文档库 最新最全的文档下载
当前位置:文档库 › 作物数量性状基因图位克隆研究进展

作物数量性状基因图位克隆研究进展

作物数量性状基因图位克隆研究进展
作物数量性状基因图位克隆研究进展

作物数量性状基因图位克隆研究进展

作物许多重要农艺性状,如产量、品质、生育期等均属于数量性状,对控制数量性状的基因(Quantitative trait loci,QTL) 开展研究已成为现代遗传学的热点之一。QTL 的鉴定和克隆不仅有利于从分子水平上阐明这些性状的发育和形成机理,而且对于有效开展数量性状分子育种,进一步提高作物品种的产量、品质和抗性水平具有重要意义。近年来,作物数量性状基因克隆取得了重要突破,一批控制复杂农艺性状的QTL 已被成功分离。随着植物基因组研究的日益广泛和深入,作物QTL 的图位克隆技术将有新的发展。

1 数量性状基因克隆基本思路

数量性状由多基因控制,并受环境条件影响,其表型变异是连续的,一般只能通过统计分析方法来确定其遗传座位。从本质上看,QTL 的定位研究只是以一定概率标准说明在基因组的某些区段可能存在影响某个数量性状的QTL,至于这些QTL 包含多少个基因,包含什么基因,以及它们如何作用于目标性状,则需通过遗传学的方法进一步去鉴定。

在遗传上,QTL 与控制质量性状的基因是一样的,都能够通过遗传重组进行分离,差异只是在遗传效应大小方面,而且同一座位既是一个QTL,也可能是一个主基因,这取决于所考察的等位基因。因此,QTL 克隆的基本思路与控制质量性状的主基因是相似的,即首先将初步定位的QTL 界定到一个很小的基因组区域,然后提名候选基因,进行序列分析,最后进行功能验证。由于一个数量性状的分离通常由多个QTL 共同决定,每一个的贡献较小,且这些QTL 常常紧密连锁在一起,因此QTL克隆的关键问题是如何将控制所研究性状的多个QTL 分解为单个孟德尔因子。近年来在水稻、玉米和番茄上进行的QTL 分离和克隆的开创性工作,为解决这一问题提供了有效途径和具体方法。

2 作物数量性状基因图位克隆进展

2.1 已被成功克隆的作物QTL

目前已报道被成功克隆的作物QTL 有9个(表1)。其中水稻上的Hd1、Hd6、Hd3 和Ehd1 都与抽穗期有关;玉米的tb1 和Dwarf8 分别控制株型和生育期;而番茄的Brix9-2-5、fw2.2 和Ovate 则分别作用于糖含量、果重和果形。从表1可以看出,用于作物QTL 克隆的方法有3种,除tb1 和Dwarf8 分别通过转座子标签法和候选基因法被克隆外,其他QTL 的克隆均采用图位法,可见目前图位克隆仍是作物QTL 克隆的主要方法。

2.2 作物QTL 图位克隆的基本原理和方法

图位克隆方法的主要原理是根据基因在图谱上的相对位置来克隆基因。目前利用该方法已经在多种生物中克隆到大量的主基因。在图位克隆中,QTL 的准确位置较难限定,但一旦控制目标性状的某个QTL 被确定为单个孟德尔因子后,下一步的工作就与主基因没有多大区别。根据已有的文献报道,作物QTL 图位克隆的基本程序可概括如下:首先利用初级作图群体对所研究的数量性状进行QTL 初步定位,然后结合回交和分子标记辅助选择,对目标QTL 进行前景选择,同时进行背景的负向选择,培育目标QTL 的近等基因系(Near-isogenic lines,NILs)、染色体片段替换系(Chromosome segment substitute lines,CSSLs) 或导入系(Introgressive lines,ILs),再利用这些材料构建较大的次级分离群体,在目标区域设计特异性引物,对QTL 进行精细定位,从而将目标QTL 范围缩小到一个很小的基因组区域。在此基础上,可用染色体步移或着陆的方法构建覆盖目标区域的克隆重叠群,鉴定出该座位上的候选基因,并对候选基因序列特性和编码产物进行分析和预测;最后通过表达分析和互补测验等进行功能验证。下面以Hd1 为例,说明目前作物QTL 克隆的具体步骤和方法。

水稻中共有15个QTL 与抽穗期有关,遗传作图将Hd1 初步定位在控制光周期反应的Se1 基因所在区域,因此认为Hd1 可能是Se1 基因座的等位基因,为了证实这一推测,

Yano 等采用图位克隆法克隆了Hd1。

第一步,Hd1 的精细定位与覆盖目标区域重叠群的构建:首先从籼稻品种Nipponbare 和粳稻品种Kassalath 构建的BC3F2 (Nipponbare 作轮回亲本) 群体中选择携带杂合Hd1 区域,其遗传背景主要为Nipponbare 的植株进行自交,发展一个由9000个个体组成的分离群体(BC3F3);根据表型选择1505个早熟极端个体(在Hd1 区域带有纯合的Kassalath 等位基因)组成301个基因池,检测到Hd1 与2个侧翼标记R1679 和P130 间的重组株分别为9个和2个,进一步对这11个重组株用2个RFLP 标记(C235 和S2539) 和一个CAPS 标记(S20481) 进行分析,将Hd1 定位在S20481 和P130 之间;用Hd1 两侧标记筛选Y AC 库(RGP 用于构建物理图谱的基因组文库),发现2个克隆Y4836 和Y3955 包含3个侧翼标记(C235、S20481 和S2539),对Y4836 克隆进行末端克隆,RFLP 分析表明,其右末端Y4836R 与P130 共分离;继续用S20481、S2539 和Y4836R 筛选Nipponbare 基因组PAC 文库,获得2个PAC 克隆,其中P0038C5 包括了S20481、S2539 和Y4836R 三个标记序列,因此覆盖了Hd1 区域;进一步对P0038C5 测序,根据S20481 和Y4836R 的位置,确定一个26 kb 的范围为Hd1 的候选基因区域;利用候选基因区域序列资料设计了9个CAPS 标记,并对这些标记间及与Hd1 之间的重组情况进行分析,最终将Hd1 限定在一个12 kb 的区域。

第二步,Hd1 候选基因的序列分析和功能预测:用Genscan 软件分析候选基因区域的基因组序列,预测该区域有2个可能的候选基因。BLAST 搜索非富余DNA (Nonredundant DNA) 数据库显示,其中第一个与拟南芥的CONSTANS (CO) 基因有很高相似性,而第二个就是S2539,一种过氧化物酶的序列,考虑到CO 与拟南芥的光周期反应有关,因此初步选择第一个基因为候选基因进行下一步序列分析;与Nipponbare 相比,Kassalath 在候选基因序列的第一个外显子中存在4个单碱基替换、1个双碱基替换、1个36bp 碱基插入和1个33bp 碱基缺失,而在第二个外显子中有2个单碱基替换和1个双碱基缺失;对se1 (水稻控制光周期反应的1个主基因) 突变体HS66 和HS110 及其原始野生型品种Ginbouzu 在Hd1 第一候选基因区域的序列进行比较,也发现突变体HS66 第一外显子中有1个43个碱基的缺失,突变体HS110 内含子中有1个433bp 的碱基插入,这些结果表明Hd1 与Se1 是等位的。对水稻的Hd1 和拟南芥的CO 进行序列比对,发现在锌指域有59%的一致性,而C 端区一致性达79%;从序列分析可知,水稻Hd1 由2个外显子组成,编码一个395个氨基酸组成的蛋白质,是拟南芥CO 基因家族的成员之一。Kassalath 等位基因由于第二个外显子中的缺失形成提早终止密码子,结果形成没有C 端的蛋白产物,导致功能的缺失。

第三步,Hd1 候选基因的功能验证:关键的实验是转基因功能互补测定。将来自Nipponbare 的一个包括Hd1 候选基因的7.1 kb DNA 片段转移到一个Nipponbare 的近等基因系中,该受体在Hd1、Hd2 座位含有纯合的Kassalath 等位基因,表现对光周期钝感,结果带有7.1 kb DNA 片段的转化植株在短日照条件下较携带载体序列的转化植株和受体提早抽穗,对转化植株后代表型分析也证明了包括Hd1 候选基因的7.1 kb DNA 片段具有光周期反应敏感的功能。RT-PCR 分析显示,Hd1 的表达受光周期转换的影响并不大,这说明该基因的作用可能是通过影响那些受光周期直接调控的基因的表达来实现的。

2.3 作物QTL 图位克隆方法的不足

目前所有作物QTL 的克隆基本上都是按照以上的方法和步骤进行的,整个过程涉及遗传图谱、物理图谱的构建;基因组文库或cDNA 文库的建立与筛选;近等基因系等群体的选育以及DNA 测序、基因表达分析和互补测验等。这些环节的工作是比较复杂的,所花费的人力、物力和时间也是很多。Tanksley 实验室从20世纪80年代末开始研究番茄果实重量的数量遗传规律,1996年把fw2.2 定位到第2染色体的约150 kb 的区域,在2000年

完成了克隆工作,前后花了10多年的时间;以色列的Zamir 研究小组在1995年把1个控制番茄糖度的QTL Brix9-2-5 定位在第9染色体上大约9 cM 区域,2000年最终将其鉴定为Lin5 基因(细胞质外蔗糖转化酶),也经历了6年的时间。由于传统QTL 图位克隆工作的难度,目前这方面虽然取得了突破,但无论是涉及到的作物种类、性状类型还是QTL 的数量都是很有限的,尤其一些效应较小的QTL 还没有被克隆出来。

3 作物数量性状基因图位克隆技术的发展

近年来植物基因组研究进展非常迅速,尤其拟南芥、水稻等模式植物高密度遗传图谱和物理图谱的构建、全基因组序列的公布、数以万计EST、全长cDNA 等序列及功能分析数据的释放以及新型植物分子标记及其高效检测技术的发展等,为基因的图位克隆带来了新的思路和方法。Jander 等对拟南芥基因的图位克隆效率进行了分析,对比结果,1995年克隆1个基因大约需要3~5人年,而2002年后则不到1人年(拟南芥年繁殖5~6代)。同时这些新的进展也能够使QTL 的精细定位和物理图谱构建等相关工作大大简化,因此同样可促使QTL 的图位克隆向更加简便、快速的方向发展。

3.1 作物QTL 精细定位方法

传统图位克隆中的关键限制步骤是QTL 的精细定位和通过染色体步移获得目的QTL 区域的物理图谱,这一过程相当费时、费力。现在公共数据库中大量的序列资料为这一工作的顺利完成提供了便利。比如,当水稻某一QTL 初步定位在2个标记之间后,就可以从国际水稻基因组测序计划(IRGSP) 公布的序列中下载这2个标记区域的部分PAC/BAC 克隆序列,利用软件SSRIT 搜索克隆序列中的微卫星序列,然后选择合适的微卫星序列进行特异PCR 引物的设计;也可以直接借助于公共数据库的序列进行比较,如寻找RGP 数据库(粳稻)与中国华大数据库(籼稻)的序列差异,设计单核苷酸多态性(SNP) 标记和缺失/插入多态(Del/In) 标记等,利用这些标记对大群体进行分析,可以迅速地将目标QTL 范围缩小到一个很小的基因组区域。在完成精细定位后,可以根据已有的与目标QTL 紧密连锁的分子标记在已公布RGP 物理图谱上的位置,通过序列的拼接,实现目标QTL 区域遗传图谱和物理图谱的电子整合,很快得到该区域的基因组序列,从而可以减少文库构建、筛选等繁重的工作,加速QTL 的克隆进程。近来还有些学者提出一种更加简单的“高尔夫球逼近法”(Genegolfing) 进行基因克隆,其做法是从与目标性状松散连锁的分子标记出发,把标记与基因间的遗传距离换算成物理距离,“一杆”即能到达可能包括目标基因的重叠群,再从该连锁群中分离单拷贝序列作为探针或设计引物,对目标基因重新定位,如果发现目标基因不在该重叠群上,则可继续“第二杆”,反复如此,直至分离到含有目标基因的克隆为止。不过这种方法能否用于QTL 克隆,还需实践验证。

3.2 作物QTL 图位克隆的作图群体

在作图群体方面,近等基因系、染色体片段替换系或导入系是植物QTL 克隆的关键基础材料。目前,水稻、番茄和油菜等作物已建立了多个染色体代换系群体,但大多数代换系群体的供体较少,且每个代换系含有多个片段,有些覆盖率也不高,因此QTL 鉴定效率不高。本实验室以24个水稻品种为供体,利用回交和微卫星标记辅助选择相结合的方法,建立了以籼稻品种华粳籼74为背景的水稻单片段代换系(Single segment substitution lines,SSSLs) 群体,目前获得的单片段代换系已超过1000个,覆盖了整个水稻基因组。由于单片段代换系是用分子标记辅助选择技术建立的近等基因系,在每个单片段代换系的基因组内都只有来自供体亲本的一个纯合染色体片段,而基因组的其余部分与受体亲本相同,所有在单片段代换系与其受体亲本之间的差异以及在单片段代换系之间所有可遗传的变异都只与代换片段相联系。单片段代换系在QTL 的鉴定与定位、克隆及功能研究方面具有重要的利用价值。第一,利用覆盖全基因组的单片段代换系群体可以实现对目标性状进行全基因组的QTL 鉴定,全面了解重要农艺性状的遗传基础,席章营用326个单片段代换系在两季共检

出24个农艺性状的701个QTL,平均每个性状检出了29.21个QTL ;第二,由于消除了遗传背景的干扰,QTL 的效应被相对“放大”,如在常规分离群体中,fw2.2 对番茄果重变异的贡献为5%~30%,而在NILs 发展的F2 群体中其作用达到47%,这样就从遗传和统计两个方面保证了QTL 定位的准确性和稳定性;第三,在鉴定出QTL 后可以立即通过相关的单片段代换系与受体杂交发展大样本的分离群体进行QTL 精细定位,也可以通过进一步的回交和分子标记辅助选择选育次级单片段代换系,并通过重叠作图的方法进一步缩小QTL 区域;第四,在候选基因确定后,还可设计引物扩增候选基因区域,测序后通过对不同供体来源的单片段代换系在同一基因组区域的序列和表型差异进行比较,寻找变异位点,并对候选基因功能进行验证,拟南芥中一些基因的功能就是通过这种方法研究的。此外,单片段代换系之间的相互杂交还可以研究QTL 之间的遗传互作;单片段代换系与其他品种杂交可以研究QTL 与不同遗传背景的互作。

4 结论

自Peterson 等首次对QTL 进行全基因组扫描以来,已有许多学者用不同的作图群体,采用不同的统计分析方法定位了许多作物QTL,但其中只有很少几种作物的几个效应较大的QTL 被克隆。原因主要有二,一是数量性状基因表达非常复杂,用现有作图方法(包括遗传模型、作图群体等)对QTL 的定位能力有限,难以获得QTL 的正确位置;二是传统的克隆方法过于复杂和困难。近年来在植物基因组学研究领域所取得的成果无疑将大大促进QTL 的克隆研究。QTL 的鉴定和分离已成为21世纪遗传学研究的主要方向之一,同时也是后基因组学的重要任务,相信随着相关研究的不断深入,在不久的将来,主要农作物会有更多新的QTL 被克隆。

基因图位克隆的策略与途径

基因图位克隆的策略与途径 拟南芥(Arabidopsis thaliana)是一种模式植物,具有基因组小(125 Mbp ) 、生长周期短等特点,而且基因组测序差不多完成 (The Arabidopsis Genomic Initiative, 2000)。同时,拟南芥属十字花科(Cruciferae),具有高等植物的一样特点,拟南芥研究中所取得成果专门容易用于其它高等植物包括农作物的研究,产生重大的经济效益,专门是十字花科中还有许多重要的经济作物,与人类的生产生活紧密有关,因此目前拟南芥的研究越来越多地受到国际植物学及各国政府的重视。 基因(gene是遗传物质的最差不多单位,也是所有生命活动的基础。不论 要揭示某个基因的功能,依旧要改变某个基因的功能,都必须第一将所要研究的基因克隆出来。特定基因的克隆是整个基因工程或分子生物学的起点。本文就基因克隆的几种常用方法介绍如下。 1 、图位克隆 Map-based cloning, also known as positional cloning, first proposed b y Alan Coulson of the University of Cambridge in 1986, Gene isolated b y this method is based on functional genes in the genome has a relativel y stable loci, in the use of genetic linkage analysis or chromosomal abnor malities of separate groups will queue into the chromosome of a specific location, By constructing high-density molecular linkage map, to find mole cular markers tightly linked with the aimed gene, continued to narrow the candidate region and then clone the gene and to clarify its function and biochemical mechanisms. 用该方法分离基因是按照目的基因在染色体上的位置进行的,无需预先明白基因的DNA 序列,也无需预先明白其表达产物的有关信息。它是通过分析突变位点与已知分子标记的连锁关系来确定突变表型的遗传基础。近几年来随着拟南芥基因组测序工作的完成,各种分子标记的日趋丰富和各种数据库的完善,在拟南芥中克隆一个基因所需要的努力差不多大大减少了(图1)。

克隆技术简介

克隆技术介绍 张勋学号:160820216 摘要克隆技术是生命科学技术领域里非常重要的部分,随着新时代的到来,克隆技术在人类生产生活中将发挥更加重要的作用。人们享受着克隆技术带来的巨大好处,但与此同时,克隆技术对人类的可持续发展也提出了问题和挑战。本文是通过从实质、方法、应用价值等方面对克隆技术进行一些介绍。 一、克隆技术实质 1963 年J.B.S.Haldane在题为“人类种族在未来二万年的生物可能性”的演讲上采用“克 隆(Clone)”的术语。学家把人工遗传操作动物繁殖的过程叫“克隆”,这门生物技术叫“克隆技术”,其本身的含义是无性繁殖,即由同一个祖先细胞分裂繁殖而形成的纯细胞系,该细胞系中每个细胞的基因彼此相同。早在1938年,德国胚胎学家Speman 最早提出克隆设想。1962年,英国剑桥大学的Gurdon进行了青蛙胚胎核移植,获得成年蛙。在经历半个多世纪的研究后,终于在1996年的7月5日,在苏格兰罗斯林研究所中,随着用体细胞克隆出来的小羊多莉的诞生,哺乳动物克隆技术真正的来到我们面前。克隆技术作为人类在生物科学领域取得的一项重大技术突破,反映了细胞核分化技术、细胞培养和控制技术的进步,它对于扩大良种动物群体,提高畜群的遗传素质和生产能力,拯救濒危动物等的方面而言是迄今为止最为理想手段。 克隆也可以理解为复制,就是从原型中产生出同样的复制品,它的外表及遗传基因与原型完全相同,但大多行为思想不同。时至今日,“克隆”的含义已不仅仅是“无性繁殖”,凡是来自同一个祖先,无性繁殖出的一群个体,也叫“克隆”。这种来自同一个祖先的无性繁殖的后代群体也叫“无性繁殖系”,简称无性系。简单讲就是一种人工诱导的无性繁殖方式。但克隆与无性繁殖是不同的。克隆是指人工操作动物繁殖的过程,无性繁殖是指:不经过两性生殖细胞的结合由母体直接产生新个体的生殖方式。 植物基因的克隆技术是生命科学研究的重要组成部分,是现代生命科学技术中最核心的内容,它是随着20 世纪70 年代初DNA 体外重组技术的发明而发展起来的,其目标是识别和分离特异基因并获得基因完整序列,确定其在染色体上的位置,阐明其生化功能,并利用生物工程手段应用到生产实践中去。一般来讲,基因克隆的策略可分为两种途径:正向遗传学途径和反向遗传学途径。 正向遗传学途径以待克隆的基因所表现的功能为基础,通过鉴定基因的表达产物或表型性状进行克隆,如功能克隆和表型克隆等;反向遗传学途径则着眼于基因本身特定的序列或者在基因组中的特定位置进行克隆,如定位克隆、同源序列法克隆等;随着DNA测序技术和生物信息学的发展,又产生了电子克隆等新兴克隆技术。目前,在玉米,水稻、油菜、拟南芥、烟草、番茄等多种植物中,已经克隆了许许多多与植物的产量、品质、抗性及农艺性状等相关的基因。现对在植物基因克隆过程中运用的主要技术进行综述,以把握植物基因克隆技术的发展历程,并对未来的发展趋势进行展望。

数量性状基因座原理

数量性状基因座(QTL)定位的基本原理 数量性状基因座(quantitative trait locus,QTL)指的是控制数量性状的基因在基因组中的位置。QTL定位的理论依据是Morgan 的连锁遗传规律,通过数量性状观察值与标记间的关联分析,当标记与特定性状连锁时,不同标记基因型个体的表型值存在显著差异,来确定影响各个数量性状的基因(QTL)在染色体上的位置、效应,甚至各个QTL间的相关作用。QTL定位检测的是分子标记与QTL之间的连锁关系,通过分析整个染色体组的DNA标记和数量性状表型值的关系,将QTL逐一的定位到连锁群的相应位置,并估算出相应的QTL效应值。QTL定位实质上是基于一个特定模型的遗传假设,与数量性状基因有本质区别,是统计学上的一个概念,有可信度(如95%、99%等)。 近年来,数量性状的研究进入了崭新的QTL时代,先后提出了多种QTL定位的统计方法。可分两大类:一类是基于性状的分析方法(Trait Based Analysis,TBA),其原理是利用分离群体的两极端表型个体来分析标记与QTL的连锁关系,检验标记基因型在两极端类型内的分离比是否偏离孟德尔定律;第二类是基于标记的分析方法(Marker Based Analysis,MBA),如果某标记与QTL连锁,该标记与QTL在一定程度上共分离,分析不同标记基因型的表型值差异来推测标记与QTL的连锁关系。MBA方法通常有3类,即传统的单标记分析法(Single Marker Analysis,SMA)、性状-标记回归法和性状- QTL - 回归法。性状- QTL - 回归法又包括基于两个侧邻标记的区间作图法

植物基因克隆实验指导

植物基因克隆实验规则 一、植物基因克隆实验课的目标 根据基因克隆实验操作的整体性和连贯性特点, 将该实验设计为综合性实验课程,实验内容设计上完全抛弃了原来分散的、孤立的单纯学习某一实验技术的缺陷, 将单个实验综合为系统的、连贯的系列型大实验,注重科研成果在教学中的应用,我们从以往的科研项目中选取了部分研究内容用于学生的综合性实验教学,这是基于教学实验与实际科学研究实验之间的新的实验教学模式。 整套实验围绕洋甘菊倍半萜生物合成途径中关键酶基因HMGR的克隆这一研究课题进 行操作, 设计的实验内容具有极强的连续性和综合性,让学生在独立实践操作中学习基因克隆的基本研究方法和体会科学研究的严密逻辑和培养科研理念。 我们将实验内容设置为8个部分, 实验内容前后衔接紧密, 环环相扣, 不可分割, 前一个实验的结果是下一个实验的材料。该课程使学生获得了整个类似科研实践过程的训练和体验, 学习了从事科研工作的基本功, 对完成自己的毕业论文及将来从事生命科学研究奠定了科 研基础。 二、实验的进行程序和要求 1、预习学生在课前应认真预习实验指导以及教材有关章节,必须对该次实验的目的要求、实验内容、基本原理和操作方法有一定的了解。 2、讲解教师对该实验内容的安排及注意事项进行讲解,让学生有充分的时间按实验指导的要求进行独立操作与观察。 3、独立操作与观察除个别实验分组进行外,一般由学生个人独立进行操作和观察。在实验中要按实验指导认真操作,仔细观察,作好记录。有关基本技能的训练,要按操作程序反复练习,以达到一定的熟练程度。

4、演示每次的实验都备有演示内容,其目的是帮助学生了解某些实验中的难点,扩大在实验课有限时间内获得更多感性知识的机会。 5、作业实验报告参照硕士毕业论文的格式写,必须强调科学性,实事求是地记录、分析、综合。在实验结束时呈交。 6、小结每次实验结束后,由师生共同小结本次实验的主要收获及今后应注意的问题。 三、实验规则和注意事项 1、每次上课前,必须认真阅读实验指导,明确本次实验的目的要求、实验原理和注意事项,熟悉实验内容、方法和步骤。 2、上实验课时必须携带实验指导、记录本及文具等。进入实验室要按规定座位入座。 3、实验时要遵守纪律,听从教师指导,保持肃静。有问题时举手提问,严禁彼此谈笑喧或随意走动,也不得私自进行其他活动。 4、实验时要遵守实验操作规程,严格按照教师的安排和实验指导的要求进行。操作观察要认真仔细,边做、边看、边想,认真做好实验记录。 5、要爱护仪器和器材设备,注意节约实验材料、药品和水电。如有损坏器材应立即报告并主动登记、说明情况。 6、实验结束后,应清理实验台面,认真清理好仪器、药品及其他用品,放回原处,放好凳子,方可离开实验室。值日生要负责清扫地面,收拾实验用品,处理垃圾,关好水、电、门窗后再离开。

拟南芥的图位克隆技术

拟南芥基因的图位克隆技术 浙江大学生命科学学院徐冰 浙江杭州310029 1 国内外研究现状 拟南芥(Arabidopsis thaliana)是一种模式植物,具有基因组小(125 Mbp)、生长周期短等特点,而且基因组测序已经完成(The Arabidopsis Genomic Initiative, 2000)。同时,拟南芥属十字花科(Cruciferae),具有高等植物的一般特点,拟南芥研究中所取得成果很容易用于其它高等植物包括农作物的研究,产生重大的经济效益,特别是十字花科中还有许多重要的经济作物,与人类的生产生活密切相关,因此目前拟南芥的研究越来越多地受到国际植物学及各国ZF的重视。 从遗传学的观点来看,基因克隆的途径可概括为正向遗传学和反向遗传学两种。正向遗传学途径指的是通过被克隆基因的产物或表现型突变去进行;反向遗传学途径则指的是依据被克隆基因在染色体上的位置来实现。虽然一些模式生物(如拟南芥)的基因组测序已经完成,但还有40%的基因(在拟南芥中)的功能还是未知的。 图1 图位克隆所需努力的比较(1995年和2002年)(Jander等,2002) 图位克隆(map-based cloning)又称定位克隆(positional cloning),1986年首先由剑桥大学的Alan Coulson提出(Coulson等,1986),用该方法分离基因是根据目的基因在染色体上的位置进行的,无需预先知道基因的DNA序列,也无需预先知道其表达产物的有关信息。它是通过分析突变位点与已知分子标记的连锁关系来确定突变表型的遗传基础。近几年来随着拟南芥基因组测序工作的完成,各种分子标记的日趋丰富和各种数据库的完善,在拟南芥中克隆一个基因所需要的努力已经大大减少了(图1)。 目前完成整个拟南芥的图位克隆过程大约需要一年时间。在这个过程中,我们从筛选突变体开始,逐渐找到和表型相关的基因。这和反向遗传学的方法正好相反。图位克隆能实现,关键在于全基因组测序计划的完成和各种分子标记的发现。这些数据被储存在专门的数据库中

第四章数量性状的遗传

第四章数量性状的遗传 目的要求 掌握数量性状与质量性状的区分、特征,多基因假说的要点,数量性状表现值的分解,遗传力的概念;了解通径系数概念与意义,基因的非加性效应与加性效应的意义,遗传力公式的推导及计算方法;掌握遗传力的应用。 第一节数量性状的遗传基础 生物的性状基本上可分为两大类: 质量性状(qualitative trait):变异可以截然区分为几种明显不同的类型,一般用语言来描述; 数量性状(quantitative trait):个体间性状表现的差异只能用数量来区别,变异是连续的。 阈性状(threshold trait):表现型呈非连续变异,与质量性状类似,但不是由单基因决定,性状具有一个潜在的连续型变量分布,遗传基础是多基因控制的,与数量性状类似。 一、数量性状的一般特征 数量性状的特点: ①数量性状是可以度量的; ②数量性状呈连续性变异; ③数量性状的表现容易受到环境的影响; ④控制数量性状的遗传基础是多基因系统。 学习数量性状的方法 ①统计学思想贯穿数量性状遗传的全部内容; ②确定性与不确定性的矛盾时时体现; ③研究对象在个体与群体间的相互转换; ④遗传与变异的矛盾。 二、数量性状的遗传基础 1.多基因假说 瑞典遗传学家尼尔迩·埃尔(Nilsson-Ehle)通过对小麦籽粒颜色的遗传研究,提出了数量性状遗传的多基因假说。 多基因假说的要点 (1)数量性状是由许多微效基因决定的,每个基因的作用的微效的; (2)基因的作用是相等的,且可以累加、呈现剂量效应,等位基因间通常无显隐关系;(3)基因在世代相传中服从孟德尔定律,即分离规律和自由组合规律,以及连锁交换规律2.基因的非加性效应 基因的非加性效应包括显性效应和上位效应。 (1)显性效应由等位基因间相互作用产生的效应。 例1:有两对基因,A1、A2的效应各为20cm,a1、a2的效应名为10cm,基因型A1A1a2a2

植物基因的克隆|植物基因克隆的基本步骤

植物基因的克隆 08医用二班姚桂鹏0807508245 简介 克隆(clone)是指一个细胞或一个生物个体无性繁殖所产生的后代群体。通常所说的基因克隆是指基于大肠埃希菌的DNA片段(或基因)的扩增,主要过程包括目标DNA的获取、重组载体的构建、受体细胞的转化以及重组细胞的筛选和繁殖等。本文主要介绍植物基因的特点、基因克隆的载体、基因克隆的工具酶、基因克隆的策略以及植物目的基因的分离克隆方法等内容。 关键词 植物基因基因克隆载体工具酶克隆策略分离克隆方法 Plant gene cloning Introduction Cloning (clone) refers to a cell or an individual organisms asexual reproduction produced offspring. Usually said cloning genes means

based on escherichia coli segment of DNA (or genes), including the main course target DNA, restructuring of the carrier, transformation of receptor cells and reorganization of screening and reproductive cells. This paper mainly introduces the characteristics of plant gene and gene cloning and carrier, gene clone tool enzyme, gene cloning and plant gene strategy of separation cloning method, etc. Keywords Plant gene cloning tool enzyme gene cloning vector method of separation of cloning strategy 一、植物基因的结构和功能 基因(gene)是核酸分子中包含了遗传信息的遗传单位。一般来说,植物基因都可分为转录区和非转录的调控区两部分。 (一)植物基因的启动子 启动子(promoter)是指在位于结构基因上游决定基因转录起始的区域,植物积阴德启动子包括三个较重要的区域,一时转录起始位点,而是转录起始位点上游25~40bp的区域,三是转录起始位点上游-75bp处或更远些的区域。 (二)植物基因的增强子序列

QTL-seq:用重测序方法进行数量性状基因座(QTL)定位的方法

TECHNICAL ADVANCE/RESOURCE QTL-seq:rapid mapping of quantitative trait loci in rice by whole genome resequencing of DNA from two bulked populations Hiroki Takagi 1,2,Akira Abe 2,3,Kentaro Yoshida 1,Shunichi Kosugi 1,Satoshi Natsume 1,Chikako Mitsuoka 1,Aiko Uemura 1,Hiroe Utsushi 1,Muluneh Tamiru 1,Shohei Takuno 4,Hideki Innan 5,Liliana M.Cano 6,Sophien Kamoun 6and Ryohei Terauchi 1,*1 Iwate Biotechnology Research Center,Kitakami,Iwate,024-0003,Japan,2 United Graduate School of Iwate University,Morioka,Iwate,020-8550,Japan,3 Iwate Agricultural Research Center,Kitakami,Iwate,024-0003,Japan,4 Department of Plant Sciences,University of California,Davis,CA 95616,USA,5 Graduate University for Advanced Studies,Hayama,Japan,and 6 The Sainsbury Laboratory,Norwich Research Park,Norwich,UK Received 7September 2012;revised 13December 2012;accepted 20December 2012;published online 05January 2013.*For correspondence (e-mail terauchi@ibrc.or.jp). SUMMARY The majority of agronomically important crop traits are quantitative,meaning that they are controlled by multiple genes each with a small effect (quantitative trait loci,QTLs).Mapping and isolation of QTLs is important for ef?cient crop breeding by marker-assisted selection (MAS)and for a better understanding of the molecular mechanisms underlying the traits.However,since it requires the development and selection of DNA markers for linkage analysis,QTL analysis has been time-consuming and labor-intensive.Here we report the rapid identi?cation of plant QTLs by whole-genome resequencing of DNAs from two populations each composed of 20–50individuals showing extreme opposite trait values for a given phenotype in a segregating progeny.We propose to name this approach QTL-seq as applied to plant species.We applied QTL-seq to rice recombinant inbred lines and F 2populations and successfully identi?ed QTLs for important agronomic traits,such as partial resistance to the fungal rice blast disease and seedling vigor.Simulation study showed that QTL-seq is able to detect QTLs over wide ranges of experimental variables,and the method can be generally applied in population genomics studies to rapidly identify genomic regions that underwent arti?cial or natural selective sweeps. Keywords:quantitative trait loci,breeding,whole genome sequencing,next generation sequencer,selective sweep,technical advance. INTRODUCTION The world’s population has already exceeded 7billion and is still growing,while the amount of land suitable for agri-culture is decreasing due to a variety of factors such as rapid climate change.Therefore there is a great demand for ef?cient crop improvement to increase yield without further expanding farmland and damaging the environ-ment (Godfray,2010;David et al.,2011). In crop plants,multiple genes each with a relatively minor effect control the majority of agronomically impor-tant traits.These genes are called quantitative trait loci (QTLs)(Falconer and Mackay,1996).Identi?cation of QTLs is an important task in plant breeding.Once a QTL control-ling a favorable trait is mapped with closely linked DNA markers,it is introduced into an elite cultivar by crossing of the recurrent elite parent to the donor plant.Following QTL a process marker-assisted selection and Matsuoka,2006).Marker-assisted selection reduces the effort and time needed for phenotype evaluation of the progeny during successive improves introgression ?2013The Authors The Plant Journal ?2013Blackwell Publishing Ltd 174 The Plant Journal (2013)74,174–183doi:10.1111/tpj.12105

基因克隆技术的研究进展_钟军

第6卷第4期(专辑) 2002年12月 生命科学研究 Life Science Research Vol.6No.4(Suppl.) Dec.2002基因克隆技术的研究进展X 钟军,李,官春云 (湖南农业大学油料作物研究所,中国湖南长沙410128) 摘要:为能快速而准确地克隆目的基因,综述了一些基因克隆常用技术,包括差异表达基因分离技术、转座子标签技术、图位克隆技术、同源序列技术、表达序列标签技术的原理、应用及应用潜力,并对其作了简要的评价. 这些技术有利有弊,应根据不同的实验目的和水平来选择相应的技术. 关键词:基因;克隆;差异表达基因分离技术;转座子标签技术;图位克隆技术;同源序列技术;表达序列标签技术 中图分类号:Q78文献标识码:A文章编号:1007-7847(2002)S1-0148-05 Advances in Gene Cloning Technique ZHONG Jun,LI Xun,GUAN Chun-yun (T he Oil Crop Institute of H unan Agriculture University,Chan gsha410128,H unan,China) Abstract:To clone candidate gene quickly and correctly,advances about gene cloning included map-based cloning, transposon tagging,homology-based candidate gene method,expressed sequence tagging methods and some differen-tially expressed gene clone method are introduced and appraised.Because of the advantages and disadvanta ges of those techniques,various technique should be selected according special purpose and level. Key words:gene;clone;differentially e xpressed gene clone method;transposon tagging;map-based cloning;ho-mology-based candidate gene method;e xpressed sequence ta gging method (Li f e Science Research,2002,6(Suppl):148~152) 克隆基因的途径有两种,正向遗传学和反向遗传学途径.前者是依据目标基因所表现的功能为基础,通过鉴定其产物或某种表型突变而进行的;后者则着眼于基因本身,通过特定的序列或在基因组中的位置进行.近几十年来,许多重点实验室致力于植物基因的克隆,到1992年取得了突破性进展.基因的克隆一般采用下列技术:差异表达基因分离技术、转座子标签技术、表达序列标签技术、图位克隆技术和同源序列技术等. 1差异表达基因分离技术 1.1扣除杂交技术 扣除杂交技术的原理是用有特异性表达基因的目标样提取mRNA经逆转录形成cDNA探针,与无特异性表达基因的参照样的过量mRNA或cDNA杂交,经两轮充分杂交后,移去杂交分子和过量的无特异性表达基因的参照样mRNA或cD-NA,将不形成杂交体的有特异性表达基因的目标样cDNA纯化富集、扩增,建立相应cDNA文库即为差异表达基因cDNA文库.此技术最早是由Lamar和Palmer于1984年提出[1],他们先用超声波打断雌性小鼠的DNA,用Mbo1完全消化雄性小鼠DNA;将两者一起变性、复性,再将产物克隆入表达载体的Bam H I位点中,只有那些两端有GATC序列的基因才能被克隆入载体,这样就达到了扣除两者共有序列的目的,并得到雄性小鼠 X收稿日期:2002-06-11;修回日期:2002-10-14 作者简介:钟军(1973-),女,湖南沅江人,博士研究生,从事分子遗传学研究.Tel:+86-0731-*******,E-mail:zhhjp@s https://www.wendangku.net/doc/a74778431.html,

植物基因克隆

来自dxy 22003luocong 植物基因全长克隆几种方法的比较 基因是遗传物质基本的功能单位,分离和克隆目的基因是研究基因结构、揭示基因功能及表达的基础,因此,克隆某个功能基因是生物工程及分子生物学研究的一个重点。经典克隆未知基因的方法比如通过筛选文库等有个共同的弊病, 即实验操作繁琐, 周期较长、工作量繁重,且不易得到全长序列。又由于在不同植物中目的基因mRNA丰度不同,所以获得目的基因的难易程度又不一样,特别是对于丰度比较低的目的基因即使使用不用的方法也不一定能获得成功。近年来随着PCR技术的快速发展和成熟.已经有多种方法可以获得基因的全长序列, 比如经典的RACE技术,染色体步移法和同源克隆法等,本文主要综述几种重要的克隆方法的原理和运用,并且比较分析这几种方法的优缺点,为你的实验节约时间和成本。 1 RACE技术 1985年由美国PE-Cetus公司的科学家Mulis等[1]发明的PCR技术使生命科学得到了飞跃性的发展。1988年Frohman等[2] 在PCR技术的基础上发明了一项新技术, 即cDNA末端快速扩增技术( rapid amplification of cDNA ends, RACE), 其实质是长距PCR( long distance, PCR)。通过PCR由已知的部分cDNA 序列, 获得5′端和3′端完整的cDNA, 该方法也被称为锚定PCR ( anchored PCR) [3] 和单边PCR( one-sidePCR) [4]。RACE技术又分为3?RACE和5?端RACE。3′RACE 的原理是利用mRNA 的3′端天然的poly(A) 尾巴作为一个引物结合位点进行PCR, 以Oligo( dT) 和一个接头组成的接头引物( adaptor primer, AP)反转录mRNA得到加接头的第一链cDNA。然后用一个正向的基因特异性引物( gene-specific primer, GSP) 和一个含有接头序列的引物分别与已知序列区和poly(A) 尾区退火, 经PCR扩增位于已知序列区域和poly( A) 尾区之间的未知序列,若为了防止非特异性条带的产生, 可采用巢式引物( nested primer) 进行第二轮扩增, 即巢式PCR( nested PCR) [5,6]。5?RACE 跟3?RACE原理基本一样,但是相对于3?RACE来说难度较大。 5'-RACE受到诸多因素的影响而常常不能获取全长,因此研究者都着手改进它。这些措施主要是通过逆转录酶、5'接头引物等的改变来实现的,因此出现了包括基于“模板跳转反转录”的SMART RACE技术( switching mechanism at 5′ end of RNA transcript) [7] , 基于5′脱帽和RNA酶连接技术的RLM-RACE技术(RNA ligase mediated RACE)[8], 利用RNA连接酶为cDNA第一链接上寡聚核苷酸接头的SLC RACE技术(single strand ligation to single-stranded cDNA)[9] , 以及以内部环化的cDNA第一链为模板进行扩增的自连接或环化RACE技术(self-ligation RACE or circular RACE)[10],和通过末端脱氧核苷酸转移酶( TdT)加尾后引入锚定引物的锚定RACE技术( anchored RACE)[11]。 笔者主要介绍两种比较新的RACE技术,基于…模板跳转?的SMART RACE 技术和末端脱氧核苷酸转移酶( TdT)加尾技术。 1.1基于‘模板跳转’的SMART RACE技术[7,12]

植物基因克隆的策略与方法

植物基因克隆的策略与方法 基因的克隆就是利用体外重组技术,将特定的基因和其它DNA顺序插入到载体分子中。基因克隆的主要目标是识别、分离特异基因并获得基因的完整的全序列,确定染色体定位,阐明基因的生化功能,明确其对特定性状的遗传控制关系。通过几十年的努力由于植物发育,生理生化,分子遗传等学科的迅速发展,使人们掌握了大量有关植物优良性状基因的生物学和遗传学知识,再运用先进的酶学和生物学技术已经克隆出了与植物抗病、抗虫、抗除草剂、抗逆,育性、高蛋白质及与植物发育有关的许多基因。我们实验室对天麻抗真菌蛋白基因作了功能克隆的研究(舒群芳等,1995;舒群芳等,1997),为了克隆植物基因也探讨了其它克隆方法,本文论述基因克隆的策略、方法及取得的一些进展。 1 功能克隆(functional Cloning) 功能克隆就是根据性状的基本生化特性这一功能信息,在鉴定和已知基因的功能后克隆(Collis,1995)。其具体作法是:在纯化相应的编码蛋白后构建cDNA文库或基因组文库,DNA文库中基因的筛选根据情况主要可用二种办法进行,(1)将纯化的蛋白质进行氨基酸测序,据此合成寡核苷酸探针从cDNA库或基因组文库中筛选编码基因,(2)将相应的编码蛋白制成相应抗体探针,从cDNA入载体表达库中筛选相应克隆。功能克隆是一种经典的基因克隆策略,很多基因的分离利用这种策略。 Hain等从葡萄中克隆了两个编码白藜芦醇合成的二苯乙烯合成酶基因(Vst1和Vst2),葡萄中抗菌化合物白藜芦醇的存在,可以提高对灰质葡萄孢(Botrytis cinerce)的抗性,在烟草和其它一些植物中无二苯乙烯合成酶,因此

功能基因的克隆及生物信息学分析

功能基因的克隆及其生物信息学分析 摘要:随着多种生物全基因组序列的获得,基因组研究正从结构基因组学(structural genomics)转向功能基因组学(functional genomics)的整体研究。功能基因组学利用结构基因组学研究获得的大量数据与信息评价基因功能(包括生化功能、细胞功能、发育功能、适应功能等),其主要手段结合了高通量的大规模的实验方法、统计和计算机分析技术[1],它代表了基因分析的新阶段,已成为21世纪国际生命科学研究的前沿。功能基因组学是利用基因组测序获得的信息和产物,发展和应用新的实验手段,通过在基因组或系统水平上全面分析基因的功能,使生物学研究从对单一基因或蛋白的研究转向多个基因或蛋白同时进行系统的研究,是在基因组静态的组成序列基础上转入对基因组动态的生物学功能学研究[2]。如何研究功能基因,也成为我们面临的一个课题,本文就克隆和生物信息学分析在研究功能基因方面的应用做一个简要的阐述。 关键词:功能基因、克隆、生物信息学分析。 1.功能基因的克隆 1.1 图位克隆方法 图位克隆又称定位克隆,它是根据目标基因在染色体上确切位置,寻找与其紧密连锁的分子标记,筛选BCA克隆,通过染色体步移法逐步逼近目的基因区域,根据测序结果或用BAC、YAC克隆筛选cDNA表达文库寻找候选基因,得到候选基因后再确定目标基因。优点是无需掌握基因产物的任何信息,从突变体开始,逐步找到基因,最后证实该基因就是造成突变的原因。通过图位克隆许多控制质量性状的单基因得以克隆,最近也有报道某些控制数量性状的主效基因(控制蕃茄果实大小的基因克隆[3]、控制水稻成熟后稻谷脱落基因克隆[4]以及小麦VRN2 基因克隆[5]等)也通过图位克隆法获得。

图位克隆基因研究进展

图位克隆基因研究进展 宋成标 摘要图位克隆是在不清楚基因产物结构和功能的情况下,根据基因在染色体上都有稳定的基因座实现的。随着各种分子标记技术和高质量基因组文库构建技术的发展,图位克隆现已经成为分离生物体基因的一种常规技术。本文主要概述了图位克隆的一般步骤,包括目的基因的初步定位、精细定位和遗传做图、染色体步行和登陆及利用功能互补实验鉴定目的基因。最后,对图位克隆技术存在的局限和发展前景作了初步的分析。 关键词图位克隆, 分子标记, 精细定位, 基因组文库 Abstract Map-based cloning is based on the functional genes have their particular gene locus on chromosomes,when we know about the structure and function of gene products unclearly.With the rapid development of molecular marker technologies and constructing high quality genomic library technologies, map-based cloning had already become a common bio—technique for gene isolation. This article summarized mainly the processes of the map-based cloning in principle,including first-pass mapping of candidate gene、fine scale-mapping and building genetic map、chromosome walking or landing and finally complement experiment for identifing candidate gene. Finally the problems and the prospects in the map-based cloning are analyzed Keywords Map-based cloning, Molecular marker, Fine maping, Genomic library 从遗传学观点来看,基因克隆有两条途径:正向遗传学途径和反向遗传学途径。正向遗传学途径指的是通过被克隆基因的产物或表型突变去进行,如传统的功能克隆及近年来迅速发展的表型克隆;反向遗传学途径是根据被克隆的目的基因在染色体上都有稳定的位置来实现的。由于在多数情况下,我们并不清楚基因产物的结构和功能,很难通过正向遗传学途径克隆基因,而反向遗传学途径则显示了较好的前景。其中可以利用的主要有三种方法,分别是转座子标签法、随机突变体筛选法和图位克隆法。转座子标签法中受转座子的种类、转座频率及有些植物存在内源转座子等的影响,随机突变体筛选法则随机性较大且不能控制失活基因的种类和数量等,限制了它们的应用。图位克隆(map-based cloning)又称为定位克隆(positional cloning),1986年首先由剑桥大学的Coulson 等提出,用该方法分离基因是根据目的基因在染色体上的位置进行的,无需预先知道基因的DNA序列,也无需预先知道其表达产物的有关信息。它是通过分析突变位点与已知分子标记的连锁关系来确定突变表型的遗传基础。随着模式物种(拟南芥、水稻)全基因组测序的完成,各种分子标记技术的发展促进了高密度分子标记连锁图谱的建立和各种数据库的完善。图位克隆技术越来越成熟,已经成为分离生物基因的一种常规方法。本文将对图位克隆技术的相关策略作一介绍。 1图位克隆的策略 自1992年图位克隆技术首次在拟南芥中克隆到ABI3(Girauda et al., 1992)基因和F AD3 (Arondel et al., 1992)基因以来,图位克隆技术在其它相关技术快速发展的支持下迅速发展起来。它是依据功能基因在生物基因组中都有相对稳定的基因座,在利用分子标记技术对目的基因进行精细定位的基础上,用与目的基因紧密连锁的分子标记筛选已构建的DNA文库(如Cosmid、YAC、BAC等文库),构建出目的基因区域的遗传图谱和物理图谱,再利用此物理图谱通过染色体步行、跳跃或登陆的方式获得含有目的基因的克隆,最后通过遗传转化和功能互补实验来验证所获得的目的基因(图1)。 初步定位(First-pass maping)-------构建遗传图谱(constructing genetic map)-----精细定位(fine maping)---------构建物理图谱( constructing physical map)------染色体步移、登陆(chromosomal walking、landing)-------确定侯选基因(Consider candidate genes)----遗传互补验证目的基因(Through genetic complementation (transformation) to identify candidate gene)(请帮我画一个简易图表,把内容填进去) 图1 图位克隆的主要步骤 Figure 1 Key steps in map-based cloning process

基因图位克隆的策略与途径拟南芥

基因图位克隆的策略与途 径拟南芥 Ting Bao was revised on January 6, 20021

拟南芥基因克隆的策略与途径 拟南芥(Arabidopsis thaliana)是一种模式植物,具有基因组小(125 Mbp)、生长周期短等特点,而且基因组测序已经完成(The Arabidopsis Genomic Initiative, 2000)。同时,拟南芥属十字花科(Cruciferae),具有高等植 物的一般特点,拟南芥研究中所取得成果很容易用于其它高等植物包括农作物的研究,产生重大的经济效益,特别是 十字花科中还有许多重要的经济作物,与人类的生产生活密切相关,因此目前拟南芥的研究越来越多地受到国际植物 学及各国政府的重视。 基因(gene)是遗传物质的最基本单位,也是所有生命活动的基础。不论要揭示某个基因的功能,还是要改变某个基因的 功能,都必须首先将所要研究的基因克隆出来。特定基因的克隆是整个基因工程或分子生物学的起点。本文就基因克隆 的几种常用方法介绍如下。 1、图位克隆 Map-based cloning, also known as positional cloning, first proposed by Alan Coulson of the University of Cambridge in 1986, Gene isolated by this method is based on functional genes in the genome has a relatively stable loci, in the use of genetic linkage analysis or chromosomal abnormalities of separate groups will queue into the chromosome of a specific location, By constructing high-density molecular linkage map, to find molecular markers tightly linked with the aimed gene, continued to narrow the candidate region and then clone the gene and to clarify its function and biochemical mechanisms.图位(map-based clonig)又称克隆(positoinal cloning),1986年首先由剑桥大学的Alan Coulson提出。用该方法分离基因是根据功能基因在中都有相对较稳定的基因座,在利用分离群体的遗传连锁分析或将基因伫到染色体的1 个具体位置的基础上,通过构建高密度的分子连锁图,找到与目的基因紧密连锁的分子标记,不断缩小候选区域进而克隆该基因,并阐明其功能和生化。 用该方法分离基因是根据目的基因在染色体上的位置进行的,无需预先知道基因的DNA序列,也无需预先知道其表达产物的有关信息。它是通过分析突变位点与已知分子标记的连锁关系来确定突变表型的遗传基础。近几年来随着拟南芥基因组测序工作的完成,各种分子标记的日趋丰富和各种数据库的完善,在拟南芥中克隆一个基因所需要的努力已经大大减少了(图1)。

相关文档