文档库 最新最全的文档下载
当前位置:文档库 › 大肠杆菌基因型

大肠杆菌基因型

大肠杆菌基因型
大肠杆菌基因型

大肠杆菌基因型的表示方法

(Demerec, et, al. 1966)

分子克隆中常用的大肠杆菌及其遗传标记按Demerec 等1966 年提出的命名原则,采用的菌株所有的基因都假定处于野生型状态,除非在基因型上另外注明。

一、一般规则:

1、根据基因产物或其作用产物的英文名称的第一个字母缩写成3 个小写斜体字母来表示。

例如:DNA Adenine Methylase→dam。

2、不同的基因座,其中任何一个突变所产生的表型变化可能相同,其表示方法是在

3 个小写斜体字母后加上一个斜体大写字母来表示区别。例如:Recombination→rec

A、rec

B、recC。

3、突变位点应通过在突变基因符号后加不同数字表示。如supE44(sup 基因座E 的44 位突变)。如果不知道几个等位基因中哪一/几个发生了功能性突变,则用连字符“-”代替大写字母,如trp-31。

4、细菌的基因型中应该包含关于其携带的质粒或附加体的的信息。这些符号包括菌株携带的质粒或附加体、质粒或附加体上的突变基因座和突变位点。其基因符号应与基因座的表示

符号明显区别,符号的第一个字母大写、不斜体并位于括号内;质粒或附加体上的突变基因座和突变位点的基因符号的表示方法与染色体上突变基因座、突变位点的符号相同。

5、对于携带附加体的菌株的完整基因型描述应包括附加体的状态(游离或整合)。以F 因子为例,F-:F 因子缺失;F+:自主性F 因子,不携带任何遗传可识别染色体片段;F’:携带有遗传可识别细菌染色体片段的自主性F 因子;Hfr:整合到染色体上的F 因子(high frequency of recombination)。当这些质粒或噬菌体片段变异或缺失时,用()”或“/”等以区别。例如:/F' [traD3

6、proAB、lac I q、l acZ M15]

6、某个基因或某个领域缺失时,在其基因型前面加上“”表示。例如:lac-proAB 基因缺失时它的基因型表示为( lac-proAB)。

7、由于某种基因的变异导致大肠杆菌可以明显观察到特征变化,有时也用其表现型代替基因型进行表示。例如:某些抗药性的获得或丧失,用如下方式表示:Strepto mycin 抗性→Str__+或Str r,Ampicillin 敏感性→Amp-。(第一个字母要大写,“+”或“r”表示有抗性,“-”表示无抗性或敏感)。

8、根据某些特异性蛋白的变异及其导致的结果变化进行表示。

例如:TH2 菌株上有一种基因型表示如下:hsdS20 (rB-、mB-),其中S20 代表特异性识别蛋白发生变异,()中的rB-、mB-表示由于S20 的变异而导致B 株来源的hs dR 和hsdM 的功能缺失。

9、蛋白质的名称与对应的基因或等位基因相同,但不用斜体,且首字母大写,如,U vrA、UvrB。

二、基因符号和意义(见表1)

部分基因符号和意义

基因符号意义注释

Δ缺失缺失突变用“Δ”表示,其后的()中是缺失基因的名称、等位基因

号码。如Δ(lac-proAB)表示lac-proAB 基因的缺失。

:断裂表示:前的基因是断裂的。

::插入“::”前的基因由于“::”后的基因插入断裂。

IN 倒位倒位在大肠杆菌中很少见,用IN(区域)表示。

TP 转座如TP(lacI-purE)33 表示lac I 和pur E 间的基因区域(包括这两个基因)被插入到染色体的某个位点。

+ 显型或抗性如果是表示抗性,+也可用r 代替

- 隐型或敏感、无抗性

如果表示对某种抗生素的敏感性,用“-”上标表示。/ 质粒或附加体的缺失()o r [] ()或[]中的基因是缺失或变异所在Φ融合如Φ(ara- lac)表示ara和lac融合成新基因

三、主要的基因型说明

1、基因重组相关的基因型

recA (Recombination)

功能:recA 基因表达ATP 依赖型DNA 重组酶,它在λ-噬菌体与基因组DNA 的溶原重组时起作用,同时具有对DNA 放射性损伤的修复功能。由recA 基因的变异所产生的基因型使同源或异源DNA 的重组不能进行,保持插入DNA 的稳定性,对D NA 的转化有利。一个菌株的基因型如果是recA,则说明此菌株的表现型是重组缺陷的。

recB (Recombination)

功能:recB 基因表达ATP 依赖型DNase 和核酸外切酶V 的一个亚基,对recA 的DNA 重组酶起辅助和促进作用。DNase 催化双链DNA 的解旋和解链,核酸外切

酶V 催化单链DNA 的裂解,在DNA 的重组和损伤修复中发挥重要作用。recB 基因的变异导致其DNA 重组和修复功能丧失,保证了外源DNA 的稳定,有利于DN A 转化。

recC (Recombination)

功能:recC 基因表达四种酶,即核酸外切酶V,ATP 依赖型的核酸内切酶,解旋酶及ATP 酶,它们和recA, recB 所表达的酶相互协调作用,在DNA 的重组及放射性损伤的修复中发挥作用。recC 基因的变异导致DNA 重组功能缺失,保证外源DN

A 的稳定性。

2、甲基化相关的基因型

dam (DNA adenine methylase)

功能:dam 基因表达DNA 腺嘌呤甲基化酶,它能催化特异序列GATC 中A 的甲基化,保证DNA 免受限制性核酸内切酶Mbo I 的切断,同时在DNA 复制时也起一定的辅助作用。dam 基因的变异导致腺嘌呤(A)甲基化酶活性的缺失,使腺嘌呤(A) 不被甲基化,易于获得非甲基化质粒。

dcm (DNA cytosine methylase)

功能:dcm 基因表达DNA 胞嘧啶甲基化酶,它能特异性识别DNA 双链上的CCW GG 序列,并使第二个C 甲基化,即CmCWGG,避免DNA 受到相关限制酶的切断。dcm 基因的变异导致胞嘧啶甲基化酶活性缺失,使外源DNA 上的C 不被甲基化,易于获得非甲基化质粒。

mcrA (Modified cytosine restriction protein a)

功能:mcrA 基因表达大肠杆菌防御体系中起重要作用的mcrA 酶,这种酶能特异性地作用于外来DNA 上的被甲基化的胞嘧啶序列,即C5mCGG 特异序列,使之分解,

对大肠杆菌本身起保护作用。mcr A 基因的变异,导致上述功能缺失,对外来DNA 中被甲基化的胞嘧啶特异序列(C5mCGG)失去作用,有利于限制酶及甲基化酶的克隆体的稳定。

mcrB, C (Methyl cytosine-specific restriction)

功能:mcrB, C 基因表达两种特异性蛋白,即mcrB 蛋白和mcrC 蛋白,它们在大肠杆菌的防御系统中起重要作用。一般情况下,只有这两种蛋白同时存在时才表现出活性,mcrC 具有识别和调节功能,它能特异性的结合到外源DNA 上被甲基化的胞嘧啶(C)的特异序列G5mC 上,然后由mcrB 蛋白切断(mcrB 蛋白是特异性切断外来DNA 中G5mC 序列的限制性核酸内切酶),防御外来DNA 的侵入。mcrB, C 基因的变异,使上述的对外来DNA 的防御作用缺失,对质粒的转化有利。mrr (Methylation requiring restriction)

功能:mrr 基因是大肠杆菌细胞防御系统中重要的基因之一,它能严格限制被甲基化的外源DNA 的介入。另外,它对限制酶Acc I,Cvi R I,Hin f I (Hha II),Nla II,Pst I 以及N6-腺嘌呤甲基化酶和C5-胞嘧啶甲基化酶活性有明显的抑制作用。mrr 欠损株(基因型)可用于含有N6-mA 和C5-mC 的DNA 的转化。另外,含有此基因型的菌株也可用于限制酶和甲基化酶的克隆体。

hsdM (Host specificitive defective)

Map position: 99 min

功能:hsdM 基因所表达的DNA 甲基化酶是I 型限制酶复合体(具有对DNA 切断和修补的双重功能)的一部分,它能使DNA 双链上的AA (双腺嘌呤) 甲基化,保护宿主DNA 不被分解。hsdM 的变异使细胞内的DNA 不被甲基化,易于获得非甲基化质粒。

3、点突变相关的基因型

mutS (Mutator)

功能:mutS 基因表达的蛋白具有识别DNA 上错配序列的功能,并能修复其错配序列(GC →AT),防止基因突变。mutS 基因的变异导致DNA 的错配序列不能得到修复,容易发生基因突变,这对于利用点突变进行基因改造是有利的。

mutT(Mutator)

功能:野生大肠杆菌在进行DNA 复制时,细胞中的8-OXO-dGTP 插入模板DNA

中的DA 位点的效率几乎与插入DC 位点的效率相同,导致A-T 转换成G-C,使D NA 产生变异。而mutT 蛋白就是特异性地降解8-OXO-dGTP 成为单磷酸盐(8-OX O-dGMP),这种单磷酸盐状态的G (鸟嘌呤) 不能作为底物进行DNA 合成,从而防止了上述的基因突变。mutT 基因的变异使细胞中8-OXO-dGTP 浓度增高,A→C 的突变几率增大,有利于利用点突变进行基因改造。

dut (dUTPase)

功能:dut 基因表达脱氧尿嘧啶三磷酸核苷酸水解酶(dUTPase),它能水解dUTP 成为dUMP,使细胞体内dUTP 的浓度维持在较低的水平,尿嘧啶(U)就不易掺入到DNA 中,避免了基因发生A→U 的突变。dut 基因发生突变使dUTPase 活性缺失,导致dUTP 浓度升高,碱基U(尿嘧啶)极易掺入到DNA 中,使其发生A →U 的基因突变,有利于利用点突变进行基因改造。

ung (Uracil DNA glycosylase)

功能:ung 基因表达尿嘧啶-N-糖苷酶,这种酶能特异性识别DNA 单链或双链上发生突变的尿嘧啶残基,并从DNA 上水解去除尿嘧啶残基,防止DNA 发生突变。u ng 基因的变异导致上述功能缺失,有利用点突变。

uvrB (Ultraviolet)

功能:uvrB 基因表达核酸外切酶中的b 亚基,这种核酸外切酶具有DNA 的切补功能,对紫外线损伤的DNA 有修补作用。uvrB 基因的变异使细胞中核酸外切酶切除变异碱基的活性缺失,有利于点突变。

4、核酸内切酶相关的基因型

hsdR (Host specificity defective)

功能:hsdR 基因表达I 型限制酶Eco K (K12 株) 或Eco B (B 株),在大肠杆菌细胞中起到一种“抗体”的作用,对外来的各种DNA 有严格的限制。HsdR 基因的变异导致菌株细胞内的I 型限制酶Eco K 或Eco B 活性缺失,这对于外来基因的导入及质粒转化是有利的。

hsdS (Host specificitive defective)

功能:hsdS 所表达的特异性蛋白是I 型限制酶Eco K 或Eco B 复合体中的一部分,它专门负责hsdR 酶和hsdM 酶对DNA 序列的特异识别。hsdS 基因的变异使h sdR 和hsdM 不能正确识别其作用的特异DNA 序列,可以保持插入DNA 的稳定性。

end A (Endonuclease)

功能:endA 基因表达非特异性核酸内切酶I,它能使所有DNA 双链解开,在DNA 的复制和重组中起重要作用。endA 基因的变异将使插入的外源DNA 更加稳定,提取的质粒纯度更高。

5、停止密码子相关的基因型

supE (Suppressor)

功能:supE 基因表达的阻遏蛋白与停止密码子UAG 结合,使蛋白质合成停止。su pE 基因发生变异时,不能表达正常的阻遏蛋白,即使遇到停止密码子UAG,蛋白质合成仍能继续,并使UAG 作为一个密码子来编码谷氨酰胺(Glutamine),从而使发生了琥珀突变(AAG →UAG)的基因对蛋白质表达得以延续,因此称supE 为琥珀突变抑制因子。

supF (Suppressor)

功能:supF 基因表达的阻遏蛋白与停止密码子UAG 结合,使蛋白质合成停止。su pF 基因变异时,不能表达正常的阻遏蛋白,即使遇到停止密码子UAG,蛋白质合成仍能继续,并使UAG 作为一个密码子编码酪氨酸(Tyrosine)。

6、抗药性相关的基因型

gyrA(Gyrase)

功能:gyrA 基因表达DNA 促旋酶A 亚基。DNA 促旋酶在DNA 复制时具有使D NA 解旋和回旋的作用。萘啶酮酸(Nalidixic acid)、4-喹啉(4-Quinoline)等抗生素抑制DNA 促旋酶的活性是通过与促旋酶复合体(A2B2)中的A 亚基的结合实现的。gyrA 基因的变异使DNA 促旋酶A 亚基不能正常表达,萘啶酮酸和荧光喹啉等失去结合目标,从而使该基因型的菌株具有了对萘啶酮酸(Nalr)和荧光喹啉的抗性。rpsL(Ribosomal protein small subunit)

功能:细胞中的核糖体是蛋白质生物合成的场所,大肠杆菌细胞中的核糖体包含两个亚基,即50S 亚基(23SrRNA、5SrRNA、34 种蛋白质)和30S 亚基[16SrRNA、21 种蛋白质(S1~S21)]。rpsL 基因就是表达核糖体30S 亚基中的S12 蛋白质,S12 蛋白作用于翻译的开始阶段。链霉素(Streptomycin)等抗生素的作用位点就是核糖

体30S 亚基上的S12 蛋白质,正常情况下链霉素与S12 蛋白结合使蛋白质的生物合成不能进行,细胞停止生长。

rpsL 基因的变异使链霉素失去结合位点,从而使该基因型的菌株具有了对链霉素的抗性(Str r)。

Tn5(Transposon)

功能:在原核生物和真核生物基因组中都存在有可移动的DNA 序列,一般称这段序列为转座子或转位基因,转座子上通常带有抗药性基因。Tn5 是载有卡那霉素(Ka namycine)抗性基因的转座子,当Tn5转位到大肠杆菌基因组时,能使此菌株获得卡那霉素的抗性(Km r)。

Tn10(Transposon)

功能:Tn10 是载有四环素(tetracycline)抗性基因的转座子。当Tn10 转位至大肠杆菌基因组时,能使此菌株获得四环素的抗性(Tet r)。

7、能量代谢相关的基因型

lacZ(Lactose)

功能:lacZ 基因是大肠杆菌中lac 操纵子的结构基因,表达β-半乳糖苷酶,分解乳糖为半乳糖苷。β-半乳糖苷酶是由四个相同的亚基组成的,每个亚基又包含两个片断,即α片断和ω片断,只有这两种片断同时存在时,β-半乳糖苷酶才表现出活性。lacZ 基因的变异或缺失将直接导致β-半乳糖苷酶活性缺失,细胞在只有乳糖作为碳源的培养基中不能生长,由此可以进行菌株的筛选和纯化。

lacZ M15(Lactose)

功能:lacZ M15 是表达β-半乳糖苷酶α片断的一段基因,当M15 缺失(△M15)时,lacZ 基因虽然能表达ω片断,但不能表达α片断,β-半乳糖苷酶没有活性。当带有lacZ(α片断)基因的lac 操纵子通过载体DNA(如pUC19 DNA)转化到la cZ△M15 基因型的细胞(如E.coli JM109)时,在有IPTG (异丙基-β-D-1-硫代半乳糖苷) 存在的情况下, β-半乳糖苷酶表现出活性,它能分解X-gal (半乳糖类似物),使其呈现蓝色。因此可以通过平板上的蓝白菌落进行克隆体的鉴定。

lacI q(Lactose)

功能:lacI 是大肠杆菌中lac 操纵子(Operon)的调节基因,它所表达的阻遏蛋白是lac 操纵基因(Operator)的抑制因子,这种阻遏蛋白能与过量的乳糖结合而失去对操纵基因的抑制,使lac 操纵子上的结构基因lacZ(β-半乳糖苷酶)、lacY(透性酶)、lacA(乙酰基转移梅)得以正常表达。IPTG(异丙基-β-D-1-硫代半乳糖苷) 作为乳糖的类似物与lacI 阻遏蛋白结合而使操纵基因不被抑制,因此IPTG 经常作为lac 操纵子的诱导剂而使用。基因型lacI q 是lacI 基因发生变异而使其大量(quantity)的表达阻遏蛋白,从而使lac 操纵基因几乎完全被抑制。利用这种基因型的菌株进行基因表达时,可以使目的基因的表达得到更有效的人为控制。

ara(Arabinose)

功能:ara 基因表达阿拉伯糖代谢所需的各种酶,包括:araA 表达阿拉伯糖异构酶、araB 表达核酮糖激酶、araC 表达阻遏蛋白(起调节作用),araD 表达L-核酮糖-4-磷酸差向异构酶、araE 表达低亲和型L-阿拉伯糖转运蛋白、araF 表达L-阿拉伯糖结合蛋白、araG 表达高亲和性的L-阿拉伯糖转运蛋白。ara 基因的变异,使细胞不能利用阿拉伯糖进行能量代谢,可以利用此特性进行菌株筛选。

mtl(Mannitol)

__功能:mtl 基因包括mtlA、mtlC、mtlD 三种基因。mtlA 表达磷酸转移酶、mtlC

表达阻遏蛋白(起调节作用)、mtlD 表达甘露醇-1-磷酸脱氢酶。mtl 基因的变异使甘露醇代谢不能进行,细胞在以甘露醇作为唯一碳源的培养基中不能生长。

xyl(Xylose)

功能:xyl 基因包含xylA、xylB、xylR 三种基因。xylA 表达D-木糖异构酶、xylB 表达木酮糖激酶、xylR 作为调节基因表达阻遏蛋白。xyl 基因的变异使细胞不能以木糖作为碳源进行能量代谢。

gal(Galactose)

功能:gal 基因表达半乳糖代谢所需的各种酶类及调节蛋白,包括:galE(17 min)表达尿苷二磷酸(UDG)半乳糖-4-差向异构酶、galK(17 min)表达半乳糖激酶、g alP(64 min)表达半乳糖透性酶、galR(62 min)表达半乳糖操纵子的阻遏蛋白、galT(17 min)表达半乳糖-1-磷酸尿苷酰转移酶、galU(27 min)表达葡萄糖-1-磷酸尿苷酰转移酶。大肠杆菌K12 株中通常出现的基因型是galK 和galT,由于这两种基因的变异使细胞不能直接利用半乳糖作为碳源。因此通过在最小培养基中添加半乳糖与否,进行菌株筛选和基因型确认。

srl(Sorbitol)

功能:srl 基因包含srlA、srlC、srlD、srlR 等基因。srlA 表达磷酸转移系统相关的酶(葡萄糖醇-山梨醇透性酶、磷酸转移酶II 等)、srlD 表达山梨醇-6-磷酸-2-脱氢酶、srlC、R 都是调控基因,表达葡萄糖醇操纵子的阻遏蛋白。Srl 基因的变异使细胞对山梨醇的吸收和利用受到阻害,在以山梨醇作为唯一碳源的培养基中,此基因型的菌株不能生长。

8、氨基酸代谢相关的基因型

gpt (Guanine-hypoxanthine phosphoribosyl transferase)

功能:gpt 基因表达鸟嘌呤-次黄嘌呤磷酸核糖转移酶,参与鸟嘌呤代谢。gpt 基因的变异使鸟嘌呤不能生物合成,对菌株筛选有利。

thy A (Thymine)

功能:thyA 基因表达胸苷酸合成酶,参与胸腺嘧啶的代谢。thyA 基因的变异可以利用胸腺嘧啶进行菌株筛选。

asd (Aspartate-semialdehyde dehydrogenase)

功能:asd 基因表达天门冬氨酸半醛脱氢酶,催化如下反应:L 天门冬氨酸-4-半醛+ 磷酸盐+ NADP+ = L-4-磷酸天门冬氨酸+NADPH,此反应是氨基酸共同合成路径的第二步。asd 基因的变异使天门冬氨酸合成受阻,用最小培养基进行细胞培养时,需特别添加天门冬氨酸。

leuB (Leucine)

功能:leuB 基因表达3(β)-异丙基苹果酸脱氢酶,作用于亮氨酸生物合成的第二步,催化反应如下:3-羧基-2-羟基-4-甲基戊烯+ NAD+→3-羧基-4-甲基-2-氧戊烯+ N ADH。leuB 基因的变异导致亮氨酸生物合成受阻,在用最小培养基进行细胞培养时,需特别添加亮氨酸。

__proA (Proline)

功能:proA 基因表达γ-谷氨酸磷酸还原酶,作用于脯氨酸生物合成的第二步,反应如下:L-谷氨酸-5-半醛+ 磷酸+ NADP+→L-γ-谷氨酸-5-磷酸盐+ NADPH 。pro A 基因的变异或缺失,使脯氨酸的生物合成受阻,在用最小培养基培养细胞时需要特别添加脯氨酸。

proB (Proline)

功能:proB 基因表达谷氨酸岩-5-磷酸激酶,它能催化三磷酸盐与谷氨酸盐结合形成谷氨酸-5-磷酸盐,是脯氨酸合成的第一步,反应如下:ATP +L-谷氨酸盐→ADP + L-谷氨酸-5-磷酸。proB 基因的变异或缺失,使脯氨酸合成受阻,在用最小培养基培养时需特别添加脯氨酸。

trpR(Tryptophan)

功能:trpR 基因表达“trp 操纵子”的阻遏蛋白,但这种阻遏蛋白不能单独与操纵子上的操纵基因结合,只有在L-色氨酸存在的情况下,首先与L-色氨酸结合成复合体,然后这个复合体才能与操纵基因相结合,对trp 操纵子起抑制作用。吲哚丙酸盐(I PA)作为L-色氨酸的类似物也能与这种阻遏蛋白结合,但其形成的复合体没有活性,不能与操纵基因结合,因此可以把吲哚丙酸盐(IPA)作为trp 操纵子表达的诱导剂。trpR 基因的变异,使trp 操纵子的阻遏蛋白不能表达,有利于trp 操纵子的蛋白表达。

lys (Lysine)

功能:lys 基因分布于大肠杆菌基因组图的17 ~ 191 min 的5 个位置上,包括lysA (61 min)、lysC (91 min)、lysP (46 min)、lysT (17 min)、lysX (60 min),它们的功能如下:lysA 表达二氨基庚二酸脱羧酶、lysC 表达天冬氨酸激酶、lysP 是调节赖氨酸转运的基因、转录赖氨酸tRNA、lysX 负责赖氨酸排泄。lys 基因的变异使赖氨酸的生物合成不能进行,用最小培养基培养时需额外添加赖氨酸。

metB(Methionine)

功能:metB 基因表达胱硫醚γ-合成酶,催化反应如下:0-琥珀酰-L-高丝氨酸+ L-半胱氨酸→胱硫醚+ 琥珀酸盐,是甲硫氨酸生物合成的第二步。metB 基因的变异使甲硫氨酸的生物合成受阻,用最小培养基培养时需特别添加甲硫氨酸。

cysB (Cysteine)

功能:cysB 基因表达一种阻遏蛋白,对半胱氨酸生物合成所需的各种酶的表达起调节作用。cysB 基因的变异有利于半胱氨酸的生物合成。

thr(Thronine)

功能:thr 包含三种基因,即thrA、thrB 和thrC。thrA 表达天冬氨酸激酶及I-高丝氨酸脱氢酶,thrB 表达高丝氨酸激酶,thrC 表述苏氨酸合成酶。thr 基因的变异使细胞不能合成苏氨酸,用最小培养基培养时需添加苏氨酸。

9、维生素代谢相关的基因型

bioH(Biotin)

功能:bioH 基因所表达的蛋白有两种功能:①催化前生物素到生物素的转化;②对庚二酰CoA(辅酶A)有优先的阻害作用。bioH 基因的变异使细胞不能自身合成生物素,在最小培养基中必须添加生物素,细胞才能正常生长。

thi(Thiamin)

功能:thi 基因包含有thiA、thiB、thiC、thiD、thiK、thiL 等。thiA 表达硫氨素噻唑转运蛋白、thiB 表达硫氨素磷酸盐焦磷酸化酶、thiC 表达硫氨素嘧啶转运蛋

白、thiD 表达磷酸甲基化嘧啶激酶、thiK 表达硫氨素激酶、thiL 表达硫氨素甲磷酸激酶。thi 的变异使硫氨素的生物合成不能进行,最小培养基中必须添加硫氨素(V B1),细胞才能正常生长。

10、蛋白酶相关的基因型

lon(long form)

功能:lon 基因表达ATP 依赖型蛋白分解酶(La),它对外源的异型蛋白质具有特异性的分解作用。lon 基因的变异或缺失,使细胞中的这种异型蛋白质分解酶不能得到表达,这对于保持克隆体目的蛋白的稳定是非常有利的。

ompT(Outer membrane protein)

功能:ompT 基因表达特异性的外膜蛋白分解酶,它特异性地分解与细胞膜结合的含铁肠菌素受体蛋白。ompT 基因的变异使膜结合性蛋白分解酶活性缺失,有利于融合蛋白的表达。

11、物质转运结合相关的基因型

tonA(Transport)=fhuA(Ferric hydroxamateuptake)

功能:tonA 和fhuA 基因处于基因组图同一位点,它们的作用也相同,都是表达外膜受体蛋白。这种受体蛋白与铁络合物结合,并与tonB 蛋白相互协调作用,把铁化合物运至细胞质中。另外tonA、B 受体蛋白还能与大肠杆菌素M、噬菌体T1、T 5、φ80 等进行不可逆结合,而使细胞具有一定的抗菌作用。tonA 和fhuA 基因的变异使细胞对铁离子的吸收受到阻害,同时使细胞对某些抗菌素及噬菌体更敏感,有利于质粒转化和菌体筛选。

tsx(T-six)

功能:tsx 基因表达T6 噬菌体和大肠杆菌素K 的受体蛋白,它结合于细胞膜的外表面,对T6 噬菌体和大肠杆菌素K 进入细胞起关键作用。另外tsx 受体蛋白还有与核苷酸特异性结合的功能,是核苷酸特异性运输通道的第一步,在核苷酸的吸收方面也起重要作用。tsx 基因的变异使外界某些噬菌体及大肠杆菌素等对细胞的侵噬变得困难,有利于细胞基因组的稳定。

cysA (Cysteine)

功能:cysA 基因表达硫酸盐/硫代硫酸盐转移蛋白,参与细胞对硫酸盐的吸收与转运,通过cysA 蛋白转运的硫酸盐将参与半胱氨酸的生物合成。cysA 基因的变异使半胱氨酸的生物合成受到影响,在培养此基因型的菌株时要注意添加半胱氨酸。

12、其他

deoR (Deoxyribose)

__功能:deoR 是大肠杆菌中deo 操纵子的调节基因,它表达的阻遏蛋白对deo 操纵子具有重要的调控作用。deo 操纵子位于大肠杆菌基因图谱100 min 的位置,它含有deoA、deoB、deoC 和deoD 等结构基因,分别表达DNA 代谢所需的酶类,即胸腺嘧啶磷酸化酶、磷酸转位酶、脱氧核糖磷酸醛缩酶和嘌呤核苷磷酸化酶。deoR 基因的变异,使deo 操纵子的阻遏蛋白不能表达,宿主细胞合成大量的dCTP,可以选择性地改善大分子DNA 的转化。

traD(Transmissibility)

功能:traD 基因不属于大肠杆菌基因组DNA 范围,它是存在于F 因子上的一段基因。traD基因在大肠杆菌的结合及F 因子的传递方面发挥作用。traD 基因的变异使大肠杆菌细胞虽然能够结合,但F 因子不能在细胞间发生转移,从而保证了宿主细胞和导入质粒的稳定性。

hflC(High frequence of lysogenization)

功能:hflC 基因表达一种高效溶原蛋白,它能使λ-噬菌体侵入大肠杆菌细胞后与基因组DNA 发生溶原反应,导致噬菌体DNA 插入到细胞基因组DNA 中。hflC 基因的变异能避免上述的溶原反应,可以保持宿主基因组及插入质粒的稳定。

minA、B (Minicell)

功能:minA、B 基因是促进微细胞(不含DNA) 形成的相关基因。minA、B 基因的变异阻害了微细胞的形成,可以提高克隆体的表达效率。

relA(Relaxed)

功能:relA 是松弛调节基因,对RNA 的合成具有调节抑制作用。同时relA 基因还表达ATP:GTP3'-焦磷酸转移酶,负责在氨基酸饥饿状态下鸟苷3',5'-二磷酸(ppGp p) 的合成,以适应饥饿环境。relA 基因的变异对目的基因的转录有利。

glnV(Glutamine)

功能:glnV 基因专门负责转录谷氨酸tRNA(转运RNA),glnV 基因的变异使以谷氨酸为主的蛋白质的合成受到阻害。

tyrT(Tyrosine)

功能:tyrT 基因专门负责转录酪氨酸tRNA(转运RNA),tyrT 基因的变异使以酪氨酸为主的蛋白质的合成受阻

使用时注意:

●基因工程中,经常使用的大肠杆菌几乎都来自于K-12 菌株,最近也经常使用由B 株及C株来源的大肠杆菌。

●大肠杆菌B 株原来就为lon-,另外MV1184 株不具有琥珀抑制基因(Amber sup perssor free),由于这些都是原始菌株所不具备的基因,因此不在基因型中加以表示,要注意。

可以试试下个网站

大肠杆菌基因组数据库(ECDC) http://susi.bio.uni-giessen.de/

大肠杆菌基因型及遗传符号说明系列一DXY

大肠杆菌基因型及遗传符号说明系列一 点击次数:982 作者:佚名发表于:2009-09-27 00:00转载请注明来自丁香园 来源:丁香园 实验室的一般大肠杆菌拥有4288条基因,每条基因的长度约为950bp,基因间的平均间隔为118bp (基因Ⅷ)。E.coli基因组中还包含有许多插入序列,如λ-噬菌体片段和一些其他特殊组份的片段,这些插入的片段都是由基因的水平转移和基因重组而形成的,由此表明了基因组具有它的可塑造性。 利用大肠杆菌基因组的这种特性对其进行改造,使其中的某些基因发生突变或缺失,从而给大肠杆菌带来可以观察到的变化,这种能观察到的特征叫做大肠杆菌的表现型(Phenotype),把引起这种变化的基因构成叫做大肠杆菌的基因型(Genotype)。具有不同基因型的菌株表现出不同的特性。 分子克隆中常用的大肠杆菌及其遗传标记按Demerec等1966年提出的命名原则,采用的菌株所有的基因都假定处于野生型状态,除非在基因型上另外注明。 大肠杆菌基因型的表示方法(Demerec, et, al. 1966): 一、一般规则: 1、根据基因产物或其作用产物的英文名称的第一个字母缩写成3个小写斜体字母来表示。例如:D NA Adenine Methylase→dam。 2、不同的基因座,其中任何一个突变所产生的表型变化可能相同,其表示方法是在3个小写斜体字母后加上一个斜体大写字母来表示区别。例如:Recombination→recA、recB、recC。 3、突变位点应通过在突变基因符号后加不同数字表示。如supE44(sup基因座E的44位突变)。

如果不知道几个等位基因中哪一/几个发生了功能性突变,则用连字符“ -”代替大写字母,如trp-31。 4、细菌的基因型中应该包含关于其携带的质粒或附加体的的信息。这些符号包括菌株携带的质粒或附加体、质粒或附加体上的突变基因座和突变位点。其基因符号应与基因座的表示符号明显区别,符号的第一个字母大写、不斜体并位于括号内;质粒或附加体上的突变基因座和突变位点的基因符号的表示方法与染色体上突变基因座、突变位点的符号相同。 5、对于携带附加体的菌株的完整基因型描述应包括附加体的状态(游离或整合)。以F因子为例,F-:F因子缺失;F+:自主性F因子,不携带任何遗传可识别染色体片段;F':携带有遗传可识别细菌染色体片段的自主性F因子;Hfr:整合到染色体上的F因子(high frequency of recombination)。当这些质粒或噬菌体片段变异或缺失时,用()“或”/“等以区别。例如:/F' [traD3 6、proAB、lac I q、lacZ. M 15] 6、某个基因或某个领域缺失时,在其基因型前面加上“ ”表示。例如:lac-proAB基因缺失时它的基因型表示为(lac-proAB)。 7、由于某种基因的变异导致大肠杆菌可以明显观察到特征变化,有时也用其表现型代替基因型进行表示。例如:某些抗药性的获得或丧失,用如下方式表示:Streptomycin抗性→Str +或Str r,Ampicilli n敏感性→ Amp-。(第一个字母要大写,“+”或“r”表示有抗性,“-”表示无抗性或敏感)。 8、根据某些特异性蛋白的变异及其导致的结果变化进行表示。例如:TH2菌株上有一种基因型表示如下:hsdS20 (rB-、mB-),其中S20代表特异性识别蛋白发生变异,()中的rB-、mB-表示由于 S20的变异而导致B株来源的hsdR和hsdM的功能缺失。 9、蛋白质的名称与对应的基因或等位基因相同,但不用斜体,且首字母大写,如,UvrA、UvrB。 二、基因符号和意义(见表1)

大肠杆菌的基因型 Takara公司

,-*+ .1/0 2TVOVSV INRTKJMQRPRLU JHTHPRL RQPNQK3X``]GFFaaaE`VYV_VEW\ZEW[cbegdfih u u @=47>< :9?\JA6_3w uqz -*~x Jv Ih EKB ^O A 2ms 4t u s ^t /c O 46msnt /c|46u E `lr >z c 1H /r H6E ~J.H w N G [J *i.p ,5/c r 9U {OH :3a Z OA_v I3/cU~{y *wshf 2~m D q {m D 3y N ^shf C/r H6_0E ~U \.H y kl ^J ~m D q {m D /c NP N:8J.H TG [C a 6T J }0{w l }0{v Je KS]r `M ^cG { v I d9^y .5`M JA6_3ynO 6fP I69:3a y i -@.5`MN C a w D a 6T JA6_3r A6_3C aS 60y *-,6y @w JP99@cG r ~xvl 2MUS\ZRX[Q`X\[3 JQ]]\_X`X\[A =@ZX[ e K {/|zr v I /@BOL B 73EKB `h A y q U |6e3s Q v Ih EKB J T S`h ^O kM y u^2O R EKB Y [6mY J 7]e K r N /|zr v I J.H o 4\Jv I3`u T u HT EKB J `h 1K,5y +:2V EKB J {N 6y R EKB J d p O 8r ~xvm 2MUS\ZRX[Q`X\[3 JQ]]\_X`X\[A >9ZX[ e K {/|zs v I /@BOL B 73EKQ_U lk lwQA P J A a ;v y R /|zr J EKB `h AO \b l>,k M r EKQ_U ?p h;EKB J +:l +;y k lwQA P ?pD ;EKB J >+y U EKB J `h l mY 7]^Ur `>kM r /|zs v I J.H G [N EKB `h l 7]e KX]y +Y 9ZX[ e K {/|zt v I /@j _A y xk lwQA P y BOL B 73Jk lJQA y +:A w BOL A y qB l /|zr 5/|zs o /@J A .o 0M kM y U EKB J `h wY [6mY J 7]^Ur kM r /|zt v I J.H G [EKB `h e KS]y +Y w T EKB J {N 6r 876;547>< wu{2EKB QTU[X[U ZU`WbYQ_U3 JQ]]\_X`X\[A ?

基因在大肠杆菌、酵母中的高效的表达技巧

第四章基因在大肠杆菌、酵母中的高效的表达 前言 基因表达是指结构基因在生物体中的转录、翻译以及所有加工过程。 基因工程主要目标之一是生产常规方法难以生产的大量蛋白质产物—即实现基因的高效表达。 基因高效表达研究是指外源基因在某种细胞中的表达活动,即剪切下外源基因片段,拼接到另一个基因表达体系中,使其能获得原生物活性又可高产的表达产物。 第一节基因的表达系统与表达策略 一、最佳的基因表达体系: ⑴目的基因的表达产量高; ⑵表达产物稳定; ⑶生物活性高; ⑷表达产物容易分离纯化。 二、宿主细胞的选择 (一)适合目的基因表达的宿主细胞的要求: 1、容易获得较高浓度的细胞; 2、能利用易得廉价原料; 3、不致病、不产生内毒素; 4、发热量低、需氧低、适当的发酵温度和细胞形态; 5、容易进行代谢调控; 6、容易进行DNA重组技术操作; 7、产物的产量、产率高, 8、产物容易提取纯化。 (二)宿主细胞分为两大类: 1、原核细胞:常用有大肠杆菌、枯草芽胞杆菌、链霉菌等; 2、真核细胞:常用有酵母、丝状真菌、哺乳动物细胞等。 大肠杆菌目前仍是基因工程研究中采用最多的原核表达体系。 优越性: ①对大肠杆菌的基础生物学、分子遗传学等背景知识和基因表达的调控机理已有了深刻了解。 ②有各类菌株和载体系列。 ③目前以实现多种基因的高效表达。表达基因产物形式多样:细胞内不溶性表达(包含体)、细胞内可溶性表达、细胞周质表达等。 ④易培养,成本低。 缺点: ①大肠杆菌中的表达不存在信号肽,产品多为胞内产物,提取困难。 ②因分泌能力不足,真核蛋白质常形成不溶性的包含体,表达产物需经变性复性才恢复活性。

大肠杆菌的基因型

[Z]_\^a` 7T B9.W +o mirzwv p Bn A`=C:VG 470p YunJ o JU dq B b 4288Yn A j mirzwv n A`V i w b G 0K*N 15q M t .]+kD Hd 9|Fhj_`SB D H q O |*N B D HG \F n A B aE \;dn AX`L ,0B q F 4|>4n A`*G i B -c N.j 0E 9.W +n A`B OW j .J F y -V N q XF V B @|n A M Tn {m KU q 5LZ9.W +:.-<_+@B {h q OW C _+@B j P v b 9.W +B |x +c DOMSTXZUM+qu B G OW {hBn A ^0v b 9.W +Bn A+o ?MSTXZUM dj *G ~m n A+B +Y |x 3~m B j .j O |~m n A+j .B +YM n A \1B 4|d T ,V *G `OB DE t R j 9.W +n A+B |[PN G Mv q W s 1r [~n A ,u m F cE ,u B C r?/BD 9Y _Af *0O Y ~k _A.|[j 1M s =C::LMSPSM BMXOZQIWM n oms j 2r{@n A ~m q ?S Bwa {mV q E F cE waB C r?/B HO Y _A~k er R 9Y9*_A.|[J }j 1M s EMKTRJPSIXPTS n vpnd i vpne i vpnf j 3r @Yn A m @Y 7J KUV q M F n A+HA]o U 2p d ]+k *ND H q >O |U 2m ]+kD H {@m KUV q E kc dl m k /l C h\g xvmgac i uvtde i rmn i V i rmnlyj_b hj 5r FH @W n A B {@?S 9.W +-<>w _+@j P {h q G V 8E F |x +;l n A+y -|[j 1M s @|,5.BlAm PU q E Mv P Z |[s FXVMUXTRZKPS ,.n kxv ;m kxv W q :RUPKPQQPS =X .n dsu H lARsnh U 2j

植物基因在大肠杆菌中的原核表达

植物基因在大肠杆菌中的原核表达 通过大肠杆菌表达目的基因大量获得重组蛋白是一个方便快捷的方法。植物中克隆的目的基因被克隆到特异设计的质粒载体上,受噬菌体T7强启动子控制;表达由宿主细胞提供的T7 RNA聚合酶诱导。 当需要表达蛋白时,在细菌培养基中加入IPTG来启动表达。不同载体在邻近克隆位点处具有编码不同的多肽“标签”的序列,在定位、检测或纯化目的蛋白时提供方便。 以pET-32a(+)为例,介绍将目的基因克隆进载体并进行表达获得重组蛋白的过程,从而熟悉根据自己的要求采用不同的载体进行原核表达的全过程。 1.准备工作(试剂配置和器材准备) 1)操作流程示意图 主要步骤操作 ①制备pET-32a(+)载体用限制性酶消化,去磷酸化后胶纯化回收 ②制备插入DNA PCR装入质粒后进行限制性消化,再回收 ③插入片段克隆到pET-32a(+)载体插入片段与pET连接,转化 ④转化表达宿主菌BL21 转化带有T7RNA聚合酶基因的菌株 ⑤诱导表达目的蛋白 SDS-PAGE,Western 印迹、定量分析确定目的蛋白 ⑥放大试验纯化目的蛋白放大试验,制备粗提物,亲和纯化,切除融合标签 2)配制生长培养基如LB,和100mM IPTG,50μg/ml 卡那霉素存储液。 3)宿主菌的保存。长期存放菌株和pET重组子应保存于甘油中。 4)感受态细胞的制备,参照其它试验手册。 2.操作步骤 [1] 制备载体 1)载体消化和胶纯化 3μg pET载体 3μl 10×限制性内切酶buffer 10-20U 两种酶(是否共用buffer; 酶体积不要超过反应体系的10%) 3μl 1mg/ml乙酰BSA(根据需要 补足水到30μl

大肠杆菌基因型列表111

A listed gene name means that gene carries a loss of function mutation, a Δ preceding a gene name means the gene is deleted. If a gene is not listed, it is not known to be mutated. Prophages present in wt K-12 strains (F, λ, e14, rac) are listed only if ab sent. E. coli B strains are naturally lon- and dcm-. F- = Does not carry the F plasmid F+ = Carries the F plasmid. The cell is able to mate with F- through conjugation. F'[ ] = Carries an F plasmid that has host chromosomal genes on it from a previous recombination event. This cell can also mate with F- through conjugation. Chromosomal genes carried in the F plasmid are listed in brackets. rB/K+/- = The (B/K) defines the strain lineage. The +/- indicates whether the strain has or hasn't got the restriction system. mB/K+/- = The (B/K) defines the strain lineage. The +/- indicates whether the strain has or hasn't got the modification (methylation) system. hsdS = Both restriction and methylation of certain sequences is deleted from the strain. If you transform DNA from such a strain into a wild type strain, it will be degraded. hsdR = For efficient transformation of cloned unmethylated DNA from PCR amplifications INV( ) = chromosomal inversion between locations indicated ahpC = mutation to alkyl hydroperoxide reductase conferring disulfide reductase activity ara-14 = cannot metabolize arabinose araD = mutation in L-ribulose-phosphate 4-epimerase blocks arabinose metabolism cycA = mutation in alanine transporter; cannot use alanine as a carbon source dapD = mutation in succinyl diaminopimelate aminotransferase leads to succinate or (lysine + methionine) requirement Δ( ) = chromosomal deletion of genes between the listed genes (may include unlisted genes!) dam = adenine methylation at GATC sequences abolished; high recombination efficiency; DNA repair turned on dcm = cytosine methylation at second C of CCWGG sites abolished deoR = regulatory gene that allows constitutive expression of deoxyribose synthesis genes; permits uptake of large plasmids. See Hanahan D, US Patent 4,851,348. ***This has been called into question, as the DH10B genome sequence revealed that it is deoR+. See Durfee08, PMID 18245285. dnaJ = one of the chaparonins inactivated; stabilizes some mutant proteins dut1 = dUTPase activity abolished, leading to increased dUTP concentrations, allowing uracil instead of thymine incorporation in DNA. Stable U incorporation requires ung gene mutation as well. endA1 = For cleaner preparations of DNA and better results in downstream applications due to the elimination of non-specific digestion by Endonuclease I (e14) = excisable prophage like element containing mcrA gene; present in K-12 but missing in many other strains galE = mutations are associated with high competence, increased resistance to phage P1 infection, and 2-deoxygalactose resistance. galE mutations block the production of UDP-galactose, resulting in truncation of LPS glycans to the minimal, "inner core". The exceptional competence of DH10B/TOP10 is thought to be a result of a reduced interference from LPS in the binding and/or

常用大肠杆菌及其基因型

Commonly used strains https://www.wendangku.net/doc/a62267431.html,/wiki/E._coli_genotypes 1.AG1 endA1 recA1 gyrA96 thi-1 relA1 glnV44 hsdR17(r K - m K +) 2.AB1157 thr-1, araC14, leuB6(Am), Δ(gpt-proA)62, lacY1, tsx-33, qsr'-0, glnV44(AS), galK2(Oc), LAM-, Rac-0, hisG4(Oc), rfbC1, mgl-51, rpoS396(Am), rpsL31(strR), kdgK51, xylA5, mtl-1, argE3(Oc), thi-1?Bachmann BJ: Derivation and genotypes of some mutant derivatives of Escherichia coli K-12. Escherichia coli and Salmonella typhimurium. Cellular and Molecular Biology (Edited by: F C Neidhardt J L Ingraham KB Low B Magasanik M Schaechter H E Umbarger). Washington, D.C., American Society for Microbiology 1987, 2:1190-1219. See CGSC#1157 3.BL21 E. coli B F- dcm ompT hsdS(r B - m B -) gal [malB+] K-12 (λS) ?The "malB region" was transduced in from the K-12 strain W3110 to make the strain Mal+λS. See Studier et al. (2009) J. Mol. Biol. 394(4), 653 for a discussion of the extent of the transfer. ?Stratagene E. coli Genotype Strains 4.BL21(AI) F– ompT gal dcm lon hsdS B (r B - m B -) araB::T7RNAP-tetA ?an E. coli B strain carrying the T7 RNA polymerase gene in the araB locus of the araBAD operon q. ?Transformed plasmids containing T7 promoter driven expression are repressed until L-arabinose induction of T7 RNA polymerase.

外源基因在大肠杆菌中表达简略实验步骤

目的基因在大肠杆菌中的诱导表达 一般程序如下:获得目的基因-准备表达载体-将目的基因插入表达载体中(测序验证)-转化表达宿主菌-诱导靶蛋白的表达-表达蛋白的分析-扩增、纯化、进一步检测。 [主要试剂] 1、LB培养基。 2、100mM IPTG(异丙基硫代-β-D-半乳糖苷):2.38g IPTG溶于100ml ddH2O 中,0.22μm滤膜抽滤,-20℃保存。 [操作步骤] 1、通过PCR方法获得目的基因:以含目的基因的克隆质粒为模板,按基因序列设计一对引物(在上游和下游引物分别引入不同的酶切位点,本实验中为BamHⅠ和HiindⅢ),PCR循环获得所需基因片段。 PCR反应体系为: 模板(含R基因的重组质粒)1μl 上游引物PR11μl 下游引物1μl dNTP(2.5mmol/L)5μl 10×PCR buffer(含Mg2+)10μl Taq酶1μl ddH2O补至100μl PCR反应条件为:94℃变性3min;94℃变性3min、52℃复性40sec、72℃延伸1min,30个循环;最后72℃延伸8min。 2、构建重组表达载体 (1)载体酶切:将表达质粒pRSETA用限制性内切酶(同引物的酶切位点)

进行双酶切,酶切产物行琼脂糖电泳后,用凝胶回收Kit或冻融法回收载体大片段。 (2)R基因PCR产物双酶切后回收,在T4 DNA连接酶作用下连接入载体。连接反应体系为: pRSETA1μl R基因片段3μl T4 DNA连接酶(5U/μl)1μl 5×buffer2μl ddH2O补至10μl 3、获得含重组表达质粒的表达菌种 (1)将连接产物转化大肠杆菌DH5α,根据重组载体的标志(抗Amp)作筛选,挑取单斑,碱裂解法小量抽提质粒,双酶切初步鉴定。 (2)测序验证目的基因的插入方向及阅读框架均正确,进入下步操作。否则应筛选更多克隆,重复亚克隆或亚克隆至不同酶切位点。 (3)以此重组质粒DNA转化表达宿主菌BL21(DE3)的感受态细胞。 4、诱导表达 1、挑取含重组质粒的菌体单斑至2ml LB(含Amp50μg/ml)中37℃过夜培养。 2、按1∶100比例稀释过夜菌,一般将1ml菌加入到含100mlLB培养基的300ml 培养瓶中, 37℃震荡培养至OD600≌0.5-0.8(最好0.6,大约需3hr)。 3、取部分液体作为未诱导的对照组,余下的加入IPTG诱导剂至终浓度1mM 作为实验组,两组继续于37℃、200rpm震荡培养3hr。 4、分别取菌体1ml,,离心12000g×30s收获沉淀,用100μl 1%SDS重悬,混匀,70℃10min。 5、离心12000g×1min,取上清作为样品,可做SDS-PAGE等分析。 6 5500rpm 15min 收集细胞

E.coli genotypes 大肠杆菌基因型手册

From OpenWetWare 1 Nomenclature & Abbreviations 2 Methylation Issues in E. coli 3 Commonly used strains 3.1 AG1 3.2 AB1157 3.3 BL21(AI) 3.4 BL21(DE3) 3.5 BL21 (DE3) pLysS 3.6 BNN93 3.7 BW26434, CGSC Strain # 7658 3.8 C600 3.9 C600 hflA150 (Y1073, BNN102) 3.10 CSH50 3.11 D1210 3.12 DB3.1 3.13 DH1 3.14 DH5α 3.15 DH10B (Invitrogen) 3.16 DH12S (Invitrogen) 3.17 DM1 (Invitrogen) 3.18 ER2566 (NEB) 3.19 ER2267 (NEB) 3.20 HB101 3.21 HMS174(DE3) 3.22 IJ1126 3.23 IJ1127 3.24 JM83 3.25 JM101 3.26 JM103 3.27 JM105 3.28 JM106 3.29 JM107 3.30 JM108 3.31 JM109 3.32 JM109(DE3) 3.33 JM110 3.34 JM2.300 3.35 LE392 3.36 Mach1 3.37 MC1061 3.38 MC4100 3.39 MG1655 3.40 OmniMAX2

3.41 Rosetta(DE3)pLysS 3.42 Rosetta-gami(DE3)pLysS 3.43 RR13.44 STBL2 (Invitrogen)3.45 STBL43.46 SURE (Stratagene)3.47 SURE2 (Stratagene)3.48 TOP10 (Invitrogen)3.49 Top10F' (Invitrogen)3.50 W31103.51 XL1-Blue (Stratagene)3.52 XL2-Blue (Stratagene)3.53 XL2-Blue MRF' (Stratagene)3.54 XL1-Red (Stratagene)3.55 XL10-Gold (Stratagene)3.56 XL10-Gold KanR (Stratagene)4 Other genotype information sources 5 References A listed gene name means that gene carries a loss of function mutation, a Δ preceding a gene name means the gene is deleted. If a gene is not listed, it is not known to be mutated. Prophages present in wt K-12 strains (F, λ, e14, rac) are listed only if absent. E. coli B strains are naturally lon- and dcm-. F - = Does not carry the F plasmid F + = Carries the F plasmid. The cell is able to mate with F - through conjugation. F'[ ] = Carries an F plasmid that has host chromosomal genes on it from a previous recombination event. This cell can also mate with F - through conjugation. Chromosomal genes carried in the F plasmid are listed in brackets. r B/K +/- = The (B/K) defines the strain lineage. The +/- indicates whether the strain has or hasn't got the restriction system. m B/K +/- = The (B/K) defines the strain lineage. The +/- indicates whether the strain has or hasn't got the modification (methylation) system. hsdS = Both restriction and methylation of certain sequences is deleted from the strain. If you transform DNA from such a strain into a wild type strain, it will be degraded. hsdR = For efficient transformation of cloned unmethylated DNA from PCR amplifications INV( ) = chromosomal inversion between locations indicated ahpC = mutation to alkyl hydroperoxide reductase conferring disulfide reductase activity ara-14 = cannot metabolize arabinose araD = mutation in L-ribulose-phosphate 4-epimerase blocks arabinose metabolism cycA = mutation in alanine transporter; cannot use alanine as a carbon source dapD = mutation in succinyl diaminopimelate aminotransferase leads to succinate or (lysine +methionine) requirement Δ( ) = chromosomal deletion of genes between the listed genes (may include unlisted genes!)dam = adenine methylation at GATC sequences abolished; high recombination efficiency; DNA repair turned on dcm = cytosine methylation at second C of CCWGG sites abolished 通常dam/dcm都是默认的,无需标注,只有dam -、dcm -才有必要标出来,那是被迫使用某些酶切位点时才用来扩增质粒的特殊菌株。

真核基因在大肠杆菌中的表达形式

真核基因在大肠杆菌中的表达形式 大肠杆菌被内膜和外膜隔成3个腔:胞内、周质和胞外,表达的蛋白定位于这3个腔内。真核基因在大肠杆菌的表达形式根据表达产物的定位一般可分为两类:胞内表达和蛋白分泌表达。胞内表达是最主要的表达形式,表达产物以可溶性蛋白和/或不溶性的包涵体形式存在于大肠杆菌细胞内。而根据表达产物本身的性质又分为融合表达和非融合表达。 一、胞内表达 1、非融合表达 非融合表达即直接表达天然蛋白,所表达的真核生物蛋白肽链的N端不含有任何原核肽段。真核基因通常缺乏能被原核生物的转录和翻译系统识别的序列,包括启动子、有效地核糖体结合位点,有时还缺乏ATG起始密码子和转录终止子,因此必须插入带有这些调控序列的表达载体方能表达。 有时,非融合表达不能产生目的蛋白,尤其是目的蛋白的氨基酸含有甲硫氨酸时。由于甲硫氨酸是由ATG编码的,在大肠杆菌中,氨基端的甲硫氨酸会被不同程度地去除。此外,非融合蛋白易被宿主蛋白酶破坏,产生无活性的蛋白,这是影响表达效率的重要因素。克服的方法有:①采用Ion-营养缺陷型宿主。大肠杆菌蛋白酶的合成主要依赖于黄嘌呤核苷(Ion),用Ion-宿主,使蛋白酶不能合成,从而保护真核蛋白;②克隆Pin基因。T4噬菌体Pin基因产物为细菌蛋白酶抑制剂,将Pin基因克隆到质粒上,并转化大肠杆菌,可保护真核蛋白。 2、融合表达 融合表达即表达的真核蛋白肽链N端含原核生物肽段,融合表达的方法是将真核基因插入启动子后已证实能高效表达的原核结构基因的下游,以产生融合蛋白的方式表达目的基因。由于融合基因5'端为表达载体中的原核基因序列,已优化的翻译起始区的二级结构不受插入外源基因的干扰,因此,融合表达的效率高。需要注意的是,插入基因的转录方向和阅读框架必须与原核片段的阅读框架相吻合,不能产生移码,否则不能表达。 融合蛋白需经处理后方能释放出真核蛋白,常用的后处理方法有溴化氰和蛋白酶裂解,这就要求融合蛋白在其原核肽段与目的蛋白间应含有能被溴化氰和蛋白酶裂解的序列,而且目的蛋白内部不能含有溴化氰和蛋白酶切割位点。溴化氰能切割蛋氨酸残基后的肽键;牛凝血因子X用Russel蝰蛇毒液活化成因子X a后,能在四肽序列Ile-Glu-Gly-Arg中的精氨酸(Arg)后特异地切割肽链;凝血酶(thrombin)也能识别和切割特定的肽序列,这些

大肠杆菌基因工程菌常用类型

1、大肠杆菌DH5a菌株 DH5a是世界上最常用的基因工程菌株之一。由于DH5α是DNA酶缺陷型菌株,有利于基因克隆,保存质粒,但该菌株的蛋白酶没有缺陷,表达的蛋白容易被降解,因此通常不作为表达菌株。E.coli DH5a在使用pUC系列质粒载体转化时,可与载体编码的β-半乳糖苷酶氨基端实现α-互补。可用于蓝白斑筛选鉴别重组菌株。 基因型:F-,φ80dlacZΔM15,Δ(lacZYA-argF)U169,deoR,recA1,endA1,hsdR17(rk-,mk+),phoA,supE44,λ-,thi-1,gyrA96,relA1 2、大肠杆菌BL21(DE3) 菌株 该菌株用于高效表达克隆于含有噬菌体T7启动子的表达载体(如pET系列)的基因。T7噬菌体RNA聚合酶位于λ噬菌体DE3区,该区整合于BL21的染色体上。该菌适合表达非毒性蛋白。 基因型:F-,ompT,hsdS(rBB-mB-),gal,dcm(DE3) 3、大肠杆菌BL21(DE3) pLysS菌株 该菌株含有质粒pLysS,因此具有氯霉素抗性。PLysS含有表达T7溶菌酶的基因,能够降低目的基因的背景表达水平,但不干扰目的蛋白的表达。该菌适合表达毒性蛋白和非毒性蛋白。 基因型:F-,ompThsdS(rBB-mB-),gal,dcm(DE3,pLysS,Camr 4、大肠杆菌JM109菌株 该菌株在使用pUC系列质粒载体进行DNA转化或用M13 phage载体进行转染时,由于载体DNA产生的LacZa多肽和JM09编码的LacZΔM15进行α-互补,从而显示β-半乳糖苷酶活性,由此很容易鉴别重组体菌株。 基因型:recA1,endA1,gyrA96,thi-1,hsdR17,supE44,relA1,Δ(lac-proAB)/F’[traD36,proAB+,lacIq,lacZΔM15] 5、大肠杆菌TOP10菌株 该菌株适用于高效的DNA克隆和质粒扩增,能保证高拷贝质粒的稳定遗传。 基因型:F- ,mcrAΔ(mrr-hsd RMS-mcrBC),φ80 ,lacZΔM15,△lacⅩ74,recA1 ,araΔ139Δ(ara-leu)7697,galU,galK,rps,(Strr) endA1,nupG 6、大肠杆菌HB101菌株 该菌株遗传性能稳定,使用方便,适用于各种基因重组实验。 基因型:supE44,hsdS20(rB-mB-),recA13,ara-14,proA2,lacY1,galK2,rpsL20,xyl-5,mtl-1,leuB6,thi-1 7.XL10-Gold菌株:所制备的感受态细胞是目前转化效率最高的感受态细胞,缺失几乎所有已知的限制酶切系统;同时缺失核酸内切酶(endA),提高了质粒DNA的产量和质量;重组酶缺陷型(recA)减少插入片段的同源重组概率,保证了插入DNA的稳定性,提高感受态转化效率及大质粒转化能力的宿主菌基因型。

相关文档
相关文档 最新文档