,订购工作所需要的材料和设备,雇佣承包商和分包商,还要做些额外的监督工作以确保工程能按时按质完成。 贯穿任何给定项目,土木工程师都需要大量使用计算机。计算机用于设计工程中使用的多数元件(即计算机辅助设计,或者CAD)并对其进行管理。计算机成为了现代土木工程师的必备品,因为它使得工程师能有效地掌控所需的大量数据从而确定建造一项工程的最佳方法。 结构工程学。在这一专业领域,土木工程师规划设计各种类型的结构,包括桥梁,大坝,发电厂,设备支撑,海面上的特殊结构,美国太空计划,发射塔,庞大的天文和无线电望远镜,以及许多其他种类的项目。结构工程师应用计算机确定一个结构必须承受的力:自重,风荷载和飓风荷载,建筑材料温度变化引起的胀缩,以及地震荷载。他们也需确定不同种材料如钢筋,混凝土,塑料,石头,沥青,砖,铝或其他建筑材料等的复合作用。 水利工程学。土木工程师在这一领域主要处理水的物理控制方面的种种问题。他们的项目用于帮助预防洪水灾害,提供城市用水和灌溉用水,管理控制河流和水流物,维护河滩及其他滨水设施。此外,他们设计和维护海港,运河与水闸,建造大型水利大坝与小型坝,以及各种类型的围堰,帮助设计海上结构并且确定结构的位置对航行影响。 岩土工程学。专业于这个领域的土木工程师对支撑结构并影响结构行为的土壤和岩石的特性进行分析。他们计算建筑和其他结构由于自重压力可能引起的沉降,并采取措施使之减少到最小。他们也需计算并确定如何加强斜坡和填充物的稳定性以及如何保护结构免受地震和地下水的影响。 环境工程学。在这一工程学分支中,土木工程师设计,建造并监视系统以提供安全的饮用水,同时预防和控制地表和地下水资源供给的污染。他们也设计,建造并监视工程以控制甚至消除对土地和空气的污染。他们建造供水和废水处理厂,设计空气净化器和其他设备以最小化甚至消除由工业加工、焚化及其他产烟生产活动引起的空气污染。他们也采用建造特殊倾倒地点或使用有毒有害物中和剂的措施来控制有毒有害废弃物。此外,工程师还对垃圾掩埋进行设计和管理以预防其对周围环境造成污染。

工业设计专业英语资料

工业设计专业英语资料 设计的分类与方法学(英语) 1 设计Design 2 现代设计Modern Design 3 工艺美术设计Craft Design 4 工业设计Industrial Design 5 广义工业设计Genealized Industrial Design 6 狭义工业设计Narrow Industrial Design 7 产品设计Product Design 8 传播设计Communication Design 8 环境设计Environmental Design 9 商业设计Comercial Design 10 建筑设计Architectural 11 一维设计One-dimension Design 12 二维设计Tow-dimension Design 13 三维设计Three-dimension Design 14 四维设计Four-dimension Design 15 装饰、装潢Decoration 16 家具设计Furniture Design 17 玩具设计Toy Design 18 室内设计Interior Design 19 服装设计Costume Design 20 包装设计ackaging Design 21 展示设计Display Design 22 城市规划Urban Desgin 23 生活环境Living Environment 24 都市景观Townscape 25 田园都市Gardon City 26 办公室风致Office Landscape 27 设计方法论Design Methodology 28 设计语言Design Language 29 设计条件Design Condition 30 结构设计Structure Design 31 形式设计Form Design 32 设计过程Design Process 33 构思设计Concept Design 34 量产设计,工艺设计Technological Design 35 改型设计Model Change 36 设计调查Design Survey 37 事前调查Prior Survey

土木工程专业英语正文课文翻译

第一课土木工程学 土木工程学作为最老的工程技术学科,是指规划,设计,施工及对建筑环境的管理。此处的环境包括建筑符合科学规范的所有结构,从灌溉和排水系统到火箭发射设施。 土木工程师建造道路,桥梁,管道,大坝,海港,发电厂,给排水系统,医院,学校,公共交通和其他现代社会和大量人口集中地区的基础公共设施。他们也建造私有设施,比如飞机场,铁路,管线,摩天大楼,以及其他设计用作工业,商业和住宅途径的大型结构。此外,土木工程师还规划设计及建造完整的城市和乡镇,并且最近一直在规划设计容纳设施齐全的社区的空间平台。 土木一词来源于拉丁文词“公民”。在1782年,英国人John Smeaton为了把他的非军事工程工作区别于当时占优势地位的军事工程师的工作而采用的名词。自从那时起,土木工程学被用于提及从事公共设施建设的工程师,尽管其包含的领域更为广阔。 领域。因为包含范围太广,土木工程学又被细分为大量的技术专业。不同类型的工程需要多种不同土木工程专业技术。一个项目开始的时候,土木工程师要对场地进行测绘,定位有用的布置,如地下水水位,下水道,和电力线。岩土工程专家则进行土力学试验以确定土壤能否承受工程荷载。环境工程专家研究工程对当地的影响,包括对空气和地下水的可能污染,对当地动植物生活的影响,以及如何让工程设计满足政府针对环境保护的需要。交通工程专家确定必需的不同种类设施以减轻由整个工程造成的对当地公路和其他交通网络的负担。同时,结构工程专家利用初步数据对工程作详细规划,设计和说明。从项目开始到结束,对这些土木工程专家的工作进行监督和调配的则是施工管理专家。根据其他专家所提供的信息,施工管理专家计算材料和人工的数量和花费,所有工作的进度表,订购工作所需要的材料和设备,雇佣承包商和分包商,还要做些额外的监督工作以确保工程能按时按质完成。 贯穿任何给定项目,土木工程师都需要大量使用计算机。计算机用于设计工程中使用的多数元件(即计算机辅助设计,或者CAD)并对其进行管理。计算机成为了现代土木工程师的必备品,因为它使得工程师能有效地掌控所需的大量数据从而确定建造一项工程的最佳方法。 结构工程学。在这一专业领域,土木工程师规划设计各种类型的结构,包括桥梁,大坝,发电厂,设备支撑,海面上的特殊结构,美国太空计划,发射塔,庞大的天文和无线电望远镜,以及许多其他种类的项目。结构工程师应用计算机确定一个结构必须承受的力:自重,风荷载和飓风荷载,建筑材料温度变化引起的胀缩,以及地震荷载。他们也需确定不同种材料如钢筋,混凝土,塑料,石头,沥青,砖,铝或其他建筑材料等的复合作用。 水利工程学。土木工程师在这一领域主要处理水的物理控制方面的种种问题。他们的项目用于帮助预防洪水灾害,提供城市用水和灌溉用水,管理控制河流和水流物,维护河滩及其他滨水设施。此外,他们设计和维护海港,运河与水闸,建造大型水利大坝与小型坝,以及各种类型的围堰,帮助设计海上结构并且确定结构的位置对航行影响。 岩土工程学。专业于这个领域的土木工程师对支撑结构并影响结构行为的土壤和岩石的特性进行分析。他们计算建筑和其他结构由于自重压力可能引起的沉降,并采取措施使之减少到最小。他们也需计算并确定如何加强斜坡和填充物的稳定性以及如何保护结构免受地震和地下水的影响。 环境工程学。在这一工程学分支中,土木工程师设计,建造并监视系统以提供安全的饮用水,同时预防和控制地表和地下水资源供给的污染。他们也设计,建造并监视工程以控制甚至消除对土地和空气的污染。

土木工程专业英语词汇(整理版)

第一部分必须掌握,第二部分尽量掌握 第一部分: 1 Finite Element Method 有限单元法 2 专业英语Specialty English 3 水利工程Hydraulic Engineering 4 土木工程Civil Engineering 5 地下工程Underground Engineering 6 岩土工程Geotechnical Engineering 7 道路工程Road (Highway) Engineering 8 桥梁工程Bridge Engineering 9 隧道工程Tunnel Engineering 10 工程力学Engineering Mechanics 11 交通工程Traffic Engineering 12 港口工程Port Engineering 13 安全性safety 17木结构timber structure 18 砌体结构masonry structure 19 混凝土结构concrete structure 20 钢结构steelstructure 21 钢-混凝土复合结构steel and concrete composite structure 22 素混凝土plain concrete 23 钢筋混凝土reinforced concrete 24 钢筋rebar 25 预应力混凝土pre-stressed concrete 26 静定结构statically determinate structure 27 超静定结构statically indeterminate structure 28 桁架结构truss structure 29 空间网架结构spatial grid structure 30 近海工程offshore engineering 31 静力学statics 32运动学kinematics 33 动力学dynamics 34 简支梁simply supported beam 35 固定支座fixed bearing 36弹性力学elasticity 37 塑性力学plasticity 38 弹塑性力学elaso-plasticity 39 断裂力学fracture Mechanics 40 土力学soil mechanics 41 水力学hydraulics 42 流体力学fluid mechanics 43 固体力学solid mechanics 44 集中力concentrated force 45 压力pressure 46 静水压力hydrostatic pressure 47 均布压力uniform pressure 48 体力body force 49 重力gravity 50 线荷载line load 51 弯矩bending moment 52 torque 扭矩53 应力stress 54 应变stain 55 正应力normal stress 56 剪应力shearing stress 57 主应力principal stress 58 变形deformation 59 内力internal force 60 偏移量挠度deflection 61 settlement 沉降 62 屈曲失稳buckle 63 轴力axial force 64 允许应力allowable stress 65 疲劳分析fatigue analysis 66 梁beam 67 壳shell 68 板plate 69 桥bridge 70 桩pile 71 主动土压力active earth pressure 72 被动土压力passive earth pressure 73 承载力load-bearing capacity 74 水位water Height 75 位移displacement 76 结构力学structural mechanics 77 材料力学material mechanics 78 经纬仪altometer 79 水准仪level 80 学科discipline 81 子学科sub-discipline 82 期刊journal ,periodical 83文献literature 84 ISSN International Standard Serial Number 国际标准刊号 85 ISBN International Standard Book Number 国际标准书号 86 卷volume 87 期number 88 专着monograph 89 会议论文集Proceeding 90 学位论文thesis, dissertation 91 专利patent 92 档案档案室archive 93 国际学术会议conference 94 导师advisor 95 学位论文答辩defense of thesis 96 博士研究生doctorate student 97 研究生postgraduate 98 EI Engineering Index 工程索引 99 SCI Science Citation Index 科学引文索引 100ISTP Index to Science and Technology Proceedings 科学技术会议论文集索引 101 题目title 102 摘要abstract 103 全文full-text 104 参考文献reference 105 联络单位、所属单位affiliation 106 主题词Subject 107 关键字keyword 108 ASCE American Society of Civil Engineers 美国土木工程师协会 109 FHWA Federal Highway Administration 联邦公路总署

医学专业英语翻译

医学专业英语翻译 医学专业英语翻译如下: portable electric dental engine 轻便电动钻牙机,轻便牙钻portable hearing aid 袖珍助听器 portable microtome 手提式切片机 portable monitor 手提式监护仪 portable obstetric table 轻便产床 portable operating table 轻便手术台 portable photoelectric colorimeter 便携式光电比色计 portable suction unit 便携式吸引器 portable testing set 便携式测试仪器 portable typewriter 手提式打字机 portable X-ray machine 手提式X 光机 portacid 移酸滴管,滴酸器 portal 门,入门 portal venography 门静脉造影术 port B/L 港口提单 portcaustic 腐蚀药把持器 porte 柄 porte-acid 移酸滴管,滴酸器

porte-aiguille 持针器 porte-caustique 腐蚀药把持器 porte-ligature 深部结扎器,缚线把持器porte-meche 填塞条器 porte-noeud 瘤蒂结扎器 porte-polisher 握柄磨光器 porterage 搬运费 portial impression trays 局部牙托portion 部分,段,份 portligature 深部结扎器,缚线把线器port of arrival 到达港 port of delivery 交货港 port of departure 出发港 port of destination 到达港目的港 port of discharge 卸货港 portogram 门静脉造影片 portoraphy 门静脉造影术portovenogram 门静脉造影片 posion 阴离子,阳向离子 position 位置,状态 positioner 定位器(牙),位置控制器

工业设计专业英语第三版部分翻译

艺术装饰风格 被宣告是“唯一一个总体设计”,艺术装饰必然是在众多消费者中间找到观众的最高产的设计之一。虽然它起源于19世纪20年代高度专有的法国手工裁剪装潢艺术,但它通过利用廉价的新金属材料,塑料和玻璃而发展迅速,找到了便宜,短期利用,并可以大批生产的装饰用品,如香烟盒,香水瓶,家庭用的陶瓷和玻璃,流行纺织品及各种装饰物,还有可以像鸡尾般甩动的物品。作为一种装饰风格它可以运用于无数物品的形状和表面装饰,因而赋予它们全部以相同质量的瞬间的现代性和时尚性。 就像许多这个世纪其它的流行风格一样,艺术装饰风格扎根于高雅文化,例如,立体主义、俄国芭蕾、美洲印第安风格和欧洲纯粹主义,但是相对其他文化而言,艺术装饰风格取长补短,装饰特征表现得更为折衷一些。结合艺术装饰风格在1930年代流行的因素,大规模批量生产使用新材料是商品价格相对低廉的必要条件。但这些是远远不够的,更深层次的原因是艺术装饰风格具有典型的适应性。在那段经济萧条的时期,豪华奢侈的装饰风格所带来的美感让当时的消费者有了逃避现实的放松心情。艺术装饰风格的宣传方式也促进了它的流行,艺术风格被好莱坞应用于多种流行电影中。通过影片媒体使大量观众接触到装饰风格,除此之外,艺术装饰风格也运用在广告和包装上,使其有效的影响了大量的环境之外,艺术装饰风格也影响到了建筑领域,许多新场所也运用了这种风格,美化建筑的外表,那些新商业的

娱乐楼房,例如商场电影院,工厂,甚至于新的豪华游轮,它也被利用于在1933年芝加哥展览之中。艺术装饰风格开始象征着高效率的现代化生活和新的生活理念,这种动人的方式随着人们对时尚性和社会地位的追求与渴望,艺术装饰风格得到了大量消费者的高度喜爱地位。 艺术装饰的大量应用伴随着消费产品的需求。但是,从不好的方而来看,艺术装饰风格只是作为一种中档的艺术手法,来装饰非常廉价的商品甚至留有一种杂乱的感觉。在英国有一群针对低端市场开发产品的地毯制造商,他们意识到了这个新潮流里的商业潜力。 但是,这些地毯制造商也很注意他们消费群里的保守心理,因此,即使是在一块地毯里的花紋也会出现那些很传统的1案象是老式的叶子造型和较灰暗的颜色。这种设计的消费市场不同于那些要不就是现代型或是完全传统的设计方案。1920年代到30年代,英国都铎王室的一些新居住者和新建筑的到来,使工艺美术运动和现代风格可以较为自由的发展和合理的被采用.这些各异的艺术风格也被按照使用者的喜好不同加入到地毯的设计之中。在20世纪30年代的中期,改良过的艺术装饰风格在数不清的家居装饰里都可以看到"在花园门饰上,无线电机的面板装饰上,阿芝台克寺庙的壁炉上和那些扶手椅和沙发的几何形体上。"

土木工程专业英语课文原文及对照翻译

土木工程专业英语课文原 文及对照翻译 Newly compiled on November 23, 2020

Civil Engineering Civil engineering, the oldest of the engineering specialties, is the planning, design, construction, and management of the built environment. This environment includes all structures built according to scientific principles, from irrigation and drainage systems to rocket-launching facilities. 土木工程学作为最老的工程技术学科,是指规划,设计,施工及对建筑环境的管理。此处的环境包括建筑符合科学规范的所有结构,从灌溉和排水系统到火箭发射设施。 Civil engineers build roads, bridges, tunnels, dams, harbors, power plants, water and sewage systems, hospitals, schools, mass transit, and other public facilities essential to modern society and large population concentrations. They also build privately owned facilities such as airports, railroads, pipelines, skyscrapers, and other large structures designed for industrial, commercial, or residential use. In addition, civil engineers plan, design, and build complete cities and towns, and more recently have been planning and designing space platforms to house self-contained communities. 土木工程师建造道路,桥梁,管道,大坝,海港,发电厂,给排水系统,医院,学校,公共交通和其他现代社会和大量人口集中地区的基础公共设施。他们也建造私有设施,比如飞机场,铁路,管线,摩天大楼,以及其他设计用作工业,商业和住宅途径的大型结构。此外,土木工程师还规划设计及建造完整的城市和乡镇,并且最近一直在规划设计容纳设施齐全的社区的空间平台。 The word civil derives from the Latin for citizen. In 1782, Englishman John Smeaton used the term to differentiate his nonmilitary engineering work from that of the military engineers who predominated at the time. Since then, the term civil engineering has often been used to refer to engineers who build public facilities, although the field is much broader 土木一词来源于拉丁文词“公民”。在1782年,英国人John Smeaton为了把他的非军事工程工作区别于当时占优势地位的军事工程师的工作而采用的名词。自从那时起,土木工程学被用于提及从事公共设施建设的工程师,尽管其包含的领域更为广阔。 Scope. Because it is so broad, civil engineering is subdivided into a number of technical specialties. Depending on the type of project, the skills of many kinds of civil engineer specialists may be needed. When a project begins, the site is surveyed and mapped by civil engineers who locate utility placement—water, sewer, and power lines. Geotechnical specialists perform soil experiments to determine if the earth can bear the weight of the project. Environmental specialists study the project’s impact on the local area: the potential for air and

土木工程专业英语

non-destructive test 非破损检验 non-load—bearingwall 非承重墙 non—uniform cross—section beam 变截面粱 non—uniformly distributed strain coefficient of longitudinal tensile reinforcement 纵向受拉钢筋应变不均匀系数 normal concrete 普通混凝土 normal section 正截面 notch and tooth joint 齿连接 number of sampling 抽样数量 O obligue section 斜截面 oblique—angle fillet weld 斜角角焊缝 one—way reinforced(or prestressed)concrete slab “单向板” open web roof truss 空腹屋架, ordinary concrete 普通混凝土(28) ordinary steel bar 普通钢筋(29) orthogonal fillet weld 直角角焊缝(61) outstanding width of flange 翼缘板外伸宽度(57) outstanding width of stiffener 加劲肋外伸宽度(57) over-all stability reduction coefficient of steel beam·钢梁整体稳定系数(58) overlap 焊瘤(62) overturning or slip resistance analysis 抗倾覆、滑移验算(10) P padding plate 垫板(52) partial penetrated butt weld 不焊透对接焊缝(61) partition 非承重墙(7) penetrated butt weld 透焊对接焊缝(60) percentage of reinforcement 配筋率(34) perforated brick 多孔砖(43) pilastered wall 带壁柱墙(42) pit·凹坑(62) pith 髓心(?o) plain concrete structure 素混凝土结构(24) plane hypothesis 平截面假定(32) plane structure 平面结构(11) plane trussed lattice grids 平面桁架系网架(5) plank 板材(65) plastic adaption coefficient of cross—section 截面塑性发展系数(58) plastic design of steel structure 钢结构塑性设计(56) plastic hinge·塑性铰(13) plastlcity coefficient of reinforced concrete member in tensile zone 受拉区混凝土塑性影响系数

(完整版)医学专业英语

cardiovascular diseases; 脑垂体的功能the function of pituitary; 泌尿道urinary tract; 分子molecule; 动脉artery; 内分泌学endocrinology; 呼吸困难dyspnea; 唾液saliva; 组织学histology; 血液循环blood circulation; 血液学hematology; 生理学physiology; 解剖学anatomy; 女性生殖系统femal reproductive system; 神经细胞nerve cell; 免疫学immunology; 消化不良dyspepsia; 随意肌voluntary muscle; 胚胎学embryology; 心理学psychology; 细胞学cytology; 原生质protoplasm; 细胞膜cell membrane; 细胞核nucleus; 细胞质(浆)cytoplasm; 脱氧核糖核酸deoxyribonucleic acid; 能半渗透的semipermeable; 分子生物学molecular biology; 碳水化合物carbohydrate; 有区别性的differentially; 使…完整intact; 根据according to; 遗传特性hereditary trait; 渗滤diffusion; 转换transaction; 蓝图blueprint; 染色体chromosome; 色素pigment; 排出废液excrete waste fluid; 散开disperse; 脉冲信号impulse; 核糖核酸ribonucleic acid; 损害正常功能impair the normal function; 污染环境pollute environment; 功能失调malfunction; 致病因子causative agents; 易受侵害的人群vulnerable groups; 局部化的感染localized infection; 花柳病venereal disease; 抗原与抗体antigen&antibody; 肌电图electromyogram; 多发性硬化multiple sclerosis; 心电图electrocardiograph; 疾病的后遗症sequelea of disease; 光纤技术fiber optic technology; 造血系统hematopoietic system; 致命的疾病fatal disease; 体液body fluid; 无副作用的治疗hazard-free treatment; 无侵犯的实验检查non-invasive laboratory test; 核磁共振nuclear magnetic resonance; 葡萄糖耐糖实验the glucose-tolerance test; 乐观的预后optimistic prognosis; 超声波检测法ultrasonography; 病史medical history; 随访活动follow-up visit; 营养不良nutritional deficiency; 使细节显著highlight detail; 脑电图electroencephalogram; 缺血的组织blood-starved tissue; 肌纤维muscle fiber; 随意肌voluntary muscle; 消化道alimentary canal; 肌腹fleshy belly of muscle; 横纹肌striated muscle; 肌肉痉挛cramps of muscle; 肌肉收缩muscle contraction; 肌肉附着点attachment of the muscle; 肌肉放松relaxation of muscle; 动脉出血arterial hemorrhage; 止端insertion;起端origion;供血blood supply; 屈肌flexor; 蛋白分子protein molecule; 纤维结缔组织fibrous connective tissue; 伸肌extensor; 意志力willpower; 横切面transverse section; 起搏器pacemaker; 肌萎缩muscle atrophy; 重症肌无力myasthenia gravis; 弥散性局部缺血diffuse ischemia; 常染色体隐性autosomal recessive; 全身性感染systemic infection; 受累的肌肉muscle involved; 显著相关性significant correlation; 神经末梢nerve terminal; 自体免疫反应autoimmune reaction; 神经支配innervation; 肌营养不良muscular dystrophy; 慢性营养不良chronic mulnutrition; 先天性肌病congenital myopathy; 预期寿命life expectancy; 免疫紊乱immunologic derangemant; 发病高峰年龄the peak age of onset; 胸腺肿瘤thymoma; 呼吸肌受累the involvement of respiratory muscle; 感染性肌炎inflammatory myositic; 去神经支配denervation; 矿物质吸收mineral absorption; 机械应力mechanical stress; 骨基质有机部分the organic parts of bone matrix; 青春期早熟premature puberty; 蛋白溶解酶protein-digesting enzyme; 破骨细胞osteoclast; 松质骨spongy bone; 骨折fracture; 不规则骨irregular bone; 骨骼系统skeletal system; 维生素吸收vitamin absorption; 骨钙丧失the loss of calcium from bone; 生长激素growth hormone;

相关文档
相关文档 最新文档