文档库 最新最全的文档下载
当前位置:文档库 › 聚乳酸发泡材料研究进展

聚乳酸发泡材料研究进展

聚乳酸发泡材料研究进展
聚乳酸发泡材料研究进展

聚乳酸发泡材料研究进展

****

单位:重庆文理学院

地址:重庆永川

邮编:402160(RP.in China)

摘要:聚乳酸(PLA)复合发泡材料是一类重要的环境友好新型可降解材料.该材料通常是以PLA 高聚物为主要原料,以其它可降解物质(如脂肪族树脂、淀粉、天然纤维等)为辅助成分复合发泡而成.论述了近年来国内外环境友好PLA复合发泡塑料的研究进展;综述了PLA复合发泡体存在的问题;概述并展望了PLA复合发泡材料的应用领域与发展趋势.

关键词:聚乳酸;发泡材料;高分子;增粘改性;复合材料

Polylactic Acid Foam Materials

Research

Wang Huan

Unit: Chongqing University of Arts

Address: Yongchuan

Zip Code: 402160(RP.in China)

Abstract:Polylactic acid (PLA) composite foam material is an important class of novel biodegradable and environmentally friendly material. This material usually PLA polymer as the main raw material, other biodegradable materials (such as aliphatic resin, starch, natural fibers, etc. ) for auxiliary components made of composite foam discusses the recent development and environment-friendly PLA composite foam plastic; a Summary of the PLA composite foam problems; overview and outlook of the application area PLA composite foam material and trends. Key word: polylactic;foam; macromolecule;thickening modified;composites

一、引言

聚乳酸由于具有优良的生物降解性和相容性等特点而成为食品包装材料的研究热点。但是聚乳酸存在结晶速率慢,性脆,熔体强度低的缺点,因此考虑利用兼具降解性和高强度的纳米纤维素作为填充粒子来解决。这样不仅可以缓解资源短缺等生态问题,同时也提供了一种可广泛应用于生活各方面的高性能材料首先以微晶纤维素为原料,通过硫酸酸解,离心,超声得到纳米纤维素。采用扫描电子显微镜(SEM)和透射电子显微镜(TEM)分别观察微晶纤维素及纳米纤维素的外貌形态,得到横向直径为20-30nm,长度多为200nm-400nm的纳米纤维素。。通过X射线衍射分析仪(XRD)和热失重分析仪(TGA)对微晶纤维素及纳米纤维素的结晶度和热稳定性进行了分析,发现纳米纤维素的结晶度高于微晶纤维素,且热分解温度范围变宽。并通过单因素及正交试验对纳米纤维素的制备工艺条件进行了优化,发现制备工艺中的反应时间对纳米纤维素得率的影响最显著。进一步通过溶液浇铸法得到高纳米纤维素含量的聚乙二醇/纳米纤维素复合填充料,并将其与聚乳酸进行熔融共混制备聚乳酸/纳米纤维素复合材料。采用场发射扫描电子显微镜(FESEM)、傅里叶红外光谱仪(FTIR)分析了纳米纤维素在聚乳酸基体中的分散及材料的相结构。研究发现纳米纤维素粒子通过分子表面羟基之间的氢键作用在复合材料中彼此联接形成了网络结构。并通过高级流变扩展系统(ARES)及熔体流动速率的测定研究了材料的流变性能,结果表明纳米纤维素能显著提高熔体的储能模量和损耗模量,且储能模量出现了低频平台,进一步证明了填充粒子在复合材料中形成的网络结构。同

时研究分析了复合材料的热性能,发现纳米纤维素及聚乙二醇的添加提高了聚乳酸熔体排布的规整度,改善了熔融状态下聚乳酸的结晶能力。最后考察了复合材料的力学性能,发现纳米纤维素的添加增强了复合材料的拉伸强度,聚乙二醇的添加促进了纳米纤维素与聚乳酸之间的界面粘合,改善了材料的柔韧性。最后采用超临界二氧化碳对聚乳酸复合材料进行发泡,制得聚乳酸微孔泡沫材料,考察了复合材料中纳米纤维素与聚乙二醇的含量对发泡材料的泡孔形态及体积膨胀率的影响,发现纳米纤维素在材料发泡成型过程中起到了异相成核的作用。同时研究了复合材料在超临界二氧化碳中不同的浸泡时间及发泡温度对材料的泡孔形态及体积膨胀率的影响,发现发泡温度对泡孔形态的影响最显著,得到最佳样品PLA-P-N-8,并将其置于100。C,4h条件下,制得泡孔密度为3×1010理想微孔发泡材料。

以聚乳酸和玉米秸秆纤维为原料制备食品包装材料既能解决不可降解材料给环境带来的污染问题又能缓解石化资源短缺问题,同时还能提高农业副产品的利用率,遵循可持续发展的原则。聚乳酸/玉米秸秆纤维食品包装材料的开发具有重大的应用价值和现实意义。首先引入马来酸酐、1,2,4-苯三酸酐、均苯四甲酸酐、甲基丙烯酸缩水甘油酯,分析熔体黏度对聚乳酸发泡材料表观密度和膨胀率的影响,从而优选出最佳增塑剂——GMA。其次,探索了GMA的加入对聚乳酸分子结构和界面形态的影响,发现GMA与PLA发生了反应。再者,考察了不同的熔体黏度对聚乳酸发泡材料表观密度、膨胀率、孔隙率、力学性能和热性能的影响,结果显示聚乳酸发泡需要合适的熔体黏度,熔体黏度过高,气泡膨胀生长所需克服的阻力较大,气泡膨胀生长较为困难;熔体黏度过低,聚合物熔体难以包裹住支撑膨胀的气泡而导致气泡破裂、崩塌、.合并,当GMA添加量为4%,熔体黏度为233Pa.S时材料的密度及其性能最好。研究了纤维的加入对聚乳酸/玉米秸秆纤维复合发泡材料分子结构和界面形态的影响;优化了热压工艺参数;考察了不同玉米秸秆纤维含量对PLA/玉米秸秆纤维发泡材料的表观密度、膨胀率、力学性能、热性能和吸水性能的影响。结果表明纤维与聚乳酸之间有一定的界面相容性;热压发泡的最佳工艺参数为:热压压力15MPa,热压温度200℃,保压时间5min;当纤维添加量为15%时,所得发泡材料表观密度最小为0.568g/cm3,膨胀率最大为61%,拉伸强度最大为8.031MPa,纤维的加入降低了PLA/玉米秸秆纤维复合发泡材料的热降解温度。根据经典发泡理论,选用细胞模型为物理模型,利用质量守恒定律、动量守恒定律、能量守恒定律、Dewitt本构方程和理想气体状态方程等,探讨了气泡膨胀生长中的数学模型,并对数学模型进行实验验证。结果显示,该模型可以应用在聚乳酸发泡体系中,但是当体系较为复杂时,仍需进一步改进实验方法和模型方程。

聚乳酸(PLA)发泡材料能够取代石油基发泡塑料应用于包装和生活消费品领域。PLA属于结晶型聚合物,结晶速率较慢,耐热性不好,熔体强度不高,在发泡过程中,无法维持泡孔形态,容易出现泡孔塌陷合并,并且由于其加工的不稳定性(如热降解、氧化、水解等),容易造成分子链断裂,使熔体强度进一步降低,这些都是不利于发泡的。针对PLA的分子结构特点,可以从两个方面提高其熔体强度:一是提高PLA的平均分子量,二是在PLA分子中引入长支链结构。高分子量PLA的生产会造成聚合反应时间延长,生产效率低,并且有较长的热历史使PLA容易变色及降解等问题,因此,实际工业生产中的PLA相对分子质量上限往往到50万左右。所以,在PLA分子中引入长支链结构是提高PLA熔体强度的主要方式。本文首先研究了影响PLA微孔发泡的工艺条件,结果表明,发泡温度、饱和压力和剪切速率均对PLA微孔发泡成型有着重要的影响。温度对泡孔形态影响很大,温度降低,熔体强度增加,泡孔塌陷和合并减少,发泡材料的泡孔密度增大,泡孔尺寸减小,但温度太低时,熔体粘度和表面张力增加,发泡样品泡孔密度较低,泡孔壁较厚;压力对发泡形态的影响也是很显著的,压力太低,CO_2的溶解度小,泡孔壁厚,泡孔分布不均匀。随着压力升高,CO_2的溶解度增加,发泡样品的泡孔密度增加,泡孔更加均匀;随着转子转速增加,泡孔尺寸减小,气泡成核密度增大。但是转子转速过快,泡孔沿剪切的方向被拉长,孔取向严重,泡体质量变差。在实验中对PLA进行了扩链

/支化改性研究,以改善其发泡性能。剪切流变数据表明:加入一定量扩链剂能够增加熔体的表观粘度。同时对改性后的PLA进行了发泡实验,结果证明,改性后的聚乳酸发泡性能更好,得到了泡孔密度较大、膨胀率较高、泡孔均匀的微孔发泡材料;同时也研究了扩链剂含量对PLA发泡材料泡孔形态的影响,结果表明,随着扩链剂的加入发泡样品的膨胀率和泡孔密度都有所提高,泡孔变得更加均匀,但是当扩链剂的加入量持续增大时,发泡材料的膨胀率和泡孔密度均有所下降。以碳酸钙作为成核剂,研究成核剂系统对PLA微孔发泡成型的影响,结果表明成核剂的加入量和成核剂粒子的尺寸对PLA微孔发泡均有明显的影响。成核剂的加入可以改善PLA的发泡性能,得到的泡孔密度更大,泡孔分布更加均匀,但是当加入较多的碳酸钙时,发泡材料的膨胀率变得很低,泡孔分布也变得不均匀;同时成核剂粒子尺寸越小,得到的发泡材料的泡孔密度更大,但是碳酸钙粒子在PLA基体中很难达到均匀分散,从而当碳酸钙加入量较大时,很多一部分碳酸钙粒子根本无法起到成核剂的作用。

二、原理

聚乳酸(PLA)是一种以可再生的植物资源为原料经化学合成制备的生物降解高分子,制备的各种薄膜、纤维等产品可以广泛应用在服装、纺织、无纺布、包装、农业、林业、医疗卫生用品、日常生活用品等领域。PLA具有优良的生物相容性、生物可降解性,最终降解产物是二氧化碳和水,不会对环境造成污染。通过熔融混炼,模压发泡的方法制备聚乳酸发泡材料;也可通过超临界二氧化碳制备聚乳酸发泡材料。

可由于PLA分子链中长支链少,熔体粘度很小,导致熔体强度低,应变硬化不足,使其加工成型方法受到限制,尤其是发泡成型十分困难,很难得到高倍率的发泡成型体。高分子链的支化,与另一种共聚物接枝,或共混支化聚合物和线性聚合物是增加其粘度的基本方法,以使其能够发泡。本论文首先通过端羧基聚酯(CP)与固体环氧(SE)的原位交联反应,采用熔融挤出及模压方法制备PLA/SE与PLA/CP/SE复合材料,并系统研究了其流变性能、热性能、形态结构、机械性能。我们发现对于PLA/SE复合材料,随着SE含量的增加,平行板流变仪表明其粘度先增加后基本不变;DSC及偏光显微镜表明结晶度表现为先降低后增加;SEM与DSC表明二者相容性较好,但仍为不相容的体系;拉伸测试表明断裂伸长率有一定程度的增加,拉伸强度略有下降。而对于PLA/CP/SE复合材料,随着CP/SE含量的增加,平行板流变仪表明粘度有显著地增加;DSC及偏光显微镜表明结晶度明显降低;SEM与DSC表明复合材料为不相容体系;拉伸测试表明拉伸强度明显增加,断裂伸长率变化不明显。我们成功制备了具有高粘度的PLA/CP/SE复合材料。

三、聚乳酸发泡材料在国内外的研究进展

聚乳酸(PLA)具有良好生物相容性和降解能力,是当前医学上应用最多的合成可降解聚合物之一。近年来,由于生态环境保护的需求,又开始将其作为通用塑料替代产品进行探索和开发。在这个过程中,人们采用了各种改性方法来进一步提升聚乳酸复合材料的综合性能,以拓展其应用领域。其中,纳米粒子与聚乳酸的纳米复合是其中一个重要的方向。利用纳米材料改性PLA的最大优点是很少的纳米材料用量,却能使PLA的性能产生较大的变化。因而近年来聚乳酸与粘土纳米复合材料成为了研究热点。本文主要研究聚乳酸/有机蒙脱土纳米复合材料制备、纳米复合材料的性能及发泡行为。文中利用熔融插层法制备不同有机蒙脱土(OMMT)含量的PLA/OMMT纳米复合材料,并通过XRD和TEM测试表征纳米复合材料的结构,进而对纳米复合材料性能展开研究,包括力学性能、流变性能和结晶性能等。结果表明,纯PLA不结晶,而PLA/OMMT复合材料出现结晶现象;此外,随着OMMT含量的增加,拉伸强度、断裂伸长率和剪切粘度都出现先增加后降低的规律,并在OMMT含量为2%时达到最大。对聚乳酸及其纳米复合材料的发泡行为的研究,本文采用自行设计的高压釜中,以超临界二氧化碳为发泡剂,选取各项性能较优的纳米复合材料(PLA/2%OMMT)在进行间歇法微孔发泡,重点研究发泡温度、发泡压力和释压速率对PLA/2%OMMT体系泡孔结构和形态的影响。实验表明,

随着温度的升高,泡孔壁变厚,泡孔平均直径由23.46μm减少到10.51μm,且出现了明显的泡孔合并现象;随着压力的升高,平均泡孔直径由12MPa下的25.09μm减少到16MPa下的17.08μm;而泡孔密度随着压力升高而增加,在16MPa下达到了2.73×10~9个/cm~3。此外,在释压速率较小时,泡孔出现了分层现象,泡孔分布的均匀性差。随着释压速率的增大,泡孔分层现象消失,得到了均匀的泡孔。最后,对发泡试样的拉伸性能测试,发现发泡材料的拉伸强度降低,但断裂伸长率却得到了较大的提高,较未发泡的PLA/2%OMMT纳米复合体系提高了53.6%。

随着人们环保意识的提高,发展绿色经济,走可持续发展之路,已经成为当今时代的必要。在聚合物材料领域,研究人员将目光集中在对环境污染少、能耗低、可自然降解、来源广泛的高分子材料上。聚乳酸由于具有绿色植物来源性和可生物降解性,因而成为研究的一大热点。由于PLA的耐热性不好,且熔体强度不高,在进行发泡的过程中,泡孔容易出现塌陷与合并,这些因素都不利于发泡。为了全面、深入地研究聚乳酸发泡材料的性能,制备出具有良好泡孔结构形态的PLA发泡材料,即增加泡孔密度、减小泡孔尺寸以及均化泡孔尺寸分布。本文通过结合现有高压反应釜的特点,重新设计制作了一个小型多腔发泡模具。可以实现在同一工艺条件(压力、温度、饱和时间)下研究不同配方的聚合物材料发泡性能。在实验中,利用自制的发泡模具,研究了发泡工艺条件对纯PLA发泡泡孔结构形态的影响。结果表明,饱和压力、饱和温度、饱和时间、发泡温度均对PLA微孔发泡成型有着重要的影响。饱和压力对泡孔形态的影响较明显,随着饱和压力增大,泡孔尺寸分布变窄,泡孔平均直径下降,20MPa下发泡,泡孔平均直径为8.21μm,泡孔密度达2.49×109个/cm3;聚乳酸发泡材料泡孔平均直径随着饱和温度升高而先下降后上升,在160℃时,泡孔平均直径最小,为10.76μm,当温度过高时,聚乳酸分子链断裂,会发生降解;发泡体系的粘弹特性随发泡温度改变而发生较明显变化,在低温下发泡时,存在大量的未发泡区域,随着发泡温度逐渐提高,泡孔变得均匀,且泡孔平均直径不断降低;二氧化碳在聚乳酸基体中的溶解度与饱和时间有关,饱和时间为1h时,平均泡孔直径为10.76μm,泡孔密度为1.31×109个/cm3。本文还通过控制发泡空间的大小,研究了发泡空间、发泡维数、自由发泡与受限发泡对PLA微孔发泡成型的影响。泡孔的密度随着发泡空间的减小而增大;自由发泡时,PLA 发泡后的泡孔形态基本是圆形的,而受限发泡时,泡孔形态是六边形的,相比自由发泡,受限发泡的泡孔直径分布更加均匀;一维发泡时,聚乳酸的泡孔结构随着发泡空间的增大,泡孔的取向越严重,三维发泡,PLA发泡后的泡孔在纵向和横向上的结构都是比较圆的,说明在多维方向上泡孔均得到了比较一致的生长。

四、结论

PLA生物降解材料已经在食品包装、医药卫生材料中得到了一定的应用,然而其性能和应用还不完善,有待于进一步的改性研究。近期其改性研究大体趋势是,综合使用多种改性方法以获得优良的综合性能;开展更多的理论研究,探明PLA降解等性能及与其他物质相互作用的机制;进一步开展其临床实验以确保材料的安全有效;作为添加组分对其他领域的材料进行修饰以优化复合材料性能及拓展其应用范围。PLA材料的改性和应用研究还将受到研究者的密切关注,相信具有更高性价比的PLA材料将得到广泛应用。

五、参考文献

1、邢玉清,吴贵国,邢军;化学合成全降解塑料——聚乳酸[J];工程塑料应用;2002年12期

2、杨美娟;薛平;张军;;聚乙二醇对聚乳酸/热塑性淀粉复合材料性能的影响[J];工程塑料应用;2009年12期

3、袁华;赵秋峰;刘智勇;任杰;;聚乳酸/淀粉复合发泡材料的研究(Ⅰ):发泡工艺的研究[J];玻璃钢/复合材料;2009年01期

4、袁华;赵秋峰;刘智勇;任杰;;聚乳酸/淀粉复合发泡材料的研究(Ⅱ):改性淀粉对复合材料

相容性、流变性能和发泡性能影响[J];玻璃钢/复合材料;2009年03期

5、向帮龙;管蓉;方荃;蒋亚静;肖兆新;;模压法制备微孔发泡聚碳酸酯片材[J];材料科学与工艺;2007年02期

6、任元林,焦晓宁,程博闻;聚乳酸纤维及其非织造布的生产和应用[J];产业用纺织品;2005年04期

7、胡永茂,项金钟,张学清,李汝恒,吴兴惠;抗菌食品保鲜膜的研究与进展[J];大理学院学报(自然科学);2005年01期

8、韩建;袁利华;徐国平;;PLA/黄麻复合层压材料的降解性能分析[J];纺织学报;2008年08期

9、王华林,盛敏刚,史铁钧,李延红,翟林峰;PLA及PLA复合材料降解性能研究进展[J];高分子材料科学与工程;2004年06期

10、王玉;陈立成;陈美玉;来侃;;环境友好聚乳酸复合发泡材料的研究进展[J];化工新型材料;2010年11期

11、王周玉,岳松,蒋珍菊,芮光伟,任川宏;可生物降解高分子材料的分类及应用[J];四川工业学院学报;2003年S1期

12、马承铸,顾真荣;细菌纤维素生物理化特性和商业用途(综述)[J];上海农业学报;2001年04期

13、李晶;李书卿;易杰;邵双喜;史楷岐;单志华;;一种代替氢氧化钙的无灰膨胀剂[J];皮革科学与工程;2010年03期

14、吴苏琴;李艳霞;龚磊;黄长干;;聚乳酸的研究现状及发展前景[J];江西化工;2006年04期

15、袁华;赵秋峰;刘智勇;任杰;;聚乳酸/淀粉复合发泡材料的研究(Ⅰ):发泡工艺的研究[J];玻璃钢/复合材料;2009年01期

16、周畅;姚正军;周金堂;姚芮;;纳米蒙脱土种类及含量对聚乳酸/聚丁二酸丁二醇酯复合发泡材料性能的影响[J];高分子材料科学与工程;2013年06期

17、王瑜;张萍;高德;王炳涛;;植物纤维含量对聚乳酸/玉米秸秆纤维发泡材料(PFFM)性能的影响研究[J];化工新型材料;2012年06期

18、王玉;陈立成;陈美玉;来侃;;环境友好聚乳酸复合发泡材料的研究进展[J];化工新型材料;2010年11期

19、张玉霞;刘学;刘本刚;王向东;;可生物降解聚合物的发泡技术研究进展[J];中国塑料;2012年04期

20、刘倩倩;唐川;杜哲;关怡新;姚善泾;朱自强;;超临界CO_2发泡法制备PLGA多孔组织工程支架[J];高分子学报;2013年02期

21、祁冰;许志美;刘涛;赵玲;;超临界二氧化碳发泡制备可控形貌的聚乳酸微孔材料[J];高分子材料科学与工程;2010年03期

22、高德,孙智慧;可降解缓冲包装材料的现状及发展前景[J];包装工程;2002年05期

23、麦杭珍,赵耀明,陈军武;聚乳酸的成型加工及其降解性能[J];塑料工业;2000年05期

24、余凤湄;赵秀丽;王建华;;聚乳酸/蒙脱土纳米复合材料研究进展[J];塑料科技;2010年01期

25、吕蔚;;超临界工艺制备聚乳酸泡沫技术研究[J];化学世界;2008年03期

26、董凯;范宏;王永常;;聚合物纳米复合材料微孔发泡研究进展[J];科技通报;2007年04期

27、任杰;聚乳酸的国内外研发、生产现状及应用前景[J];新材料产业;2005年06期

28、刘玮桥;王孝平;杜娟;;PLA发泡——使用熔体强度增强剂通过化学发泡剂生产低密度泡

沫材料[J];橡胶参考资料;2011年06期

29、冯刚;裘秀利;;聚乳酸的改性与成型加工研究进展[J];塑料工业;2010年07期

30、张建伟;王澜;王佩璋;;超临界流体技术在微孔发泡聚合物制备中的应用[J];广东塑料;2005年10期

31、XU Xin, LI Qian, MA Yue, (Faculty of Stomatology, Shangdong Medical University, Jinan 250012, China);Experimental study on repair of facial nerve defect using ePTFE tube connective method[J];Modern Rehabilitation;2000-10

32、SUN An-ke ,CHEN Wen-xian,LI Dong-jun,et al.Tang Du Hospital of the Fourth Military University,Xi'an 710038,China;Biodegradable study on PGA in the formative process of allogenic tissue engineered cartilage[J];Modern Rehabilitation;2001-06

33、LIU Yan -pu, MA Li and ZHAO Li -jun (Department of Oral and Maxillofacial Surgery, Stomatological Hospital, the Fourth Military Medical University, Xi'an ,Shaanxi 710032, China);Experimental study of repairing facial nerve defect with poly lactic acid - co - glycolic acid combined with schwann cells[J];Chinese Journal of Aesthetic Medicine;2003-03

34、Y u Juan Yan Yuhua Wan Tao. Biomedical Materials and Engineering Center, WUT, Wuhan 430070, China;Progress of Technology Cartilage Tissue-Engineering[J];Orthopaedil Biomechanics Maternials and Clinical Study;2005-03

35、Y u Juan, wang Tao, li Shipu. BiomedicaJ Center of Wuhan Science & Technology University Wuhan 430070;The biodegradable material polyglycolide[J];Orthopaedil Biomechanics Maternials and Clinical Study;2005-06

36、ZHANG Xiao,Y AN Xiao-hui. Chengdu Millitary College,the Third Millitary University,Chengdu 610083,China;Extracellular matrix-Bone tissre engineering[J];Modern Rehabilitation;2001-12

37、Ding Huan-wen,DING Jian-wei,Huang Shan-dong,et al. Guangzhou General Hospital of Guangzhou Command,Guangzhou 510010,China;The clinical application and effect of bone formation by means of transplanting osteoblast and basic fibroblast growth factor[J];Modern Rehabilitation;2001-12

聚氨酯发泡工艺

9.2.4.聚氨酯防腐技术措施 9.2.4.高密度聚乙烯外护套管生产操作流程 1.原料入库: 仓库管理人员对采够产品进行数量验收,聚乙烯应每 25t 为一批抽取一组试样测试密度、拉伸屈服强度、断裂伸长率、纵向回缩率四项指标,并核对货单、批号、型号、生产日期、检验报告、合格证、质量证明书、标识是否齐全、一致,填写入库单。 采购原材料依据不同类型应分类难放。 原材料在贮存过程中需有防雨、防晒措施。 原材料堆放地要保持清洁、干净,严禁烟火。 原材料堆放场地必须提供消防设施。 聚乙烯颗粒的干燥化处理:聚乙烯颗粒在使用前应用干燥机对原料进行烘干,进行干燥化处理,防止由于聚乙烯颗粒过于潮湿使外护管出现蜂窝状气囊和表面针孔。 聚乙烯材料选用高密度PE80级以上,产品在国内选知名品牌,如上海金菲、齐鲁石化、燕山石化等。 2.混料: 按照原材料厂家技术要求和生产计划制定原料配 比方案,并依据方案比例要求严格配比。防爆电机 430r/min正常运转下带动混料罐使聚乙烯颗粒与色母 等其它添加剂充分搅拌。 根据用户要求使用有助于外护管生产及提高外护 管性能的添加剂,如抗氧剂、紫外线稳定剂、 碳黑(或由碳黑预制的色母料)等。 所添加的碳黑应满足下列要求: 密度:1500 kg/m3~2000 kg/m3; 甲苯萃取量:≤%(质量百分比);

平均颗料尺寸:μm ~μm 。 混合工艺参数举例 混合是在200L 的高速混合机进行,其混合工艺参数实例见表。 3.安装更换模具水套: 依据生产计划,选择与生产口径相匹配的模具、水套、加热片、螺丝、隔热垫。装配之前,仔细检查模具是否干净,有无划痕损伤,水套口边缘有无划伤、毛刺,隔热垫有无油污、杂质、毛刺。 4.挤出机调试与检查: 挤出机的调试 挤出设备的预热 按照挤出机使用说明及现场温度对挤出机进行预热,使挤出机中的废料全部排出,同时使聚乙烯颗粒充分塑化。 螺杆转速的调整 螺杆转速要慢,出料正常后可逐步调整到 预定要求。加料量应少到多,直至达到规定的 量。螺杆转速,螺杆转速的选择直接影响管材的产量和质量。螺杆转速取决于挤出机量的大小。 校验挤出模具同心度 管材挤出时应先校验内外定心套的同心度;保证挤出的外护管壁厚圆周方面的不均匀度。 引管牵引机 挤出机挤出的外护管由人

聚乳酸的研究进展

聚乳酸的研究进展 摘要:聚乳酸(Poly(lactic acid),PLA)是一种由可再生植物资源如谷物或植物秸秆发酵得到的乳酸经过化学合成制备的生物降解高分子。聚乳酸无毒、无刺激性,具有优良的可生物降解性、生物相容性和力学性能,并可采用传统方法成型加工,因此,聚乳酸替代现有的一些通用石油基塑料己成为必然趋势。由于聚乳酸自身强度、脆性、阻透性、耐热性等方面的缺陷限制了其应用范围,因而,增强改性聚乳酸己成为目前聚乳酸研究的热点和重点之一。本文综述了聚乳酸的研究进展,以改性为中心。 关键词:聚乳酸改性合成方法生物降解 引言 天然高分子材料更具有完全生物降解性,但是它的热学、力学性能差,不能满足工程材料的性能要求,因此目前的研究方向是通过天然高分子改性,得到有使用价值的天然高分子降解塑料。1780年,瑞典化学家Carl Wilheim Scheele 首先发现乳酸(Lactic acid ,LA)之后,对LA进一步研究发现,在大自然中其可作为糖类代谢的产物存在。乳酸即2—羟基丙酸,是具有不对称碳原子的最小分子之一,其存在L-乳酸(LLA)和D—乳酸(DLA)两种立体异构体。LA的生产主要以发酵法为主,一般采用玉米、小麦等淀粉或牛乳为原料,由微生物将其转化为LLA,由于人体只具有分解LLA的酶,故LLA比DLA或DLLA在生物可降解材料的应用上有独到之处。 上世纪50年代就开始了PLA的合成及应用研究上世纪70年代通过开环聚合合成了高分子量的聚乳酸并用于药物制剂及外科手术的研究上世纪80到90年代组织工程学的兴起更加推动了对PLA及其共聚物材料的研究。目前国内外对的研究主要集中在两个方面(1)合成不同结构的聚合物材料主要是采用共聚、共混等手段合成不同结构的材料;(2)催化体系的研究。 1 PLA的结构和性能

聚乳酸化学改性

聚乳酸化学改性的研究 摘要为了改善聚乳酸的使用性能,需要将聚乳酸改性,改善其力学性能、耐热性、柔韧性和作为生物材料所需的亲水性、生物相容性等。近年来有许多研究者对聚乳酸的改性进行了大量研究。本文致力于综述各种化学改性的方法如共聚、交联改性、表面改性,并对各种方法进行分析。 关键词聚乳酸化学改性共聚表面改性 0引言 合成聚乳酸的原料来自可再生的农副产品,而且聚乳酸本身可以生物降解、有较好生物相容性,因此聚乳酸在通用材料特别是一次性材料和生物材料等方面有较好的应用前景。然而聚乳酸的韧性、强度等力学性能和耐热性较差,同时亲水性不高、生物相容性还不能满足作为生物材料的许多要求,因此近年来许多研究者从化学改性、物理改性、复合改性方面进行了大量研究。而本文将从最有效的改性手段之一-化学改性的进展进行诉述和分析。 共聚改性 共聚改性是指将乳酸和其他单体按一定比例进行共聚,以此改善聚乳酸某些性能。 1.1任建敏等【1】分别研究了聚乳酸与聚乙二醇改性聚乳酸的体外降解特性,通过测定分子量和重量在pH7.4的磷酸盐缓冲液中的变化表征它们的体外降解特性。结果表明,聚乙二醇改性聚乳酸开始降解的时间早于聚乳酸,在相同时间内,前者的重量下降也较后者明显。他们提到这些材料的降解与水引起酯基水解有关,降解较快表明亲水性更好,所以聚乙二醇改性聚乳酸亲水性优于聚乳酸,这使得它可能是蛋白抗原等亲水性药物的缓释载体材料。而乙二醇的比例应该与亲水程度有关,因此研究乙二醇的比例与降解速率的关系对满足不同的缓释效果有重大的意义。樊国栋等【2】就对在共聚物中PEG分子量对亲水性能的影响进行了研究,结果表明PEG聚合度为800时亲水性最好,水在其表面的接触角为63。 1.2马来酸酐改性聚乳酸指将乳酸和马来酸酐进行共聚而得到的共聚物。许多研究证明了马来酸酐可以改性聚乳酸的亲水性和力学性能。程艳玲和龚平【3】在不同的pH值的环境下研究了聚乳酸和马来酸酐改性聚乳酸的降解性能,结果表明聚乳酸在碱性环境中降解更快,而在酸性环境中马来酸酐改性聚乳酸降解更快。曹雪波等【4】研究了马来酸酐改性聚乳酸的力学性能,结果显示其压缩强度和压缩模量均优于未改性的聚乳酸。作为生物材料,经常需要更好的力学性能,因此马来酸酐改性聚乳酸在作为组织工程支架材料方面有更好的优势。当然,力学性能改性也能改善聚乳酸作为环保材料的力学性能要求。曹雪波等【5】还研究了大鼠成骨细胞在聚乳酸、马来酸酐改性聚乳酸表面的粘附性能。他们的实验表明:与玻璃材料相比,成骨细胞在聚乳酸表面的粘附力有较大的提升,而在马来酸酐改性聚乳酸表面的粘附力更是提升了近两倍。这体现了马来酸酐改性聚乳酸对成骨细胞有较好的亲和力。马来酸酐改性聚乳酸相比聚乳酸有更好的亲水性、力学性能和细胞粘附力,这体现它可能在组织工程材料方面有一定的应用前景。 同时,聚乳酸降解会产生乳酸,这将会导致机体不良反应,因此再次改性消除这种效应对于最终的成功应用是不可或缺的。为此,罗彦风等【6】合成了基于马来酸酐改性聚乳酸和丁二胺的新型改性聚乳酸BMPLA。他们测定了BMPLA在12周内降解过程中pH的变化,结果表明降解过程中未出现pH快速下降的现象,没有表现酸致自加速特征。丁二胺上的氨基有效地改善了降解产生的酸导致的pH变化,同时阻止了酸催化降解的加速效应。不仅如此,他们还测定了水接触角,发现这种新型改性聚乳酸相比于聚乳酸和马来酸酐改性,其亲水性有了很大的改性。这可能与氨基与水形成了氢键有关。优良的细胞亲和性和降解行为,使得马来酸酐、丁二胺改性聚乳酸在组织工程支架上有良好的应用前景。

完全生物降解材料聚乳酸的改性及应用

完全生物降解材料聚乳酸的改性及应用 1、聚乳酸 聚乳酸(PLA)是一种具有优良的生物相容性和可生物降解性的合成高分子材料。PLA这种线型热塑性生物可降解脂肪族聚酯是以玉米、小麦、木薯等一些植物中提取的淀粉为最初原料,经过酶分解得到葡萄糖,再经过乳酸菌发酵后变成乳酸,然后经过化学合成得到高纯度聚乳酸。聚乳酸制品废弃后在土壤或水中,30天内会在微生物、水、酸和碱的作用下彻底分解成CO2和H2O,随后在太阳光合作用下,又成为淀粉的起始原料,不会对环境产生污染,因而是一种完全自然循环型的可生物降解材料。 1.1聚乳酸的制备 目前聚乳酸的生产和制备主要有两条路线:(1)间接法即丙交酯开环聚合法(ROP法);(2)直接聚合法(PC法)。两类方法皆以乳酸为原料。丙交酯开环聚合法是先将乳酸缩聚为低聚物,低聚物在高温、高真空等条件下发生分子内酯交换反应,解聚为乳酸的环状二聚体2丙交酯,丙交酯再开环聚合得到聚乳酸,此方法中要求高纯度的丙交酯。直接法使用高效脱水剂使乳酸或其低聚物分子间脱水,以本体或溶液聚合的方式制备聚乳酸。 1.2聚乳酸的基本性质 由于乳酸具有旋光性,因此对应的聚乳酸有三种:PDLA、PLLA、PDLLA(消旋)。常用易得的是PDLLA和PLLA,分别由乳酸或丙交酯的消旋体、左旋体制得。 聚乳酸(PLA)是一种真正的生物塑料,其无毒、无刺激性,具有良好的生物相容性,可生物分解吸收,强度高,不污染环境,可塑性好,易于加工成型。由于聚乳酸优良的生物相容性,其降解产物能参与人体代谢,已被美国食品医药局(FDA)批准,可用作医用手术缝合线、注射用胶囊、微球及埋植剂等。 同时聚乳酸存在的缺点是:(1)聚乳酸中有大量的酯键,亲水性差,降低了它与其它物质的生物相容性;(2)聚合所得产物的相对分子量分布过宽,聚乳酸本身为线型聚合物,这都使聚乳酸材料的强度往往不能满足要求,脆性高,热变形温度低(0146MPa负荷下为54℃),抗冲击性差;(3)降解周期难以控制;(4)价格太贵,乳酸价格以及聚合工艺决定了PLA的成本较高。这都促使人们对聚乳酸的改性展开深入的研究。

聚氨酯发泡工艺

9.2.4.4.3聚氨酯防腐技术措施 9.2.4.4.3.1高密度聚乙烯外护套管生产操作流程 1.原料入库: 1.1仓库管理人员对采够产品进行数量验收,聚乙烯应每 25t 为一批抽取一 组试样测试密度、拉伸屈服强度、断裂伸长率、纵向回缩率四项指标,并核对货单、批号、型号、生产日期、检验报告、合格证、质量证明书、标识是否齐全、一致,填写入库单。 1.2采购原材料依据不同类型应分类难放。 1.3原材料在贮存过程中需有防雨、防晒措施。 1.4原材料堆放地要保持清洁、干净,严禁烟火。 1.5原材料堆放场地必须提供消防设施。 1.6聚乙烯颗粒的干燥化处理:聚乙烯颗粒在使用前应用干燥机对原料进行 烘干,进行干燥化处理,防止由于聚乙烯颗粒过于潮湿使外护管出现蜂窝状气囊和表面针孔。 1.7 聚乙烯材料选用高密度PE80级以上,产品在国选知名品牌,如金菲、齐鲁石化、燕山石化等。 2.混料: 2.1按照原材料厂家技术要求和生产计划制定原料 配比方案,并依据方案比例要求严格配比。防爆电机430r/min 正常运转下带动混料罐使聚乙烯颗粒与色母等其它添加剂充分搅拌。 2.2根据用户要求使用有助于外护管生产及提高外 护管性能的添加剂,如抗氧剂、紫外线稳定剂、碳黑(或由碳黑预制的色母料)等。 所添加的碳黑应满足下列要求: 密度:1500 kg/m3~2000 kg/m3; 甲苯萃取量:≤0.1%(质量百分比);

平均颗料尺寸:0.01μm ~0.025μm 。 2.3混合工艺参数举例 混合是在200L 的高速混合机进行,其混合工艺参数实例见表。 3.安装更换模具水套: 依据生产计划,选择与生产口径相匹配的模具、水套、加热片、螺丝、隔热垫。装配之前,仔细检查模具是否干净,有无划痕损伤,水套口边缘有无划伤、毛刺,隔热垫有无油污、杂质、毛刺。 4.挤出机调试与检查: 挤出机的调试 4.1挤出设备的预热 按照挤出机使用说明及现场温度对挤出机进行预热,使挤出机中的废料全部排出,同时使聚乙烯颗粒充分塑化。 4.2螺杆转速的调整 螺杆转速要慢,出料正常后可逐步调整 到预定要求。加料量应少到多,直至达到规 定的量。螺杆转速,螺杆转速的选择直接影响管材的产量和质量。螺杆转速取决于挤出机量的大小。 4.3校验挤出模具同心度 管材挤出时应先校验外定心套的同心度;保证挤出的外护管壁厚圆周方面的不均匀度。 4.4引管牵引机 挤出机挤出的外护管由人

聚乳酸的合成、改性与应用的研究进展

聚乳酸的合成、改性与应用的研究进展 摘要:本文阐述了聚乳酸(PLA)的基本特征及合成方法,并针对其性能上的缺点,提出了几种具体的改性方法,介绍了可降解生物材料聚乳酸在包装行业、纺织行业及医疗卫生行业的应用前景。 关键词:聚乳酸; 改性; 应用前景 Abstract:This paper describes the polylactic acid (PLA) and the basic characteristics of synthesis methods, and for the performance of its shortcomings, proposed several specific modification method, introduced biodegradable polylactic acid material in the packaging industry, the textile industry and health care prospects of the industry. Key word: Prospects; modified; polylactic acid

1前言 目前,世界高分子材料产量已超过2亿吨,一些不可分解的塑料产品废弃物 也相应增加,它不仅影响了整个城市的美观,更严重的是它会引起环境污染,破 坏生态环境的平衡,影响人类的身体健康。可降解塑料作为一种新型的绿色生物 材料,它可以补充替代石油资源、减少温室气体排放、有利于社会的可持续发展, 因此,生物可降解塑料成为国内外研究的热点。不同于一般石化产品,生产聚乳 酸(PLA ) 的原料主要有玉米、小麦、甘蔗等天然农作物中提取的淀粉。这些淀 粉原料可经过发酵过程制成乳酸,然后通过化学合成法制得PLA ,这样不仅降低 了对石油资源的依赖,也间接降低了原油炼油等过程中氮氧化物及硫氧化物等污 染气体的排放。聚乳酸作为目前产业化最成熟、产量最大、应用最广泛、价格最 低的生物基塑料,是未来最有希望撼动石油基塑料传统地位的降解材料,将成为 生物基塑料的主力军[1]。 2聚乳酸的合成方法 目前合成聚乳酸的方法主要有两种:直接缩聚法和开环聚合法。 2.1直接缩聚法 直接缩聚法也叫一步聚合法,就是把乳酸单体直接缩合。其原理是在脱水剂 存在的条件下,分子中的羧基和羟基受热脱水,直接缩聚成低聚物,然后加入催 化剂,继续加热,最终就会得到分子质量相对较高的聚乳酸。PLA 直接缩聚的反 应式如下: HO C H CH 3C O OH HO C H C OH O CH 3+H 2O n (n-1)n 直接缩聚法的优点是操作简单,成本低,但反应条件要求高,反应时间长, 副产物水难以及时排除,得到的产物相对分子质量低,分布宽,重现性能差。直 接聚合法制得的产物相对分子质量普遍偏低,是因为反应过程中,受到许多影响 因素的影响,在聚合反应末期,聚合熔体的粘度很大,其中的水分很难除去,残 余水分不仅会降低PLA 的相对分子质量,也会影响其整体性能,因此,改善直接 聚合法反应过程中的影响因素,是一个亟待解决的问题。

聚乳酸的基本性质与改性研究

增加其力学强度,同时使降解速度减缓。PLA在高热下不稳定,即使低于熔融温度下加工也会使分子量下降较大。但随分子量升高,材料在加工中的降解速度也会变慢。 PLA具有良好的生物相容性,在生物体内PLA分解成乳酸,经生物酶的分解生成CO2和H2O,从体内排出。临床试验未发现有严重的急性组织反应和毒理反应,但PLLA仍有可能导致一些无菌性炎症反应。如用PLA材料做颧骨固定术后3年会产生无痛的局域肿块,皮下组织也出现降解缓慢的 结晶PLA颗粒,而引发噬菌作用。研究无法确定产生组织反应的真正原因,但PLA降解后产生小颗粒是无菌性炎症反应出现的根本原因。植入部位不同也决定了组织反应类型和强度,植入皮下PLA时炎症发生率偏高,在髓 内固定组织吞噬细胞较少,则反应发生率较低。 PLA是一种完全生物降解的热塑性高分子,具有良好的机械性能,透明性和生物相容性,广泛应用于生物医药行业中。PLA还具有较高的拉伸强度、压缩模量,但PLA还具有取多缺点。具有光学活性的PLA,结晶度较高,降解周期长,脆性大,而消旋PLA强度差,质硬而韧性较差,缺乏柔性和弹性,极易弯曲变形;另外,PLA的化学结构缺乏反应性官能基团,也不具有亲水性,降解速度需要控制。为了改善产品的脆性,调节其生物降解周期,更好地拓宽其应用面,各国研究者纷纷致力于PLA的改性事业。通过对PLA进行增塑、共聚、共混、分子修饰、复合等改性方法可实现对PLA的降解性能、亲水性及力学性能的改进,还可获得成本低廉的产品,从而更好地满足在医

学领域或环保方面的应用需求。 1.2 PLA热力学特性 PLA中碳原子为手性碳原子,因此PLA可分为左旋、右旋和内消旋等种类。其中非立体异构PLA的玻璃化转变温度由共聚单体的性能和聚合度决定。PLA立体异构体共聚物的Tg一般在60℃,与乳酸含量多少无关。 PLA的熔点与聚合物的分子量大小、光纯度、结晶程度等有关。共聚单体纯度也影响合成PLA的熔点。一般情况下,光纯度较高的PLLA的熔点较高,可到180℃,随D型乳酸增大后,合成的内消旋PLA的熔点有明显下降趋势,比如当内消旋异构体含量为2%,Tm下降至160℃,含量升至15%时,熔点降低至127℃。 但当PLLA和PDLA以1:1的比例混合后,形成外消旋PLA,其熔点可提高至230℃。因为混合物中PLLA和PDLA之间发生明显的立体络合,无定形区的链节之间之间相互作用导致该区域高密度的链堆砌,结构更加紧密,导致Tg升高。 1.3 PLA的热稳定性 同PET一样,由于PLA分子链中主要为羟基和羧基脱水缩合形成的酯键,化学活化能低,在高温下易发生化学键断裂反应,使分子量降低。特别是在有水分子存在的情况下,易发生水解反应,使PLA降解速度加快。有实验显示PLA在干燥条件下起始失重温度为285℃,但未经干燥的PLA的起始失重温度降低至260℃。因此在生产过程中水分对PLA的影响不可忽视,

聚乳酸的研究进展

聚乳酸的研究进展 摘要 乳酸主要应用于食品保健、医药卫生和工业等方面。聚乳酸是以乳酸为主要原料的聚合物,聚乳酸作为生物可降解材料的一种,对环境友好、无毒害,可应用于组织工程、药物缓释等生物医用材料,以及石油基塑料的替代材料。本文综述了聚乳酸在可降解塑料,纤维,医用材料,农用地膜,和纺织等领域的应用,并对其发展方向进行了展望。 关键词:聚乳酸聚乳酸纤维生物医药生物降解 Abstract Lactic acid green chemistry is the basic structure of one of the unit ,Mainly used in food, medicine, sanitation and health care industry, etc。Poly lactic acid is lactic acid as the main raw material polymer,Poly lactic acid as biodegradable material of a kind,Friendly to environment, non-toxic, can be applied to tissue engineering, drugs such as slow release of biomedical materials,And instead of the petroleum base plastic material。This paper reviewed the biodegradable polylactic acid in plastic, fiber and medical materials, agricultural plastic sheeting, and textile application in the field, and its developing prospects。 Key world: PLA PLA fiber Biological medicine Biodegradable 前言 由于人口的日益膨胀,以及地球上资源和能源的短缺,环境污染日益成为全人类需要急需关注的问题,各国在享受现代科技带来的便利的同时,也应该认识到人类即将面临的及其紧迫的环境危机。因此绿色化学成为了今国际化学和化工科学创新的主要动力来源,它是未来科学发展最重要的领域之一。绿色化学是实现污染预防最基本的科学手段,具有极其重要的社会和经济意义。

聚乳酸简介

单个的乳酸分子中有一个羟基和一个羧基,多个乳酸分子在一起,-OH与别的分子的-COOH脱水缩合,-COOH与别的分子的-OH脱水缩合,就这样,它们手拉手形成了聚合物,叫做聚乳酸. 聚乳酸也称为聚丙交酯,属于聚酯家族。聚乳酸是以乳酸为主要原料聚合得到的聚合物,原料来源充分而且可以再生。聚乳酸的生产过程无污染,而且产品可以生物降解,实现在自然界中的循环,因此是理想的绿色高分子材料。 聚乳酸的热稳定性好,加工温度170~230℃,有好的抗溶剂性,可用多种方式进行加工,如挤压、纺丝、双轴拉伸,注射吹塑。由聚乳酸制成的产品除能生物降解外,生物相容性、光泽度、透明性、手感和耐热性好,还具有一定的耐菌性、阻燃性和抗紫外性,因此用途十分广泛,可用作包装材料、纤维和非织造物等,目前主要用于服装(内衣、外衣)、产业(建筑、农业、林业、造纸)和医疗卫生等领域。 聚乳酸的优点主要有以下几方面:(1)聚乳酸(PLA)是一种新型的生物降解材料,使用可再生的植物资源(如玉米)所提出的淀粉原料制成。淀粉原料经由发酵过程制成乳酸,再通过化学合成转换成聚乳酸。其具有良好的生物可降解性,使用后能被自然界中微生物完全降解,最终生成二氧化碳和水,不污染环境,这对保护环境非常有利,是公认的环境友好材料。关爱地球,你我有责。世界二氧化碳排放量据新闻报道在2030年全球温度将升至60℃,普通塑料的处理方法依然是焚烧火化,造成大量温室气体排入空气中,而聚乳酸塑料则是掩埋在土壤里降解,产生的二氧化碳直接进入土壤有机质或被植物吸收,不会排入空气中,不会造成温室效应。(2)机械性能及物理性能良好。聚乳酸适用于吹塑、热塑等各种加工方法,加工方便,应用十分广泛。可用于加工从工业到民用的各种塑料制品、包装食品、快餐饭盒、无纺布、工业及民用布。进而加工成农用织物、保健织物、抹布、卫生用品、室外防紫外线织物、帐篷布、地垫面等等,市场前景十分看好。(3)相容性与可降解性良好。聚乳酸在医药领域应用也非常广泛,如可生产一次性输液用具、免拆型手术缝合线等,低分子聚乳酸作药物缓释包装剂等。(4)聚乳酸(PLA)除了有生物可降解塑料的基本的特性外,还具备有自己独特的特性。传统生物可降解塑料的强度、透明度及对气候变化的抵抗能力皆不如一般的塑料。(5)聚乳酸(PLA)和石化合成塑料的基本物性类似,也就是说,它可以广泛地用来制造各种应用产品。聚乳酸也拥有良好的光泽性和透明度,和利用聚苯乙烯所制的薄膜相当,是其它生物可降解产品无法提供的。(6)聚乳酸(PLA)具有最良好的抗拉强度及延展度,聚乳酸也可以各种普通加工方式生产,例如:熔化挤出成型,射出成型,吹膜成型,发泡成型及真空成型,与目前广泛所使用的聚合物有类似的成形条件,此外它也具有与传统薄膜相同的印刷性能。如此,聚乳酸就可以应各不同业界的需求,制成各式各样的应用产品。(7)聚乳酸(PLA)薄膜具有良好的透气性、透氧性及透二氧二碳性,它也具有隔离气味的特性。病毒及霉菌易依附在生物可降解塑料的表面,故有安全及卫生的疑虑,然而,聚乳酸是唯一具有优良抑菌及抗霉特性的生物可降解塑料。(8)当焚化聚乳酸(PLA)时,其燃烧热值与焚化纸类相同,是焚化传统塑料(如聚乙烯)的一半,而且焚化聚乳酸绝对不会释放出氮化物、硫化物等有毒气体。人体也含有以单体形态存在的乳酸,这就表示了这种分解性产品具有的安全性。 二、方法和流程 聚乳酸生产是以乳酸为原料,传统的乳酸发酵大多用淀粉质原料,目前美、法、日等国、家已开发利用农副产品为原料发酵生产乳酸,进而生产聚乳酸。由乳酸制聚乳酸生产工艺有:[1]方法 (1)直接缩聚法在真空下使用溶剂使脱水缩聚。日本在这方面做了大量的研究,

聚氨酯发泡工艺简介

聚氨酯发泡工艺简介 聚氨酯硬泡生产工艺硬泡成型工艺聚氨酯硬泡的基本生产方法聚氨酯硬泡一般为室温发泡,成型工艺比较简单。按施工机械化程度可分为手工发泡和机械发泡。根据发泡时的压力,可分为高压发泡和低压发泡。按成型方式可分为浇注发泡和喷涂发泡。浇注发泡按具体应用领域、制品形状又可分为块状发泡、模塑发泡、保温壳体浇注等。根据发泡体系可发为HCFC 发泡体系、戊烷发泡体系和水发泡体系等,不同的发泡体系对设备的要求不一样。按是否连续化生产可分为间歇法和连续法。间歇法适合于小批量生产。连续法适合于大规模生产,采用流水线生产方法,效率高。按操作步骤中是否需预聚可分为一步法和预聚法(或半预聚法)。1.手工发泡及机械发泡在不具备发泡机、模具数量少和泡沫制品的需要量不大时可采用手工浇注的方法成型。手工发泡劳动生产率低,原料利用率低,有不少原料粘附在容器壁上。成品率也较低。开发新配方,以及生产之前对原料体系进行例行检测和配方调试,一般需先在实验室进行小试,即进行手工发泡试验。在生产中,这种方法只适用于小规模现场临时施工、生产少量不定型产品或制作一些泡沫塑料样品。手工发泡大致分几步:(1) 确定配方,计算制品的体积,根据密度计算用料量,根据制品总用料量一般要求过量5%~15%。(2) 清理模具、涂脱模剂、模

具预热。(3) 称料,搅拌混合,浇注,熟化,脱模。手工浇注的混合步骤为:将各种原料精确称量后,将多元醇及助剂预混合,多元醇预混物及多异氰酸酯分别置于不同的容器中,然后将这些原料混合均匀,立即注入模具或需要充填泡沫塑料的空间中去,经化学反应并发泡后即得到泡沫塑料。在我国,一些中小型工厂中手工发泡仍占有重要的地位。手工浇注也是机械浇注的基础。但在批量大、模具多的情况下手工浇注是不合适的。批量生产、规模化施工,一般采用发泡机机械化操作,效率高。2.一步法及预聚法目前,硬质聚氨酯泡沫塑料都是用一步法生产的,也就是各种原料进行混合后发泡成型。为了生产的方便,目前不少厂家把聚醚多元醇或(及)其它多元醇、催化剂、泡沫稳定剂、发泡剂等原料预混在一起,称之为“ 白料”,使用时与粗MDI(俗称“ 黑料” )以双组分形式混合发泡,仍属于“ 一步法”,因为在混合发泡之前没有发生化学反应。早期的聚氨酯硬泡采用预聚法生产。这是因为当时所用的多异氰酸酯原料为TDI-80。由于TDI 粘度小,与多元醇的粘度不匹配;TDI 在高温下挥发性大;且与多元醇、水等反应放热量大,若用一步法生产操作困难,故当时多用预聚法。若把全部TDI 和多元醇反应,制得的端异氰酸酯基预聚体粘度很高,使用不便。硬泡生产中所指的预聚法实际上是“ 半预聚法”。即首先TDI与部分多元醇反应,制成的预聚体中

聚氨酯发泡工艺

聚氨酯发泡保温施工工艺 1.基层处理 喷涂施工前,剔除墙面上残留的灰渣等凸出物,若墙体有较大面积的缺陷或破损,则应用1:3水泥砂浆进行找平。 2.聚氨酯保温料前,用塑料薄膜、废报纸、塑料板或木板、三合板等将窗、门、脚手架等非涂物遮挡、保护起来。 3.墙面聚氨酯保温层施工 开启PU喷涂机将保温涂料均匀地喷涂于墙面之上,当厚度达到0.5~1.0cm厚时,按45cm 间距、梅花状分布插定厚度标杆,然后继续喷涂聚氨酯保温料。每次喷涂厚度宜控制在1cm 之内。喷涂时要尽量避免流挂现象发生。 4.聚氨酯保温层后处理 聚氨酯保温层喷涂20min后用裁纸刀、手锯等工具开始清理、修整遮挡、保护部位以及超过规定厚度1cm突出部分。 5.界面处理 聚氨酯保温层喷涂4小时之内做界面砂浆处理,界面砂浆可用滚子均匀地涂于聚氨酯保温基层上。 6.抹保温浆料找平和补充保温 在保温浆料和抗裂砂浆配制时,搅拌需设专人专职进行,以保证搅拌时间和加水量的准确。在施工现场搅拌质量可以通过观察其可操作性、抗滑坠性、膏料状态以及其湿表观密度等方法判断。 抹灰时,其平整度偏差不应大于±4mm,不宜抹太厚,以找平为主,抹灰厚度应略高于灰饼的厚度,而后用杠尺刮平,用抹子局部修补平整;待抹完找平面层30min后,用抹子再赶抹墙面,用托线尺检测后达到验收标准。 7抗裂层施工 保温浆料固化干燥(用手按不动表面为宜,一般约3-7天)且保温层施工质量验收以后,方可进行抗裂保护层施工。,抹抗裂砂浆时,将3-4mm厚抗裂砂浆均匀地抹在保温层表面,立即将裁好的耐碱网格布用铁抹子压入抗裂砂浆内。 相邻网格布之间搭接宽度不应小于50mm,并不得使网格布皱褶、空鼓、翘边。首层应铺贴双层网格布,第一层铺贴加强型网格布,加强型网格布应对接,然后进行第二层普通网格布的铺贴,两层网格布之间抗裂砂浆必须饱满。 德州嘉恒涂料有限公司

聚乳酸的改性研究进展

聚乳酸的改性研究进展 摘要:聚乳酸是一种新型无毒的材料,有较好的生物相容性和生物降解性,是性能优良的绿色高分子材料,本文综述了聚乳酸的改性研究进展,展望了其应用前景。 中国论文网/7/view-12986201.htm Abstract:The polylactic acid was a kind of new non-toxic material,which was biocompatible and biodegradable. It was a fine performance green polymer material. The research progress of the modification of polylactic acid was reviewed. The application prospects of modified polylactic acid were discussed. 关键词:聚乳酸;改性;共聚;共

混;复合 Key words:polylactic acid;modification;coplymerization;blend;composite 中?D分类号:TQ311 文献标识码:A 文章编号:1006-4311(2017)23-0227-03 0 引言 聚乳酸简称为PLA,因为具有较好的相容性和降解性,所以在医药领域得到了广泛的应用,如生产一次性的点滴用具、美容注射粒子、口腔膜、心脏支架等方面得到了很广的应用。在PLA制备的初期,是由小麦、玉米、麦秆等植物中的淀粉为原料,在催化剂酶的作用下,得到乳酸,在经过一定的化学合成工艺合成得到高浓度的聚乳酸。聚乳酸除了较好的生物可降解性以外,还具良好的机械性能和物理性能。 1 聚乳酸改性的原因 PLA的聚合主要是有两种方法[1],第一种方法是直接缩聚法,乳酸同时具

聚乳酸的基本性质与改性研究

PLA的基本性质与改性研究 1.1 物理性质[1,9] 无定形PLA的密度为1.248g/cm3,结晶PLLA的密度为1.290g/cm3,因此PLA的密度一般在两者之间。PLA为浅黄色或透明的物质,玻璃化温度约为55℃、熔点约175℃,不溶于水、乙醇、甲醇等,易水解成乳酸[6]。其性质如表1-1所示: 表1-1 PLA的基本性能 Table 1.1 The basic properties of PLA 性能PLLA PDLLA 熔点/℃170-190 <170 玻璃化转变温度/℃50~65 50~60 密度(g/cm3) 1.25~1.29 1.27 溶度参数(MPa0.5) 19~20.5 21.2 拉伸强度(kg/mm2) 12~230 4~5 弹性模量(kg/mm2) 700~1000 150~190 断裂伸长率(%) 12~26 5~10 结晶度(%) 60 / 完全降解时间(月) >24 12~16 乳酸有两种旋光异构体即左旋(L)和右旋(D)乳酸,聚合物有三种立体构型:右旋PLA(PDLA)、左旋PLA(PLLA)、内消旋PLA(PDLLA)。右旋PLA和左旋PLA是两种具有光学活性的有规立构聚合物,比旋光度分别为+157℃、-157℃。在熔融和溶液条件下均可形成结晶,结晶度高达60%左右。内消旋PLA是无定形非结晶材料,T g为58℃,由于内消旋结构打乱了分子链的规整度,无法结晶因此不存在熔融温度。纯的PLA为乳白色半透明粒子,PLA经双向拉伸加工可具有良好的表面光泽性、透明性、高刚性、抗油和耐润滑侵蚀性。 结晶性对PLA材料力学性能和降解性能(包括力学强度衰减、降解速率)的影响很大,PLA性脆、冲击强度差,特别是无定形非晶态的PDLLA力学强度明显低于晶态的PLLA,用特殊增强工艺制备的Φ3.2mmPLLA,PDLLA棒材的最大弯曲强度分别是270MPa和140 MPa,PLLA弯曲强度几乎是PDLLA的2倍。结晶也使降解速度变慢,研究称PDLLA 材料在盐水中降解时,分子量半衰期一般为3至10周,而PLLA由于结晶存在至少为20周。随分子量增大,PLA的力学强度也会随之提高,如PLA要想作为可使用的材料其分子量至少要达到10万左右。PLA材料的另一个突出优点是加工途径广泛,如挤出、纺丝、双轴拉伸等。在加工过程中分子取向不仅会大大增加其力学强度,同时使降解速

聚氨酯发泡工艺流程

聚氨酯发泡工艺流程 将穿好的外护管的钢管吊至发泡平台,两端通过机械液压将法兰堵头封死钢管与外护管之间的空间。钢管两端各留200mm长的裸管不发泡,待现场施工焊接等工作结束后进行现场补口发泡。 在外护管居中位置上钻打一个圆孔作为注料孔,注料时要保证管道水平,确保泡沫均匀。 调试灌注发泡机,根据钢管与高密度聚乙烯外护管之间的空隙及长度、计算出聚氨酯保温层液态聚氨酯用量;根据保温层耐热温度要求,确定A、B组分的配合比;根据环境温度、灌注用量确定发泡时间,确定A、B组分的流量比,确保在规定时间内,A、B两组分按已确定的流量比和用量充分混合、雾化、发泡,经实验确定后方能进行正式施工。 装枪头,将A、B两组分的出料管分别插入喷枪的A、B两个活接头上,同时将压缩空气管也接到压缩空气活接头上,进行试灌注。当工艺指标符合设计技术要求时,进行正式灌注。 灌注,根据保温层厚度及管径计算材料用量,调整流量计,将枪头插入管壳灌注孔内,打开空压机阀门,然后打开A、B两组分出料阀门,同时按下自动灌注机开关,设备自动灌注、关闭。 河南中科防腐保温工程有限公司 聚乙烯管壳生产工艺流程 ①高密度聚乙烯外护管由高密度聚乙烯树脂配以抗氧剂和色母料等助剂通过挤塑生产。外护管是两步法生产预制保温管的配套产

品,主要用于保温材料的保护层。 ②聚乙烯外护管挤塑生产,用专用牵引机和挤塑机挤塑生产各种规格型号的高密度聚乙烯外护管。 ③聚乙烯外护管常用为黑色,黑色抗氧化性强,耐腐蚀性强,现在国内市场已经逐渐淘汰了黄色的外护管。因为黄色在阳光下抗氧化性弱,且埋在地下时,由于颜色鲜艳,极易引起微生物降解,进而影响保温管的质量。 ④同时聚乙烯外护管需要进行电晕处理,利用高压电极放电原理对聚乙烯外护管管材内侧进行电晕,环向大于75%的范围内表面张力系数应大于50dyn/cm,并提供相应测试报告。以提高聚氨酯保温层与聚乙烯外护管的粘接强度,使直埋式保温管中的钢管、聚氨酯保温层和聚乙烯外护管达到三位一体效果。 河南中科防腐保温工程有限公司

聚乳酸改性的研究进展

聚乳酸改性的研究进展 周海鸥史铁钧王华林方大庆 (合肥工业大学化工学院,合肥,230009) 摘 要 概述了近年来国内外聚乳酸通过共聚、共混、复合等方法获得改性材料的研究进展,并对其发展方向进行了展望。 关键词:聚乳酸改性共聚共混复合 一、前言 聚乳酸(PLA)具有优良的生物相容性、生物可降解性,最终的降解产物是二氧化碳和水,不会对环境造成污染。这使之在以环境和发展为主题的今天越来越受到人们的重视,并对其在工业、农业、生物医药、食品包装等领域的应用展开了广泛地研究。由于聚乳酸在性质上存在如下局限而限制了它的实际应用: (1)聚乳酸中有大量的酯键。酯键为疏水性基团,它降低了聚乳酸的生物相容性; (2)降解周期难以控制; (3)聚合所得产物的分子量分布过宽。聚乳酸本身为线型聚合物,这使得材料的强度往往不能满足要求。 同时,在实际应用中还有一些特殊的功能性需要。这都促使人们对聚乳酸材料的改性展开深入地研究。目前国内外对聚乳酸的改性主要有共聚、共混以及制成复合材料等几种方法。 二、共聚法改性 随着聚乳酸应用领域的不断扩展,单纯的均聚物已不能满足人们的需要,特别是在高分子药物控制释放体系中,要求对于不同的药物有不同的降解速度,同时对于抗冲击强度、亲水性有更高的要求。这使得人们开始将乳酸与其它单体共聚改性,以调节共聚物的分子量、共聚单体数目和种类来控制降解速度并改善结晶度、亲水性等。由于在乳酸分子中含有羟基和羧基,生成的聚乳酸含有端羟基和端羧基,所以在聚乳酸共聚物中比较多的是聚酯2聚酯共聚物、聚酯2聚醚共聚物以及和有机酸、酸酐等反应生成的共聚物。 1.线性结构的共聚物 聚酯2聚酯共聚物是目前聚乳酸共聚物中最多的一种。人们将多种酯类和丙交酯共聚制得了不同用途的产物,其中涉及的机理主要是将共聚单体制成环状化合物,再开环聚合生成不同单体间的交替共聚物。Miller等研究发现用乙醇酸生成乙交酯(gly2 colide,简称G A)再和乳酸开环聚合,能使降解速率比均聚物提高10倍以上,并且可以通过改变组分的配比来调节共聚物的降解速度[1]。张艳红等采用低聚D,L2丙交酯与聚己内酯低聚物在2,42甲苯二异氰酸酯(TDI)作用下进行了扩链反应,形成了具有

聚乳酸的合成和改性研究进展

Abstract Polylactic acid is a widely used biodegradable material, which,together with its copolymers,are now among the most important biomedical materials.There are two main methods for synthesizing homopolymer of lactic acid: the ring-opening polymerization and the direct polycondensation. The direct polycondensation method includes the direct melt polycondensation and the solution polycondensation.In accordance with the reaction mechanism,the ring -opening polymerization includes the anionic ring-opening polymerization,the cationic ring-opening polymerization and the ring-opening polymerization of coordination.In this paper,the polymerization mechanism and the research progress of different polymerization methods are discussed.The high cost in synthesizing lactic acid homopolymer,the low molecular weight of products and its hydrophobic,brittle performance have limited its applications.The current study of polylactic acid is mainly concentrated in the modification.The latest research progress on chemical and physical modifications are reviewed,such as copolymerization,cross-linking,surface modification,blends,fiber composites and so on.Synthesis and modification of polylactic acid are discussed.Synthesis conditions should be improved.Non -toxic or low -residue catalysts should be used. Keywords polylactic acid;synthesis;modification;advance 聚乳酸(PLA )属于脂肪族聚脂类化合物,具有良好的生 物降解性,目前已成为生物降解医用材料方面最受重视的材料之一[1-5],且聚乳酸具有良好的加工性,还可通过熔融纺丝法制成纤维,其原料乳酸可由淀粉等发酵制备,属于环境可再生资源。 聚乳酸的合成是以乳酸为原料,直接缩聚得到,由于反应产物水难以从体系中排除,所以产物分子量较低,很难满足实际要求。若采用两步聚合法丙交酯开环聚合,虽可制备出高相对分子质量的聚乳酸,但其流程冗长,成本高。聚乳酸合成的高成本及其疏水性、脆性等性能缺陷,限制了其应用范围,所以目前对聚乳酸的研究主要集中在改性上。 本文主要从聚乳酸合成和改性两方面综述国内外聚乳酸的最新研究进展。 聚乳酸的合成和改性研究进展 摘要 聚乳酸类材料是一种用途广泛的生物降解高分子材料,已经成为生物医用材料中最受重视的材料之一。乳酸均聚物的合成 主要有两种方法:丙交酯开环聚合法和直接缩聚法。直接缩聚法包括溶液缩聚和熔融缩聚;按照反应机制,开环聚合法包含阴离子型开环聚合、阳离子型开环聚合和配位开环聚合。本文讨论了各种聚合方法的机制和研究进展。由于乳酸均聚物合成的成本高,产物分子量低及其疏水性、脆性等性能缺陷,限制了其应用范围,目前对聚乳酸的研究主要集中在改性上,本文详细介绍了共聚、交联、表面修饰等化学改性方法和共混、增塑、纤维复合等物理改性方法的最新研究进展。并对聚乳酸的合成及改性的研究方向进行了展望,改进聚乳酸的合成工艺条件,使用无毒或低残留量的催化剂;用新材料对聚乳酸进行改性,在克服原有缺点的基础上开发出新用途的聚乳酸材料。 关键词聚乳酸;合成;改性;进展 中图分类号TQ326.9文献标识码A 文章编号1000-7857(2009)17-0106-05 陈佑宁1,樊国栋2,张知侠1,党西妹1 1.咸阳师范学院化学与化工学院,陕西咸阳712000 2.陕西科技大学化学与化工学院,西安710021 Research Advance of Synthesis and Modification of Polylactic Acid 收稿日期:2009-04-27 基金项目:陕西省自然科学基金项目(2004B13);咸阳师范学院专项科研基金项目(06XSYK105);咸阳师范学院大学生科研训练项目(08057)作者简介:陈佑宁,讲师,研究方向为生物降解材料的研究,电子信箱:chenyn@https://www.wendangku.net/doc/a616458917.html, CHEN Youning 1,FAN Guodong 2,ZHANG Zhixia 1,DANG Ximei 1 1.College of Chemistry and Chemical Engineering,Xianyang Normal University,Xianyang 712000,Shaanxi Province,China 2.College of Chemistry and Chemical Engineering,Shaanxi University of Science and Technology,Xi'an 710021,China 综述文章(Reviews )

相关文档