文档库 最新最全的文档下载
当前位置:文档库 › 随机变量及其分布方法总结(经典习题及解答)

随机变量及其分布方法总结(经典习题及解答)

随机变量及其分布方法总结(经典习题及解答)
随机变量及其分布方法总结(经典习题及解答)

概率、统计案例知识方法总结

一、离散型随机变量及其分布列

1. 离散型随机变量:对于随机变量可能取的值,可以按一定次序一一列出,这样的随机变量叫做离散型随机变量。常用大写英文字母X 、Y 等或希腊字母ξ、η等表示。

2.分布列:设离散型随机变量ξ可能取得值为: x 1,x 2,…,x 3,…, ξ取每一个值x i (i =1,2,…)的概率为()i i P x p ξ==,则称表

3. 分布列的两个性质:

⑴P i ≥0,i =1,2,… ⑵P 1+P 2+…=1.常用性质来判断所求随机变量的分布列是否正确! 二、热点考点题型

考点一: 离散型随机变量分布列的性质 1.随机变量ξ的概率分布规律为P(ξ=n)=

a n(n +1)

(n =1,2,3,4),其中a 是常数,则P(1

2<

ξ<5

2)的值为 A .2

3

B .34

C .45

D .56

答案:D

考点二:离散型随机变量及其分布列的计算

2.有六节电池,其中有2只没电,4只有电,每次随机抽取一个测试,不放回,直至分清楚有电没电为止,所要测试的次数ξ为随机变量,求ξ的分布列。 解:由题知=ξ2,3,4,5

∵ 2=ξ表示前2只测试均为没电,∴ 15

1

)2(2622===A A P ξ

∵ 3=ξ表示前两次中一好一坏,第三次为坏,∴ 152

)3(3

6

221412===A A C C P ξ ∵ 4=ξ表示前四只均为好,或前三只中一坏二好,第四个为坏,

∴ 154

51151)4(4

6

332412464

4=+=+==A A C C A A P ξ ∵ 5=ξ表示前四只三好一坏,第五只为坏或前四只三好一坏第五只为好

∴ 158

)5(5

6

44341256443412=+==A A C C A A C C P ξ ∴ ξ

2 3 4 5

P

151

152 154 15

8 三、 1.条件概率:称)

()

()|(A P AB P A B P =

为在事件A 发生的条件下,事件B 发生的概率。 2. 相互独立事件:如果事件A (或B )是否发生对事件B (或A )发生的概率没有影响,这样的两个事件叫做相互独立事件。

①如果事件A 、B 是相互独立事件,那么,A 与_

B 、

_A 与B 、_A 与_

B 都是相互独立事件

②两个相互独立事件同时发生的概率,等于每个事件发生的概率的积。我们把两个事件A 、B 同时发生记作A·B ,则有P (A·B )= P (A )·P (B )

推广:如果事件A 1,A 2,…A n 相互独立,那么这n 个事件同时发生的概率,等于每个事件发生的概率的积。即:P (A 1·A 2·…·A n )= P (A 1)·P (A 2)·…·P(A n )

3.独立重复试验: 在同样的条件下,重复地、各次之间相互独立地进行的一种试验.在这种试验中,每一次试验只有两种结果,即某事件要么发生,要么不发生,并且任何一次试验中发生的概率都是一样的.

4.如果在1次试验中某事件发生的概率是p ,那么在n 次独立重复试验中这个事件恰好发生k

次的概率计算公式:P n (k )=C k n P k (1-p )

n -

k

,其中,k =0,1,2,…,n . 5.离散型随机变量的二项分布:在一次随机试验中,某事件可能发生也可能不发生,在n 次独立重复试验中这个事件发生的次数ξ是一个随机变量.如果在一次试验中某事件发生的概率是P ,那么在n 次独立重复试验中这个事件恰好发生k 次的概率是

k

n k k n n q p C k P -==)(ξ,

(k =0,1,2,…,n ,p q -=1). 于是得到随机变量ξ的概率分布如下:

ξ 0

1

… k

… n

P

n

n q p C 00

1

11-n n q p C

k

n k k n q p C -

q p C n n n

由于k

n k k n q p C -恰好是二项展开式

001110()n n n k k n k n n n n n n q p C p q C p q C p q C p q --+=+++++L L

中的各项的值,所以称这样的随机变量ξ服从二项分布,记作ξ~B (n ,p ),其中n ,p

为参数,并记k

n k k n q p C -=b (k ;n ,p ).

6. 两点分布: X 0 1 P 1-p p

7.超几何分布:

一般地,在含有M 件次品的N 件产品中,任取n 件,其中恰有X 件次品,则

},,min{,,1,0,)(n M m m k C C C k X P n

N

k n M

N k M ====-- 其中,N M N n ≤≤,。 称分布列

X 0 1 … m

P n N n M N M C C C 00-- n N n M N M C C C 11-- … n

N

m n M

N m M C C C -- 为超几何分布列, 称X 服从超几何分布。

四、热点考点题型 题型1. 条件概率

[例1] 一张储蓄卡的密码共有6位数,每位数字都可从0~9中任选,某人在银行自动提款机上取钱时,忘记了密码的最后一位数字,求:

⑴按第一次不对的情况下,第二次按对的概率; ⑵任意按最后一位数字,按两次恰好按对的概率;

⑶若他记得密码的最后一位是偶数,不超过2次就按对的概率 解析:设事件(12)i A i =,表示第i 次按对密码

⑴211

()9

P A A =

⑵事件12A A 表示恰好按两次按对密码,则12121911()()()10910

P A A P A P A A ==

?= ⑶设事件B 表示最后一位按偶数,事件112A A A A =+表示不超过2次按对密码,因为事件

1A 与事件12A A 为互斥事件,由概率的加法公式得:

1121412

()()()5545

P A B P A B P A A B ?=+=

+=? 说明:条件概率相当于随机试验及随机试验的样本空间发生了变化,事件A 发生的条件下事件B 发生的概率可以看成在样本空间为事件A 中事件B 发生的概率,从而得出求条件概率的另一种方法——缩减样本空间法 题型2.相互独立事件和独立重复试验

[例2]某公司是否对某一项目投资,由甲、乙、丙三位决策人投票决定.他们三人都有“同意”、

“中立”、“反对”三类票各一张.投票时,每人必须且只能投一张票,每人投三类票中的任何一类票的概率都为

1

3

,他们的投票相互没有影响.规定:若投票结果中至少有两张“同意”票,则决定对该项目投资;否则,放弃对该项目投资. (Ⅰ)求此公司一致决定对该项目投资的概率; (Ⅱ)求此公司决定对该项目投资的概率;

解析:(Ⅰ)此公司一致决定对该项目投资的概率P= (1

3

)3

127

(Ⅱ)此公司决定对该项目投资的概率为P =C 32(13)2(23)+C 33(13)3=7

27

答: (Ⅰ)此公司一致决定对该项目投资的概率为1

27

(Ⅱ)此公司决定对该项目投资的概率为7

27

.

说明: 除注意事件的独立性外, 还要注意恰有k 次发生与指定k 次发生的区别, 对独立重复试验来说,前者的

概率为(1)k k n k n C p p --,后者的概率为

(1)k n k p p --

题型3: 两点分布与超几何分布的应用

[例3] 高二(十)班共50名同学,其中35名男生,15名女生,随机从中取出5名同学参加学生代表大会,所取出的5名学生代表中,女生人数X 的频率分布如何?

解析:从50名学生中随机取5人共有550C 种方法,没有女生的取法是05

1535

C C ,恰有1名女生的取法是141535C C ,恰有2名女生的取法是231535C C ,恰有3名女生的取法是32

1535C C ,恰有4名女生的取法是411535C C ,恰有5名女生的取法是501535

C C , 因此取出的5名学生代表中,女生人数X 的频率分布为:

题型4: 独立重复试验与二项分布的应用

例题4:在10件产品中有2件次品,连续抽3次,每次抽1件,求: (1)不放回抽样时,抽到次品数ξ的分布列; (2)放回抽样时,抽到次品数η的分布列. 解:(1)不放回抽样时,抽到次品数ξ服从参数为10,2,3超几何分布:

P (ξ=0)=

310

3

8C C =157,P (ξ=1)=3102812C C C =157,P (ξ=2)=310

22

18C C C =151, 所以ξ的分布列为

(2)放回抽样时,抽到次品数ηB (3,0.2):

P (η=k )=C k 8·0.83-

k ·0.2k (k =0,1,2,3),所以η的分布列为

五、离散型随机变量的期望和方差

1.数学期望:

则称 =ξE +11p x +22p x …++n n p x … 为ξ的数学期望,简称期望. 2.期望的一个性质: ()E a b ξ+=aE b ξ+ 3.若ξ:B (n,p ),则Eξ=np

4.方差: ξD =121)(p E x ?-ξ+22

2)(p E x ?-ξ+…+n n p E x ?-2)(ξ+…. 5.标准差:ξD 叫做随机变量ξ的标准差. 6.方差的性质: ξξD a b a D 2)(=+; 7.若ξ~B (n ,p ),则=ξD np (1-p )

六、热点考点题型

题型一:离散型随机变量的期望与方差

例题1:为防止风沙危害,某地决定建设防护绿化带,种植杨树、沙柳等植物。某人一次种植了n 株沙柳,各株沙柳成活与否是相互独立的,成活率为p ,设ξ为成活沙柳的株数,数学期

望3E ξ=,标准差σξ (Ⅰ)求n,p 的值并写出ξ的分布列;

(Ⅱ)若有3株或3株以上的沙柳未成活,则需要补种,求需要补种沙柳的概率

解析: (1)由2

33,()(1),2E np np p ξσξ===-=

得112p -=,从而16,2

n p == ξ的分布列为

(2)记”需要补种沙柳”为事件A, 则()(3),P A P ξ=≤ 得 1615

2021(),64

32P A +++=

=

或 156121()1(3)16432

P A P ξ++=->=-= 例题2:一厂家向用户提供的一箱产品共10件,其中有2件次品,用户先对产品进行抽检

以决定是否接收.抽检规则是这样的:一次取一件产品检查(取出的产品不放回箱子),若前三次没有抽查到次品,则用户接收这箱产品;若前三次中一抽查到次品就立即停止抽检,并且用户拒绝接收这箱产品.

(1)求这箱产品被用户接收的概率; (2)记抽检的产品件数为ξ,求ξ的分布列和数学期望. 解:(1)设“这箱产品被用户接收”为事件A ,8767

()109815

P A ??=

=??.

即这箱产品被用户接收的概率为

7

15

. (2)ξ的可能取值为1,2,3.

()1=ξP =

51102=,()2=ξP =45892108=?,()3=ξP =45

2897108=?, ∴ξ的概率分布列为:

∴ξE =45

34524515=?+?+?.

七、正态分布

1. 正态总体的概率密度函数:,,21)(2

22)(R x e

x f x ∈=--

σμσ

π式中σμ,是参数,分别表示总

体的平均数(期望值)与标准差。

当0=1μσ=,时得到标准正态分布密度函数:()()22

,,26

x f x e x π-

=∈-∞+∞.

2.正态曲线的性质:

① 曲线位于x 轴上方,与x 轴不相交; ② 曲线是单峰的,关于直线x =μ 对称; ③ 曲线在x =μ处达到峰值

π

σ21

④ 曲线与x 轴之间的面积为1; 3. σμ,是参数σμ,与图象的关系: ① 当σ一定时,曲线随μ质的变化沿x 轴平移; ② 当μ一定时,曲线形状由σ确定:σ越大,曲线越“矮胖”,表示总体分布越分散;σ越小,曲线越“高瘦”,表示总体分布越集中。

(1)P )(σμσμ+≤<-x =0.683;(2)P )22(σμσμ+≤<-x =0.954 (3)P )33(σμσμ+≤<-x =0.997 八、热点考点题型

考点一: 正态分布的应用

例题1:某市组织一次高三调研考试,考试后统计的数学成绩服从正态分布,其密度函数为

)(10

21)(200

)80(2R x e

x f x ∈?=

-π,则下列命题不正确的是 ( )

A .该市这次考试的数学平均成绩为80分;

B .分数在120分以上的人数与分数在60分以下的人数相同;

C .分数在110分以上的人数与分数在50分以下的人数相同;

D .该市这次考试的数学成绩标准差为10. 答案:B

例题2:设随机变量ξ服从正态分布(2,9)N ,若(1)(1)P c P c ξξ>+=<-,则c= ( ) A.1 B.2

C.3

D.4

答案:B

九、独立性检验与回归分析

1、独立性检验:22?列联表:为了研究事件X 与Y 的关系,经调查得到一张22?列联表,如下表所示

1Y 2Y 合计

1X a b a b + 2X

c d c d +

合计

a c +

b d +

n a b c d =+++

卡方统计量,它的表达式是

经过对统计量分布的研究,已经得到了两个临界值:3.841与6.635.

当根据具体的数据算出的2

6.635χ>时,有99%的把握说事件A 与B 有关;

当2 3.841χ>时,有95%的把握说事件A 与B 有关; 当2 3.841χ≤时,事件A 与B 无关.

2、相关性检验⑴对于变量x 与y 随机抽取到的n 对数据1122(,),(,)(,)n n x y x y x y 样本相

关系数r = ⑵r 具有以下性质:

①当r>0时,表明两个变量正相关;当r<0时,表明两个变量负相关; ②当|r|≤1,并且|r|越接近1时,两个变量的线性相关程度越强; 当|r|越接近0时,两个变量的线性相关程度越弱; ⑶相关性检验的步骤:

① 作统计假设 ② 根据小概率0.05与2n -在附表中找出r 的一个临界值0.05r ③ 根据样本相关系数计算公式算出r 值 ④ 用统计判断.

当0.05||r r >时有95%的把握说两个变量间具有线性相关关系,当0.05||r r ≤时二者无相关关系。 十、热点考点题型 1.独立性检验

为了判断高中三年级学生是否选修文科与性别的关系,现随机抽取50名学生,得到如下2×2列联表:

已知P (2χ≥3.841)≈0.05,P (2χ≥6.635)≈0.01.

根据表中数据,得到2

χ=30

202723)7102013(502

????-??≈4.844.

则认为选修文科与性别有关系出错的可能性为 . 答案 5% 2. 相关性检验 下列说法:

①将一组数据中的每个数据都加上或减去同一个常数后,方差恒不变;

②设有一个回归方程y

?=3-5x,变量x 增加一个单位时,y 平均增加5个单位; ③线性回归方程y

?=a x b ??+必过(x ,y ); ④曲线上的点与该点的坐标之间具有相关关系;

⑤在一个2×2列联表中,由计算得2χ=13.079,则其两个变量间有关系的可能性是90%. 其中错误的个数是 .

答案 3

随机变量及其分布列概念公式总结

随机变量及其分布总结 1、定义:随着试验结果变化而变化的变量称为随机变量 .随机变量常用字母 X , Y ,ξ,η,… 表示. 2、定义:所有取值可以一一列出的随机变量,称为离散型随机变量 3、分布列:设离散型随机变量ξ可能取得值为 x 1,x 2,…,x 3,…, ξ取每一个值x i (i =1,2,…)的概率为()i i P x p ξ==,则称表 为随机变量ξ的概率分布,简称ξ的分布列 4. 分布列的两个性质: (1)P i ≥0,i =1,2,…; (2)P 1+P 2+…=1. 5.求离散型随机变量ξ的概率分布的步骤: (1)确定随机变量的所有可能的值x i (2)求出各取值的概率p(ξ=x i )=p i (3)画出表格 6.两点分布列: 7超几何分布列: 一般地,在含有M 件次品的 N 件产品中,任取 n 件,其中恰有X 件次品 数,则事件 {X=k }发生的概率为(),0,1,2,,k n k M N M n N C C P X k k m C --=== ,其中mi n {,} m M n =,且,,,,n N M N n M N N *≤≤∈.称分布列 为超几何分布列.如果随机变量 X 的分布列为超几何分布列,则称随机变量 X

服从超几何分布 8.离散型随机变量的二项分布:在一次随机试验中,某事件可能发生也可能不发生,在n 次独立重复试验中这个事件发生的次数ξ是一个随机变量.如果在一次试验中某事件发生的概率是P ,那么在n 次独立重复试验中这个事件恰好发生k 次的概率是 k n k k n n q p C k P -==)(ξ,(k =0,1,2,…,n ,p q -=1). 于是得到随机变量ξ的概率分布如下: ξ 1 … k … n P n n q p C 00 111-n n q p C … k n k k n q p C - … q p C n n n 称这样的随机变量ξ服从二项分布,记作ξ~B (n ,p ),其中n ,p 为参数。 9.离散型随机变量的均值或数学期望: 一般地,若离散型随机变量ξ的概率分布为 则称 =ξE +11p x +22p x …++n n p x … 为ξ的均值或数学期望,简称期望. 10.离散型随机变量的均值或数学期望的性质: (1)若ξ服从两点分布,则=ξE p . (2)若ξ~B (n ,p ),则=ξE np . (3)()c c E =,c 为常数 (4)ξ~N (μ,2σ),则=ξE μ (5)b aE b a E +=+ξξ)( 11.方差: 对于离散型随机变量ξ,如果它所有可能取的值是1x ,2x ,…,n x ,…, 且取这些值的概率分别是1p ,2p ,…,n p ,…,那么, ξD =121)(p E x ?-ξ+222)(p E x ?-ξ+…+n n p E x ?-2)(ξ+…

随机变量及分布列习题43462

随机变量及分布列 1.已知随机变量() 20,X N σ~,若(2)P X a <=,则(2)P X >的值为( ) A. 12a - B. 2 a C. 1a - D. 12a + 2.已知随机变量,若,则的值为( ) A. 0.4 B. 0.2 C. 0.1 D. 0.6 3.已知,,则的值为( ) A. 10 B. 7 C. 3 D. 6 4.集装箱有标号为1,2,3,4,5,6且大小相同的6个球,从箱中一次摸出两个球,记下并放回,如果两球之积是4的倍数,则获奖.若有4人参与摸奖,恰好有3人获奖的概率是( ) A. B. C. D. 5.甲袋中放有大小和形状相同的小球若干,其中标号为0的小球为1个,标号为1的小球2个,标号为2的小球2个.从袋中任取两个球,已知其中一个的标号是1,则另一个标号也是1的概率为__________. 6.设随机变量服从正态分布,,则__________. 7.某人通过普通话二级测试的概率是,他连线测试3次,那么其中恰有1次通过的概率是( ) A. B. C. D. 8.从1,2,3,4,5,6,7中任取两个不同的数,事件为“取到的两个数的和为偶数”,事件为“取到的两个数均为奇数”,则( ) A. B. C. D. 9.班主任为了对本班学生的考试成绩进行分析,决定从全班25位女同学,15位男同学中随机 抽取一个容量为8的样本进行分析. (Ⅰ)如果按性别比例分层抽样,求样本中男生、女生人数分别是多少; (Ⅱ)随机抽取8位同学,数学成绩由低到高依次为:6065707580859095,,,,,,,; 物理成绩由低到高依次为:7277808488909395,,,,,,,,若规定90分(含90分)以上为优秀,记ξ为这8位同学中数学和物理分数均为优秀的人数,求ξ的分布列和数学期望. 10.某品牌汽车的4S 店,对最近100份分期付款购车情况进行统计,统计情况如下表所示.已知分9期付 款的频率为0.4;该店经销一辆该品牌汽车,若顾客分3期付款,其利润为1万元;分6期或9期付款, (1)若以上表计算出的频率近似替代概率,从该店采用分期付款购车的顾客(数量较大)中随机抽取3为顾客,求事件A :“至多有1位采用分6期付款“的概率()P A ; (2)按分层抽样方式从这100为顾客中抽取5人,再从抽取的5人中随机抽取3人,记该店在这3人身上赚取的总利润为随机变量η,求η的分布列和数学期望()E η. 11.某公司有,,,,A B C D E 五辆汽车,其中,A B 两辆汽车的车牌尾号均为1. ,C D 两辆汽车的车牌尾号均

随机变量及其分布列经典例题

随机变量及其分布列典型例题 【知识梳理】 一.离散型随机变量的定义 1定义:在随机试验中,确定一个对应关系,使得每一个试验结果都用一个确定的数字表示.在这个对应关系下,数字随着试验结果变化而变化的变量称为随机变量、 ①随机变量就是一种对应关系;②实验结果必须与数字对应; ③数字会随着实验结果的变化而变化、 2.表示:随机变量常用字母X ,Y,ξ,η,…表示. 3、所有取值可以一一列出的随机变量,称为离散型随机变量 ( dis cre te ran dom var ia ble ) . 二、离散型随机变量的分布列 1.一般地,若离散型随机变量X 可能取的不同值为x 1,x 2,…,xi ,…,x n, X 取每一个值x i (i=1,2,…, n)的概率P (X =xi)=pi ,则称表: 为离散型随机变量X P(X =x i )=p i , i =1,2,…,n, 也可以用图象来表示X 的分布列、 2.离散型随机变量的分布列的性质 ①pi ≥0,i=1,2,…,n ;②11 =∑=n i i p . 三.两个特殊分布 1.两点分布),1(~P B X 若随机变量X 的分布列具有上表形式,则称服从两点分布,并称p =P (X =1)为成功概率. 2、超几何分布),,(~n M N H X 一般地,在含有M 件次品的N 件产品中,任取n件,其中恰有X 件次品,则P (X =k )= n N k n M N k M C C C --,k =0,1,2,…,m ,其中m =min {}n M ,,且n ≤N ,M ≤N ,n ,M,N ∈N * . 三、二项分布 一般地,在n 次独立重复试验中,用 X 表示事件A 发生的次数,设每次试验中事件A发生的概率为p ,则P (X=k )=C 错误!p k (1-p)n - k ,k=0,1,2,…,n 、此时称随机变量X服从二项分布,记作X ~B (n ,p),并称p 为成功概率.易得二项分布的分布列如下;

第三章--多维随机变量及其分布总结

第三章--多维随机变量及其分布总结

第三章 多维随机变量及其分布 第一节 二维随机变量 一、二维随机变量的分布函数 设E 是一个随机试验, 它的样本空间是S . 设X 、Y 是定义在S 上的随机变量, 则由它们构成的一个向量(X , Y )称为二维随机向量或二维随机变量. 一般地, (X , Y )的性质不仅与X 有关, 与Y 有关, 而且还依赖于X 、Y 的相互关系, 因此必须把(X , Y )作为一个整体来研究. 首先引入(X , Y )的分布函数的概念. 定义 设(X , Y )为二维随机变量, 对于任意实数x 、y , 二元函数 F (x , y ) = P {(X ≤ x )∩(Y ≤ y )}= P {X ≤ x , Y ≤ y } 称为二维随机变量(X , Y )的分布函数, 或称为随机变量X 和y 的联合分布函数. 分布函数F (x , y )表示事件(X ≤ x )与事件(Y ≤ y )同时发生的概率. 如果把(X , Y )看成平面上具有随机坐标(X , Y )的点, 则分布函数F (x , y )在(x , y )处的函数值就是随机点(X , Y )落在平面上的以(x , y )为顶点而位于该点左下方的无限矩形内的概率.. 由上面的几何解释, 容易得到随机点(X , Y )落在矩形区域{x 1 < X ≤ x 2, y 1 < Y ≤ y 2}的概率为 P {x 1 < X ≤ x 2, y 1 < Y ≤ y 2} = F (x 2, y 2) - F (x 2, y 1) - F (x 1, y 2) + F (x 1, y 1) (1) 与二元函数类似, 二元分布函数F (x , y )也具有如下一些性质: 1? F (x , y )是变量x 和y 的单调不减函数, 即当x 1 < x 2时, F (x 1, y ) ≤ F (x 2, y ); 当y 1 < y 2时, F (x , y 1) ≤ F (x , y 2). 2? 0 ≤ F (x , y ) ≤ 1, 且F (-∞, y ) = 0, F (x , -∞) = 0, F (-∞,-∞) = 0, F (+∞,+∞) = 1.(凡含-∞的概率分布为0) 3? F (x , y )关于x 和y 都是右连续的, 即F (x + 0, y ) = F (x , y ), F (x , y + 0) = F (x , y ). 4? 对任意的(x 1, y 1)、(x 2, y 2), x 1 < x 2, y 1 < y 2, 有F (x 2, y 2) - F (x 2, y 1) - F (x 1, y 2) + F (x 1, y 1) ≥ 0. 注: 二元分布函数具有性质1?~ 4?, 其逆也成立(2?中0 ≤ F (x , y ) ≤ 1可去), 即若二元实值函数F (x , y )(x ∈ R , y ∈ R )满足1?~ 4?, 则F (x , y )必是某二维随机变量的(X , Y )的分布函数. 其中4?是必不可少的, 即它不能由1?~ 3?推出(除去0 ≤ F (x , y ) ≤ 1). 二、二维离散型随机变量 如果二维随机变量(X , Y )的所有可能取的值是有限对或可列无限多对, 则称(X , Y )是二维离散型随机变量. 设二维离散型随机变量(X , Y )所有可能取的值为(x i , y j ) (i , j = 1, 2, 3, …). 记P {X = x i , Y = y j } = p ij (i , j = 1, 2, 3, …)则由概率定义有 p ij ≥ 0; 111 =∑∑∞=∞ =i j ij p . 我们称P {X = x i , Y = y j } = p ij (i , j = 1, 2, 3, …)为二维离散型随机变量(X , Y )的分布律(概率分布)或随机变量X 和Y 的联合分布律, (X , Y )的分布律也可用表格表示. 其分布函数为 = ),(y x F ∑∑≤≤==x x y y j i i j y Y x X P },{=∑∑≤≤x x y y ij i j p 这里 ∑∑ ≤≤x x y y i j 表示对一切x i ≤ x , y j ≤ y 的那些指标i 、j 求和. 例1 一个口袋中有三个球, 依次标有1、2、2, 从中任取一个, 不放回袋中, 再任取一个. 设每次取球时, 各球被取到的可能性相等, 以X 、Y 分别记第一次和第二次取到的球上标有的数字, 求X 、Y 的联合分布律与分布函数.. 解: (X , Y )的可能取值为(1, 2)、(2, 1)、(2, 2). P {X = 1, Y = 2}= P {X = 1}P {Y = 2 / X = 1}= 3 12231=?.

二项分布专题练习

二项分布专题练习 1.已知随机变量X 服从二项分布,X ~B 16,3?? ??? ,则P (X =2)=( ). A . 316 B . 4243 C . 13 243 D . 80 243 2.设某批电子手表正品率为 34,次品率为1 4 ,现对该批电子手表进行测试,设第X 次首次测到正品,则P (X =3)等于( ). A .223 13C 44??? ??? B .2 2331C 44 ??? ? ?? C .2 1344 ??? ??? D .2 3144 ??? ??? 3.甲、乙两名篮球队员轮流投篮直至某人投中为止,设甲每次投篮命中的概率为0.4,乙投中的概率为0.6,而且不受其他次投篮结果的影响,设投篮的轮数为X ,若甲先投,则P (X =k )等于( ). A .0.6k - 1×0.4 B .0.24k -1×0.76 C .0.4k -1×0.6 D .0.76k - 1×0.24 4.10个球中有一个红球,有放回地抽取,每次取出一球,直到第n 次才取得k (k ≤n )次红球的概率为( ). A .2191010n k -???? ? ? ???? B . 191010k n k -???? ? ? ???? C .1119C 1010k n k k n ---???? ? ????? D .1 1119C 1010k n k k n ----???? ? ??? ?? 5.在4次独立重复试验中,事件A 发生的概率相同,若事件A 至少发生1次的概率为 65 81 ,则事件A 在1次试验中发生的概率为( ). A . 13 B . 25 C . 56 D . 34 6.某一批花生种子,如果每一粒发芽的概率为4 5 ,那么播下4粒种子恰有2粒发芽的概率是__________. 7.一个病人服用某种新药后被治愈的概率为0.9,则服用这种新药的4个病人中至少3人被治愈的概率为__________.(用数字作答) 8.假定人在365天中的任意一天出生的概率是一样的,某班级中有50名同学,其中有两个以上的同学生于元旦的概率是多少?(结果保留四位小数)

随机变量及其分布考点总结

第二章 随机变量及其分布 复习 一、随机变量. 1. 随机试验的结构应该是不确定的.试验如果满足下述条件: ①试验可以在相同的情形下重复进行;②试验的所有可能结果是明确可知的,并且不止一个;③每次试验总是恰好出现这些结果中的一个,但在一次试验之前却不能肯定这次试验会出现哪一个结果. 它就被称为一个随机试验. 2. 离散型随机变量:如果对于随机变量可能取的值,可以按一定次序一一列出,这样的随机变量叫做离散型随机变量.若ξ是一个随机变量,a ,b 是常数.则b a +=ξη也是一个随机变量.一般地,若ξ是随机变量,)(x f 是连续函数或单调函数,则)(ξf 也是随机变量.也就是说,随机变量的某些函数也是随机变量. 3、分布列:设离散型随机变量ξ可能取的值为:ΛΛ,,,,21i x x x ξ取每一个值),2,1(Λ=i x 的概率p x P ==)(,则表称为随机变量ξ的概率分布,简称ξ的分布列. 121i 注意:若随机变量可以取某一区间内的一切值,这样的变量叫做连续型随机变量.例如:]5,0[∈ξ即ξ可以取0~5之间的一切数,包括整数、小数、无理数. 典型例题: 1、随机变量ξ的分布列为(),1,2,3(1) c P k k k k ξ== =+……,则P(13)____ξ≤≤= 2、袋中装有黑球和白球共7个,从中任取两个球都是白球的概率为1 7 ,现在甲乙两人从袋中轮流摸去一 球,甲先取,乙后取,然后甲再取……,取后不放回,直到两人中有一人取到白球时终止,用ξ表示取球的次数。(1)求ξ的分布列(2)求甲取到白球的的概率 3、5封不同的信,放入三个不同的信箱,且每封信投入每个信箱的机会均等,X 表示三哥信箱中放有信件树木的最大值,求X 的分布列。 4 已知在全部50人中随机抽取1人抽到喜爱打篮球的学生的概率为5 . (1)请将上面的列联表补充完整; (2)是否有99.5%的把握认为喜爱打篮球与性别有关?说明你的理由; (3)已知喜爱打篮球的10位女生中,12345,,A A A A A ,,还喜欢打羽毛球,123B B B ,,还喜欢打乒乓球,12C C ,还喜欢踢足球,现再从喜欢打羽毛球、喜欢打乒乓球、喜欢踢足球的女生中各选出1名进行其他方面的调查,求1B 和1C 不全被选中的概率. (参考公式:2 ()()()()() n ad bc K a b c d a c b d -=++++,其中n a b c d =+++)

随机变量及其分布函数

随机变量及其分布函数 将随机事件以数量来标识,即用随机变量描述随机现象的研究方法,它是定义在样本空间上具有某种可预测性的实值函数。 分布函数则完整的表述了随机变量。 一、 随机变量与分布函数 (1) 随机变量: 取值依赖于某个随机试验的结果(样本空间),并随着试验结果不同而变化的变量,称之为随机变量。 分布函数: [1] 定义: 设X 是一个随机变量,对任意实数x ,记作 (){}F x P X x ≤=,称()F x 为随机变量X 的分 布函数,又称随机变量X 服从分布()F x ,显然,函数 ()F x 的定义域为(),-∞+∞,值域为[0,1]。 [2] 性质: ?()F x 单调非降。 ?()0F -∞=、()1F +∞=。 ?()(0)F x F x =+,即()F x 一定是右连续的。 ?对于任意两个实数a b <, {}()()P a X b F b F a <≤=- ?对于任意实数0x ,

00 0{}()()P X x F x F x ==-- ?000{}1{}1()P X x P X x F x >=-≤=- ?000{}{)lim }(x x P X x P X x x F →- =≤<=- ?000{}1{}1()P X x P X x F x ≥=-<=-- 二、 离散型随机变量与连续型随机变量 (1) 离散型随机变量 [1] 概念:设X 是一个随机变量,如果X 的取值是有限个或者 无穷可列个,则称X 为离散型随机变量。其相应的概率()i i P X x p ==(12)i =、……称为X 的概率分布或分布律,表格表示形式如下: [2] 性质: ?0i p ≥ ? 1 1n i i p ==∑ ?分布函数()i i x x F x p ==∑ ?1{}()()i i i P X x F x F x -==- (2) 连续型随机变量 [1] 概念:如果对于随机变量的分布函数()F x ,存在非 负的函数 ()f x ,使得对于任意实数x ,均有:

随机变量分布列练习题二套

随机变量及分布训练一 1. 某群体中的每位成员使用移动支付的概率都为,各成员的支付方式相互独立.设为该群体的位成员中使用移动支付的人数,,,则 A. B. C. D. 2. 设,随机变量的分布列是 则当在内增大时,() A.减小 B.增大 C.先减小后增大 D.先增大后减小 3. 已知甲盒中仅有个球且为红球,乙盒中有个红球和个蓝球,从乙盒中随机抽取 个球放入甲盒中. 放入个球后,甲盒中含有红球的个数记为; 放入个球后,从甲盒中取个球是红球的概率记为. 则() A., B., C., D., 4. 如图,将一个各面都涂了油漆的正方体,切割为个同样大小的小正方体,经过搅拌后,从中随机取一个小正方体,记它的涂漆面数为,则的均值 A. B. C. D. 5. 已知离散型随机变量的分布列为 则的数学期望

A. B. C. D. 6. 已知台机器中有台存在故障,现需要通过逐台检测直至区分出台故障机器为止.若检测一台机器的费用为元,则所需检测费的均值为() A. B. C. D. 7. 某班级有男生人,女生人,现选举名学生分别担任班长、副班长、团支部书记和体育班委.男生当选的人数记为,则的数学期望为() A. B. C. D. 8. 某种种子每粒发芽的概率都为,现播种了粒,对于没有发芽的种子,每粒需再补种粒,补种的种子数记为,则的数学期望为() A. B. C. D. 9. 某工厂的某种产品成箱包装,每箱件,每一箱产品在交付用户之前要对产品作检验,如检验出不合格品,则更换为合格品.检验时,先从这箱产品中任取件作检验,再根据检验结果决定是否对余下的所有产品作检验.设每件产品为不合格品的概率都为,且各件产品是否为不合格品相互独立. (1)记件产品中恰有件不合格品的概率为,求的最大值点. (2)现对一箱产品检验了件,结果恰有件不合格品,以(1)中确定的作为的值.已知每件产品的检验费用为元,若有不合格品进入用户手中,则工厂要对每件不合格品支付元的赔偿费用. 若不对该箱余下的产品作检验,这一箱产品的检验费用与赔偿费用的和记为,求; 以检验费用与赔偿费用和的期望值为决策依据,是否该对这箱余下的所有产品作检验?

二项分布经典例题+测验题资料

二项分布经典例题+测 验题

二项分布 1.n 次独立重复实验 一般地,由n 次实验构成,且每次实验相互独立完成,每次实验的结果仅有两种对立的状态,即A 与A ,每次实验中()0P A p =>。我们将这样的实验称为n 次独立重复实验,也称为伯努利实验。 (1)独立重复实验满足的条件第一:每次实验是在同样条件下进行的;第二:各次实验中的事件是互相独立的;第三:每次实验都只有两种结果。 (2)n 次独立重复实验中事件A 恰好发生k 次的概率 ()P X k ==(1)k k n k n C p p --。 2.二项分布 若随机变量X 的分布列为()P X k ==k k n k n C p q -,其中 0 1.1,0,1,2,,,p p q k n <<+==则称X 服从参数为,n p 的二项分布,记作(,)X B n p 。 1.一盒零件中有9个正品和3个次品,每次取一个零件,如果取出的次品不再放回,求在取得正品前已取出的次品数X 的概率分布。 3.甲乙两人各进行3次射击,甲每次击中目标的概率为2 1,乙每次击中目标的概率为3 2. (1)记甲击中目标的此时为ξ,求ξ的分布列及数学期望; (2)求乙至多击中目标2次的概率; (3)求甲恰好比乙多击中目标2次的概率. 【巩固练习】

1.(2012年高考(浙江理))已知箱中装有4个白球和5个黑球, 且规定:取出一个白球的2分,取出一个黑球的1分.现从该箱中任取(无放回,且每球取到的机会均等)3个球,记随机变量X为取出3球所得分数之和. (Ⅰ)求X的分布列。 (Ⅱ)求X的数学期望E(X). 2.(2012年高考(重庆理))(本小题满分13分,(Ⅰ)小问5分,(Ⅱ)小问8分.) 甲、乙两人轮流投篮,每人每次投一球,.约定甲先投且先投中者获胜,一直到有人获胜或每人都已投球3次时投篮结束.设甲每 次投篮投中的概率为1 3,乙每次投篮投中的概率为1 2 ,且各次投篮 互不影响. (Ⅰ) 求甲获胜的概率。 (Ⅱ) 求投篮结束时甲的投篮次数 的分布列与期望 3.设篮球队A与B进行比赛,每场比赛均有一队胜,若有一队胜4场则比赛宣告结束,假定,A B在每场比赛中获胜的概率都是 1 2 ,试求需要比赛场数的期望. 3.(2012年高考(辽宁理))电视传媒公司为了了解某地区电视观众对某类体育节目的收视情况,随机抽取了100名观众进行调查.下面是根据调查结果绘制的观众日均收看该体育节目时间的频率分布直方图。

随机变量及其分布练习题

随机变量及其分布练习 题 Document number:NOCG-YUNOO-BUYTT-UU986-1986UT

第二章随机变量及其分布练习题 1.甲、乙两人各进行一次射击,甲击中目标的概率是,乙击中目标的概率是,则两人都击中目标的概率是( ) A. B. C. D. 2.设随机变量1 ~62X B ?? ??? ,,则(3)P X =等于( ) A. 516 B. 316 C.5 8 D. 716 3.设随机变量X 的概率分布列为 X 1 2 3 P 则E (X +2)B . 4.两台相互独立工作的电脑,产生故障的概率分别为a ,b ,则产生故障的电脑台数的均值为( ) A.ab B.a b + C.1ab - D.1a b -- 5.某普通高校招生体育专业测试合格分数线确定为60分.甲、乙、丙三名考生独立参加测试,他们能达到合格的概率分别是,,,则三人中至少有一人达标的概率为( ) A . B . 6.设随机变量~()X B n p ,,则2 2 ()()DX EX 等于( ) A.2p B.2(1)p - C.np D.2(1)p p - 7.对标有不同编号的6件正品和4件次品的产品进行检测,不放回地依次摸出 2件.在第一次摸出正品的条件下,第二次也摸到正品的概率是( ).

8.从1,2,3,4,5中任取2个不同的数,事件A=“取到的2个数之和为偶数”,事件B=“取到的2个数均为偶数”,则P(B|A)=(). 9.设随机变量ξ服从正态分布N(0,1),P(ξ>1)=p,则P(-1<ξ<0)等于(). p B.1-p C.1--p 10.已知随机变量X服从正态分布N(μ,σ2),且P(μ-2σ

二项分布经典例题+测验题

二项分布 1.n 次独立重复实验 一般地,由n 次实验构成,且每次实验相互独立完成,每次实验的结果仅有两种对立的状态,即A 与A ,每次实验中()0P A p =>。我们将这样的实验称为n 次独立重复实验,也称为伯努利实验。 (1)独立重复实验满足的条件第一:每次实验是在同样条件下进行的;第二:各次实验中的事件是互相独立的;第三:每次实验都只有两种结果。 (2)n 次独立重复实验中事件A 恰好发生k 次的概率 ()P X k ==(1)k k n k n C p p --。 2.二项分布 若随机变量X 的分布列为()P X k == k k n k n C p q -,其中 0 1.1,0,1,2,,,p p q k n <<+==则称X 服从参数为,n p 的二项分布,记作(,)X B n p 。 1.一盒零件中有9个正品和3个次品,每次取一个零件,如果取出的次品不再放回,求在取得正品前已取出的次品数X 的概率分布。 3.甲乙两人各进行3次射击,甲每次击中目标的概率为2 1,乙每次击中目标的概率为3 2 . (1)记甲击中目标的此时为ξ,求ξ的分布列及数学期望; (2)求乙至多击中目标2次的概率; (3)求甲恰好比乙多击中目标2次的概率. 【巩固练习】 1.(2012年高考(浙江理))已知箱中装有4个白球和5个黑球,且

规定:取出一个白球的2分,取出一个黑球的1分.现从该箱中任取(无放回,且每球取到的机会均等)3个球,记随机变量X为取出3球所得分数之和. (Ⅰ)求X的分布列。 (Ⅱ)求X的数学期望E(X). 2.(2012年高考(重庆理))(本小题满分13分,(Ⅰ)小问5分,(Ⅱ)小问8分.) 甲、乙两人轮流投篮,每人每次投一球,.约定甲先投且先投中者获胜,一直到有人获胜或每人都已投球3次时投篮结束.设甲每次投 篮投中的概率为1 3,乙每次投篮投中的概率为1 2 ,且各次投篮互不 影响. (Ⅰ) 求甲获胜的概率。 (Ⅱ) 求投篮结束时甲的投篮次数 的分布列与期望 3.设篮球队A与B进行比赛,每场比赛均有一队胜,若有一队胜 4场则比赛宣告结束,假定,A B在每场比赛中获胜的概率都是1 2 , 试求需要比赛场数的期望. 3.(2012年高考(辽宁理))电视传媒公司为了了解某地区电视观众对某类体育节目的收视情况,随机抽取了100名观众进行调查. 下面是根据调查结果绘制的观众日均收看该体育节目时间的频率分布直方图。

随机变量及其分布小结与复习

复习课: 随机变量及其分布列 教学目标 重点:理解随机变量及其分布的概念,期望与方差等的概念;超几何分布,二项分布,正态分布等的特点;会求条件概率,相互独立事件的概率,独立重复试验的概率等. 难点:理清事件之间的关系,并用其解决一些具体的实际问题. 能力点:分类整合的能力,运算求解能力,分析问题解决问题的能力. 教育点:提高学生的认知水平,为学生塑造良好的数学认识结构. 自主探究点:例题及变式的解题思路的探寻. 易错点:容易出现事件之间的关系混乱,没能理解问题的实际意义. 学法与教具 1.学法:讲授法、讨论法. 2.教具:投影仪. 一、【知识结构】 二、【知识梳理】 1.随机变量 ⑴随机变量定义:在随机试验中,使得每一个试验结果都用一个确定的数字表示.在这个对应关系下,数字随着试验结果的变化而变化.像这种随着试验结果变化而变化的变量称为随机变量.简单说,随机试验的结果可以用一个变量来表示,那么这样的变量叫做随机变量.常用希腊字母x、y、ξ、η等表示. ⑵如果随机变量可能取的值可以按次序一一列出(可以是无限个)这样的随机变量叫做离散型随机变量.

⑶如果随机变量可能取的值是某个区间的一切值,这样的随机变量叫做连续型随机变量. 2.概率分布定义(分布列) 设离散型随机变量ξ可能取的值为123,,,,i x x x x L L ,ξ取每一个值(1,2,)i x i =L 的概率 ()i i P x p ξ==,则称表 ξ 1x 2x L i x L P 1P 2P L i P L 称为随机变量ξ的概率分布列,简称ξ的分布列. 注:1.离散型随机变量的分布列具有下述两个性质: (1)0,123≥,,,i p i =L ;123(2)1p p p +++=L 3.常见的分布列 ⑴二项分布:在一次试验中某事件发生的概率是p ,那么在n 次独立重复试验中这个事件恰发生k 次的概 率为()(1)k k n k n p X k C p p -==-,显然x 是一个随机变量.随机变量x 的概率分布如下: x 1 L k L n P 00n n C p q 111 n n C p q - L k k n k n C p q - L n n n C p q 我们称这样的随机变量x 服从二项分布,记作~(,)X B n p ⑵两点分布列:如果随机变量ξ的分布列为: ξ 0 1 P 1P - P 这样的分布列称为两点分布列,称随机变量服从两点分布,而称(1)p P ξ==为成功概率.两点分布是特殊的二项分布(1)p ξ~B , ⑶超几何分布:一般地,在含有M 件次品的N 件产品中,任取n 件,其中恰有x 件次品数,则事件{} x k =发生的概率为(),0,1,2,3,,k N k M N M n N C C P X k k m C --===L .其中{}min ,m M n =,且*,,,,n N M N n M N N ≤≤∈,则称分布列

正态分布及其经典习题和答案

专题:正态分布 【知识网络】 1、取有限值的离散型随机变量均值、方差的概念; 2、能计算简单离散型随机变量的均值、方差,并能解决一些实际问题; 3、通过实际问题,借助直观(如实际问题的直观图),认识正态分布、曲线的特点及曲线所表示的意义。 【典型例题】 例1:(1)已知随机变量X 服从二项分布,且E (X )=2.4,V (X )=1.44,则二项分布的参数n ,p 的值为 ( ) A .n=4,p=0.6 B .n=6,p=0.4 C .n=8,p=0.3 D .n=24,p=0.1 答案:B 。解析:()4.2==np X E ,()44.1)1(=-=p np X V 。 (2)正态曲线下、横轴上,从均数到∞+的面积为( )。 A .95% B .50% C .97.5% D .不能确定(与标准差的大小有关) 答案:B 。解析:由正态曲线的特点知。 (3)某班有48名同学,一次考试后的数学成绩服从正态分布,平均分为80,标准差为10,理论上说在80分到90分的人数是 ( ) A 32 B 16 C 8 D 20 答案:B 。解析:数学成绩是X —N(80,102), 8080 9080(8090)(01)0.3413,480.34131610 10P X P Z P Z --??≤≤=≤≤=≤≤≈?≈ ???。 (4)从1,2,3,4,5这五个数中任取两个数,这两个数之积的数学期望为___________ 。 答案:8.5。解析:设两数之积为X , ∴E(X)=8.5. (5)如图,两个正态分布曲线图: 1为)(1 ,1x σμ?,2为)(22x σμ?, 则1μ 2μ,1σ 2σ答案:<,>。解析:由正态密度曲线图象的特征知。 例2:甲、乙两人参加一次英语口语考试,已知在备选的10道试题中,甲能答对其中的6题,乙能答对其中的8题.规定每次考试都从备选题中随机抽出3题进行测试,至少答对2题才算合格. (Ⅰ)求甲答对试题数ξ的概率分布及数学期望; (Ⅱ)求甲、乙两人至少有一人考试合格的概率. 答案:解:(Ⅰ)依题意,甲答对试题数ξ的概率分布如下: 甲答对试题数ξ的数学期望 E ξ=5 9 61321210313010=?+?+?+? . (Ⅱ)设甲、乙两人考试合格的事件分别为A 、B ,则

选修2-3第二章随机变量及其分布知识点总结

第二章概率总结 一、知识点 1.随机试验的特点: ①试验可以在相同的情形下重复进行; ②试验的所有可能结果是明确可知的,并且不止一个 ③每次试验总是恰好出现这些结果中的一个,但在一次试验之前却不能肯定这次试验会 出现哪一个结果. 2.分类 随机变量 (如果随机试验可能出现的结果可以用一个变量X来表示,并且X是随着试验的结 果的不同而变化,那么这样的变量叫做随机变量.随机变量常用大写字母X、Y等 或希腊字母ξ、η等表示。) 离散型随机变量:连续型随机变量: 3.离散型随机变量的分布列 一般的,设离散型随机变量X可能取的值为x1, x2, ,x i , ,x n X取每一个值xi(i=1,2,)的概率P(ξ=x i)=P i,则称表 为离散型随机变量X 的概率分布,简称分布列 性质:①---------------------------------------------- ②-------------------------------------------------. 二点分布 如果随机变量X的分布列为: 其中0

一般地, 设总数为N 件的两类物品,其中一类有M 件,从所有物品中任取n(n ≤N)件, 这n 件中所含这类物品件数X 是一个离散型随机变量, 则它取值为k 时的概率为()(0,1,2,,)k n k M N M n N C C P X k k m C --===,其中 则称随机变量X 的分布列 , 为超几何分布列,且称随机变量X 服从参数N 、M 、n 的超几何分布 注意:(1)超几何分布的模型是不放回抽样; (2)超几何分布中的参数是N 、M 、n ,其意义分别是总体中的个体总数、N 中一类的 总数、样本容量 条件概率 1.定义:对任意事件A 和事件B ,在已知事件A 发生的条件下事件B 发生的概率, 叫做条件概率.记作P(B|A),读作A 发生的条件下B 的概率 2.事件的交(积):由事件A 和事件B 同时发生所构成的事件D ,称为事件A 与事件B 的交(或积).记作D=A ∩B 或D=AB 3.条件概率计算公式: 例题、10个产品中有7个正品、3个次品,从中不放回地抽取两个,已知第一个取到次品, 求第二个又取到次品的概率. 相互独立事件 1.定义:事件A(或B)是否发生对事件B(或A)发生的概率没有影响,这样的两个事件 叫做相互独立事件 2.相互独立事件同时发生的概率公式 两个相互独立事件同时发生的概率,等于每个事件发生的概率的积。则有 如果事件A1,A2,…An 相互独立,那么这n 个事件同时发生的概率, 等于每个事件发生的概率的积。即: P (A1·A2·…·An )=P (A1)·P (A2)·…·P(An) 3解题步骤 说明(1)判断两事件A 、B 是否为相互独立事件,关键是看A (或B )发生与否对B (或A )发生的概率是否影响,若两种状况下概率不变,则为相互独立. (2)互斥事件是指不可能同时发生的两个事件;相互独立事件是指一事件的发生与否对另一事件发生的概率没影响. (3)如果A 、B 是相互独立事件,则A 的补集与B 的补集、A 与B 的补集、A 的补集与B 也都相互独立.

随机变量及其分布期末练习题及答案

随机变量及其分布期末练习题及答案 1.在事件A 发生的概率为p 的伯努利试验中,若以ξ记第r 次A 发生时的试验的次数,求 ξ的分布。 [解] {} 发生次试验次而第恰好出现了次试验中前A k r A k P k P 11-)(-==ξ ) ,1,(,) 1()1(1 1 1 11Λ+=-=?-=-------r r k p p C p p p C r k r r k r k r r k 小结 求离散型随机变量的分布律时,首先应该搞清随机变量取可能值时所表示的随机事件,然后确定其分布列。为验证所求分布是否正确,通常可计算一下所求得的“分布列”之和是否为1,若不是,则结果一定是错误的。 2.设随机变量X 的分布函数为 ??? ??>≤≤<=.1,1;10.0 ,1)(2x x Ax x x F 求(1)A 的值;(2)X 落在)21,1(-及)2,3 1 (内的概率;(3)X 的概率密度函数。 [解] (1)有分布函数的右连续性, 在1=x 点处有1)01()1(=+==F A F ,即1=A (2)由分布函数的性质知,4 1)1()21())21 ,1((= --=-∈F F X P ; 98311)31()2())2,31((2 =?? ? ??-=-=-∈F F X P ; (3)由于)(x F 最多除1=x 和0点外处处可导,且在1,0=x 处连续,若取 ? ??≤≤><=.10,2; 10,0)(x x x x x f 或 则0)(≥x f ,且对一切x 有? ∞ -=x dt t f x F )()(,从而)(x f 为随机变量X 的密度函数。 3.设),2(~2 σN X ,且3.0)42(=<

二项分布经典例题练习题

二项分 布 1.n 次独立重复试验 一般地,由n 次试验构成,且每次试验相互独立完成,每次试验的结果仅有两种对立的状态,即A 与A ,每次试验中()0P A p =>。我们将这样的试验称为n 次独立重复试验,也称为伯努利试验。 (1)独立重复试验满足的条件第一:每次试验是在同样条件下进行的;第二:各次试验中的事件是互相独立的;第三:每次试验都只有两种结果。 (2)n 次独立重复试验中事件A 恰好发生k 次的概率()P X k ==(1)k k n k n C p p --。 2.二项分布 若随机变量X 的分布列为()P X k ==k k n k n C p q -,其中0 1.1,0,1,2,,,p p q k n <<+==L 则称X 服从参数为,n p 的二项分布,记作(,)X B n p :。 1.一盒零件中有9个正品和3个次品,每次取一个零件,如果取出的次品不再放回,求在取得正品前已取出的次品数X 的概率分布。 2.一名学生每天骑车上学,从他家到学校的途中有6个交通岗,假设他在各个交通岗遇到 红灯的事件是相互独立的,并且概率都是31 . (1)设ξ为这名学生在途中遇到红灯的次数,求ξ的分布列; (2)设η为这名学生在首次停车前经过的路口数,求η的分布列;

(3)求这名学生在途中至少遇到一次红灯的概率. 3.甲乙两人各进行3次射击,甲每次击中目标的概率为 21,乙每次击中目标的概率为3 2. (1)记甲击中目标的此时为ξ,求ξ的分布列及数学期望; (2)求乙至多击中目标2次的概率; (3)求甲恰好比乙多击中目标2次的概率. 【巩固练习】 1.(2012年高考(浙江理))已知箱中装有4个白球和5个黑球,且规定:取出一个白球的 2分,取出一个黑球的1分.现从该箱中任取(无放回,且每球取到的机会均等)3个球,记随机变量X 为取出3球所得分数之和. (Ⅰ)求X 的分布列; (Ⅱ)求X 的数学期望E (X ). 2.(2012年高考(重庆理))(本小题满分13分,(Ⅰ)小问5分,(Ⅱ)小问8分.) 甲、乙两人轮流投篮,每人每次投一球,.约定甲先投且先投中者获胜,一直到有人获胜 或每人都已投球3次时投篮结束.设甲每次投篮投中的概率为1 3 ,乙每次投篮投中的概 率为1 2 ,且各次投篮互不影响. (Ⅰ)求甲获胜的概率; (Ⅱ)求投篮结束时甲的投篮次数ξ的分布列与期望

离散型随机变量和分布列(基础+复习+习题+练习)

课题:离散型随机变量及其分布列 考纲要求:①理解取有限个值的离散型随机变量及其分布列的概念,了解分布列对于刻画随机现象的重要性;②理解超几何分布及其推导过程,并能进行简单的应用. 教材复习 1.随机变量:如果随机试验的结果可以用一个变量来表示,那么这样的变量叫做随机变量随机变量常用希腊字母ξ、η等表示 2.离散型随机变量:对于随机变量可能取的值,可以按一定次序一一列出,这样的随机变 量叫做离散型随机变量 若ξ是随机变量,a b ηξ=+,其中a 、b 是常数,则η也是随机变量 3.连续型随机变量: 对于随机变量可能取的值,可以取某一区间的一切值,这样的变量就 叫做连续型随机变量 4.离散型随机变量与连续型随机变量的区别与联系: 离散型随机变量与连续型随机变 量都是用变量表示随机试验的结果;但是离散型随机变量的结果可以按一定次序一一列出,而连续性随机变量的结果不可以一一列出 5.离散型随机变量的分布列:设离散型随机变量ξ可能取的值为1x 、2x 、…、i x 、… ξ 为随机变量ξ的概率分布,简称ξ的分布列 6.离散型随机变量分布列的两个性质:任何随机事件发生的概率都满足:0≤()P A ≤1,并且不可能事件的概率为0,必然事件的概率为1.由此你可以得出离散型随机变量的分布列都具有下面两个性质:()1i p ≥0,1,2,i =…;()212p p ++…1= 对于离散型随机变量在某一围取值的概率等于它取这个围各个值的概率的和.即 (P ξ≥1)()()k k k x P x P x ξξ+==+=+??? 7.两点分布:若随机变量服从两点分布,即其分布列: 其中P =(1)P X =称为成功概率(表中01p <<). 8.几何分布:在独立重复试验中,某事件第一次发生时, 所作试验的次数ξ也是一个正整数的离散型随机变量.“k ξ=”表示在第k 次独立重复试验时事件第一次发生.如果把k 次试验时事件A 发生记为k A 、事件A 不发生记为k A ,()k p A p =, ()(1)k p A q q p ==-,那么 112311231()()()()()() ()k k k k k P k P A A A A A P A P A P A P A P A q p ξ---====(0,1,2,k =…, p q -=1)

相关文档
相关文档 最新文档