文档库 最新最全的文档下载
当前位置:文档库 › 三角形内心的向量表示形式

三角形内心的向量表示形式

三角形内心的向量表示形式
三角形内心的向量表示形式

三角形内心的向量表示形式

有这样一个高考题:

已知O ,N ,P 在ABC ?所在平面内,且,0OA OB OC NA NB NC ==++=,且PA PB PB PC PC PA ?=?=?,则点O ,N ,P 依次是ABC ?的()

(A )重心外心垂心(B )重心外心内心(C )外心重心垂心(D )外心重心内心

答案为C ,即分别为外心、重心、垂心,通过此题我们可以发现三角形的这三个“心”的向量表示形式非常和谐美观。而三角形的“心”常见的有四个,我们不仅会想三角形内心的向量表示形式是什么呢?

内心的向量表示有三种常见的形式,网络以及资料上面,对于它们的证明往往不完整,下面我把内心的向量表示形式

及其验证的完整过程给读者介绍一下.

(1)点I 是ABC ?所在平面内一点,I 是ABC ?内

心的充要条件是

0AB AC BC BA CA CB AI BI CI AB AC BC BA CA CB

?????? ? ? ?-?=-?=-?= ? ? ??????

?u u u r u u u r u u u r u u u r u u u r u u u r u u r u u r u u r u u u r u u u r u u u r u u u r u u u r u u u r 分析:此条件直观意义较强,如AB AC AB AC -u u u r u u u r u u u r u u u r 即分别为与AB u u u r 、AC u u u r 同向的单位向量AM u u u u r 、AN u u u r 的差向量MN u u u u r ,由条件可得MN 与AI 垂直,而MN 为等腰AMN ?的底边,故AI 为A ∠的角平分线,同理可得BI 、CI 亦为角平分线,即I 是ABC ?内心.

上面的条件直观意义较易发现,然而形式较为复杂,下面介绍一个较为简单的充要条件,你能做出证明吗?

(2)如图,ABC ?的边长分别为a 、b 、c ,点I 是ABC

?所在平面内一点,I 是ABC ?内心的充要条件是

0aI A bIB cIC ++=u u r u u r u u r r

证明:已知点I 为ABC ?的内心,延长AI 交BC 于点D , 则BD

c DC b =,所以BD c BC b c =+,ac BD b c

=+ 连接BI ,则有AI AB

ID BD =ac b c c

b c a ++==,所以AI b c AD a b c

+=++ 因此,

b c AI AD a b c +=++u u r u u u r =()()b c b c c AB BD AB BC a b c a b c b c +++=++++++u u u r u u u r u u u r u u u r (())b c c AB AC AB a b c b c +=+-+++u u u r u u u r u u u r ()b c b c AB AC a b c b c b c +=+++++u u u r u u u r 反之,当0aI A bIB cIC ++=u u r u u r u u r r 时,可得点I 为ABC ?的角平分线的交点,即为三角形的内心.

此题的证明需要利用角平分线的性质定理与比例的性质,在化简变形的过程中要特别注意.

(2)若0为平面内任一点,则点I 为ABC ?的内心的充要条件为

a b c OI OA OB OC a b c a b c a b c =

++++++++u u r u u u r u u u r u u u r 证明:由(1)知0aIA bIB cIC ++=u u r u u r u u r r 从而有a b c OI OA OB OC a b c a b c a b c

=++++++++u u r u u u r u u u r u u u r 上面我们提到的三角形的四个“心”非常奇妙,这一点从它们的向量表示形式上也能够体现出来,在平时的学习中要注意体会;同时向量法是研究几何图形性质的重要方法,而上面的证明过程也告诉我们把几何图形中的几何量用向量表示出来后,灵活运用平面几何中的比例关系及比例的性质是再进行向量运算的“先行军”.

三角形五心性质概念整理(超全)

重心 1、重心到顶点的距离与重心到对边中点的距离之比为2:1。 2、重心和三角形3个顶点组成的3个三角形面积相等。 3、重心到三角形3个顶点距离平方的和最小。 证明方法: 设三角形三个顶点为(x 1,y 1 ),(x 2 ,y 2 ),(x 3 ,y 3 ) 平面上任意一点为(x,y)则该点到三顶点距离平 方和为: (x 1-x)2+(y 1 -y)2+(x 2 -x)2+(y 2 -y)2+(x 3 -x)2+(y 3 -y)2 =3x2-2x(x 1+x 2 +x 3 )+3y2-2y(y 1 +y 2 +y 3 )+x 1 2+x 2 2+x 3 2+y 1 2+y 2 2+y 3 2 =3[x-1/3*(x 1+x 2 +x 3 )]2+3[y-1/3*(y 1 +y 2 +y 3 )]2+x 1 2+x 2 2+x 3 2+y 1 2+y 2 2+y 3 2-1/3(x 1 +x 2 +x 3 )2-1/3(y 1 +y 2 +y 3 )2 显然当x=(x 1+x 2 +x 3 )/3,y=(y 1 +y 2 +y 3 )/3(重心坐标)时 上式取得最小值x 12+x 2 2+x 3 2+y 1 2+y 2 2+y 3 2-1/3(x 1 +x 2 +x 3 )2-1/3(y 1 +y 2 +y 3 )2 。 最终得出结论。 4、在平面直角坐标系中,重心的坐标是顶点坐标的算术平均数, 即其坐标为[(X1+X2+X3)/3,(Y1+Y2+Y3)/3]; 空间直角坐标系——横坐标:(X1+X2+X3)/3,纵坐标:(Y1+Y2+Y3)/3,纵坐标:(Z1+Z2+Z3)/3 5、三角形内到三边距离之积最大的点。 6、在△ABC中,若MA向量+MB向量+MC向量=0(向量),则M点为△ABC的重心,反之也成立。 7、设△ABC重心为G点,所在平面有一点O,则向量OG=1/3(向量OA+向量OB+ 向量OC) —

三角形四心的向量特征及应用

本文发表于中国数学会主办的《数学通报》2010年第12期 三角形“四心”的向量特征及应用 浙江省上虞市春晖中学 林国夫(邮编:312353) 翻阅近几年各省的竞赛、模拟和高考试题,笔者发现有关三角形的“四心”(即重心,垂心,内心和外心)的向量特征的试题频频出现.考虑到比较熟悉的三角形的重心的向量形式0=++GC GB GA 具有很好的完美性,出于兴趣,笔者对三角形的其余“三心”的向量特征进行了探究,得到了类似于重心的优美的向量表达式,并撰此拙文供读者参考. 1 三角形重心的向量特征 定理1 已知为G ABC Δ的重心,记CGA BGC AGB ΔΔΔ,,的面积为 ,,,CGA BGC AGB S S S ΔΔΔ则=++,且.CGA BGC AGB S S S ΔΔΔ== 证明 如图1,为的重心,为边上的中线,则G ABC ΔAD BC 32= )(31)(2132+=+×=.即)(3 1?+?=?. 故0=++GC GB GA . 由于3:1)32(:22:2::=×===ΔΔΔΔAD AG S S S S ABD AGB ABC AGB . 即ABC AGB S S ΔΔ=31,同理ABC BGC S S ΔΔ=31,ABC CGA S S ΔΔ=3 1, 故 .CGA BGC AGB S S S ΔΔΔ==说明 我们还可以得到更进一步的结果: (1)为G ABC Δ的重心的充要条件为 =++.(2)与+共线.并可以得到下面一个有用的推论. 推论1 已知是不共线三点,点是平面内一点,且C B A ,,P ABC PB PA 21λλ+3λ+=, 其中0321≠??λλλ.记CPA BPC APB ΔΔΔ,,:||:|2的面积为则,,,CPA BPC APB S S S ΔΔΔCPA BPC S S ΔΔ:|APB S Δ|:|13λλλ=. 证明 如图2,记PC PC PB PB PA PA 3'2'1',,λλλ===,根据定理1可知, 点P 是的重心,且'''C B A Δ1:1:1::''''''=ΔΔΔPA C PC B PB A S S S . 由于)''sin ''2 1(:)sin 21 (:''PB A PB PA APB PB PA S S PB A APB ∠??∠??=ΔΔ | |||1'21'λλ?=?=PB PB PA PA ,即||||21''λλ?=ΔΔPB A APB S S ,

三角形四心的向量性质

三角形“四心”的向量性质及其应用 一、三角形的重心的向量表示及应用 命题一 已知A B C ,,是不共线的三点,G 是ABC △内一点,若 GA GB GC ++=0.则G 是ABC △的重心. 证明:如图1所示,因为GA GB GC ++=0, 所以 ()GA GB GC =-+. 以GB ,GC 为邻边作平行四边形BGCD , 则有GD GB GC =+, 所以GD GA =-. 又因为在平行四边形BGCD 中,BC 交GD 于点E , 所以BE EC =,GE ED =. 所以AE 是ABC △的边BC 的中线. 故G 是ABC △的重心. 点评:①解此题要联系重心的定义和向量加法的意义;②把平面几何知识和向量知识结合起来解决问题是解此类问题的常用方法. 例1 如图2所示,ABC △的重心为G O ,为坐标原点,OA =a ,=OB b , =OC c ,试用a b c ,,表示OG . 解:设AG 交BC 于点M ,则M 是BC 的中点, ?? ? ??=-=-=-GC OG c GB OG b GA OG a GC GB GA OG c b a ++=-++∴ 而03=-++∴OG c b a 图2

3 c b a OG ++= ∴ 点评:重心问题是三角形的一个重要知识点,充分利用重心性质及向量加、减运算的几何意义是解决此类题的关键. 变式:已知D E F ,,分别为ABC △的边BC AC AB ,,的中点.则 AD BE CF ++=0. 证明:如图的所示, ??? ? ? ???? -=-=-=GC CF GB BE GA AD 232323 )(23 GC GB GA CF BE AD ++-=++∴ 0=++GC GB GA AD BE CF ∴++=0.. 变式引申:如图4,平行四边形ABCD 的中心为O ,P 为该平面上任意一点, 则1 ()4 PO PA PB PC PD =+++. 证明:1()2PO PA PC =+,1()2 PO PB PD =+, 1()4 PO PA PB PC PD ∴=+++. 点评:(1)证法运用了向量加法的三角形法则,证法2运用了向量加法的平行四边形法则.(2)若P 与O 重合,则上式变为OA OB OC OD +++=0. 二、三角形的外心的向量表示及应用 命题二:已知G 是ABC △内一点,满足MC MB MA ==,则点M 为△ABC 的外心。 例2 已知G 、M 分别为不等边△ABC 的重心与外心,点A ,B 的坐标分别为A (-1,0),B (1,0),且GM ∥AB ,(1)求点C 的轨迹方程;(2)若直线l 过 图3

【新整理】三角形“四心”向量形式的结论及证明(附练习答案)

三角形“四心”向量形式的充要条件应用 在学习了《平面向量》一章的基础内容之后,学生们通过课堂例题以及课后习题陆续接触了有关三角形重心、垂心、外心、内心向量形式的充要条件。现归纳总结如下: 一. 知识点总结 1)O 是ABC ?的重心?=++; 若O 是ABC ?的重心,则 ABC AOB AOC BOC S 31 S S S ????= ==故0OC OB OA =++; 1()3 PG PA PB PC =++?G 为ABC ?的重心. 2)O 是ABC ?的垂心?OA OC OC OB OB OA ?=?=?; 若O 是ABC ?(非直角三角形)的垂心,则C tan B tan A tan S S S AOB AOC BOC :: ::=??? 故C tan B tan A tan =++ 3)O 是ABC ?的外心?|OC ||OB ||OA |==(或2 2 2 ==) 若O 是ABC ?的外心 则C 2sin :B 2sin :A 2sin AOB sin AOC sin BOC sin S S S AOB AOC BOC =∠∠∠=???:: :: 故0OC C 2sin OB B 2sin OA A 2sin =++ 4)O 是内心ABC ?的充要条件是 | CB || CA || BC || BA |AC | AB |( =- ?=- ?=- ? 引进单位向量,使条件变得更简洁。如果记CA ,BC ,AB 的单位向量为321e ,e ,e ,则刚才O 是 ABC ?内心的充要条件可以写成:0)e e (OC )e e (OB )e e (OA 322131=+?=+?=+? O 是ABC ?内心的充要条件也可以是c b a =++ 若O 是ABC ?的内心,则c b a S S S AOB AOC BOC ::::=??? 故 0OC C sin OB B sin OA A sin 0OC c OB b OA a =++=++或; ||||||0AB PC BC PA CA PB P ++=?ABC ?的内心; 向量()(0)|||| AC AB AB AC λλ+≠所在直线过ABC ?的内心(是BAC ∠的角平分 线所在直线); 二. 范例 (一).将平面向量与三角形内心结合考查 例1 .O 是平面上的一定点,A,B,C 是平面上不共线的三个点,动点P 满足+ +=λ,[)+∞∈,0λ则P 点的轨迹一定通过ABC ?的( ) (A )外心(B )内心(C )重心(D )垂心

平面向量中的三角形四心问题

平面向量中的三角形四心问题 向量是高中数学中引入的重要概念,是解决几何问题的重要工具。本文就平面向量与三角形四心的联系做一个归纳总结。在 给出结论及证明结论的过程中,可以体现数学的对称性与推论的相互关系。 一、重心(baryce nter) 三角形重心是三角形三边中线的交点。重心到顶点的距离与重心到对边中点的距离之比为2:1。在重心确定上,有著名的帕普斯定理。 结论1 : 若G为ABC所在平面内一点,则G 是三角形的重心 证明:设BC中点为D,则2GD GA GB GC 0 GA GB GA 2GD, 这表明,G在中线AD上 同理可得G在中线BE,CF上 故G为ABC的重心

结论2: 1 —. 若P 为 ABC 所在平面内 点,贝S PG (PA PB 3 G 是ABC 的重心 PC) - 1 — 证明:PG (PA PB PC) (PG PA) (PG PB) (PG PC) 0 GA GB GC 0 G 是ABC 的重心 二、垂心(orthocenter) 三角形的三条高线的交点叫做三角形的垂心。 结论3: H 是ABC 的垂心 证明:HA HB HB HC HB ? S- HB AC 0 HB AC 同理,有 HA CB,HC AB 故H 为三角形垂心 若H 为ABC 所在平面内一点,则HA HB HB HC HC HA (HA

结论4: 2 ------ 2 ------ 2 ------ 2 -------- 2 ------ 2 若H 为 ABC 所在平面内一点,贝U HA BC HB AC HC AB H 是ABC 的垂心 2 2 2 2 HB CA 得,HA (HB HC)2 HB (HC HA)2 HB HC HC HA 同理可证得,HA HB HB HC HC HA 由结论3可知命题成立 三、外心(circumcenter) 三角形三条边的垂直平分线(中垂线)的相交点。用这个点 做圆心可以画三角形的外接圆。 结论5: 若0是ABC 所在平面内一点,则 OA OB OC 0是ABC 的外心 证明:由外心定义可知 命题成立 2 2 证明:由HA BC 结论6: 若0是ABC 所在平面内一点,则

与三角形四心相关的向量结论

与三角形“四心”相关的向量结论 濮阳市华龙区高中 张杰 随着新课程对平面几何推理与证明的引入,三角形的相关问题在高考中的比重有所增加。平面向量作为平面几何的解题工具之一,与三角形的结合就显得尤为自然,因此对三角形的相关性质的向量形式进行探讨,就显得很有必要。本文通过对一道高考模拟题的思考和探究,得到了与三角形“四心”相关的向量结论。希望在得出结论的同时,能引起一些启示。 问题:设点O 在ABC ?内部,且有03=++OC OB OA ,则BOC ?与AOC ?的面积的比值是____. 分析:∵03=++OC OB OA 设OD OB =3,则0=++OC OD OA , 则点O 为ADC ?的重心.∴ACD AOD COA DOC S S S S ????= ==31. 而 AOC COD BOC S S S ???==3131, ∴3 1:=??COA BOC S S . 探究:实际上,可以将上述结论加以推广,即可得此题的本源。 结论: 设O 点在ABC ?内部,若()+∈=++R r n m OC r OB n OA m ,,0,则r n m S S S A O B C O A B O C ::::=?? 证明: 已知O 点在ABC ?内部,且()+∈=++R r n m OC r OB n OA m ,,0 设:OF OC r OE OB n OD OA m ===,,,则点O 为△DEF 的重心, 又EOF BOC S nr S ??=1,DOF AOC S mr S ??=1,DOE AOB S mn S ??=1, ∴r n m S S S AO B CO A BO C ::::=?? 说明: 此结论说明当点O 在ABC ?内部时,点O 把ABC ?所分成的三个小三角形的面积之比等于从此点出发分别指向与三个小三角形相对应的顶点的三个向量所组成的线性关系式前面的系数之比。 应用举例:设点O 在ABC ?内部,且40OA OB OC ++= ,则ABC ?的面积与OBC ?的面积之比是: A .2:1 B .3:1 C .4:3 D .3:2 分析:由上述结论易得:1:1:4::=??AO B CO A BO C S S S ,所以2:34:6:==?O BC ABC S S ,故选D 当把这些点特定为三角形的“四心”时,我们就能得到有关三角形“四心”的一组统一的向量形式。 引申:设O 点在ABC ?内部,且角C B A ,,所对应的边分别为c b a ,, 结论1:若O 为ABC ?重心,则0=++OC OB OA 分析:重心在三角形的内部,且重心把ABC ?的面积三等分. 结论2 :O 为ABC ?内心,则0=++OC c OB b OA a 分析:内心在三角形的内部,且易证S △BOC :S △COA :S △AOB =c b a :: 结论3: O 为ABC ?的外心,则02sin 2sin 2sin =++OC C OB B OA A 分析: 易证S △BOC :S △COA :S △AOB =sin2A :sin2B :sin2C.

三角形的五心向量结论证明

三角形的五心向量结论证明 1. O 是123PP P ?的重心?1230OP OP OP ++=(其中,,a b c 是123PP P ?三边) 证明:充分性: 1230OP OP OP ++=?O 是123PP P ?的重心 若1230OP OP OP ++=,则123OP OP OP +=-,以1OP ,2OP 为邻边作平行四边形132'OPP P ,设3OP 与12PP 交于点3P ',则3P '为12PP 的中点,有'123OP OP OP +=,得'33OP OP =-,即' 33,,,O P P P 四点共线,故3P P 为123PP P ?的中线,同理,1 2,PO P O 亦为123PP P ?的中线,所以,O 为的重心。 * △ABC 中AC AB +一定过BC 的中点,通过△ABC 的重心 1(),3 1()3AP AB AC P ABC BP BA BC ?=+???? ?=+?? 为的重心, *1()3 PG PA PB PC =++?G 为△ABC 的重心(P 是平面上任意点). 证明 PG PA AG PB BG PC CG =+=+=+?3()()PG AG BG CG PA PB PC =+++++ ∵G 是△ABC 的重心 ∴GA GB GC ++=0?AG BG CG ++=0,即3PG PA PB PC =++ P 1 2 P P 3 O P ABC ?() 1 , 2 AD AB AC =+ABC ?2.在 中,给等于已知AD 是 中 BC 边的中线;

由此可得1 ()3 PG PA PB PC =++.(反之亦然(证略)) *若O 是ABC ?的重心,则 ABC AOB AOC BOC S 31 S S S ????= == 2. 0 AP BC P ABC BP AC ?=??? =??为的垂心 * 点O 是123PP P ?的垂心?122331OP OP OP OP OP OP ?=?=? 证明:O 是123PP P ?的垂心?312OP PP ⊥, 31232132310()0OP PP OP OP OP OP OP OP OP ?=??-=??=? 同理123OP P P ⊥?3112OP OP OP OP ?=? 故当且仅当122331OP OP OP OP OP OP ?=?=?. * O 是△ABC 所在平面内一点2 2 22 2 2 → →→→ → →+=+=+AC OB BA OC BC OA 则O 是△ABC 的垂心 证明:由 ,得 ,所以 。同理可证 。容易得到 由以上结论知O 为△ABC 的垂心。 * 设()+∞∈,0λ,则向量cos cos ( C AC B AB + λ必垂直于边BC , 该向量必通过△ABC 的垂心 [)+∞∈????? ? ??+=→ →→→→,0,cos cos λλC AC AC B AB AB AP ()||cos ||cos ||cos ||cos AB AC BC AB BC AC BC AB B AC C AB B AC C ???+=+ ||||cos() ||||cos ||||0 ||cos ||cos BC AB B BC AC C BC BC AB B AC C π?-?= + =-+=

向量与三角形四心的一些结论

【一些结论】:以下皆是向量 1 若P是△ABC的重心PA+PB+PC=0 2 若P是△ABC的垂心PA?PB=PB?PC=PA?PC(内积) 3 若P是△ABC的内心aPA+bPB+cPC=0(abc是三边) 4 若P是△ABC的外心|PA|2=|PB|2=|PC|2(AP就表示AP向量|AP|就是它的模) 5 AP=λ(AB/|AB|+AC/|AC|),λ∈[0,+∞) 则直线AP经过△ABC内心 6 AP=λ(AB/|AB|cosB+AC/|AC|cosC),λ∈[0,+∞) 经过垂心 7 AP=λ(AB/|AB|sinB+AC/|AC|sinC),λ∈[0,+∞)或AP=λ(AB+AC),λ∈[0,+ ∞) 经过重心 8.若aOA=bOB+cOC,则0为∠A的旁心,∠A及∠B,C的外角平分线的交点 【以下是一些结论的有关证明】 1.O是三角形内心的充要条件是aOA向量+bOB向量+cOC向量=0向量充分性:已知aOA向量+bOB向量+cOC向量=0向量,延长CO交AB于D,根据向量加法得:OA=OD+DA,OB=OD+DB,代入已知得:a(OD+DA)+b(OD+DB) +cOC=0,因为OD与OC共线,所以可设OD=kOC,上式可化为(ka+kb+c) OC+( aDA+bDB)=0向量,向量DA与DB共线,向量OC与向量DA、DB不共线,所以只能有:ka+kb+c=0,aDA+bDB=0向量,由aDA+bDB=0向量可知:DA与DB的长度之比为b/a,所以CD为∠ACB的平分线,同理可证其它的两条也是角平分线。必要性:已知O是三角形内心,设BO与AC相交于E,CO与

(完整版)三角形四心与向量.docx

三角形“四心 ”向量形式的充要条件应用 知识点总结 1.O 是 ABC 的重心 OA OB OC 0 ; 若 O 是 S BOC S AOC S AOB 1 S ABC OA OB OC 0 ; ABC 的重心,则 3 故 uuur uuur uuur uuur G 为 ABC 的重心 . PG 1 ( PA PB PC ) 3 2.O 是 ABC 的垂心 OA OB OB OC OC OA ; 若 O 是 ABC (非直角三角形 )的垂心,则 S BOC : S : S tan A : : AOC AOB tan B tan C 故 tan AOA tan BOB tan C OC 0 2 2 2 3.O 是 ABC 的外心 | OA | | OB | | OC | (或 OA OB OC ) 若 O 是 : : sin : : ABC 的外心则 S BOC S AOC S AOB BOC sin AOC sin AOB sin2A : sin2B: sin2C 故 sin 2A OA sin 2BOB sin 2C OC OA ( AB AC OB BA BC OC CA CB ) 0 4. O 是内心 ABC 的充要条件是 ) ( ) ( | AB | AC | BA | | BC | | CA | | CB | 引进单位向量,使条件变得更简洁。如果记 AB , BC , CA 的单位向量为 e 1 , e 2 ,e 3 ,则刚才 O 是 ABC 内心的充要条件 可以写成 OA (e 1 e 3 ) OB (e 1 e 2 ) OC (e 2 e 3 ) , O 是 ABC 内心的充要条件也可以是 aOA b OB cOC 0 。若 O 是 ABC 的内心,则 S BOC : S AOC : S AOB a : b : c 故 aOA bOB cOC 0或 sin A OA sin BOB sin COC 0 ; uuur uuur uuur uuur uuur uuur r ABC 的内心 ; A | AB | PC | BC | PA |CA | PB 0 P 是 e 1 e 2 uuur uuur 向量 AB AC )( 0) 所在直线过 ABC 的内心 ( 是 BAC 的角平分线所在直 B C ( uuur uuur | AB | | AC | 线) ; P 范 例 ( 一)将平面向量与三角形内心结合考查 例 1.O 是平面上的一定点, A,B,C 是平面上不共线的三个点, 动点 P 满足 OP OA ( AB AC ) , 0,则 AB AC P 点的轨迹一定通过 ABC 的( ) (A )外心( B )内心( C )重心( D )垂心 AB uuur uuur uuur 又 OP OA AP ,则原 解析:因为 是向量 AB 的单位向量设 AB 与 AC 方向上的单位向量分别为 e 1和 e 2 , AB

三角形“四心”向量表示

三角形四心的向量问题 三角形重心、垂心、外心、内心向量形式的充要条件的向量形式 一. 知识点总结 1)O 是ABC ?的重心?0OC OB OA =++; 若O 是ABC ?的重心,则 ABC AOB AOC BOC S 31 S S S ????= == 故0OC OB OA =++; 1()3 PG PA PB PC =++?G 为ABC ?的重心. 2)O 是ABC ?的垂心??=?=?; 若O 是ABC ?(非直角三角形)的垂心, 则C tan B tan A tan S S S AOB AOC BOC :: ::=??? 故0OC C tan OB B tan OA A tan =++ 3)O 是ABC ?的外心?|OC ||OB ||OA |==(或2 2 2 OC OB OA ==) 若O 是ABC ?的外心 则C 2sin :B 2sin :A 2sin AOB sin AOC sin BOC sin S S S AOB AOC BOC =∠∠∠=???:: :: 故0OC C 2sin OB B 2sin OA A 2sin =++ 4)O 是内心ABC ?的充要条件是 | CB || CA |OC | BC || BA |( OB AC | AB |OA =-?=-?=-? 引进单位向量,使条件变得更简洁。如果记CA ,BC ,AB 的单位向量为321e ,e ,e ,则 刚 才 O 是 ABC ?内心的充要条件可以写成 0)e e ()e e ()e e (322131=+?=+?=+? O 是ABC ?内心的充要条件也可以是c b a =++

讲义平面向量与三角形四心的交汇

讲义---平面向量与三角形四心的交汇 一、四心的概念介绍 (1)重心——中线的交点:重心将中线长度分成2:1; (2)垂心——高线的交点:高线与对应边垂直; (3)内心——角平分线的交点(内切圆的圆心):角平分线上的任意点到角两边的距离相等; (4)外心——中垂线的交点(外接圆的圆心):外心到三角形各顶点的距离相等。 二、四心与向量的结合 (1)?=++0OC OB OA O 是ABC ?的重心. 证法1:设),(),,(),,(),,(332211y x C y x B y x A y x O ?=++???=-+-+-=-+-+-0)()()(0)()()(321321y y y y y y x x x x x x ??? ????++=++=?33 321 321y y y y x x x x ?O 是ABC ?的重心. 证法2:如图 ++ 02=+=OD OA ∴OD AO 2= ∴D O A 、、三点共线,且O 分AD 为2:1 ∴O 是ABC ?的重心 (2)??=?=?OA OC OC OB OB OA O 为ABC ?的垂心. 证明:如图所示O 是三角形ABC 的垂心,BE 垂直AC ,AD 垂直BC , D 、E 是垂足.0)(=?=-??=?CA OB OC OA OB OC OB OB OA ⊥? 同理BC OA ⊥,AB OC ⊥ ?O 为ABC ?的垂心 (3)设a ,b ,c 是三角形的三条边长,O 是?ABC 的内心 O c b a ?=++为ABC ?的内心. 证明:b AC c AB 、 分别为 AC AB 、方向上的单位向量, ∴ b c +平分BAC ∠, ( λ=∴b c +),令c b a bc ++= λ B C D

(完整版)平面向量与三角形四心问题.docx

平面向量基本定理与三角形四心 已知 O 是ABC 内的一点,BOC ,AOC , AOB 的面积分别为S A, S B, S C,求证:S A? OA S B? OB S C? OC 0 A 如图 2延长 OA 与 BC 边相交于点 D 则 O B C 图 1 BD S A BD S BOD S ABD S BOD S C DC S ACD S COD S ACD S COD S B OD DC OB BD OC BC BC A O S B OB S C OC S B S C S B S C B D C OD S BOD S COD S BOD S COD S A OA S BOA S COA S BOA S COA S B S C 图2 OD S A OA S B S C S A OA S B OB S C OC S C S B S B S C S B S C S A? OA S B? OB S C? OC 0 推论 O 是 ABC 内的一点,且 x?OA y?OB z?OC0 ,则S BOC: S COA: S AOB x : y : z

有此定理可得三角形四心向量式O 是ABC 的重心 S BOC: S COA: S O 是ABC 的内心 S BOC: S COA: S O 是ABC 的外心 S BOC: S COA: S AOB AOB AOB 1:1:1OA OB OC0 a : b : c a ?OA b ?OB c ?OC0 sin 2A :sin 2B : sin 2C sin 2A ? OA sin 2B ? OB sin 2C ?OC0 O 是ABC 的垂心 S BOC: S COA: S AOB tan A: tan B : tan C tan A ?OA tan B ? OB tan C ?OC0 C O A D B 证明:如图 O 为三角形的垂心, tan A CD , tan B CD tan A: tan B DB : AD AD DB S BOC: S COA DB : AD S BOC: S COA tan A : tan B 同理得 S COA: S AOB tan B : tan C , S BOC: S AOB tan A : tan C S BOC: S COA: S AOB tan A: tan B : tan C 奔驰定理是三角形四心向量式的完美统一

完整版三角形的五心向量结论证明

三角形的五心向量结论证明 1. O是RP2R的重心 UJU uuir umr r Op OP, OP3 0(其中a,b,c 是PP2P3 三边) P2 P P3 uu uur uur r 证明:充分性:OR OF2 OP 3 0 O是PP2F3的重心 uuu uir uur r uur uur uur uuur uur 若OR OP,OP3 0 ,则O R OP2 OR,以OR,OF2 OP1P3 ' P2,设OP3与RP2交于点P3,则F3为RF2的中点,有 即O,R, P,p四点共线,故PP2P3的中线,同 理, uur uuu OP3 OP3 , 为邻边作平行四边形 uur OP 1 uur uuur, OP2OP3,得 PO, P2O亦为PP2P3的中线,所以,O为的重心。 2?在ABC中,给uur AD uur uuu AB AC , 等于已知AD是ABC 中BC边的中 线; ————uur * △ ABC中AB AC 一定过BC的中点,通过△ABC的重 心 luu AP uu BP *PUG 1 uuu (AB 3 1 uuu -(BA 3 1 uur - (PA uur AC), uur BC), P为VABC的重 心 uur uir PB PC) uuu uu uur uur uur urir uur uur uur uur uuu uuu uuu uur PG PA AG PB BG PC CG 3PG (AG BG CG) (PA PB PC) -G是厶ABC的重心 uur uuu uuu r UU uur uuu r 亦uur uuu uuu uuu -GA GB GC = 0 AG BG CG : =0,即3PG PA PB PC G ABC的重心(P是平面上任意点). 证明 (反之亦然(证 略)) uur PB uir PC). uur 1 uur 由此可得 PG (PA 3 S *若O是ABC的重心,则 BOC S AOC S AOB 1S S ABC 3

三角形重心、外心、垂心、内心的向量表示及其性质70409

三角形“四心”向量形式的充要条件应用 1.O 是ABC ?的重心?=++; 若O 是ABC ?的重心,则 AB C AOB AOC BOC S 31 S S S ????= ==故=++; 1()3 PG PA PB PC =++u u u r u u u r u u u r u u u r ?G 为ABC ?的重心. 2.O 是ABC ?的垂心?OA OC OC OB OB OA ?=?=?; 若O 是ABC ?(非直角三角形)的垂心,则C tan B tan A tan S S S AOB AOC BOC :: ::=??? 故0OC C tan OB B tan OA A tan =++ 3.O 是ABC ?的外心?|OC ||OB ||OA |==(或2 2 2 OC OB OA ==) 若O 是ABC ?的外心则C 2sin :B 2sin :A 2sin AOB sin AOC sin BOC sin S S S AOB AOC BOC =∠∠∠=???:: :: 故0OC C 2sin OB B 2sin OA A 2sin =++ 4.O 是内心ABC ?的充要条件是 ( ( ( =?=?=-? 引进单位向量,使条件变得更简洁。如果记CA ,BC ,AB 的单位向量为321e ,e ,e ,则刚才O 是 ABC ?内心的充要条件可以写成 0)e e ()e e ()e e (322131=+?=+?=+? ,O 是 ABC ?内心的充要条件也可以是c b a =++ 。若O 是ABC ?的内心,则 c b a S S S AOB AOC BOC ::::=??? 故 0OC C sin OB B sin OA A sin 0OC c OB b OA a =++=++或; ||||||0AB PC BC PA CA PB P ++=?u u u r u u u r u u u r u u u r u u u r u u u r r 是ABC ?的内心; 向量()(0)|||| AC AB AB AC λλ+≠u u u r u u u r u u u r u u u r 所在直线过ABC ?的内心(是BAC ∠的角平分线所在直线); (一)将平面向量与三角形内心结合考查 例1.O 是平面上的一定点,A,B,C 是平面上不共线的三个点,动点P 满 足 OA OP + +=λ,[)+∞∈,0λ则P 点的轨迹一定通过ABC ?的( ) (A )外心(B )内心(C )重心(D )垂心 解析:因为 是向量AB u u u r 的单位向量设AB u u u r 与AC u u u r 方向上的单位向量分别为21e e 和, 又

三角形“四心”与向量的完美结合

三角形的“四心”与向量的完美结合 三角形重心、垂心、外心、内心向量形式的充要条件的向量形式 一. 知识点总结 1)O 是ABC ?的重心?=++; 若O 是ABC ?的重心,则 ABC AOB AOC BOC S 31 S S S ????= == 故0OC OB OA =++; 1()3 PG PA PB PC =++?G 为ABC ?的重心. 2)O 是ABC ?的垂心?OA OC OC OB OB OA ?=?=?; 若O 是ABC ?(非直角三角形)的垂心, 则 C tan B tan A tan S S S AOB AOC BOC ::::=??? 故0OC C tan OB B tan OA A tan =++ 3)O 是ABC ?的外心?|OC ||OB ||OA |==(或2 2 2 ==) 若O 是ABC ?的外心 则 C 2sin :B 2sin :A 2sin AOB sin AOC sin BOC sin S S S AOB AOC BOC =∠∠∠=???:::: 故C 2sin B 2sin A 2sin =++ 4)O 是内心ABC ?的充要条件是 ( =- ?=- ?=- ? 引进单位向量,使条件变得更简洁。如果记CA ,BC ,AB 的单位向量为321e ,e ,e ,则刚才O 是ABC ?内 心的充要条件可以写成 0)e e ()e e ()e e (322131=+?=+?=+? O 是ABC ?内心的充要条件也可以是0OC c OB b OA a =++ 若O 是ABC ?的内心,则 c b a S S S AOB AOC BOC ::::=??? 故 C sin B sin A sin c b a =++=++或; ||||||0AB PC BC PA CA PB P ++=?ABC ?的内心;

(完整版)三角形“四心”的向量表示

三角形“四心”的向量表示 我们都知道,在三角形中,因为有三条边和三个内角,所以有很多的性质。在三角形众多的“心”中,有几个是学生应该掌握的,主要是四个心:重心,内心,外心,垂心。不仅要理解其定义、性质,还需了解和分析其向量的表示形式。由于向量是一种研究几何图形的另一种工具,所以我们有必要对它们进行整理和归纳,让同行借鉴。 一.各心的定义。 1. 重心:三角形三条边的中线的交点。其性质一是连接重心和顶点,延长后必交于对应边的中点。其性质二是重心把中线长分成2:1。 2. 垂心:三角形三边的高线的交点。其性质为垂心与顶点的连线必与对应的边垂直。 3. 外心:三角形三边的中垂线的交点,即三角形的外接圆的圆心。其性质是外心到三顶点等距离。 4. 内心:三角形三内角平分线的交点,即三角形的内切圆的圆心。其性质是内心到三边等距离。 二.各心的向量表示。 在三角形ABC 中,点O 为平面内一点,若满足: 1.0=++OC OB OA ,则点O 为三角形的重心。 分析:由OB OC OA +=-,以OC OB ,为邻边作一平行四边形OBEC , 点D 为BC 中点,如图,由向量的平行四边形法则, 有OB OC OE +=,交BC 于D ,从而有OA AO OD OE -===2 故O 为重心。

E C B 2==,则点O 为三角形的外心。 3 .OA OC OC OB OB OA ? =? =?, +=+=+,则点O 为三角形的垂心。 分析:由OA OC OC OB OB OA ?=?=?有三个等式,其中一个如OC OB OB OA ?=?, 则有0)(=-OC OA OB ,有0=?CA OB ,故AC OB ⊥。同理可证,点O 为三角 形的垂心。 D C 而在三角形ABC 中,记OA a =,OB b =,OC c =,则由2222BO AC CO AB +=+ 2222)()(+-=+-,展开为c a b a ?=?22,则0)(=?- 故OB AC ⊥ ,同理可证OA BC ⊥,从而点O 为三角形的垂心。 40=++,则点O 为三角形的内心。 分析:若点O 为三角形ABC 的内心。如图,延长AO ,过点C 作BO CE //,由于 CDE BDO ??与相似,有DB CD OB CE =,由AD 为角A 的平分线,有AB AC DB CD =,

三角形四心[向量形式]

若 O 是 ? ABC 的重心,则 S 3 ?ABC 故 OA + OB + OC = 0 若 O 是 ?ABC (非直角三角形)的垂心,则 S : : S :S : : | AB | - + AC ) , λ ∈ [0,+∞ ) 则 P 点的轨迹一 . .. . .. 三角形“四心”向量形式的充要条件应用 在学习了《平面向量》一章的基础内容之后,学生们通过课堂例题以及课后习题陆续接触了有关三角 形重心、垂心、外心、内心向量形式的充要条件。现归纳总结如下: 一.知识点总结 1)O 是 ?ABC 的重心 ? OA + OB + OC = 0 ; = S = S S ?BOC ?AOC PG = 1 ( P A + PB + PC ) ? G 为 ?ABC 的重心. 3 ; 2)O 是 ?ABC 的垂心 ? OA ? OB = OB ? OC = OC ? OA :S :S ?BOC ?AO C ; ?AOB = tan A tan B tan C 故 tan AOA + tan BOB + tan COC = 0 3)O 是 ?ABC 的外心 ? | OA |=| OB |=| OC | (或 OA 2 = OB 2 = OC 2 ) 若 O 是 ?ABC 的外心 则 ?BOC :S ?AOC ?AOB = sin ∠BOC sin ∠AOC sin ∠AOB = sin2A : sin2B : sin2C 故 sin 2AOA + sin 2BOB + sin 2COC = 0 4)O 是内心 ?ABC 的充要条件是 OA ? ( AB AC AC ) = OB ? ( BA | BA | - BC | BC | ) = OC ? ( CA | CA | - CB | CB | ) = 0 引进单位向量,使条件变得更简洁。如果记 AB,BC,CA 的单位向量为 e 1 ,e 2 ,e 3 ,则刚才 O 是 ?ABC 内心的充要条件可以写成: OA ? (e 1 + e 3 ) = OB ? (e 1 + e 2 ) = OC ? (e 2 + e 3 ) = 0 O 是 ?ABC 内心的充要条件也可以是 aOA + bOB + cOC = 0 若 O 是 ?ABC 的内心,则 S :S ?BOC :S ?AOC ?AOB = a :b :c 故 aOA + bOB + cOC = 0或 sin AOA + sin BOB + sin COC = 0 ; | AB | PC + | BC | P A + | CA | PB = 0 ? P ?ABC 的内心; 向量 λ( AB + AC )(λ ≠ 0) 所在直线过 ?ABC 的内心(是 ∠BAC 的角平分线所在直线); | AB | | AC | 二.范例 (一).将平面向量与三角形内心结合考查 例 1.O 是平面上的一定点,A,B,C 是平面上不共线的三个点,动 AB 点 P 满足 OP = OA + λ ( AB AC 定通过 ?ABC 的( ) B e 1 A e 2 C (A )外心(B )内心(C )重心(D )垂心 解析:因为 AB 是向量 AB 的单位向量设 AB 与 AC 方向上的单 P AB 位向量分别为 e 和 e , 又 OP - OA = AP ,则原式可化为 AP = λ (e + e ) ,由菱形的基本性质知 AP 1 2 1 2 平分 ∠BAC ,那么在 ?ABC 中,AP 平分 ∠BAC ,则知选 B. 学习参考

三角形“四心”向量形式的结论及证明(附练习答案)

三角形“四心”向量形式的充要条件应用 在学习了《平面向量》一章的基础内容之后,学生们通过课堂例题以及课后习题陆续接触了有关三角形重心、垂心、外心、内心向量形式的充要条件。现归纳总结如下: 一.知识点总结 1)O是的重心; 若O是的重心,则故; 为的重心. 2)O是的垂心; 若O是(非直角三角形)的垂心,则 故 3)O是的外心(或) 若O是的外心 则 故 4)O是内心的充要条件是 引进单位向量,使条件变得更简洁。如果记的单位向量为,则刚才O是内心的充要条件可以写成: O是内心的充要条件也可以是 若O是的内心,则 故; 的内心; 向量所在直线过的内心(是的角平分线所在直线); 二.范例 (一).将平面向量与三角形内心结合考查 例1.O是平面上的一定点,A,B,C是平面上不共线的三个点,动点P满足,则P点的轨迹一定通过的()(A)外心(B)内心(C)重心(D)垂心 解析:因为是向量的单位向量设与方向上的单位向量分别为,又,则原式可化为,由菱形的基本性质知AP 平分,那么在中,AP平分,则知选B. 点评:这道题给人的印象当然是“新颖、陌生”,首先是什么?没见过!想想,一个非零向量除以它的模不就是单位向量?此题所用的都必须是简单的基本知识,如向量的加减法、向量的基本定理、菱形的基本性质、角平分线的性质等,若十分熟悉,又能迅速地将它们迁移到一起,解这道题一点问题也没有。 (二)将平面向量与三角形垂心结合考查“垂心定理” 例2.H是△ABC所在平面内任一点,点H是△ABC的垂心. 由, 同理,.故H是△ABC的垂心. (反之亦然(证略)) 例3.(湖南)P是△ABC所在平面上一点,若,则P是△ABC的(D) A.外心B.内心C.重心D.垂心 解析:由. 即 则 所以P为的垂心. 故选D. 点评:本题考查平面向量有关运算,及“数量积为零,则两向量所在直线垂直”、三角形垂心定义等相关知识.将三角形垂心的定义与平面向量有关运算及“数量积为零,则两向量所在直线垂直” 等相关知识巧妙结合。 变式:若H为△ABC所在平面内一点,且 则点H是△ABC的垂心 证明:

相关文档
相关文档 最新文档