文档库 最新最全的文档下载
当前位置:文档库 › 《自动控制原理》大作业

《自动控制原理》大作业

《自动控制原理》大作业
《自动控制原理》大作业

《自动控制原理》大作业

下图为水位控制系统,试分析:

1.人工控制与自动控制的区别

2.自动控制的系统组成

3.图2是如何实现水位的自动控制

图1 人工控制图2 自动控制

高敏娟

截止5月22日将完成的作业发至指定邮箱;

(1)以A4纸张作答

(2)论文格式如下:

论文标题用小二号字,宋体,加粗

1 一级标题,用小三号黑体,加粗,并留出上下间距为:段前0.5行,

段后0.5行)

1.1 ××××××(作为正文2级标题,用小4号黑体,加粗)×××××××××(小4号宋体)××××××…………

1.1.1 ××××(作为正文3级标题,用小4号黑体,不加粗)

×××××××××(小4号宋体,行距1.5倍)××××××××

《自动控制原理》电子教案

第一章自动控制的一般概念 第一节控制理论的发展 自动控制的萌芽:自动化技术学科萌芽于18世纪,由于工业革命的发展,如何进一步降低人的劳动强度和提高设备的可靠性被提到了议程。 特点:简单的单一对象控制。 1. 经典控制理论分类 线性控制理论,非线性控制理论,采样控制理论 2. 现代控制理论 3. 大系统理论 4. 智能控制理论 发展历程: 1. 经典控制理论时期(1940-1960) 研究单变量的系统,如:调节电压改变电机的速度;调整方向盘改变汽车的运动轨迹等。 ?1945年美国人Bode出版了《网络分析与放大器的设计》,奠定了控制理论的 基础; ?1942年哈里斯引入传递函数; ?1948年伊万恩提出了根轨迹法; ?1949年维纳关于经典控制的专著。 特点:以传递函数为数学工具,采用频率域法,研究“单输入—单输出”线性定常控制系统的分析和设计,而对复杂多变量系统、时变和非线性系统无能为力。 2. 现代控制理论时期(20世纪50年代末-60年代初) 研究多变量的系统,如,汽车看成是一个具有两个输入(驾驶盘和加速踏板)和两个输出(方向和速度)的控制系统。空间技术的发展提出了许多复杂的控制问题,用于导弹、人造卫星和宇宙飞船上,对自动控制的精密性和经济性指标提出了极严格的要求。并推动了控制理论的发展。 ?Kalman的能控性观测性和最优滤波理论; ?庞特里亚金的极大值原理; ?贝尔曼的动态规划。 特点:采用状态空间法(时域法),研究“对输入-多输出”、时变、非线性系统等高精度和高复杂度的控制问题。 3. 大系统控制时期(1970s-) 各学科相互渗透,要分析的系统越来越大,越来越复杂。 大系统控制理论是一种过程控制与信息处理相结合的动态系统工程理论,研究的对象具有规模庞大、结构复杂、功能综合、目标多样、因素众多等特点。它是一个多输入、多输出、多干扰、多变量的系统。 如:人体,我们就可以看作为一个大系统,其中有体温的控制、情感的控制、

《自动控制原理》

《自动控制原理》 实验报告 姓名: 学号: 专业: 班级: 时段: 成绩: 工学院自动化系

实验一 典型环节的 MATLAB仿真 一、实验目的 1.熟悉MATLAB桌面和命令窗口,初步了解SIMULINK功能模块的使用方法。 2.通过观察典型环节在单位阶跃信号作用下的动态特性,加深对各典型环节响应曲线的理解。 3.定性了解各参数变化对典型环节动态特性的影响。 二、实验原理 1.比例环节的传递函数为 K R K R R R Z Z s G200 , 100 2 ) ( 2 1 1 2 1 2= = - = - = - = 其对应的模拟电路及SIMULINK图形如图1-3所示。 三、实验内容 按下列各典型环节的传递函数,建立相应的SIMULINK仿真模型,观察并记录其单位阶跃响应波形。 ①比例环节1 ) ( 1 = s G和2 ) ( 1 = s G; ②惯性环节 1 1 ) ( 1+ = s s G和 1 5.0 1 ) ( 2+ = s s G ③积分环节 s s G1 ) ( 1 = ④微分环节s s G= ) ( 1 ⑤比例+微分环节(PD)2 ) ( 1 + =s s G和1 ) ( 2 + =s s G ⑥比例+积分环节(PI) s s G1 1 ) ( 1 + =和s s G21 1 ) ( 2 + = 四、实验结果及分析 图1-3 比例环节的模拟电路及SIMULINK图形

① 仿真模型及波形图1)(1=s G 和2)(1=s G ② 仿真模型及波形图11)(1+= s s G 和1 5.01)(2+=s s G 11)(1+= s s G 1 5.01 )(2+=s s G ③ 积分环节s s G 1)(1= ④ 微分环节

自动控制原理论文

自动控制 摘要:综述了自动控制理论的发展情况,指出自动控制理论所经历的三个发展阶段,即经典控制理论、现代控制理论和智能控制理论。最后指出,各种控制理论的复合能够取长补短,是控制理论的发展方向。 自动控制理论是自动控制科学的核心。自动控制理论自创立至今已经过了三代的发展:第一代为20世纪初开始形成并于50年代趋于成熟的经典反馈控制理论;第二代为50、60年代在线性代数的数学基础上发展起来的现代控制理论;第三代为60年 代中期即已萌芽,在发展过程中综合了人工智能、自动控制、运筹学、信息论等多学科的最新成果并在此基础上形成的智能控制 理论。经典控制理论(本质上是频域方法)和现代控制理论(本质上是时域方法)都是建立在控制对象精确模型上的控制理论,而实 际上的工业生产系统中的控制对象和过程大多具有非线性、时变性、变结构、不确定性、多层次、多因素等特点,难以建立精确的数学模型。因此,自动控制专家和学者希望能从要解决问题领域的知识出发,利用熟练操作者的丰富经验、思维和判断能力,来实现对上述复杂系统的控制,这就是基于知识的不依赖于精确的数学模型的智能控制。本文将对经典控制理论、现代控制理论和智能控制理论的发展情况及基本内容进行介绍。 1自动控制理论发展概述 自动控制是指应用自动化仪器仪表或自动控制装置代替人 自动地对仪器设备或工业生产过程进行控制,使之达到预期的状态或性能指标。对传统的工业生产过程采用自动控制技术,可以有效提高产品的质量和企业的经济效益。对一些恶劣环境下的控制操作,自动控制显得尤其重要。 自动控制理论是与人类社会发展密切联系的一门学科,是自动控制科学的核心。自从19世纪M a x w e ll对具有调速器的蒸汽发动

自动控制原理

自动控制原理 知识要点与习题解析 第2章 控制系统的数学模型 数学模型有多种表现形式:传递函数、方框图、信号流图等。 ; ; )()()()(t e t c t n t r )()()()()()(s s s s s H s G en n e ΦΦΦΦ; P32 (自动控制原理p23) 2-17 P33 解: (e) 42 32121123 211)(G H G G H G G H G G G G s ++-+= Φ; P37 (p73) 2-21 试绘制与题2-21图中系统方框图对应的信号流图,并用梅森增益公式求传递函数C (s )/R (s ) 和误差传递函数E (s )/R (s ) 注:P21(2) 依据系统方框图绘制信号流图 首先确定信号流图中应画出的信号节点,再根据方框图表明的信号流向,用支路及相应的传输连接信号节点。步骤如下, (a)系统的输入为源点,输出为阱点; (b)在方框图的主前向通路上选取信号节点,即相加点后的信号和有分支点的信号,两信号是同一个 题2-21图 系统方框图 题2-1 7图 控制系统方框图 题2-17解图 控制系统简化方框图

信号时只作为一个节点; (c)其它通路上,仅反馈结构求和点后的信号选作节点; (d)最后,依据信号关系,用支路连接这些节点。 解:图(a)信号流图如题2-21解图(a)所示。 计算C (s )/R (s )和E (s )/R (s )过程中,关于回路和特征式的计算是完全相同,可统一计算。 回路 111H G L -=,232H G L -=,213213H H G G G L -=; 特征式 21312132123111H H G G H H G G G H G H G ++++=?。 计算C (s )/R (s ): 前向通路 3211G G G P =,342G G P =; 特征子式 11=?,1121H G +=?; 2 131223111134321)1(1) 1()()(H H G G G H G H G H G G G G G G s R s C ++++++=; 计算E (s )/R (s ): 前向通路 11=P ;21342H H G G P -=; 特征子式 2311H G +=?,12=?; 2 131223112 13423)1(11)()(H H G G G H G H G H H G G H G s R s E ++++-+=; P38 (p73) 2-22 试用梅森增益公式求题2-22图中各系统信号流图的传递函数)(/)(s R s C 。 解:(b) 6543211G G G G G G P =,654372G G G G G P =,6813G G G P =,68174G G H G P -=; 121H G L -=,242H G L -=,363H G L -=,45434H G G G L -=, 4185H H G L =,56543216H G G G G G G L -=,5654377H G G G G G L -=, 56818H G G G L -=,568179H G G H G L =; 3219282523231219 11L L L L L L L L L L L L L L L L i i -++++++-=?∑=; 11=?,12=?,24431H G +=?=?; ? ++++=)1)(()()(244321H G P P P P s R s C ; 题2-21解图 系统信号流图 题2-22图 系统信号流图

自动控制原理实验1-6

实验一MATLAB 仿真基础 一、实验目的: (1)熟悉MATLAB 实验环境,掌握MATLAB 命令窗口的基本操作。 (2)掌握MATLAB 建立控制系统数学模型的命令及模型相互转换的方法。 (3)掌握使用MATLAB 命令化简模型基本连接的方法。 (4)学会使用Simulink 模型结构图化简复杂控制系统模型的方法。 二、实验设备和仪器 1.计算机;2. MATLAB 软件 三、实验原理 函数tf ( ) 来建立控制系统的传递函数模型,用函数printsys ( ) 来输出控制系统的函数,用函数命令zpk ( ) 来建立系统的零极点增益模型,其函数调用格式为:sys = zpk ( z, p, k )零极点模型转换为多项式模型[num , den] = zp2tf ( z, p, k ) 多项式模型转化为零极点模型 [z , p , k] = tf2zp ( num, den ) 两个环节反馈连接后,其等效传递函数可用feedback ( ) 函数求得。 则feedback ()函数调用格式为: sys = feedback (sys1, sys2, sign ) 其中sign 是反馈极性,sign 缺省时,默认为负反馈,sign =-1;正反馈时,sign =1;单位反馈时,sys2=1,且不能省略。 四、实验内容: 1.已知系统传递函数,建立传递函数模型 2.已知系统传递函数,建立零极点增益模型 3.将多项式模型转化为零极点模型 1 2s 2s s 3s (s)23++++=G )12()1()76()2(5)(332 2++++++= s s s s s s s s G 12s 2s s 3s (s)23++++= G )12()1()76()2(5)(3322++++++=s s s s s s s s G

自动控制原理

第一章第二章 一、单项选择题 1、适合应用传递函数描述的系统是 ( ) 。 (分数:1分) A. 单输入,单输出的线性定常系统 B. 单输入,单输出的线性时变系统 C. 单输入,单输出的定常系统 D. 非线性系统 正确答案:A 2、 采用负反馈形式连接后,则 ( )。 (分数:1分) A. 一定能使闭环系统稳定 B. 系统动态性能一定会提高 C. 一定能使干扰引起的误差逐渐减小,最后完全消除 D. 需要调整系统的结构参数,才能改善系统性能 正确答案:D 3、若某负反馈控制系统的开环传递函数为 ,则该系统的闭环特征方程为 ( ) 。 (分数:1分) A. s(s+1)=0 B. s(s+1)+5=0 C. s(s+1)+1=0 D. 与是否为单位反馈系统有关 正确答案:B 4、关于传递函数,错误的说法是 ( ) 。 (分数:1分) A. 传递函数只适用于线性定常系统; B. 传递函数不仅取决于系统的结构参数,给定输入和扰动对传递函数也有影响; C. 传递函数一般是为复变量s的真分式; D. 闭环传递函数的极点决定了系统的稳定性 正确答案:B 5、

非单位负反馈系统,其前向通道传递函数为G(S),反馈通道传递函数为H(S),当输入信号为R(S),则从输入端定义的误差E(S)为 ( )。 (分数:1分) A. E(S)=R(S)*G(S) B. E(S)=R(S)*G(S)*H(S) C. E(S)=R(S)*G(S)-H(S) D. E(S)=R(S)-G(S)H(S) 正确答案:D 6、梅逊公式主要用来() 。 (分数:1分) A. 判断稳定性 B. 计算输入误差 C. 求系统的传递函数 D. 求系统的根轨迹 正确答案:C 7、信号流图中,在支路上标明的是() 。 (分数:1分) A. 输入 B. 引出点 C. 比较点 D. 传递函数 正确答案:D 8、 已知 ,其原函数的终值 ()。 (分数:1分) A. 0 B. ∞

自动控制原理及应用教案

第一章自动控制的基本知识 ? 1.1自动控制的一般概念 ? 1.2自动控制系统的组成 ? 1.3自动控制系统的类型 ? 1.4 对控制系统性能的要求 1.1.1自动控制技术 ?自动控制技术被大量应用于工农业生产、医疗卫生、环境监测、交通管理、科研开 发、军事领域、特别是空间技术和核技术。自动控制技术的广泛应用不仅使各种生产设备、生产过程实现了自动化,提高了生产效率和产品质量,尤其在人类不能直接参与工作的场合,就更离不开自动控制技术了。自动控制技术还为人类探索大自然、利用大自然提供了可能和帮助。 1.1.2自动控制理论的发展过程 ?1945年之前,属于控制理论的萌芽期。 ?1945年,美国人伯德(Bode)的“网络分析与放大器的设计”奠定了控制理论的基础, 至此进入经典控制理论时期,此时已形成完整的自动控制理论体系。 ?二十世纪六十年代初。用于导弹、卫星和宇宙飞船上的“控制系统的一般理论”(卡 尔曼Kalman)奠定了现代控制理论的基础。现代控制理论主要研究多输入-多输出、多参数系统,高精度复杂系统的控制问题,主要采用的方法是以状态空间模型为基础的状态空间法,提出了最优控制等问题。 ?七十年代以后,各学科相互渗透,要分析的系统越来越大,越来越复杂,自动控制 理论继续发展,进入了大系统和智能控制时期。例如智能机器人的出现,就是以人工智能、神经网络、信息论、仿生学等为基础的自动控制取得的很大进展。 1.2自动控制系统的组成 1.2.1自动控制系统的结构与反馈控制理论 ?图中为放水阀,为进水阀,水箱希望的液位高度为。当放水使得水箱液位降低而被 人眼看到,人就会打开进水阀,随着液位的上升,人用大脑比较并判断水箱液位达到时,就会关掉。若判断进水使得实际液位略高于,则需要打开放水而保证液位高度。 ?在这个过程中,人参与了以下三个方面的工作:

自动控制原理实验1-6

实验一 MATLAB 仿真基础 、实验目的: (1) 熟悉MATLAB 实验环境,掌握MATLAB 命令窗口的基本操作。 (2) 掌握MATLAB 建立控制系统数学模型的命令及模型相互转换的方法。 (3) 掌握使用MATLAB 命令化简模型基本连接的方法。 (4) 学会使用Simulink 模型结构图化简复杂控制系统模型的方法。 二、实验设备和仪器 1 ?计算机;2. MATLAB 软件 三、实验原理 函数tf ()来建立控制系统的传递函数模型,用函数printsys ()来输出控制系 统的函数,用函数命令zpk ()来建立系统的零极点增益模型,其函数调用格式 为:sys = zpk ( z, p, k 零极点模型转换为多项式模型[num , den] = zp2tf ( z, p, k ) 多项式模型转化为零极点模型 [z , p , k] = tf2zp ( num, den ) 两个环节反馈连接后,其等效传递函数可用 feedback ()函数求得。 则 feedback ()函数调用格式为: sys = feedback (sysl, sys2, sigh 其中sign 是反馈极性,sign 缺省时,默认为负反馈,sign = -1;正反馈时, sig n = 1;单位反馈时,sys2= 1,且不能省略。 四、实验内容: 1. 已知系统传递函数,建立传递函数模型 2 2 5(s 2) (s 6s 7) 3 3 s(s 1) (s 2s 1) 2. 已知系统传递函数,建立零极点增益模型 s 3 飞 2~ s 2s 2s 1 3 ?将多项式模型转化为零极点模型 5(s 2)2(s 2 6s 7) G(s) s 3 s 3 2s 2 2s 1 G(s) G(s)

自动控制原理答案完全版-第二版(孟庆明)

; 自动控制原理(非自动化类)习题答案 第一章 习题 1-1(略) 1-2(略) 、 1-3 解: 受控对象:水箱液面。 被控量:水箱的实际水位 h " 执行元件:通过电机控制进水阀门开度,控制进水流量。 比较计算元件:电位器。 测量元件:浮子,杠杆。 放大元件:放大器。 h h (与电位器设定 电压 u 相对应,此时电位器电刷位于中点位置)。 当 h h 时,电位器电刷位于中点位置,电动机不工作。一但 h ≠ h 时,浮子位置相应升高(或 ' 降低),通过杠杆作用使电位器电刷从中点位置下移(或上移),从而给电动机提供一定的工作电压,驱动 电动机通过减速器使阀门的开度减小(或增大),以使水箱水位达到希望值 h 。 水位自动控制系统的职能方框图 1-4 解: 受控对象:门。 执行元件:电动机,绞盘。 放大元件:放大器。 受控量:门的位置 , 测量比较元件:电位计 工作原理:系统的被控对象为大门。被控量为大门的实际位置。输入量为希望的大门位置。 当合上开门开关时,桥式电位器测量电路产生偏差电压,经放大器放大后,驱动电动机带动绞盘转动, 使大门向上提起。同时,与大门连在一起的电位器电刷上移,直到桥式电位器达到平衡,电动机停转,开 门开关自动断开。反之,当合上关门开关时,电动机带动绞盘反转,使大门关闭。 * 仓库大门自动控制开(闭)的职能方框图 1-5 解: 系统的输出量:电炉炉温 给定输入量:加热器电压 被控对象:电炉

放大元件:电压放大器,功率放大器,减速器 比较元件:电位计 测量元件:热电偶 职能方框图: 第二章 习题 2-1 解:对微分方程做拉氏变换: ? X (s ) R (s ) ? C (s ) N (s ) ? ? X (s ) KX (s ) ? X (s ) X (s ) ? X (s ) ? ? TsX (s ) X (s ) ? X (s ) X (s ) ? KN (s ) ? ?K X (s ) sC (s ) sC (s ) ? 绘制上式各子方程的方块图如下图所示: KK C (s ) / R (s ) , Ts (T 1)s s K K 1 s s 1 s s

自动控制原理-第三章控制系统的时域分析教案

第三章控制系统的时域分析 1.本章的教学要求 1)使学生掌握控制系统时域分析方法。 2)使学生掌握控制系统稳定性的基本概念、稳定的充分必要条件; 3)使学生学会利用代数稳定性判据判断系统稳定性; 4)掌握稳态误差计算; 5)掌握一阶系统的单位阶跃响应、单位斜坡响应、单位脉冲响应的分析方法; 6)掌握二阶系统的单位阶跃响应、单位脉冲响应的分析方法; 7)掌握二阶系统的单位阶跃响应性能指标计算; 2.本章讲授的重点 本章讲授的重点是稳定性的基本概念、稳定的充分必要条件,应用代数稳定性判据、稳态误差计算、一阶系统的单位阶跃响应、二阶系统的单位阶跃响应性能指标计算。 3.本章的教学安排 本章讲授10个学时,安排了5个教案,实验学时2学时。 学生通过亲自动手实验,掌握一阶系统、二阶系统的单位阶跃响应性能与系统参数之间的关系。

[教案3-1] 1.主要内容: 1)时域分析法的基本概念、时间响应概念及其组成 2)典型输入信号 1)控制系统稳定性的基本概念; 2)控制系统稳定的条件; 2.讲授方法及讲授重点: 本讲首先介绍时域分析的基本概念及其特点,通过二阶系统对单位阶跃输入的响应过程曲线来介绍瞬态响应和稳态响应概念,从而使学生了解时间响应的含义。重点介绍常用的典型输入信号,包括脉冲信号、阶跃信号、斜坡信号和抛物线信号,说明信号的特点、在实际中选用典型输入信号的方法。 强调控制系统稳定性是系统正常工作的首要条件,然后介绍系统稳定性的基本概念、稳定的条件及判定方法。重点介绍控制系统稳定的条件并做简单的推导,得出系统稳定的充分必要条件为系统特征方程无正实根的结论。 在授课过程中,通过讲解各种形式的例题,使学生充分理解并熟练掌握。3.教学手段: Powerpoint课件与黑板讲授相结合。 4.注意事项: 在讲授本讲时,注意讲清楚控制系统稳定的充要条件的推导; 5.课时安排:2学时。 6.作业: 书后p88 习题3-1,3-2。

自动控制原理答案(第二版)+中国电力出版社

第二部分古典控制理论基础习题详解 一 概述 2-1-1 试比较开环控制系统和闭环控制系统的优缺点。 【解】: 控制系统优点缺点 开环控制简单、造价低、调节速度快调节精度差、无抗多因素干扰能力闭环控制抗多因素干扰能力强、调节精度高结构较复杂、造价较高 2-1-2试列举几个日常生活中的开环和闭环控制系统的例子,并说明其工作原理。 【解】: 开环控制——半自动、全自动洗衣机的洗衣过程。 工作原理:被控制量为衣服的干净度。洗衣人先观察衣服的脏污程度,根据自己的经验,设定洗涤、漂洗时间,洗衣机按照设定程序完成洗涤漂洗任务。系统输出量(即衣服的干净度)的信息没有通过任何装置反馈到输入端,对系统的控制不起作用,因此为开环控制。 闭环控制——卫生间蓄水箱的蓄水量控制系统和空调、冰箱的温度控制系统。 工作原理:以卫生间蓄水箱蓄水量控制为例,系统的被控制量(输出量)为蓄水箱水位(反应蓄水量)。水位由浮子测量,并通过杠杆作用于供水阀门(即反馈至输入端),控制供水量,形成闭环控制。当水位达到蓄水量上限高度时,阀门全关(按要求事先设计好杠杆比例),系统处于平衡状态。一旦用水,水位降低,浮子随之下沉,通过杠杆打开供水阀门,下沉越深,阀门开度越大,供水量越大,直到水位升至蓄水量上限高度,阀门全关,系统再次处于平衡状态。 2-1-3 试判断下列微分方程所描述的系统属何种类型(线性、非线性;定常、时变)。 【解】: (1)线性定常系统;(2)线性时变系统;(3)非线性定常系统;(4)线性定常系统。 1

2 2-1-4 根据题2-1-1图所示的电动机速度控制系统工作原理图: (1)将a ,b 与c ,d 用线连接成负反馈系统; (2)画出系统方框图。 【解】: (1)a -d 连接,b -c 连接。 (2)系统方框图 题2-1-4解图 抽头移动,电动机获得一个正电压,通过齿轮减速器传递,使阀门打开,从而增加入水流量使水位上升,当水位回到给定值时,电动机的输入电压又会回到零,系统重新达到平衡状态。反之易然。 题2-1-5解图

自动控制原理实验

自动控制原理实验 实验报告 实验三闭环电压控制系统研究 学号姓名 时间 2014年10月21日 评定成绩审阅教师

实验三闭环电压控制系统研究 一、实验目的: (1)通过实例展示,认识自动控制系统的组成、功能及自动控制原理课程所要解决的问题。 (2)会正确实现闭环负反馈。 (3)通过开、闭环实验数据说明闭环控制效果。 二、预习与回答: (1)在实际控制系统调试时,如何正确实现负反馈闭环? 答:负反馈闭环,不是单纯的加减问题,它是通过增量法实现的,具体如下: 1.系统开环; 2.输入一个增或减的变化量; 3.相应的,反馈变化量会有增减; 4.若增大,也增大,则需用减法器; 5.若增大,减小,则需用加法器,即。 (2)你认为表格中加1KΩ载后,开环的电压值与闭环的电压值,哪个更接近2V? 答:闭环更接近。因为在开环系统下出现扰动时,系统前部分不会产生变化。故而系统不具有调节能力,对扰动的反应很大,也就会与2V相去甚远。 但在闭环系统下出现扰动时,由于有反馈的存在,扰动产生的影响会被反馈到输入端,系统就从输入部分产生了调整,经过调整后的电压值会与2V相差更小些。 因此,闭环的电压值更接近2V。 (3)学自动控制原理课程,在控制系统设计中主要设计哪一部份? 答:应当是系统的整体框架及误差调节部分。对于一个系统,功能部分是“被控对象”部分,这部分可由对应专业设计,反馈部分大多是传感器,因此可由传感器的专业设计,而自控原理关注的是系统整体的稳定性,因此,控制系统设计中心就要集中在整个系统的协调和误差调节环节。 二、实验原理: (1)利用各种实际物理装置(如电子装置、机械装置、化工装置等)在数学上的“相似性”,将各种实际物理装置从感兴趣的角度经过简化、并抽象成相同的数学形式。我们在设计控制系统时,不必研究每一种实际装置,而用几种“等价”的数学形式来表达、研究和设计。又由于人本身的自然属性,人对数学而言,不能直接感受它的自然物理属性,这给我们分析和设计带来了困难。所以,我们又用替代、模拟、仿真的形式把数学形式再变成“模拟实物”来研究。这样,就可以“秀才不出门,遍知天下事”。实际上,在后面的课程里,不同专业的学生将面对不同的实际物理对象,而“模拟实物”的实验方式可以做到举一反三,我们就是用下列“模拟实物”——电路系统,替代各种实际物理对象。

自动控制原理

《自动控制原理》综合复习资料 一、简答题 1、常见的建立数学模型的方法有哪几种?各有什么特点? 2、自动控制原理中,对线性控制系统进行分析的方法有哪些? 3、给出梅逊公式,及其中各参数意义。 4、举例说明什么是闭环系统?它具有什么特点? 5、系统的性能指标有哪些? 6、幅值裕度,相位裕度各是如何定义的? 7、画出自动控制系统基本组成方框结构图? 8、减小稳态误差的措施主要有? 9、闭环控制系统由哪几个基本单元组成? 10、增加开环零、极点对根轨迹有什么影响? 二、计算题 1、已知系统输入为i u ,输出为o u ,求出传递函数)(/)()(s U s U s G i o =。 2、试简化下图所示系统方框图求其传递函数: 3、已知某二阶系统的单位阶跃响应为()t t e e t c 10602.12.01---+=, 试求:(1)系统传递函数 ()() s R s C (5分) (2)确定系统阻尼比ξ、无阻尼振荡频率n ω。

4、设某系统的特征方程式为 0161620128223456=++++++s s s s s s 判断闭环系统的稳定性,若不稳定求其不稳定特征根个数。(利用劳斯判据) 5、RC 无源网络电路图如下图所示,试列写该系统的微分方程,并求传递函数Uc(s)/Ui(s)。 6、试简化下图所示系统方框图求其传递函数: 7、已知系统的结构图如所示: 当0=f K 、10=a K 时,试确定系统的阻尼比ξ、固有频率n ω和单位斜坡输 入时系统的稳态误差; 8、已知系统如下图所示,求系统的单位阶跃响应,并判断系统的稳定性。 9、RC 无源网络电路图如下图所示,试列写该系统的微分方程,并求传递函数Uc(s)/Uc(s)。 i u c u 1C 1R 2R 2C X r X c 10 S(S+1) 0.5S+1 G 1 G 2 G 3 H 1 H 2

自动控制原理实验报告

自动控制原理 实验报告 实验一典型系统的时域响应和稳定性分析 (2) 一、实验目的 (3) 二、实验原理及内容 (3) 三、实验现象分析 (5) 方法一:matlab程序 (5) 方法二:multism仿真 (12)

方法三:simulink仿真 (17) 实验二线性系统的根轨迹分析 (21) 一、确定图3系统的根轨迹的全部特征点和特征线,并绘出根轨迹 (21) 二、根据根轨迹图分析系统的闭环稳定性 (22) 三、如何通过改造根轨迹来改善系统的品质? (25) 实验三线性系统的频率响应分析 (33) 一、绘制图1. 图3系统的奈氏图和伯德图 (33) 二、分别根据奈氏图和伯德图分析系统的稳定性 (37) 三、在图4中,任取一可使系统稳定的R值,通过实验法得到对应的伯德图,并据此导 出系统的传递函数 (38) 实验四、磁盘驱动器的读取控制 (41) 一、实验原理 (41) 二、实验内容及步骤 (41) (一)系统的阶跃响应 (41) (二) 系统动态响应、稳态误差以及扰动能力讨论 (45) 1、动态响应 (46) 2、稳态误差和扰动能力 (48) (三)引入速度传感器 (51) 1. 未加速度传感器时系统性能分析 (51) 2、加入速度传感器后的系统性能分析 (59) 五、实验总结 (64) 实验一典型系统的时域响应和稳定性分 析

一、 实验目的 1.研究二阶系统的特征参量(ξ、ωn )对过渡过程的影响。 2.研究二阶对象的三种阻尼比下的响应曲线及系统的稳定性。 3.熟悉Routh 判据,用Routh 判据对三阶系统进行稳定性分析。 二、 实验原理及内容 1.典型的二阶系统稳定性分析 (1) 结构框图:见图1 图1 (2) 对应的模拟电路图 图2 (3) 理论分析 导出系统开环传递函数,开环增益0 1 T K K = 。 (4) 实验内容 先算出临界阻尼、欠阻尼、过阻尼时电阻R 的理论值,再将理论值应用于模拟电路中,观察二阶系统的动态性能及稳定性,应与理论分析基本吻合。在此实验中(图2), s 1T 0=, s T 2.01=,R 200 K 1= R 200 K =?

自动控制原理基本概念总结

《自动控制原理》基本概念总结 1.自动控制系统的基本要求是稳定性、快速性、准确性 2.一个控制系统至少包括控制装置和控制对象 3.反馈控制系统是根据被控量和给定值的偏差进行调节的控制系统 4.根据自动控制系统是否形成闭合回路来分类,控制系统可分为开环控制系统、闭环控制系统。 根据信号的结构特点分类,控制系统可分为:反馈控制系统、前馈控制系统和前馈-反馈复合控制系统。根据给定值信号的特点分类,控制系统可分为:恒值控制系统、随动控制系统和程序控制系统。 根据控制系统元件的特性分类,控制系统可分为:线性控制系统、非线性控制系统。 根据控制信号的形式分类,控制系统可分为:连续控制系统、离散控制系统。 5.令线性定常系统传递函数的分母多项式为零,则可得到系统的特征方程 6.系统的传递函数完全由系统的结构和参数决定 7.对复杂系统的方框图,要求出系统的传递函数可以采用梅森公式 8.线性控制系统的特点是可以应用叠加原理,而非线性控制系统则不能 9.线性定常系统的传递函数,是在零初始条件下,系统输出信号的拉氏变换与输入信号的拉氏变换的比。 10.信号流图中,节点可以把所有输入支路的信号叠加,并把叠加后的信号传送到所有的输出支路。 11.从控制系统稳定性要求来看,系统一般是具有负反馈形式。 12.组成控制系统的基本功能单位是环节。 13.系统方框图的简化应遵守信号等效的原则。 14.在时域分析中,人们常说的过渡过程时间是指调整时间 15.衡量一个控制系统准确性/精度的重要指标通常是指稳态误差 16.对于二阶系统来说,系统特征方程的系数都是正数是系统稳定的必要条件 17.若单位反馈系统在阶跃函数作用下,其稳态误差ess为常数,则此系统为0型系统 18.一阶系统的阶跃响应无超调 19.一阶系统 G(s)= K/(Ts+1)的T越大,则系统的输出响应达到稳态值的时间越长。 20.控制系统的上升时间tr、调整时间tS等反映出系统的快速性。 21.二阶系统当0<ζ<1时,如果ζ增加,则输出响应的最大超调量将减小。 22.对于欠阻尼的二阶系统,当阻尼比ξ保持不变时,无阻尼自然振荡频率ωn越大,系统的超调量σp不变 23.在单位斜坡输入信号作用下,?II型系统的稳态误差 ess=0 24.衡量控制系统动态响应的时域性能指标包括动态和稳态性能指标。 25.分析稳态误差时,将系统分为0型系统、I型系统、II型系统…,这是按开环传递函数中的积分环节数来分类的。 26.二阶系统的阻尼系数ξ=时,为最佳阻尼系数。这时系统的平稳性与快速性都较理想。 27.系统稳定性是指系统在扰动消失后,由初始偏差状态恢复到原来的平衡状态的性能。 28.系统特征方程式的所有根均在根平面的左半部分是系统稳定的充要条件。 29.如果系统中加入一个微分负反馈,将使系统的超调量减小。 30.确定根轨迹与虚轴的交点,可用劳斯判据判断。 31.主导极点的特点是距离虚轴很近。 32.根轨迹上的点应满足的幅角条件为∠G(s)H(s)等于±(2l+1)π (l=0,1,2,…) 33.如果要求系统的快速性好,则闭环极点应距离虚轴越远越好。 34.根轨迹的分支数等于特征方程的阶数/开环极点数,起始于开环传递函数的开环极点,终止于开环传递函数的开环零点。 35. 根轨迹与虚轴相交时,在该交点处系统处于临界稳定状态,系统阻尼为0

自动控制原理电子教案

第一章自动控制原理的基本概念 主要内容: 自动控制的基本知识 开环控制与闭环控制 自动控制系统的分类及组成 自动控制理论的发展 §1.1 引言 控制观念 生产和科学实践中,要求设备或装置或生产过程按照人们所期望的规律运行或工作。 同时,干扰使实际工作状态偏离所期望的状态。 例如:卫星运行轨道,导弹飞行轨道,加热炉出口温度,电机转速等控制 控制:为了满足预期要求所进行的操作或调整的过程。 控制任务可由人工控制和自动控制来完成。 §1.2 自动控制的基本知识 1.2.1 自动控制问题的提出 一个简单的水箱液面,因生产和生活需要,希望液面高度h维持恒定。当水的流入量与流出量平衡时,水箱的液面高度维持在预定的高度上。 当水的流出量增大或流入量减小,平衡则被破坏,液面的高度不能自然地维持恒定。

所谓控制就是强制性地改变某些物理量(如上例中的进水量),而使另外某些特定的物理量(如液面高度h)维持在某种特定的标准上。人工控制的例子。 这种人为地强制性地改变进水量,而使液面高度维持恒定的过程,即是人工控制过程。 1.2.2 自动控制的定义及基本职能元件 1. 自动控制的定义 自动控制就是在没有人直接参与的情况下,利用控制器使被控对象(或过程)的某些物理量(或状态)自动地按预先给定的规律去运行。 当出水与进水的平衡被破坏时,水箱水位下降(或上升),出现偏差。这偏差由浮子检测出来,自动控制器在偏差的作用下,控制阀门开大(或关小),对偏差进行修正,从而保持液面高度不变。

2. 自动控制的基本职能元件 自动控制的实现,实际上是由自动控制装置来代替人的基本功能,从而实现自动控制的。画出以上人工控制与动控制的功能方框图进行对照。 比较两图可以看出,自动控制实现人工控制的功能,存在必不可少的三种代替人的职能的基本元件: 测量元件与变送器(代替眼睛) 自动控制器(代替大脑) 执行元件(代替肌肉、手)

自动控制原理实验(全面)

自动控制原理实验 实验一 典型环节的电模拟及其阶跃响应分析 一、实验目的 ⑴ 熟悉典型环节的电模拟方法。 ⑵ 掌握参数变化对动态性能的影响。 二、实验设备 ⑴ CAE2000系统(主要使用模拟机,模/数转换,微机,打印机等)。 ⑵ 数字万用表。 三、实验内容 1.比例环节的模拟及其阶跃响应 微分方程 )()(t Kr t c -= 传递函数 = )(s G ) () (s R s C K -= 负号表示比例器的反相作用。模拟机排题图如图9-1所示,分别求取K=1,K=2时的阶跃响应曲线,并打印曲线。 图9-1 比例环节排题图 图9-2 积分环节排题图 2.积分环节的模拟及其阶跃响应 微分方程 )() (t r dt t dc T = 传递函数 s K Ts s G ==1)( 模拟机排题图如图9-2所示,分别求取K=1,K=0.5时的阶跃响应曲线,并打印曲线。 3.一阶惯性环节的模拟及其阶跃响应 微分方程 )()() (t Kr t c dt t dc T =+ 传递函数 1 )(+=TS K S G 模拟机排题图如图3所示,分别求取K=1, T=1; K=1, T=2; K=2, T=2 时的阶跃

响应曲线,并打印曲线。 4.二阶系统的模拟及其阶跃响应 微分方程 )()() (2)(2 22 t r t c dt t dc T dt t c d T =++ξ 传递函数 121 )(22++=Ts s T s G ξ2 2 2 2n n n s s ωξωω++= 画出二阶环节模拟机排题图,并分别求取打印: ⑴ T=1,ξ=0.1、0.5、1时的阶跃响应曲线。 ⑵ T=2,ξ=0.5 时的阶跃响应曲线。 四、实验步骤 ⑴ 接通电源,用万用表将输入阶跃信号调整为2V 。 ⑵ 调整相应系数器;按排题图接线,不用的放大器切勿断开反馈回路(接线时,阶跃开关处于关断状态);将输出信号接至数/模转换通道。 ⑶ 检查接线无误后,开启微机、打印机电源;进入CAE2000软件,组态A/D ,运行实时仿真;开启阶跃输入信号开关,显示、打印曲线。 五.实验预习 ⑴ 一、二阶系统的瞬态响应分析;模拟机的原理及使用方法(见本章附录)。 ⑵ 写出预习报告;画出二阶系统的模拟机排题图;在理论上估计各响应曲线。 六.实验报告 ⑴ 将每个环节的实验曲线分别整理在一个坐标系上,曲线起点在坐标原点上。分析各参数变化对其阶跃响应的影响,与估计的理论曲线进行比较,不符请分析原因。 ⑵ 由二阶环节的实验曲线求得σ﹪、t s 、t p ,与理论值进行比较,并分析σ﹪、t s 、t p 等和T 、ξ的关系。 实验二 随动系统的开环控制、闭环控制及稳定性 一.实验目的 了解开环控制系统、闭环控制系统的实际结构及工作状态;控制系统稳定的概念以及系统开环比例系数与系统稳定性的关系。 二.实验要求 能按实验内容正确连接实验线路,正确使用实验所用测试仪器,在教师指导下独立

941自动控制原理二

考试科目代码及名称:941自动控制原理二 一、考试基本要求 本考试大纲适用于报考深圳大学控制工程专业的专业学位硕士研究生入学考试。《自动控制原理二》是为招收控制工程专业硕士生而设置的具有选拔功能的水平考试,它的主要目的是测试考生对《自动控制原理》各章节内容的掌握程度。要求考生熟练掌握自动控制理论的基本概念和基本理论,掌握控制系统分析和校正(综合)的基本思想和分析设计方法, 具有较强的逻辑推理能力和分析运算能力。 二、考试内容和考试要求 1 控制系统的数学模型 (1)掌握控制系统数学模型的概念及种类; (2)掌握用微分方程描述系统数学模型的建模方法,了解非线性方程的线性化方法; (3)牢固掌握系统传递函数的概念、定义及和微分方程的关系; (4)牢固掌握典型环节的传递函数,明确常用控制系统的传递函数形式。特别是两种标准形式表示的传递函数(时间常数型和零极点型); (5)牢固掌握控制系统结构图、信号流图和系统表示方法; (6)掌握由系统微分方程建立系统结构图的方法; (7)熟练应用结构图等效变换和Mason公式求解系统的传递函数。 2 线性系统的时域分析法 (1)牢固掌握控制系统时域指标的概念及定义,熟练掌握一、二阶系统动态品质的计算公式,特别是欠阻尼情况下系统的性能指标计算; (2)牢固掌握控制系统误差的定义及稳态误差的概念;熟练掌握用终值定理求解稳态误差的方法;熟练掌握静态误差系数法;熟悉减小、消除稳态误差的方法; (3)深刻理解稳定性概念及稳定的充要条件,熟练掌握Routh-Hurwitz稳定性判据及其应用; (4)掌握改善系统动态性能及提高系统控制精度的措施。(例如测速反馈控制,比例微分控制,按输入补偿的复合控制,按扰动补偿的复合控制);

自动控制原理教案

自动控制原理教案 经典控制部分 第一章控制理论一般概念3学时 (2) 第二章控制系统的数学模型9学时 (6) 第三章控制系统的时域分析10学时 (15) 第五章频率特性12学时 (26) 第六章控制系统的校正与设计8学时 (36) 第七章非线性系统8学时 (40) 第八章离散控制系统8学时 (45)

第一章控制理论一般概念3学时 1.本章的教学要求 1)使学生了解控制工程研究的主要内容、控制理论的发展、控制理论在工程中的应用及控制理论的学习方法等内容,认识本学科在国民经济建设中的重要作用,从而明确学习本课程的目的。 2)使学生深入理解控制系统的基本工作原理、开环闭环和复合控制系统、闭环控制系统的基本组成等内容,学会利用所学控制原理分析控制系统。 3)使学生学会控制系统的基本分类方法, 4)掌握对控制系统的基本要求。 2.本章讲授的重点 本章讲授的重点是控制系统的基本概念、反馈控制原理、控制系统的的基本分类方法及对控制系统的基本要求。 3.本章的教学安排 本课程讲授3个学时,复习学时3个。 演示《自动控制技术与人类进步》及《自动化的应用举例》幻灯片,加深同学对本课程研究对象和内容的了解,加深对反馈控制原理及系统参数对系统性能影响的理解。

[教案1-1] 第一节概述 1.教学主要内容: 本讲主要介绍控制工程研究的主要内容、控制理论的发展、控制理论在工程中的应用及控制理论的学习方法等内容。 2.讲授方法及讲授重点: 本讲首先介绍控制工程研究的主要内容,给出定义,并以瓦特发明的蒸汽机离心调速器为例,说明需要用控制理论解决控制系统的稳定、准确、快速等问题。 其次,在讲授控制理论的发展时,主要介绍控制理论的发展的三个主要阶段,重点说明经典控制理论、现代控制理论研究的范围、研究的手段,强调本课程重点介绍经典控制理论。 另外,在介绍控制理论在工程中的应用时,应举出控制理论在军事、数控机床、加工中心、机器人、机电一体化系统、动态测试、机械动力系统性能分析、液压系统的动态特性分析、生产过程控制等方面的应用及与后续课的关系,激发同学的学习兴趣。 最后,在介绍控制理论的学习方法时,先说明本门课的特点,起点高、比较抽象、系统性强,然后强调学习本门课程应以新的视角分析和考虑问题,以系统的而不是孤立的、动态的而不是静态的观点和方法来思考和解决问题;掌握控制理论的基本概念、基本理论和基本方法并注意结合实际,为解决工程中的控制问题打下基础。 3.注意事项:介绍本门课的参考书及课程总体安排。 4.课时安排:1学时。 5.教学手段:Powerpoint课件。 6.作业及思考题:借参考书,查阅与本门课有关的文献资料,了解控制理论的应用及最新发展动态。

自动控制原理实验报告 (2)

实验一 典型环节的模拟研究及阶跃响应分析 1、比例环节 可知比例环节的传递函数为一个常数: 当Kp 分别为0.5,1,2时,输入幅值为1.84的正向阶跃信号,理论上依次输出幅值为0.92,1.84,3.68的反向阶跃信号。实验中,输出信号依次为幅值为0.94,1.88,3.70的反向阶跃信号, 相对误差分别为1.8%,2.2%,0.2%. 在误差允许范围内可认为实际输出满足理论值。 2、 积分环节 积分环节传递函数为: (1)T=0.1(0.033)时,C=1μf (0.33μf ),利用MATLAB ,模拟阶跃信号输入下的输出信号如图: T=0.1 T=0.033 与实验测得波形比较可知,实际与理论值较为吻合,理论上T=0.033时的波形斜率近似为T=0.1时的三倍,实际上为8/2.6=3.08,在误差允许范围内可认为满足理论条件。 3、 惯性环节 惯性环节传递函数为: i f i o R R U U -=TS 1 CS R 1Z Z U U i i f i 0-=-=-=1 TS K )s (R )s (C +-=

K = R f /R 1,T = R f C, (1) 保持K = R f /R 1 = 1不变,观测T = 0.1秒,0.01秒(既R 1 = 100K,C = 1μf , 0.1μf )时的输出波形。利用matlab 仿真得到理论波形如下: T=0.1时 t s (5%)理论值为300ms,实际测得t s =400ms 相对误差为:(400-300)/300=33.3%,读数误差较大。 K 理论值为1,实验值2.12/2.28, 相对误差为(2.28-2.12)/2.28=7%与理论值较 为接近。 T=0.01时 t s (5%)理论值为30ms,实际测得t s =40ms 相对误差为:(40-30)/30=33.3% 由于ts 较小,所以读数时误差较大。 K 理论值为1,实验值2.12/2.28, 相对误差为(2.28-2.12)/2.28=7%与理论值较为接近 (2) 保持T = R f C = 0.1s 不变,分别观测K = 1,2时的输出波形。 K=1时波形即为(1)中T0.1时波形 K=2时,利用matlab 仿真得到如下结果: t s (5%)理论值为300ms,实际测得t s =400ms 相对误差为:(400-300)/300=33.3% 读数误差较大 K 理论值为2,实验值4.30/2.28, 相对误差为(2-4.30/2.28)/2=5.7% 与理论值较为接近。

相关文档