文档库 最新最全的文档下载
当前位置:文档库 › 云纹法实验-1

云纹法实验-1

云纹法实验-1
云纹法实验-1

云纹干涉法实验

云纹干涉法是应用高密度衍射光栅和激光干涉技术进行位移和变形测量的一种现代光测力学实验方法.这种方法具有高灵敏度、全场分析、实时观测、高反差条纹和非接触测量等优点。近年来,已经在材料科学、微电子封装、断裂力学、细观力学、残余应力测量等方面获得了成功的应用。是一种具有发展和应用前景的新的实验力学方法。

§1 光栅和云纹法

光栅是由很多平行、等宽、等间距的狭缝组成的,如图1a 所示,为平行光栅。与

栅线垂直的方向称为光栅的主方向。两组互相垂直的平行光栅可组成正交光栅,如图1b 所示。自然界中的光栅和云纹现象是很常见的。例如梳子和帘子可视为平行光栅,纱窗和丝绸可视为正交光栅。两幅丝绸或纱窗重叠在一齐,对着天空迎着光亮可以看到明暗相间的不规则条纹,这就是云纹条纹,如图2所示。这种云纹条纹反映了两组光栅的相对变形或相对位移的分布情况。中国古代的丝绸传入欧洲,也将云纹现象带进了欧洲。法国人将这种现象称之为Moire’,翻译成中文便是云纹,也有将其音译为莫瑞或莫尔的。

图2 云纹现象

图1b 正交光栅

图1a 平行光栅

(a) 窗纱重叠云纹

(b) 梳子叠合云纹

如果产生云纹现象的两组光栅中的一组光栅是规整的,可看作是未变形的和静止的标准栅或参考栅,则所获得的云纹条纹分布便代表了另一组光栅的变形。借助这种云纹现象测量物体变形的方法称作云纹法。

图3a 平行云纹的形成

图3b 转角云纹的形成

p

当两组栅距不等、栅线方向相同的光栅重叠时(如图3a 所示)所出现的云纹条纹称为平行云纹。这种条纹通常平行于栅线方向,它代表其中的一组光栅的栅距p 1相对于另一组参考栅的栅距p 发生了变化,即具有垂直于栅线方向的应变和变形。S 为两级条纹在水平方向的距离。相邻两级条纹所在位置的水平位移之差为一个栅距p 。当两组栅距相同、但栅线有一夹角,即一组光栅相对于另一组参考栅有一转角θ时,所产生的云纹条纹为转角云纹。转角云纹条纹基本上垂直于栅线方向,如图3b 所示。在一般情况下,物体的变形既有伸长或缩短,也有转动,即既有线变形也有角变形,同一位置的光栅既有栅距的变化也有栅线的转动,因而一般不便于将平行云纹条纹和转角云纹条纹严格区分开来,而且也无此必要。其实,仔细分析图3a 和图3b, 平行云纹条纹和转角云纹条纹本质上都是等位移线。每一级条纹所在位置上的各点,沿垂直于栅线方向,即光栅主方向的位移分量都是相等的。以图3b 为例,两级条纹所在位置的垂直方向的位移之差都等于栅线节距p 。因此,如在待测的试件上粘贴正交光栅作为变形栅,当试件受力变形后,用一组平行栅作为标准的参考栅。分别沿垂直和水平方向与变形栅叠合,便可获得代表试件表面上水平和垂直方向的位移U 和V 的云纹条纹图。根据两组条纹图的条纹级次x N 和y N ,便可以由下式求得全场位移分布,

p

N V p N U x y == (1)

§2衍射光栅

上述云纹法所用光栅其频率通常为每毫米几线至几十线,测量灵敏度很低。为了克服这一困难而发展的云纹干涉法采用的光栅, 通常为频率为1200线/mm 的衍射光栅,并采用激光衍射和干涉技术实现位移场的高灵敏度测量。

一、双缝衍射

一束激光垂直投射具有两个很接近的狭缝,如图4a 所示,在远方屏幕上会出现明暗相间的干涉条纹,即杨氏条纹。当相邻两狭缝沿某方向发出的光波的光程差为一个波长时,光波得到加强,在屏幕上将出现一级衍射亮条纹。当相差m 个波长时,则为N 级衍射条纹。根据图4a 所示得几何关系,可得到产生m 级衍射条纹的条件为

λθm pSin m = (2)

P

亮条纹 (m级) 亮 亮

暗 暗图4 a 双缝衍射-正入射

当光束以 ?角入射双缝时,由图4b 不难得到m 级衍射光波的生成条件应为 λθ?m Sin Sin p m =+)( (3) 二、光栅衍射方程

光栅衍射的机理与狭缝衍射相似,其衍射方程也与双缝的衍射方程相同。但云纹干涉法所用的光栅皆为反射式光栅,其各级衍射光波与入射波皆在光栅的同一侧,如图5所示,其光栅衍射方程的表达式也和(3)式一样,

λθ?m Sin Sin p m =+)( (3) 上式也可用光栅频率f(线/mm)来表示, 因p

f 1

=

f m Sin Sin m λθ?=+

(4)

光栅方程是用来确定光波入射角φ与不同级次光谱衍射角之m θ间的关系的。当衍射光方向与入射光方向处于光栅平面法线方向同一侧时,式中的m θ取正号、反之取负号。

图5 光栅衍射

入射光

法向

0级

-1级

X P =1/f

?

m

θ2级

1级

三、全息光栅

两束准直的激光束A和B以一定的角度2α在空间相交时(图6a),在其相交的重叠区域将产生一个稳定的具有一定空间频率f,栅距为p的空间虚栅,虚栅的频率f与激光波长λ和两束激光的夹角2α有关,并由下式决定

α

λSin

=(3)

f2

将涂有感光乳胶的全息干板置于图6a所示的空间虚栅光场中,经曝光后,干板上将记录下频率为f的平行等距干涉条纹。经过显影以后的底板,将形成图6b所示的波浪形表面,这个波浪形表面便构成了频率为f的位相型全息光栅,将这块光栅作为模板,便可用它在试件上复制相同频率的位相型试件栅。云纹干涉法采用的光栅频率f通常为1200线/mm,也有采用600和2400线/mm的.通过使全息干板转动90O进行两次曝光可获得正交型光栅,则可用于二维面内位移场和应变场测量.

Nλ=?

图7 云纹干涉法原理图

§3面内位移场

一、面内位移场实时观测

两束经过准直的波长为λ的平面波A 光和B 光对称地以入射角α投射到光栅频率为f 的试件栅上.根据上述光栅衍射方程,当入射角α、波长λ和光栅频率f 满足以下方程关系时,两束光的一级衍射光波将沿试件栅的法线方向衍射。

f Sin λα= (4)

如两束对称入射的光波为准直光。试件栅十分规整,试件也未受力,则两个一级的衍射波A ’及B ’可视为平面波。此时,在理想情况下,成像面上将不出现干涉条纹,仅为一均匀的光强分布。当试件栅随试件受力产生变形和应变,试件栅的频率将发生变化,原来的平面波将发生翘曲,变成与面内位移场有关的翘曲波A ’’和B ’’ ,如图7所示。两束翘曲波A ’’和B ’’的相对光程差Δ将形成反映光栅主方向,即X 方向的位移场的干涉条纹。

图8给出了光程差Δ和试件表面的面内位移之间的几何关系。设试件表面变形以前的两

束入射光波和一级衍射波分别为AOC 和BOC,其光程相等,即

AO+OC=BO+OC

其光程差为零。当试件产生变形后,O 点产生X 方向的位移U 到达P 点,则对应于该点的入射波为A 'P 和B 'P , 以及衍射波P C ', 则产生与位移有关的光程差Δ。根据图5所示的几何关系,可导出光程差Δ与位移U 的关系

Δ=(A 'P+ P C ')-(B 'P+ P C ')

=αUSin 2

将(3)式代入上式,并用波长的倍数,即干涉条纹级数N 来表示光程差Δ,

Δ=λN

可建立位移U 和干涉条纹级数N 以及光栅频率f 的关系为 f

N

U 2=

如试件栅为正交型光栅,将试件或光路系统围绕法线方向旋转90度,则可获得沿Y 方向的面内位移干涉条纹图。通常的云纹干涉仪同时具有X 和Y 方向两套光路系统,因而很

图8 面内位移与光程变化

A

A '

C

C 'B

B '

αα

O U

P

X

α

sin U

容易获得沿X 和Y 方向的两组干涉条纹图。令x N 和y N 分别代表X 和Y 方向的面内位移干涉条纹图的条纹级数,则可由下式求得面内位移U 和V ,

f

N U x

2= (5a )

f

N V y

2=

(5b )

在云纹干涉法实验中所用的光栅频率通常为1200线/mm, 或光栅节距为0.833μm, 代入上式,

()m N N p

U x x μ417.02==

(6a) ()m N N p

V y y μ417.02

==、 (6b)

上式表明当试件栅的频率f 为1200线/mm 时,一级干涉条纹代表0.417μm 的位移量。 云纹干涉法的灵敏度通常为试件栅光栅节距的一半.

§4 应变场

根据面内位移干涉条纹图可以求得试件表面的应变分布。设试件表面所在平面为X-Y 平面, 该面内的线应变和剪应变分别为xy y x γεε,,。根据位移和应变的关系可得

X

U

x ??=

ε、

(7a)

Y V y ??=ε (7b)

X V Y U xy ??+??=γ (7c)

用相应的位移增量和条纹级数增量形式来表示, 可得 X

N f X U x

x ??=??=

21ε (8a)

Y

N f Y V y

y ??=??=

21ε (8b) ??

??????+??=??+??=X N Y N f X V Y U y x xy

21γ (8c) 根据两组条纹级数沿X和Y方向的变化率便可求得三个应变分量的分布。

§5 应力集中拉伸实验

图6a 应力集中拉伸实验-V 场条纹图 图6应力集中拉伸实验-U 场条纹图

图6a 和6b 所示为应力集中拉伸试件云纹干涉法实验获得的U 场和V 场云纹干涉条纹图。根据公式(8b ),V 场条纹级数沿Y 方向的梯度代表Y 方向的应变εy 。为简单起见,也可以用相邻条纹沿Y 方向的间距by 来近似地表示该位置的应变εy 。因相邻两级条纹之间条纹级数差ΔN =1,则式(8b )可近似地表示为

y

y fb 21?ε (9a )

同理可获得

x

x fa 21?ε (9b)

???

?

????+?x y xy

b a f

1121γ (9c ) 式中b x 为V 场条纹图相邻条纹沿X 方向的条纹间距;x a 和y a 分别代表U 场条纹图相邻条纹X 和Y 方向的条纹间距。从图6a 所示的V 场条纹图不难看出,在园孔附近呈现出明显

的应力集中现象。根据园孔所在水平截面位置上相邻两条纹之间的距离便可根据式(9a )求得孔边的最大应变max ε和y ε沿该截面的分布。如以min b 表示孔边最小V 场条纹间距,b 表示拉伸试件应力均匀区V 场条纹间距,便可求得园孔拉伸试件的应力集中系数K

B

D

B b b K -=

min (10)

式中B 为拉伸试件的宽度,D 为园孔直径。由图6a 和6b 的条纹图不难看出园孔应力集中影响区约为拉伸试件的宽度,在一倍宽度以外的区域,试件仍为均匀拉伸状态。这一现象也验证了圣文南原理。

此外,还可以利用均匀区的V 场位移条纹图求得试件材料得弹性常数E ,并根据两幅条纹图均匀区的条纹间距b 和a 的比值很容易地求得波桑比μ

Bt b f P

E 2==εσ

(11)

a

b

=μ (12)

式中P 为试件的拉伸载荷,B 和t 为试件的宽度和厚度,f 为试件栅的频率。 §6 弯曲实验

图6所示为云纹干涉法实验获得的两端简支,中点受集中力作用的三点弯曲梁的U 场和V 场云纹干涉条纹图。根据公式(8a ),U 场条纹级数沿X 方向的梯度代表X 方向的应变εx 。为简单起见,也可以用相邻条纹沿X 方向的间距a x 来近似地表示该位置的应变εx 。因相邻两级条纹之间条纹级数差ΔN =1,则式(7a )可近似地表示为

x

x fa 21?ε (9b )

同理可获得

y

y fb 21?ε (9a)

???

?

????+?

x y xy b a f

1121γ (9c ) 式中y a 为U 场条纹图相邻条纹沿Y 方向的条纹间距;b x 和b y 分别代表V 场条纹图相邻条纹X 和Y 方向的条纹间距。

图7a 三点弯曲试件

x

y

从图6a 所示的U 场条纹图不难看出,沿着梁的中性层位置条纹的走向是与X 方向平行的,这表示U 场条纹沿X 方向的梯度为零,即εX =0。从图6b 所示的V 场条纹图,不难从中性层的条纹级数N y 获得梁的挠度曲线。从条纹级数N y 沿X 方向的梯度,或条纹间距也不难求得梁的转角曲线。

§7 云纹干涉仪

将已转移好试件栅的试件置于云纹干涉仪的光路系统中,调整好光路,便可对试件的位移场和变形进行测量。云纹干涉仪的光路如图7所示,所用激光器通常为氦氖激光器,其波长λ=0.633μm 。为了能方便地测得U 和V 两组位移场,仪器中包含用以测量X 方向水平位移场(U 场)的水平光路系统,和用以测量Y 方向垂直位移场(V 场)的垂直光路系统。两组光路可分别独立使用.

由激光器产生的激光束经分光器和光纤耦合器并经准直镜分成四束准直光,分别投射到四个反射镜M 1、M 2、M 3、M 4上。调节反射镜M 1和M 2可使两束准直光O 1和O 2按方程(4)的要求投射到试件栅上,并调节安装试件的多维调节架,使试件栅的法线方向正好平分两束准直光O 1和O 2的夹角。此时O 1和O 2的一级衍射波将沿试件栅的法线方向传播,并经成像透镜L 将试件栅和两束衍射波的干涉条纹成像在CCD 摄像机的靶面上,实时地在显示器上显示,并由计算机存储和处理。当然,当试件未受力,试件栅比较规整,屏幕上应不出现条纹。如果干涉条纹较多,说明光路没有调节好。经过反复调节反射镜和试件调节座,可以使干涉条纹达到最少。此时的干涉条纹图称作零场条纹图。零场条纹图的条纹越少表明光路调节得越好,实验结果也将越准确。在调节光路系统时还必须注意试件栅的主方向(如X)是否和O 1和O 2所在平面,即水平面重合。否则,该试件栅主方向与水平面的夹角的存在表明试件栅具有相对于光路系统的面内转动位移,因而会出现反映这一转动位移场的转角云纹条纹,这将不能获得准确的零场条纹图。通过调节固定试件的调节座,转动试件栅,可以方便地消除转

图8 云纹干涉仪光路系统

P

M 3

M 1

M 4

O 3

O 2

α

αO 1

O 4

Y

X

Z

CCD

M 2

L

角云纹条纹。同理,通过调节垂直方向的两个反射镜M3和M4可以使入射光O3和O4调节到正确方向,使垂直方向的零场干涉条纹图的干涉条纹也最少。

光路系统调节好以后,对试件施加载荷并产生变形。屏幕上将实时地出现与试件相对应的位移条纹图。由于加载时试件有时会产生刚体位移,包括刚体平移和刚体转动。由此而产生的附加干涉条纹是不需要的。通过调节夹持试件的多维调节座,可以将与刚体位移有关的干涉条纹,特别是转角云纹条纹消除。需要注意的是:加载以后,光路系统中的四个反射镜的调节旋钮不能再调节,否则将改变原已调节好的光路,所获得的干涉条纹图将会是不准确的。特别是与两束对称入射光的夹角有关的调节旋钮,在零场条纹图已经调好以后是绝对不能再调节的。

§8 云纹干涉法实验一-拉伸应力集中实验

一,实验目的

1,了解云纹干涉法的基本原理、特点和应用范围,初步掌握云纹干涉法操作技术

2,测定应力集中系数、材料弹性模量和波桑系数

3,加深对应力集中现象和圣文南原理的了解

二,实验设备

1,云纹干涉仪

2,已转移光栅的带园孔拉伸试件

3,卡尺

三,实验步骤

1,量取试件尺寸,注意切勿触摸试件栅。

2,安装拉伸试件。并使试件栅距离场镜约52mm

3,开启激光器,打开U场光路开关,调节加载架调节座和U场光路反光镜调节旋钮,使两束衍射光点在中轴线上的聚焦点,即毛玻璃十字丝中心重合。

4,调节成像镜头和成像距离,和加载架调节座,观察显示器屏幕,使成像清晰,大小合适,试件位置居中。

5,观察计算机显示屏上的干涉条纹,继续调节U场反光镜旋钮,使屏幕上的干涉条纹最少,以获得U场的零场。

6,关闭U场光路开关,打开V场光路开关,和调节U场一样,调节V场光路反光镜旋钮,以获得V场的零场条纹图。此时,无需调节加载架调节座。

7,施加适当载荷,观察U场条纹图,如条纹出现不对称现象,表明试件有面内转动,可调节加载架调节座的旋钮,使条纹图恢复对称。

8,反复检查U场和V场条纹图,将两幅条纹图采集和保存在计算机内,并记录下载荷大小。

9,整理复原实验环境。

四,实验报告要求

1,根据V场条纹图孔边上下对称断面上相邻两条纹的间距,计算该断面上的εy分布,并按公式(10)计算孔边的应力集中系数K。

2,根据应力均匀区的V场条纹图和U场条纹图,量取条纹间距b和a并根据公式(11)和(12)计算试件材料的弹性常数E和波桑比 。

五,预习要求

1,阅读实验讲义,了解云纹干涉法的基本原理和特点。

2,设试件栅的光栅频率为1200线/mm,激光光波的波长为0.633μm,计算入射

光波的入射角。并问如何调整和检查入射角和试件栅方位的准确性?

3, 复习材料力学的弯曲应力和弯曲变形的基本理论。

§9 云纹干涉法实验二-梁的弯曲实验

一,实验目的

a)了解云纹干涉法的基本原理、特点和应用范围

b)验证梁的弯曲应力和弯曲变形理论,巩固和加深弯曲理论的有关基本概念

c)加深对应力、应变、位移以及弯曲挠度、转角、曲率的关系和概念的理解

二,实验设备

a)云纹干涉仪

b)已转移光栅的弯曲试件

c)卡尺

三,实验步骤

a)量取试件尺寸,注意切勿触摸试件栅。

b)安装三点弯曲试件。跨度L=42mm, 试件距离光路系统箱53mm.

c)调节成像镜头和成像距离,和加载架调节座,观察显示器屏幕,使成像清晰,

大小合适,试件位置居中。

d)开启激光器,打开U场光路开关,调节U场光路反光镜旋钮,和加载架调节

座,使两束衍射光点在中轴线上的聚焦点重合。

e)观察显示器屏幕上的干涉条纹,继续调节U场反光镜旋钮,使屏幕上的干涉

条纹最少,以获得U场的零场。

f)关闭U场光路开关,打开V场光路开关,和调节U场一样,调节V场光路反

光镜旋钮,以获得V场的零场条纹图。此时,无需调节加载架调节座。

g)施加适当载荷,观察U场条纹图,如条纹出现不对称现象,表明试件有面内

转动,可调节加载架调节座的旋钮,使条纹图恢复对称。

h)反复检查U场和V场条纹图,将两幅条纹图采集和保存在计算机内,并记录

下载荷大小。

i)整理复原实验环境。

四,实验报告要求

已知铝合金试件材料的弹性常数E=

试件尺寸为:高度h=厚度t=跨度L=

1,根据U场条纹图计算离开加力点一倍高度距离的截面上的正应力σx分布,并与理论值比较,求得该截面的最大拉应力和最大压应力,取其绝对值的平均值

作为实验值与理论值进行比较,并计算相对误差。

2,根据V场条纹图计算梁的弯曲挠度的分布曲线,并与理论值比较,计算最大挠度的相对误差。

五,预习要求

1,阅读实验讲义,了解云纹干涉法的基本原理和特点。

2,设试件栅的光栅频率为1200线/mm,激光光波的波长为0.633μm,计算入射光波的入射角。光波的入射角是不好直接测量的,问如何调整和检查入射角

和试件栅的准确性?

3, 复习材料力学的弯曲应力和弯曲变形的基本理论。

回溯法实验(0-1背包问题)

算法分析与设计实验报告第五次附加实验

附录: 完整代码(回溯法) //0-1背包问题回溯法求解 #include using namespace std; template class Knap //Knap类记录解空间树的结点信息 { template friend Typep Knapsack(Typep [],Typew [],Typew,int); private: Typep Bound(int i); //计算上界的函数 void Backtrack(int i); //回溯求最优解函数

Typew c; //背包容量 int n; //物品数 Typew *w; //物品重量数组| Typep *p; //物品价值数组 Typew cw; //当前重量 Typep cp; //当前价值 Typep bestp; //当前最后价值 }; template Typep Knapsack(Typep p[],Typew w[],Typew c,int n); //声明背包问题求解函数template inline void Swap(Type &a,Type &b); //声明交换函数 template void BubbleSort(Type a[],int n); //声明冒泡排序函数 int main() { int n ;//物品数 int c ;//背包容量 cout<<"物品个数为:"; cin>>n; cout<<"背包容量为:"; cin>>c; int *p = new int[n];//物品价值下标从1开始 int *w = new int[n];//物品重量下标从1开始 cout<<"物品重量分别为:"<>w[i]; } cout<<"物品价值分别为:"<>p[i]; } cout<<"物品重量和价值分别为:"<

实验分光光度法测定铁

实验分光光度法测定铁 The following text is amended on 12 November 2020.

实验十四邻二氮菲分光光度法测定铁的含量 一、实验目的 1.学习吸光光度法测量波长的选择方法; 2.掌握邻二氮菲分光光度法测定铁的原理及方法; 3. 掌握分光光度计的使用方法。 二、实验原理 分光光度法是根据物质对光选择性吸收而进行分析的方法,分光光度法用于定量分析的理论基础是朗伯比尔定律,其数学表达式为:A=εb C 邻二氮菲(又称邻菲罗啉)是测定微量铁的较好试剂,在pH=2~9的条件下,二价铁离子与试剂生成极稳定的橙红色配合物。摩尔吸光系数ε=11000 L·mol-1·cm-1。在显色前,用盐酸羟胺把Fe3+还原为Fe2+。 2Fe3++2NH 2OHHCl→2Fe2++N 2 +4H++2H 2 O+2Cl- Fe2+ + Phen = Fe2+ - Phen (橘红色) 用邻二氮菲测定时,有很多元素干扰测定,须预先进行掩蔽或分离,如钴、镍、铜、铅与试剂形成有色配合物;钨、铂、镉、汞与试剂生成沉淀,还有些金属离子如锡、铅、铋则在邻二氮菲铁配合物形成的pH范围内发生水解;因此当这些离子共存时,应注意消除它们的干扰作用。 三、仪器与试剂 1.醋酸钠:l mol·L-1; 2.盐酸:6 mol·L-1; 3.盐酸羟胺:10%(用时配制); 4.邻二氮菲(%):邻二氮菲溶解在100mL1:1乙醇溶液中; 5.铁标准溶液。 (1)100μg·mL-1铁标准溶液:准确称取(NH 4) 2 Fe(SO 4 ) 2 ·12H 2 0于烧杯中, 加入20 mL 6 mol·L-1盐酸及少量水,移至1L容量瓶中,以水稀释至刻度,摇匀. 6.仪器:7200型分光光度计及l cm比色皿。 四、实验步骤 1.系列标准溶液配制 (1)用移液管吸取10mL100μg·mL-1铁标准溶液于100mL容量瓶中,加入2mL 6 mol·L-1盐酸溶液, 以水稀释至刻度,摇匀. 此溶液Fe3+浓度为10μg·mL-1. (2) 标准曲线的绘制: 取50 mL比色管6个,用吸量管分别加入0 mL,2 mL,4 mL, 6 mL, 8 mL和10 mL10μg·mL-l铁标准溶液,各加l mL盐酸羟胺,摇匀; 经再加2mL邻二氮菲溶液, 5 mL醋酸钠溶液,摇匀, 以水稀释至刻度,摇匀后放置 10min。 2.吸收曲线的绘制 取上述标准溶液中的一个, 在分光光度计上,用l cm比色皿,以水为参比溶液,用不同的波长,从440~560 nm,每隔10 nm测定一次吸光度,在最大吸收波长

实验五--分光光度法测定甲醛

实验五:空气中甲醛的测定(酚试剂分光光度法) 实验目的: 掌握甲醛测定方法; 熟练掌握大气采样器和分光光度计的使用; 实验原理: 甲醛的测定方法:分光光度法、气相色谱法、酚试剂分光光度法、乙酰丙酮分光光度法; 空气中的甲醛与3-甲基2-苯并噻唑酮腙酚试剂反应生成嗪,嗪在酸性溶液中被高铁离子氧化形成蓝绿色化合物,颜色深浅与甲醛含量成正比,物质的最大吸收波长为630nm,通过比色定量。当采样体积为10L时最低检出质量浓度为0.01mg/m3。 实验仪器: 分光光度计(在630nm测定);大气采样器;具塞比色管(10ml);分析天平;滴定管;容量瓶;量筒;移液管等 1、吸收液原液:称量0.10g酚试剂[C6H4SN(CH3)C:NNH2·HCl,简称NBTH],加水溶解,倾于100ml具塞量筒中,加水到刻度。放冰箱中保存,可稳定三天。吸收液:量取吸收原液5ml,加95ml水,即为吸收液。采样时,临用现配。 2、1%硫酸铁铵溶液 3、碘溶液[C(1/2I2)=0.1000mol/L] 4、1mol/L氢氧化钠溶液 5、0.5mol/L硫酸溶液:取28ml浓硫酸缓慢加入水中,冷却后,稀释至1000ml。 6、硫代硫酸钠标准溶液[C(Na2S2O3)=0.1000mol/L] 0.5%淀粉溶液:将0.5g可溶性淀粉,用少量水调成糊状后,再加入100ml沸水,并煎沸2~3min至溶液透明确。 7、甲醛标准贮备溶液:取2.8ml含量为36~38%甲醛溶液,放入1L容量瓶中,加水稀释至刻度。此溶液1ml约相当于1mg甲醛。其准确浓度用下述碘量法标定。 实验步骤: 1、样品采集:用一个内装5ml吸收液的大型气泡吸收管,以0.5L/min流量,采气10L。并记录采样点的温度和大气压力。采样后样品在室温下应在24h内分析。 2、甲醛标准贮备溶液的标定:精确量取20.00ml待标定的甲醛标准贮备溶液,置于250ml 碘量瓶中。加入20.00ml[C(1/2I2)=0.1000mol/L]碘溶液和15ml 1mol/L氢氧化钠溶液,放置15min,加入0.5mol/L硫酸溶液,再放置15min,用[C(Na2S2O3)=0.1000mol/L]硫代硫酸钠溶液滴定,至溶液呈现淡黄色时,加入1ml 5%淀粉溶液继续滴定至恰使兰色褪去为止,记录所用硫代硫酸钠溶液体积(V2),ml。同时用水作试剂空白滴定,记录空白滴定所用硫化硫酸钠标准溶液的体积(V1),ml。甲醛溶液的浓度用公式(1)计算:甲醛溶液浓度(mg/ml)=(V1-V2)×N×15/20 (1) 式中:V1――试剂空白消耗[C(Na2S2O3)=0.1000mol/L]硫代硫酸钠溶液的体积,ml; V2――甲醛标准贮备溶液消耗[C(Na2S2O3)=0.1000mol/L]硫代硫酸钠溶液的体积,ml;N――硫代硫酸钠溶液的准确当量浓度; 15――甲醛的当量; 20――所取甲醛标准贮备溶液的体积,ml。 二次平行滴定,误差应小于0.05ml,否则重新标定。 绘制标准曲线: 用1.00μg/ml甲醛标准溶液,按下表制各标准色列管

回溯法实验(最大团问题)

算法分析与设计实验报告第七次附加实验

} } 测试结果 当输入图如下时: 当输入图如下时: 1 2 3 4 5 1 2 3 4 5

当输入图如下时: 1 2 3 4 5

附录: 完整代码(回溯法) //最大团问题回溯法求解 #include using namespace std; class Clique { friend void MaxClique(int **,int *,int ); private: void Backtrack(int i); int **a; //图的邻接矩阵 int n; //图的顶点数 int *x; //当前解 int *bestx; //当前最优解 int cn; //当前顶点数 int bestn; //当前最大顶点数 }; void Clique::Backtrack(int i) { //计算最大团 if(i>n) //到达叶子节点 { for(int j=1;j<=n;j++) bestx[j]=x[j]; bestn=cn;

cout<<"最大团:("; for(int i=1;i=bestn) { //修改一下上界函数的条件,可以得到 x[i]=0; //相同点数时的解 Backtrack(i+1); } } void MaxClique(int **a,int *v,int n) { //初始化Y Clique Y; Y.x=new int[n+1]; Y.a=a; Y.n=n; https://www.wendangku.net/doc/a67045559.html,=0; Y.bestn=0; Y.bestx=v; Y.Backtrack(1); delete [] Y.x; cout<<"最大团的顶点数:"<

回溯法实验报告

实验04 回溯法 班级:0920561 姓名:宋建俭学号:20 一、实验目的 1.掌握回溯法的基本思想。 2.掌握回溯法中问题的解空间、解向量、显式约束条件、隐式约束条件以及子 集树与排列树的递归算法结构等内容。 3.掌握回溯法求解具体问题的方法。 二、实验要求 1.认真阅读算法设计教材,了解回溯法思想及方法; 2.设计用回溯算法求解装载问题、n后问题、图的m着色问题的java程序 三、实验内容 1.有一批共n个集装箱要装上2艘载重量分别为C1和C2的轮船,其中集装箱 i的重量为wi,且∑wi≤C1+C2。装载问题要求确定是否有一个合理的装载方案可将这个集装箱装上这2艘轮船。如果有,找出一种装载方案。 2.在n×n格的棋盘上放置彼此不受攻击的n个皇后。按照国际象棋的规则, 皇后可以攻击与之处在同一行或同一列或同一斜线上的棋子。n后问题等价于在n×n格的棋盘上放置n个皇后,任何2个皇后不放在同一行或同一列或同一斜线上。 3.给定无向连通图G和m种不同的颜色。用这些颜色为图G的各顶点着色,每 个顶点着一种颜色。是否有一种着色法使G中每条边的2个顶点着不同颜色。 这个问题是图的m可着色判定问题。 四、算法原理 1、装载问题 用回溯法解装载问题时,用子集树表示其解空间是最合适的。可行性约束可剪去不满足约束条件(w1x1+w2x2+…+wnxn)<=c1的子树。在子集树的第j+1层结点Z处,用cw记当前的装载重量,即cw=(w1x1+w2x2+…+wjxj),当cw>c1时,以结点Z为根的子树中所有结点都不满足约束条件,因而该子树中的解均为不可行解,故可将该子树剪去。 解装载问题的回溯法中,方法maxLoading返回不超过c的最大子集和,但未给出达到这个最大子集和的相应子集。 算法maxLoading调用递归方法backtrack(1)实现回溯搜索。Backtrack(i)搜索

回溯法实验(n皇后问题)

算法分析与设计实验报告第六次实验

附录: 完整代码(回溯法) //回溯算法递归回溯n皇后问题#include #include #include #include"math.h" using namespace std; class Queen

{ friend int nQueen(int); //定义友元函数,可以访问私有数据 private: bool Place(int k); //判断该位置是否可用的函数 void Backtrack(int t); //定义回溯函数 int n; //皇后个数 int *x; //当前解 long sum; //当前已找到的可行方案数 }; int main() { int m,n; for(int i=1;i<=1;i++) { cout<<"请输入皇后的个数:"; //输入皇后个数 cin>>n; cout<<"皇后问题的解为:"<

回溯法实验报告

数学与计算机学院实验报告 一、实验项目信息 项目名称:回溯法 实验时间: 2016/06/08 实验学时: 03 学时 实验地点:工科楼503 二、实验目的及要求 理解回溯法的深度优先搜索策略、 掌握用回溯法解题的算法框架、 掌握回溯法的设计策略 三、实验环境 计算机Ubuntu Kylin14.04 CodeBlock软件四、实验内容及实验步骤 排兵布阵问题 某游戏中,不同的兵种处在不同的地形上其攻击能力不一样,现有n个不同兵种的角色{1,2,...,n},需安排在某战区n个点上,角色i在j点上的攻击力为A ij。试设计一个布阵方案,使总的攻击力最大。 数据: 防卫点 角 色 1 2 3 4 5 1 2 3 4 5 回溯法: 程序: #include int position[10]; int a[10][10]; int check(int k){//每个节点检查的函数 int i; for(i=0;i=0) { sum=0; position[k]=position[k]+1; while(position[k]<=n)

if(check(k))break; else position[k]=position[k]+1; if(position[k]<=n && k==n-1) { for(i=0;i

算法设计与分析:回溯法-实验报告

应用数学学院信息安全专业班学号姓名 实验题目回溯算法 实验评分表

实验报告 一、实验目的与要求 1、理解回溯算法的基本思想; 2、掌握回溯算法求解问题的基本步骤; 3、了解回溯算法效率的分析方法。 二、实验内容 【实验内容】 最小重量机器设计问题:设某一个机器有n个部件组成,每个部件都可以m个不同供应商处购买,假设已知表示从j个供应商购买第i个部件的重量,表示从j个供应商购买第i个部件的价格,试用回溯法求出一个或多个总价格不超过c且重量最小的机器部件购买方案。 【回溯法解题步骤】 1、确定该问题的解向量及解空间树; 2、对解空间树进行深度优先搜索; 3、再根据约束条件(总价格不能超过c)和目标函数(机器重量最小)在搜索过程中剪去多余的分支。 4、达到叶结点时记录下当前最优解。 5、实验数据n,m, ] ][ [j i w,] ][ [j i c的值由自己假设。 三、算法思想和实现【实现代码】

【实验数据】 假设机器有3个部件,每个部件可由3个供应商提供(n=3,m=3)。总价不超过7(c<=7)。 部件重量表: 部件价格表: 【运行结果】

实验结果:选择供应商1的部件1、供应商1的部件2、供应商3的部件3,有最小重量机器的重量为4,总价钱为6。 四、问题与讨论 影响回溯法效率的因素有哪些? 答:影响回溯法效率的因素主要有以下这五点: 1、产生x[k]的时间; 2、满足显约束得x[k]值的个数; 3、计算约束函数constraint的时间; 4、计算上界函数bound的时间; 5、满足约束函数和上界函数约束的所有x[k]的个数。 五、总结 这次实验的内容都很有代表性,通过上机操作实践与对问题的思考,让我更深层地领悟到了回溯算法的思想。 回溯算法的基本思路并不难理解,简单来说就是:从一条路往前走,能进则进,不能进则退回来,换一条路再试。回溯法的基本做法是深度优先搜索,是一种组织得井井

分光光度法-生化实验

常用生化实验技术:分光光度法有色溶液对光线有选择性的吸收作用,不同物质由于其分子结构不同,对不同波长光线的吸收能力也不同,因此,每种物质都具有其特异的吸收光谱。有些无色溶液,虽对可见光无吸收作用,但所含物质可以吸收特定波长的紫外线或红外线。分光光度法主要是指利用物质特有的吸收光谱来鉴定物质性质及含量的技术,其理论依据是Lambert和Beer定律。 分光光度法是比色法的发展。比色法只限于在可见光区,分光光度法则可以扩展到紫外光区和红外光区。比色法用的单色光通过滤光片产生,谱带宽度为40~120nm,精度不高,而分光光度法则要求近于真正单色光,其光谱带宽最大不超过3~5nm,在紫外光区可到l nm以下。单色光通过棱镜或光栅产生,具有较高的精度。 一、光的基本知识 光是由光量子组成的,具有二重性,即不连续的微粒性和连续的波动性。波长和频率是光的波动性的特征,可用下式表示: λ=C/υ 式中λ为波长,具有相同的振动相位的相邻两点间的距离叫波长。υ为频率,即每秒钟振动次数。c为光速,等于299 770±4km/s。光属于电磁波。 自然界中存在各种不同波长的电磁波,列成表l-l所示的波谱图。分光光度法所使用的光谱范围在200nm~10μm (1μm=1 000nm)之间。其中200~400nm为紫外光区,400~760nm为可见光区,760~10 000 nm为红外光区。 二、朗伯一比尔(1ambert—Beer)定律 朗伯—比尔定律是比色分析的基本原理,这个定律是讨论有色溶液对单色光的吸收程度与溶液的浓度及液层厚度间的定量关系。此定律是由朗伯定律和比尔定律归纳而得。 1.朗伯定律一束单色光通过溶液后,由于溶液吸收了一部分光能,光的强度就要减弱:若溶液浓度不变,则溶液的厚度愈大(即光在溶液中所经过的途径愈长),光的强度减低也愈显著。 设光线通过溶液前的强度为Io(入射光的强度),通过液层厚为L溶液后.光的强度为I t(透过光的强度),则 表示透过光的强度是入射光强度的几分之几,称为透光度(transmittance),用T表示。透光度随溶液厚度的增

实验五 回溯法

实验五回溯法 一、实验目的 进一步理解回溯算法的基本思想,学会根据具体问题确定相应的解空间树(子集树或排列树),并使用回溯法求解。 二、实验要求 1、上机前的准备工作 根据实验内容中所给题目,利用所学回溯法的基本设计思想设计算法并编写好上机程序,以提高上机效率; 2、独立上机,输入、调试所编程序; 3、上机结束后,写出实验报告。 4、上机时间:2学时 三、实验内容 1、算法分析题5-1 #include using namespace std; int n=4; //集装箱数 int w[5]={0,8,6,2,3}; //集装箱重量数组 int c=12; //第一艘轮船的载重量 int cw; //当前载重量 int bestw; //当前最优载重量 int r; //剩余集装箱重量 void backtrack(int i); void main() { int i; cw=0; bestw=0; for(i=1;i<=n;i++) r+=w[i]; backtrack(1); cout<<"最优载重量为:"<n && cw>bestw) { bestw=cw; return; } r-=w[i];

if(cw+w[i]<=c) { cw+=w[i]; backtrack(i+1); cw-=w[i]; } if(cw+r>bestw) { backtrack(i+1); } r+=w[i]; } 运行结果: 2、5-3 #include using namespace std; const int N=100; const int M=100; int n;//部件数 int m;//供应商 int w[N][M]; int p[N][M]; int bestx[N];//最优解 int x[N]; int bestw=9999;//当前最优重量 int cw;//当前重量 int cp;//当前价值 int d;//价格允许的最大值 void Backtrack(int t); void main() { cout<<"请输入部件的个数:"; cin>>n; cout<<"请输入供应商的个数:"; cin>>m; cout<<"请输入价格的最大值:"; cin>>d; cout<<"请依次输入重量:"<

紫外分光光度法测定有机物实验方法

紫外分光光度法测定有机物实验方法 (修订稿) 紫外分光光度法测定未知物 1.仪器 1.1紫外分光光度计(T6);配石英比色皿(1cm):4个; 1.2容量瓶(100mL、50mL):各10只; 1.3吸量管(1mL、2mL、5mL、10mL):各1支; 1.4移液管(20mL、25mL、50mL):各1支。 2.试剂 2.1标准溶液(1mg/mL):从维生素C、水杨酸、糖精钠、苯甲酸四种物质中任取其中两种,分别配成1mg/mL的标准溶液,作为储备液。 2.2未知液:浓度约为40~60ug/mL。其必为给出的两种标准物质中的一种。 3.实验操作 3.1 吸收池配套性检查 石英吸收池在220nm装蒸馏水,以一个吸收池为参比,调节τ为100%,测定其余吸收池的透射比,其偏差应小于0.5%,可配成一套使用,记录其余比色皿的吸光度值作为校正值。 说明:参赛选手可以自由选择使用比色皿的个数(大赛提供4个)。 3.2 未知物的定性分析 将两种标准储备液和未知液均配成浓度约为10ug/mL的待测溶液(配制方法由选手自定)。以蒸馏水为参比,于波长200~350nm范围内测定三种溶液吸光度,并作吸收曲线。根据吸收曲线的形状确定未知物,并从曲线上确定最大吸收波长作为定量测定时的测量波长。 四种标准物质溶液的吸收曲线参见附图。 3.3 未知物的定量分析 根据未知液吸收曲线上最大吸收波长处的吸光度,确定未知液的稀释倍数,并配制待测溶液。合理配制标准系列溶液(推荐:标准储备液先稀释10倍(100ug/mL),然后再配制成所需浓度),于最大吸收波长处分别测出其吸光度。然后以浓度为横坐标,以相应的吸光度为纵坐标绘制标准曲线。根据待测溶液的吸光度,从标准曲线上查出未知样品的浓度。未知样要平行测定两次。 推荐方法 3.3.1维生素C含量的测定:准确吸取1mg/mL的维生素C标准储备液10mL,在100mL 容量瓶中定容(此溶液的浓度为100ug/mL)。再分别准确移取0、1、2、4、6、8、10mL 上述溶液,在50mL容量瓶中定容(浓度分别为0、2、4、8、12、16、20ug/mL)。准确移取10mL维生素C未知液,在50mL容量瓶中定容,于最大吸收波长处分别测定以上溶

实验一-紫外分光光度法测定苯甲酸

实验一紫外分光光度法测定苯甲酸 一、实验目的 学习、了解紫外分光光度法原理 了解紫外分光光度计的结构和使用方法 二、实验原理 当辐射能(光)通过吸光物质时,物质的分子对辐射能选择性的吸收而得到的光谱称为分子吸收光谱。分子吸收光谱的产生与物质的分子结构、物质所在状态、溶剂和溶液的PH等因素有关。分子吸收光谱的强度与吸光物质的浓度有关。表示物质对光的吸收程度,通常采用“吸光度”这一概念来量度。 根据朗伯-比尔定律,在一定的条件下,吸光物质的吸光度A 与该物质的浓度C和液层厚度成正比。即A= LC 因此,只要选择一定的波长测定溶液的吸光度,即可求出该溶液浓度,这就是紫外-可见分光光度计的基本原理。 在碱性条件下,苯甲酸形成苯甲酸盐,对紫外光有选择性吸收,其吸收光谱的最大吸收波长为225nm。因此,采用紫外分光光度计测定苯甲酸在225nm处的吸收度就能进行定量分析。 三、仪器与主要试剂 TU-1810紫外可见分光光度计1cm石英比色皿 0.1M氢氧化钠溶液 苯甲酸(AR) 四、实验步骤 1、苯甲酸标准溶液的制备 称取苯甲酸(105℃烘干)100mg,用0.1M氢氧化钠溶液100ml溶解后,转入1000ml容量瓶中,用蒸馏水稀释至刻度.此溶液1ml含0.1mg 苯甲酸. 2、制作苯甲酸吸收曲线,选择最大吸收波长 ①移取苯甲酸标准溶液4.00ml于50ml容量瓶中,用0.01M氢氧化钠溶液定容,摇匀,此溶液1ml含苯甲酸8ug. 以氘灯为光源,用0.01M氢氧化钠溶液作为参比,改变测量波长(从210-240nm)测量8ug/ml苯甲酸的吸光度. ②以波长为横坐标,吸光度为纵坐标,绘制苯甲酸的紫外吸收曲线,并找出最大的吸收波长 (是否是225nm). 3﹑样品的测定 ①取10.00ml苯甲酸样品,放入50ml容量瓶中,用0.01M氢氧化钠

分光光度法实验

分光光度法实验 邻二氮菲分光光度法测定铁(条件实验) 光度法测定试样中铁含量 一、要求目的 1.掌握分光光度计和吸量管的使用方法。 2.学习如何选择分光光度分析的实验条件。 3.掌握分光光度法测定铁的原理及方法。 4.通过本次实验,应掌握初步设计分光光度分析方法的步骤。 二、实验原理 在pH为2-9的溶液中,Fe2+与邻二氮菲(phen)生成稳定的橘红色络合物Fe(Phen)32+: 其lgβ3=21.3,摩尔吸光系数ε508=1.1×104L.mol-1cm-1。当铁为+3价时,可用盐酸羟还原:2Fe3++2NH2OH?HCl=2Fe2++N2↑+4H++2H2O+2Cl- Cu2+,Co2+,Ni2+,Cd2+,Hg2+,Mn2+,Zn2+等离子也能与Phen生成稳定络合物,在少量情况下,不影响Fe2+的测定,量大时可用EDTA掩蔽或预先分离。 吸光光度法的实验条件,如测量波长,溶液酸度,显色剂用量、显色时间、温度、溶剂以及共存离子干扰及其消除等,都是通过实验来确定的。本实验在测定试样中铁含量之前,先做部分条件试验,以便初学者掌握确定实验条件的方法。 条件试验的简单方法是:变动某实验条件,固定其余条件,测得一系列吸光度值,绘制吸光度-某实验条件的曲线,根据曲线确定某实验条件的适宜值或适宜范围。 三、注意事项 1.使用721B或722型分光光度计,提前布置学生预习P147~154,在每台仪器前附上一张 “使用方法”,要求学生看后才操作。另外,还要预习P128~131中吸量管的使用方法。 2.一般两位学生共用一台仪器,合作做实验,但实验报告各自写,提前通知学生自备坐标 纸。两个实验作完后一起交报告。暂不统一评分标准,由各组自行综合考虑,原则上条件试验应与预期基本相符,相对误差5%以内为合格。 3.用高级卫生纸作代用品擦干比色皿。要求学生实验完毕洗净比色皿,并将比色皿浸泡在 HNO溶液的烧杯中。 盛有15%的 3 4.实验分为两个步骤:用两个单元时间完成 a)分光光度法测定铁的条件实验 b)邻二氮菲分光光度法测定微量铁

紫外分光光度计实验报告

UV-2550紫外分光光度计的使用和分光光度法测定对苯二酚姓名:XXX 专业:有机化学学号:312070303004 时间:2012.10.21 1.目的 (1)了解UV-2550紫外光谱仪的基本使用方法。 (2)了解测定对苯二酚的紫外光谱实验方法。 2. 试剂和仪器 2.1试剂: 标准溶液0.10m g/mL,准确称取0.25g对苯二酚溶于250ml容量瓶中,用水稀释至刻度,从中取出10ml于100ml容量瓶中,用水稀释至刻度,摇匀;pH=4.1的乙酸-乙酸钠缓冲溶液。 2.2 仪器: UV-2550型分光光度计。 3. 实验步骤 3.1 测量波长的选择 用吸量管吸取5.0ml对苯二酚标准溶液于25ml容量瓶中,加入0.5ml pH=4.1的乙酸-乙酸钠缓冲溶液,用二次蒸馏水定容,振荡混匀。15分钟后用1cm比色皿,275-330nm波长范围, 进行扫描。从吸收曲线上读出对苯二酚的最大吸收波长λmax。 3.2 对苯二酚含量的测定 (1)标准曲线的制作 在6个25ml容量瓶中,用吸量管分别加入0,1.0, 2.0, 3.0,4.0,5.0ml 对苯二酚标准溶液,加入0.5ml pH=4.1的乙酸-乙酸钠缓冲溶液,用二次蒸馏水定容,振荡混匀。用1cm比色皿,以试剂空白为参比溶液,在最大吸收波长处,用光度模块作标准曲线。 (2)试样中对苯二酚含量的测定 准确吸取一定体积的样品于40ml容量瓶中,加入0.5ml pH=4.1乙酸-乙酸钠,用水稀释至刻度,摇匀。在光度模块中直接读出试样中对苯二酚含量。 4. 实验结果 4.1 测量波长的选择 从吸收曲线上读出对苯二酚的最大吸收波长λmax=288.80。 见图1 吸收曲线 4.2 对苯二酚含量的测定 (1)标准曲线的制作 见图2 标准曲线 (2)试样中对苯二酚含量的测定 对苯二酚含量0.354 相对误差为11.5%

回溯法实验(n皇后问题)(迭代法)

算法分析与设计实验报告第三次附加实验

附录: 完整代码(回溯法) //回溯算法递归回溯n皇后问题#include #include #include #include"math.h" using namespace std; class Queen

{ friend int nQueen(int); //定义友元函数,可以访问私有数据 private: bool Place(int k); //判断该位置是否可用的函数 void Backtrack(int t); //定义回溯函数 int n; //皇后个数 int *x; //当前解 long sum; //当前已找到的可行方案数 }; int main() { int m,n; for(int i=1;i<=1;i++) { cout<<"请输入皇后的个数:"; //输入皇后个数 cin>>n; cout<<"皇后问题的解为:"<

荧光分光光度计实验

实验2 荧光分光光度计实验 一、实验目的 1、了解发光材料的激发和发射过程; 2、掌握用荧光分光光度计测量发光材料激发光谱和发射光谱的测量方法。 二、仪器用具 F-4600荧光分光光度计,发光材料 三、实验原理 光吸收和辐射与发光材料中的能级结构密切相关。紫外光激发荧光粉发光是研究发光材料发生性能和发光中心在基质晶格中能级结构的重要手段。本实验采用F-4600荧光分光光度计来研究发光材料的激发光谱和发射光谱。 F-4600荧光分光光度计的光学系统从功能上划分为两大部分,即激光光路和发射检测光路。激发光路将光源发出的光分解为单色光输出,照射到发光材料上激发荧光粉发光。发光材料发出的光进入发射光检测光路,被分解为单色光照射到光电倍增管上,光电倍增管输出信号的强度与照射到其上面的光强度呈正比。 由氙弧灯发出的光变色单色光后,即为荧光物质的激发光。被测的荧光物质在激发光照射下所发出的荧光,经过单色器变成单色荧光粉后照射于测样品用的光电倍增管上,由其所发生的光电流经过放大器放大输到记录仪,将激发光单色器的光栅,固定在最适当的激发光波长处,而让荧光单色器凸轮转动,将各波长的荧光强度讯号输出至记录仪上,所记录的光谱即发射光谱,简称荧光光谱。 当测绘荧光激发光谱时,将激发光单色器的光栅固定在最适当的荧光波长处,而让激发光单色口的凸轮转动,将各波长的激发光讯号输出至记录仪上,所记录的光谱即激发光谱。 四、实验内容 按实验要求,连接好计算机后开始实验。首先测试发射光谱,设置激发波长460nm,得到该样品的发射光谱,即

峰值波长出现在540nm左右。 加入1个310nm长波通型滤波片, 在测试激发光谱,输入检测波长540nm,得到激发光谱: 利用检测波长波长460nm,得到发射光谱:

实验报告:回溯法求解N皇后问题(Java实现)

实验报告 一、实验名称:回溯法求解N皇后问题(Java实现) 二、学习知识: 回溯法:也称为试探法,它并不考虑问题规模的大小,而是从问题的最明显的最小规模开始逐步求解出可能的答案,并以此慢慢地扩大问题规模,迭代地逼近最终问题的解。这种迭代类似于穷举并且是试探性的,因为当目前的可能答案被测试出不可能可以获得最终解时,则撤销当前的这一步求解过程,回溯到上一步寻找其他求解路径。 为了能够撤销当前的求解过程,必须保存上一步以来的求解路径,这一点相当重要。 三、问题描述 N皇后问题:在一个 N * N 的国际象棋棋盘中,怎样放置 N 个皇后才能使 N 个皇后之间不会互相有威胁而共同存在于棋局中,即在 N * N 个格子的棋盘中没有任何两个皇后是在同一行、同一列、同一斜线上。 深度优先遍历的典型案例。 四、求解思路 1、求解思路:最容易想到的方法就是有序地从第 1 列的第 1 行开始,尝试放上一个皇后,然后再尝试第 2 列的第几行能够放上一个皇后,如果第 2 列也放置成功,那么就继续放置第 3 列,如果此时第 3 列没有一行可以放置一个皇后,说明目前为止的尝试是无效的(即不可能得到最终解),那么此时就应该回溯到上一步(即第 2 步),将上一步(第 2 步)所放置的皇后的位置再重新取走放在另一个符合要求的地方…如此尝试性地遍历加上回溯,就可以慢慢地逼近最终解了。 2、需要解决的问题:如何表示一个 N * N 方格棋盘能够更有效?怎样测试当前所走的试探路径是否符合要求?这两个问题都需要考虑到使用怎样的数据结构,使用恰当的数据结构有利于简化编程求解问题的难度。 3、我们使用以下的数据结构: int column[col] = row 表示第 col 列的第 row 行放置一个皇后 boolean rowExists[i] = true 表示第 i 行有皇后 boolean a[i] = true 表示右高左低的第 i 条斜线有皇后(按→↓顺序从1~ 2*N -1 依次编号) boolean b[i] = true 表示左高右低的第 i 条斜线有皇后(按→↑顺序从1~ 2*N -1 依次编号) 五、算法实现 对应这个数据结构的算法实现如下:

回溯法实验(最优装载)

算法分析与设计实验报告第二次附加实验 )用可行性约束函数可剪去不满足约束条件

附录: 完整代码(贪心法) //回溯法递归求最优装载问题#include #include #include using namespace std; template class Loading { public: void Backtrack(int i);

int n, //集装箱数 *x, //当前解 *bestx; //当前最优解 Type *w, //集装箱重量数组 c, //第一艘轮船的载重量 cw, //当前载重量 bestw, //当前最优载重量 r; //剩余集装箱重量 }; template void Loading::Backtrack(int i); template //参数为:w[]各物品重量数组,c为第一艘轮船的载重量,n为物品数量,bestx[]数组为最优解 Type MaxLoading(Type w[],Type c,int n,int bestx[]); int main() { int n=3,m; int c=50,c2=50; int w[4]={0,10,40,40}; int bestx[4]; clock_t start,end,over; //计算程序运行时间的算法 start=clock(); end=clock(); over=end-start; start=clock(); m=MaxLoading(w,c,n,bestx); //调用MaxLoading函数 cout<<"轮船的载重量分别是:"<