文档库 最新最全的文档下载
当前位置:文档库 › 2020届高考艺术生物理复习专题二第1讲 功和功率、动能定理

2020届高考艺术生物理复习专题二第1讲 功和功率、动能定理

2020届高考艺术生物理复习专题二第1讲 功和功率、动能定理
2020届高考艺术生物理复习专题二第1讲 功和功率、动能定理

第1讲功和功率、动能定理

三年考情分析高考命题规律

三年考题考查内容核心素养 1.功和功率是高考的必考内容,主要从

变力做功、瞬时功率和平均功率等方面

进行考查.动能定理在直线运动、曲线

运动、恒力做功、变力做功等各种情况

中都可适用,是高考命题的热点.

2.在2020年高考中,对动能定理及机车

启动模型的考查仍是热点,其考查方式

可能会有以下几种:一是在选择题中对

动能定理的应用进行简单考查;二是在

选择题中结合图像对动能定理进行考

查;三是在计算题中的某一过程中对动

能定理进行考查;四是在带电粒子在电

场中的运动过程中对动能定理进行考

查;五是对功和功率的考查有可能结合

新能源科技(如电动汽车)进行考查.

2019

Ⅱ卷25T动能定理科学思维

Ⅲ卷17T动能定理物理观念

2018

Ⅰ卷18T动能定理科学思维

Ⅱ卷14T动能定理

能量观念、

科学推理

Ⅲ卷19T功、功率科学思维

Ⅲ卷25T动能定理科学思维

2017

Ⅱ卷14T功科学思维

Ⅱ卷24T动能定理科学思维

Ⅲ卷16T功物理观念

考向一功和功率的理解和计算

[知识必备]——提核心通技法

1.恒力做功的公式

W=Fl cos α(通过F与l间的夹角α判断F是否做功及做功的正、负).

2.功率

(1)平均功率:P=

W

t=F v cos α.

(2)瞬时功率:P=F v cos α(α为F与v的夹角).

[跟进题组]——练考题提能力

1.(2018·全国卷Ⅲ,19T)(多选)地下矿井的矿石装在矿车中,用电机通过竖井运送到地面,

某竖井中矿车提升的速度大小v 随时间t 的变化关系如图所示,其中图线①②分别描述两次不同的提升过程,它们变速阶段加速度的大小都相同;两次提升的高度相同,提升的质量相等,不考虑摩擦阻力和空气阻力.对于第①次和第②次提升过程( )

A .矿车上升所用的时间之比为4∶5

B .电机的最大牵引力之比为2∶1

C .电机输出的最大功率之比为2∶1

D .电机所做的功之比为4∶5

解析:AC [由v t 图像的几何意义可得:

t 1=12t 0,t 2=32t 0,t 3=52t 0,故t 1t 2=4

5,A 项正确;对矿车加速运动过程中,受力分析,由牛

顿运动定律得:F -mg =ma ,根据v t 图像可知a 相同,则F 相同,即F 1F 2=1

1,故B 项错误;

根据公式P =F v 可得P 1=F v 0,P 2=F v 02,所以P 1P 2=2

1,C 项正确;根据动能定理可得:W 牵-

mgh =0,所以W 牵=mgh ,高度、质量相同时,W 牵也相同,即W 1W 2=1

1

,D 项错误.]

2.(2019·安徽省安庆市二模)(多选)如图甲所示,物体受到水平推力F 的作用,在粗糙水平面上做直线运动.通过力传感器和速度传感器监测到推力F 和物体速度v 随时间t 变化的规律如图乙所示.重力加速度g 取10 m/s 2,则( )

A .物体的质量m =0.5 kg

B .物体与水平面间的动摩擦因数μ=0.2

C .第2 s 内物体克服摩擦力做的功W f =2 J

D .前2 s 内推力F 做功的平均功率P =1.5 W

解析:ACD [由题图乙可知,在2~3 s 时间内物体匀速运动,处于平衡状态,所以滑动

摩擦力的大小为2 N .在1~2 s 时间内物体做匀加速运动,v -t 图像的斜率代表加速度的大小,所以a =2-01 m/s 2=2 m/s 2,由牛顿第二定律可得:F -F f =ma ,所以m =0.5 kg ,A 正确;由

F f =μF N =μmg ,则μ=

F f mg =0.4,B 错误;第2 s 内物体的位移是:x =1

2

at 2=1 m ,克服摩擦力做的功W f =F f x =2×1 J =2 J ,C 正确;第1 s 内物体没有运动,推力F 做功为零,第2 s 内物体运动,F 做的功为W =Fx =3×1 J =3 J ,所以前2 s 内推力F 做功的平均功率为P =W t =3

2 W

=1.5 W ,D 正确.]

3.(2019·福建省三明市上学期期末)(多选)发动机额定功率为P 0的汽车在水平路面上从静止开始先匀加速启动,最后达到最大速度并做匀速直线运动,已知汽车所受路面阻力恒为F f ,汽车刚开始启动时的牵引力和加速度分别为F 0和a 0,如图所示描绘的是汽车在这一过程中速度随时间以及加速度、牵引力和功率随速度变化的图像,其中正确的是( )

解析:AC [汽车匀加速启动时,a 一定,根据v =at 知v 均匀增大,根据F =ma +F f 知F 一定,根据P =F v 知,功率P 也均匀增大,达到P 额后,功率保持不变,v 继续增大,所以牵引力F =P v 减小,a =F -F f m 减小,当F =F f 时,a =0,v m =P F f ,此后做匀速运动,故A 、C

正确,B 、D 错误.]

[易错警示]——辨易错 防未然 关于功、功率计算应注意的三个问题

(1)适用条件:功的公式W =Fl cos α仅适用于恒力做功的情况.

(2)变力做功:变力做功的求解要注意问题的正确转化,如将变力转化为恒力,利用F l 图像曲线下的面积求功,利用W =Pt 计算,也可应用动能定理或功能关系等方法求解.

(3)公式选择:对于功率的计算,应注意区分公式P =W

t

和公式P =F v cos α,前式侧重于平

均功率的计算,而后式侧重于瞬时功率的计算.

考向二机车启动问题

[知识必备]——提核心通技法1.机车输出功率:P=F v,其中F为机车牵引力.

2.机车的两种启动方式:

(1)恒定功率启动.

(2)匀加速启动.

3.常用公式

F-F阻=ma

P=F v,当F=F阻时,v m=P F阻

v1=at其中t为匀加速运动的时间,v1是匀加速运动的最大速度.

[典题例析]——析典题学通法

[例1](2020·盐城一模)把动力装置分散安装在每节车厢上,使其既具有牵引动力,又可以载客,这样的客车车厢叫作动车.而动车组是几节自带动力的车厢(动车)加几节不带动力的车厢(也叫拖车)编成一组.假设动车组运行过程中受到的阻力与其所受重力成正比,每节动车与拖车的质量都相等,每节动车的额定功率都相等.若2节动车加6节拖车编成的动车组的最大速度为120 km/h,则9节动车加3节拖车编成的动车组的最大速度为() A.120 km/h B.240 km/h

C.360 km/h D.480 km/h

[审题指导](1)动车组达到最大速度时,做匀速运动;(2)动车组达到最大速度时,总功率与速度满足P=F f v.

[解析]C[若开动2节动车带6节拖车,最大速度可达到120 km/h.设每节动车的功率为P,每节车厢所受的阻力为F f,则有2P=8F f v,当开动9节动车带3节拖车时,有9P=12F f v′,联立两式解得v′=360 km/h,选项C正确.]

[迁移题组]——多角度提能力

?[迁移1]汽车在水平面上以恒定功率启动

1.(2019·保定二模)2019年冬为了应对持续出现的雾霾污染天气,我市利用洒水车对主干街道进行洒水降尘,设洒水车保持恒定功率上路行驶,在t1时刻以速度v1匀速驶入一段长直公路后开始不间断的洒水作业.在t2时刻停止洒水作业并以速度v2匀速行驶.已知公路对汽车的阻力与汽车重力成正比,下列说法正确的是()

A.洒水车一定做匀变速直线运动

B.v2<v1

C .t 1时刻比t 2时刻汽车所受牵引力大

D .从t 1时刻至t 2时刻洒水车的位移大小为v 1+v 2

2

(t 2-t 1)

解析:C [公路对汽车的阻力与汽车重力成正比,洒水过程中重力减小,阻力不断减小,汽车加速度不恒定,A 选项错误;t 1时刻阻力大,牵引力大,t 2时刻阻力小,牵引力小,C 选项正确;功率恒定,根据P =F v 可知汽车做匀速直线运动时,牵引力大的速度小,故v 1<v 2,B 选项错误;洒水车不做匀变速直线运动,位移不等于v 1+v 2

2

(t 2-t 1),D 选项错误.]

?[迁移2] 汽车在斜坡上以恒定功率启动

2.一辆质量为2 t 的汽车由静止开始沿一倾角为30°的足够长斜坡向上运动,汽车发动机的功率保持48 kW 不变,行驶120 m 后达到最大速度.已知汽车受到地面的摩擦阻力为2 000 N .(g 取10 m/s 2)求:

(1)汽车可以达到的最大速度;

(2)汽车达到最大速度所用的时间(结果保留一位小数). 解析:(1)当汽车在斜坡上匀速运动时速度最大,则 F -mg sin 30°-F f =0,解得F =1.2×104 N 由P =F v 得v m =P

F =4 m/s

(2)对全过程应用动能定理得 Pt -mgx sin 30°-F f x =1

2m v 2m -0

解得t =30.3 s

答案:(1)4 m/s (2)30.3 s

?[迁移3] 起重机以恒定加速度竖直吊起重物

3.如图所示为修建高层建筑常用的塔式起重机,在起重机将质量为m 的重物竖直吊起的过程中,重物由静止开始向上做匀加速直线运动,加速度为a ,当起重机输出功率达到其允许的最大值时,保持该功率直到重物做速度为v m 的匀速运动,不计额外功.

(1)求起重机允许输出的最大功率. (2)求重物做匀加速运动所经历的时间.

(3)若已知起重机达到输出功率的最大值,又经Δt 时间,重物速度达到v m ,求重物由静止到以v m 做匀速运动过程中升高的高度.

解析:(1)重物匀速上升时有F =mg 可得起重机的最大输出功率为:P m =mgv m

(2)匀加速运动结束时,起重机达到允许输出的最大功率,设此时重物受到的拉力为F 1,速度为v 1,匀加速运动经历的时间为t 1,则由牛顿第二定律得F 1-mg =ma

又有P m =F 1v 1 v 1=at 1 解得:t 1=

gv m a g +a

(3)设物体匀加速上升的高度为h 1,则有h 1=1

2at 21

由动能定理得F 1h 1+P m Δt -mgh =1

2mv 2m

解得h =gv 2m 2a g +a +v m Δt -v 2m

2g

答案:(1)mg v m (2)g v m

a (g +a )

(3)g v 2m 2a (g +a )

+v m Δt -v 2m

2g

[易错警示]——辨易错 防未然 解决机车启动问题的四点注意

(1)明确启动方式:分清是匀加速启动还是恒定功率启动.

(2)匀加速启动过程:机车功率是不断改变的,但该过程中的最大功率是额定功率,匀加速运动的最大速度小于机车所能达到的最大速度,达到额定功率后做加速度减小的加速运动.

(3)恒定功率启动过程:机车做加速度减小的加速运动,速度最大值等于P

F f

,牵引力是变

力,牵引力做的功W =Pt .

(4)满足的关系式:无论哪种启动方式,在平直路面上最后达到最大速度时,均满足P =F f v m ,P 为机车的额定功率.

考向三 动能定理

[知识必备]——提核心 通技法

[典题例析]——析典题 学通法

[例2] (2019·课标Ⅲ,17)从地面竖直向上抛出一物体,物体在运动过程中除受到重力外,还受到一大小不变、方向始终与运动方向相反的外力作用.距地面高度h 在3 m 以内时,物体上升、下落过程中动能E k 随h 的变化如图所示.重力加速度取10 m/s 2.该物体的质量为( )

A .2 kg

B .1.5 kg

C .1 kg

D .0.5 kg

[审题指导] 物体受到大小不变的外力,方向始终与速度方向相反,即上升时外力方向向下,下落时外力方向向上,这是解答此题的关键.

[解析] C [本题考查动能定理,体现了模型建构素养.设外力大小为f ,在距地面高度3 m 内的上升过程中,由动能定理知-(mg +f )h =12m v 22-12m v 21,由图像可知,12m v 21=72 J ,12m v 2

2

=36 J ,得mg +f =12 N .同理结合物体在下落过程中的E k -h 图像有mg -f =8 N ,联立解得mg =10 N ,则m =1 kg ,选项C 正确.]

[迁移题组]——多角度 提能力

?[迁移1] 动能定理在曲线运动中的应用

1.如图,一半径为R 的半圆形轨道竖直固定放置,轨道两端等高;质量为m 的质点自轨道端点P 由静止开始滑下,滑到最低点Q 时,对轨道的正压力为2mg ,重力加速度大小为g .质点自P 滑到Q 的过程中,克服摩擦力所做的功为( )

A.1

4

mgR B.1

3

mgR

C.1

2mgR D.π

4

mgR 解析:C [当质点滑到Q 点时,对轨道的正压力为F N =2mg ,由牛顿第三定律知轨道对它的支持力F ′N =F N =2mg ,由牛顿第二定律有F ′N -mg =m v 2Q

R ,得v 2Q =gR .对质点自P 点滑到Q 点应用动能定理有mgR -W f =12m v 2Q -0,得W f =12

mgR ,因此,A 、B 、D 错,C 正确.] ?[迁移2] 动能定理在变力做功中的应用

2.如图所示,质量为m 的物体P 以初速度v 在水平面上运动,运动x 距离后与一固定的橡皮泥块Q 相碰撞(碰后物体静止).已知物体运动时所受到的水平面的阻力大小恒为f ,则下列说法正确的是( )

A .水平面阻力做的功为fx

B .物体克服水平面阻力做的功为-fx

C .橡皮泥块对物体做的功为fx -1

2m v 2

D .物体克服橡皮泥块的阻力做的功为1

2

m v 2+fx

解析:C [根据功的定义式,物体P 受到的水平面的阻力做的功W 1=fx cos 180°=-fx ,选项A 错误;物体克服水平面阻力做的功W 2=-W 1=fx ,选项B 错误;设橡皮泥块对物体做的功为W 3,根据动能定理,有W 1+W 3=0-12m v 2,解得W 3=fx -1

2m v 2,选项C 正确;物体克

服橡皮泥块的阻力做的功为W 4=-W 3=-????fx -12m v 2=1

2

m v 2-fx ,选项D 错误.] ?[迁移3] 动能定理与图像的综合应用

3.质量为m 的小球在竖直向上的拉力作用下从静止开始运动,其v -t 图像如图所示(竖直向上为正方向,DE 段为直线),已知重力加速度大小为g ,下列说法正确的是( )

A .t 0~t 2时间内,合力对小球先做正功后做负功

B .0~t 3时间内,小球的平均速度一定为v 3

2

C .t 3~t 4时间内,拉力做的功为m (v 3+v 4)

2[(v 4-v 3)+g (t 4-t 3)]

D .t 3~t 4时间内,小球竖直向下做匀减速直线运动

解析:C [v -t 图像中图线的斜率表示加速度,速度在时间轴之上表明速度一直为正,从图像可以看出小球先向上做加速度越来越大的加速运动,再做加速度越来越小的加速运动,然后做加速度越来越大的减速运动,最后做匀减速运动,运动方向一直向上,D 错.图中t 0~t 2时间内小球做加速运动,故合力对小球一直做正功,A 错.v -t 图像中图线与t 轴所围“面积”表示位移,而平均速度v =x

t ,结合图像中的“面积”可知0~t 3时间内,小球的平均速度大于

v 32,B 错.t 3~t 4时间内由动能定理得W -mgh =12m v 24-12m v 2

3,又h =v 3+v 42(t 4-t 3),解得W =m (v 3+v 4)

2

[(v 4-v 3)+g (t 4-t 3)],C 对.]

[规律方法]——知规律 握方法

动能定理的应用技巧

1.应用动能定理解题的步骤 (1)确定研究对象和研究过程.

(2)分析研究对象的受力情况和各力的做功情况.

(3)写出该过程中合力做的功,或分别写出各个力做的功(注意功的正、负),如果研究过程中物体受力情况有变化,要分别写出力在各个阶段做的功.

(4)写出物体的初、末动能. (5)根据动能定理列式求解. 2.应用动能定理解题应注意的问题

(1)动能定理往往用于单个物体的运动过程,由于不涉及加速度及时间,比动力学研究方法更简洁.

(2)动能定理表达式是一个标量式,在某个方向上应用动能定理是没有依据的.

(3)若物体在某个运动过程中包含有几个运动性质不同的小过程(如加速、减速的过程),此时可以分段考虑,也可以对全过程考虑,但如能对整个过程利用动能定理列式则可使问题简化.

(4)如果物体做自由落体运动或平抛运动或圆周运动往往动能定理结合牛顿第二定律或运动学公式联立求解.

动能定理在多阶段、多过程中的综合应用

典例(2019·新课标Ⅱ,25T)一质量为m=2 000 kg的汽车以某一速度在平直公路上匀速行驶.行驶过程中,司机突然发现前方100 m处有一警示牌,立即刹车.刹车过程中,汽车所受阻力大小随时间的变化可简化为图(a)中的图线.图(a)中,0~t1时间段为从司机发现警示牌到采取措施的反应时间(这段时间内汽车所受阻力已忽略,汽车仍保持匀速行驶),t1=0.8 s;t1~t2时间段为刹车系统的启动时间,t2=1.3 s;从t2时刻开始汽车的刹车系统稳定工作,直至汽车停止.已知从t2时刻开始,汽车第1 s内的位移为24 m,第4 s内的位移为1 m.

(1)在图(b)中定性画出从司机发现警示牌到刹车系统稳定工作后汽车运动的v-t图线;

(2)求t2时刻汽车的速度大小及此后的加速度大小;

(3)求刹车前汽车匀速行驶时的速度大小及t1~t2时间内汽车克服阻力做的功;从司机发现警示牌到汽车停止,汽车行驶的距离约为多少(以t1~t2时间段始末速度的算术平均值替代这段时间内汽车的平均速度)?

核心考点

1.动能定理.

2.动量定理.

3.运动学公式、牛顿定律.

命题技巧

通过研究汽车的运动情景,考查了学生综合分析及运用数学知识解决问题的能力.

核心素养

1.体现了科学推理与科学论证的素养要求.

2.渗透了关注生产、生活的价值观念.

审题关键

汽车在刹车过程中停止运动的时刻未知,可采用假设法,由方程解得的结果判定假设的正确性.

[解析] (1)v -t 图像如图所示.

(2)设刹车前汽车匀速行驶时的速度大小为v 1,则t 1时刻的速度也为v 1,t 2时刻的速度为v 2.在t 2时刻后汽车做匀减速运动,设其加速度大小为a .取Δt =1 s ,设汽车在t 2+(n -1)Δt ~t 2+n Δt 内的位移为s n ,n =1,2,3….

若汽车在t 2+3Δt ~t 2+4Δt 时间内未停止,设它在t 2+3Δt 时刻的速度为v 3,在t 2+4Δt 时刻的速度为v 4,由运动学公式有s 1-s 4=3a (Δt )2 ①

s 1=v 2Δt -1

2

a (Δt )2②

v 4=v 2-4a Δt ③

联立①②③式,代入已知数据解得v 4=-17

6

m/s ④

这说明在t 2+4Δt 时刻前,汽车已经停止.因此,①式不成立. 由于在t 2+3Δt ~t 2+4Δt 内汽车停止,由运动学公式v 3=v 2-3a Δt ⑤ 2as 4=v 23 ⑥

联立②⑤⑥式,代入已知数据解得a =8 m/s 2,v 2=28 m/s ⑦ 或者a =28825 m/s 2,v 2=29.76 m/s ⑧

但⑧式情形下,v 3<0,不合题意,舍去.

(3)设汽车的刹车系统稳定工作时,汽车所受阻力的大小为f 1.由牛顿定律有f 1=ma ⑨ 在t 1~t 2时间内,阻力对汽车冲量的大小为I =1

2f 1(t 2~t 1) ⑩

由动量定理有I =mv 1-mv 2 ?

由动能定理,在t 1~t 2时间内,汽车克服阻力做的功为W =12mv 21-1

2mv 22 ?

联立⑦⑨⑩??式,代入已知数据解得v 1=30 m/s ?

W =1.16×105 J ?

从司机发现警示牌到汽车停止,汽车行驶的距离s 约为s =v 1t 1+12(v 1+v 2)(t 2-t 1)+v 22

2a ?

联立⑦??式,代入已知数据解得

s =87.5 m ?

[答案] 见解析 易错展示

1.不能判定汽车在t 2时刻后做匀减速运动.

2.不会确定汽车停止的时刻在哪个时间段时.

3.不会应用动量定理、动能定理列方程求解.

[对点演练]——练类题 提素养

1.如图所示,水平轻质弹簧一端固定在墙壁上的O 点,另一端自由伸长到A 点,OA 之间的水平面光滑.固定曲面在B 处与水平面平滑连接.AB 之间的距离s =1 m .质量m =0.2 kg 的物块开始时静置于水平面上的B 点,物块与水平面间的动摩擦因数μ=0.4.现给物块一个水平向左的初速度v 0=5 m/s ,g 取10 m/s 2.

(1)求弹簧被压缩到最短时所具有的弹性势能E p ; (2)求物块返回B 点时的速度大小;

(3)若物块能冲上曲面的最大高度h =0.2 m ,求物块沿曲面上滑过程所产生的热量. 解析:(1)对物块从B 点至压缩弹簧最短的过程有-μmgs -W =0-1

2m v 20

W =E p

代入数据解得F p =1.7 J

(2)对物块从B 点开始运动至返回B 点的过程有 -μmg ·2s =12m v 2B -12m v 2

代入数据解得v B =3 m/s

(3)对物块沿曲面上滑的过程,由动能定理得 -W 克f -mgh =0-1

2m v 2B

又Q =W 克f

代入数据解得Q =0.5 J.

答案:(1)1.7 J (2)3 m/s (3)0.5 J

2.(2018·全国卷Ⅲ,25T)如图,在竖直平面内,一半径为R 的光滑圆弧轨道ABC 和水平轨道P A 在A 点相切,BC 为圆弧轨道的直径,O 为圆心,OA 和OB 之间的夹角为α,sin α=35.

一质量为m 的小球沿水平轨道向右运动,经A 点沿圆弧轨道通过C 点,落至水平轨道;在整个过程中,除受到重力及轨道作用力外,小球还一直受到一水平恒力的作用.已知小球在C 点所受合力的方向指向圆心,且此时小球对轨道的压力恰好为零.重力加速度大小为g .求

(1)水平恒力的大小和小球到达C 点时速度的大小; (2)小球到达A 点时动量的大小;

(3)小球从C 点落至水平轨道所用的时间. 解析:(1)小球在C 点受力如图

因tan α=F mg ,tan α=3

4

所以F =mg tan α=3

4mg

F ′=mg cos α=5

4mg

又因F ′=m v 2C

R

得:v C =

54gR =5gR 2

(2)从A 点到C 点,对小球由动能定理得: -F ′(R +R cos α)=12m v 2C -12m v 2

A

解得:v A =

234

gR 所以:p A =m v A =m

234gR =m 23gR 2

. (3)小球离开C 点后的运动轨迹如图所示,根据类平拋运动规律可得:

x =v C t ① y =1

2

at 2② 由几何关系可得:y +x tan α=R +R

cos α③

由牛顿定律得a =F ′m =5

4g ④

联立①②③④可得:t =35gR

5g

答案:(1)3

4

mg

5gR 2 (2)m 23gR 2 (3)35gR

5g

[A 级-对点练]

[题组一] 功和功率

1.用长为L 的轻质细绳悬挂一个质量为m 的小球,其下方有一个倾角为θ的光滑斜面体,放在水平面上,开始时小球与斜面刚刚接触且细绳恰好竖直,如图所示,现在用水平推力F 缓慢向左推动斜面体,直至细绳与斜面平行,则下列说法中正确的是( )

A .由于小球受到斜面的弹力始终与斜面垂直,故对小球不做功

B .细绳对小球的拉力始终与小球的运动方向垂直,故对小球不做功

C .小球受到的合外力对小球做功为零,故小球在该过程中机械能守恒

D .若水平面光滑,则推力做功为mgL (1-cos θ)

解析:B [小球受到斜面的弹力沿小球的运动方向有分量,故对小球做功,A 错误;细绳的拉力方向始终和小球的运动方向垂直,故对小球不做功,B 正确;合外力对小球做的功等于

小球动能的改变量,虽然合外力做功为零,但小球的重力势能增加,故小球在该过程中机械能不守恒,C 错误;若水平面光滑,则推力做功为mgL (1-sin θ),D 错误.]

2.(多选)如图所示,木块M 上表面是水平的,当木块m 置于M 上,并与M 一起沿固定的光滑斜面由静止开始下滑,在下滑的过程中( )

A .M 对m 的支持力做负功

B .M 对m 的摩擦力做负功

C .m 所受的合外力对m 做负功

D .m 的机械能守恒

解析:AD [分析木块m 的受力可知,支持力方向与速度方向夹角为钝角,摩擦力方向与速度方向夹角为锐角,则M 对m 的支持力做负功,M 对m 的摩擦力做正功,故A 正确、B 错误.两木块整体沿斜面加速下滑,木块m 所受合外力对m 一定做正功,故C 错误.由整体受力可知整体下滑的加速度大小为a =g sin θ,方向平行于斜面向下,整体所受合外力等于其重力沿斜面方向的分力,这表明木块m 所受支持力、摩擦力的合力与其重力垂直于斜面的分力等值反向,即支持力与摩擦力的合力方向垂直于速度方向,所以支持力与摩擦力对木块m 所做的总功为零,即除重力外其他力对木块m 做功之和为零,则m 的机械能守恒,D 正确.]

3.如图,一长为L 的轻杆一端固定在光滑铰链上,另一端固定一质量为m 的小球.一水平向右的拉力作用于杆的中点,使杆以角速度ω匀速转动,当杆与水平方向夹角为60°时,拉力的功率为( )

A .mgLω B.3

2mgLω C.1

2

mgLω D.3

6

mgLω 解析:C [由能的转化与守恒可知,拉力的功率等于克服重力的功率,P F =P G =mg v y =mg v cos 60°=1

2

mgωL ,故选C.]

4.(多选)如图所示,a 、b 两球的质量均为m ,a 从倾角为45°的光滑固定斜面顶端无初速地下滑,b 从斜面顶端以初速度v 0平抛,对二者的运动过程以下说法正确的是( )

A .都做匀变速运动

B .落地前的瞬间速率相同

C .整个运动的过程重力对二者做功的平均功率相同

D .整个运动过程重力势能的变化相同

解析:AD [由于两球运动过程中加速度均恒定不变,所以A 正确.根据机械能守恒定律有12m v 2末=12m v 2

初+mgh ,由于v 初a =0,v 初b =v 0,所以落地时v 末b >v 末a ,B 错误.两球在竖直方向运动的距离相同,则重力做功相等,又运动时间t a >t b ,由P =W t 知,P a <P b ,C 错误.根

据ΔE p =-mgh 知,D 正确.]

5.如图所示,某工厂用传送带向高处运送货物,将一货物轻轻放在传送带底端,第一阶段物体被加速到与传送带具有相同的速度,第二阶段与传送带相对静止,匀速运动到传送带顶端.下列说法正确的是( )

A .第一阶段摩擦力对物体做正功,第二阶段摩擦力对物体不做功

B .第一阶段摩擦力对物体做的功等于第一阶段物体动能的增加量

C .第一阶段物体和传送带间摩擦生的热等于第一阶段物体机械能的增加量

D .物体从底端到顶端全过程机械能的增加量大于摩擦力对物体所做的功

解析:C [对物体分析知,其在两个阶段所受摩擦力方向都沿传送带向上,与其运动方向相同,摩擦力对物体都做正功,A 错误;由动能定理知,合外力做的总功等于物体动能的增加量,B 错误;物体机械能的增加量等于摩擦力对物体所做的功,D 错误;设第一阶段运动时间为t ,传送带速度为v ,对物体:x 1=v

2t ,对传送带:x ′1=v t ,摩擦生的热Q =fx 相对=f (x ′1

-x 1)=f ????v 2t ,机械能增加量ΔE =fx 1=f ???

?v

2t ,所以Q =ΔE ,C 正确.]

[题组二] 机车启动问题

6.(多选)如图甲所示,水平面上的物体在水平向右的拉力F 作用下,由静止开始运动,

运动过程中F 功率恒为P .物体运动速率的倒数1

v 与加速度a 的关系如图乙所示(v 0、a 0为已知量).则下列说法正确的是( )

A .该运动过程中的拉力F 为恒力

B .物体加速运动的时间为v 0

a 0

C .物体所受阻力大小为P

v 0

D .物体的质量为P

v 0a 0

解析:CD [由题意可知:P =F v 根据牛顿第二定律得:F -f =ma 即得:P

v =ma +f 联立解得:1v =m P a +f

P

匀速时有:1v 0=f P ,f =P

v 0

图线的斜率m P =1v 0a 0,解得:m =P

a 0v 0

.故C 、D 项正确.]

7.如图所示为某汽车启动时发动机功率P 随时间t 变化的图像,图中P 0为发动机的额定功率,若已知汽车在t 2时刻之前已达到最大速度v m ,据此可知( )

A .t 1~t 2时间内汽车做匀速运动

B .0~t 1时间内发动机做的功为P 0t 1

C .0~t 2时间内发动机做的功为P 0????t 2-t 1

2 D .汽车匀速运动时所受的阻力小于

P 0

v m

解析:C [在0~t 1时间内功率随时间均匀增大,知汽车做匀加速直线运动,加速度恒定,

由F -f =ma 可知,牵引力恒定,合力也恒定;在t 1时刻达到额定功率,随后在t 1~t 2时间内,汽车速度继续增大,由P =F v 可知,牵引力减小,加速度减小,直到牵引力减小到与阻力相等时,f =F =P 0

v m ,达到最大速度v m ,接着做匀速运动.发动机所做的功等于图线与t 轴所围的

“面积”,0~t 1时间内发动机做的功为P 0t 1

2,0~t 2时间内发动机做的功为P 0???? t 2-t 12.故C 正确,A 、B 、D 错误.]

[题组三] 动能定理的应用

8.(2018·课标Ⅱ,14)如图,某同学用绳子拉动木箱,使它从静止开始沿粗糙水平路面运动至具有某一速度.木箱获得的动能一定( )

A .小于拉力所做的功

B .等于拉力所做的功

C .等于克服摩擦力所做的功

D .大于克服摩擦力所做的功

解析:A [对木箱受力分析如图:根据动能定理W F -W f =E k ,故A 对,B 错误;因无法比较E k 与W f 的关系,故C 、D 错误.]

9.如图所示,质量为0.1 kg 的小物块在粗糙水平桌面上滑行4 m 后以3.0 m/s 的速度飞离桌面,最终落在水平地面上,已知物块与桌面间的动摩擦因数为0.5,桌面高0.45 m ,若不计空气阻力,取g =10 m/s 2,则( )

A .小物块的初速度是5 m/s

B .小物块的水平射程为1.2 m

C .小物块在桌面上克服摩擦力做8 J 的功

D .小物块落地时的动能为0.9 J

解析:D [小物块在桌面上克服摩擦力做功W f =μmgL =2 J ,C 错.在水平桌面上滑行,

由动能定理得-W f =12m v 2-1

2m v 20,解得v 0=7 m/s ,A 错.小物块飞离桌面后做平抛运动,有

x =v t 、h =12gt 2,解得x =0.9 m ,B 错.设小物块落地时动能为E k ,由动能定理得mgh =E k -

1

2m v 2,解得E k =0.9 J ,D 正确.]

10.用传感器研究质量为2 kg 的物体由静止开始做直线运动的规律时,在计算机上得到0~6 s 内物体的加速度随时间变化的关系如图所示.下列说法正确的是( )

A .0~6 s 内物体先向正方向运动,后向负方向运动

B .0~6 s 内物体在4 s 时的速度最大

C .物体在2~4 s 内速度不变

D .0~4 s 内合力对物体做的功等于0~6 s 内合力做的功

解析:D [由a -t 图像可知:图线与时间轴所围的“面积”代表物体在相应时间内速度的变化情况,在时间轴上方为正,在时间轴下方为负.物体6 s 末的速度v 6=1

2×(2+5)×2 m/s

-1

2×1×2 m/s =6 m/s ,则0~6 s 内物体一直向正方向运动,A 错;由图像可知物体在5 s 末速度最大,为v m =1

2×(2+5)×2 m/s =7 m/s ,B 错;由图像可知在2~4 s 内物体加速度不变,

物体做匀加速直线运动,速度变大,C 错;由动能定理可知,0~4 s 内合力对物体做的功W 合

4=

12m v 24-0,又v 4=1

2

×(2+4)×2 m/s =6 m/s ,得W 合4=36 J ,由动能定理可知,0~6 s 内合力对物体做的功W 合6=12

m v 26-0,又v 6=6 m/s ,得W 合6=36 J ,则W 合4=W 合6,D 正确.]

[B 级-综合练]

11.有两条雪道平行建造,左侧相同而右侧有差异,一条雪道的右侧水平,另一条的右侧是斜坡.某滑雪者保持一定姿势坐在雪橇上不动,从h 1高处的A 点由静止开始沿倾角为θ的雪道下滑,最后停在与A 点水平距离为s 的水平雪道上.接着改用另一条雪道,还从与A 点等高的位置由静止开始下滑,结果能冲上另一条倾角为α的雪道上h 2高处的E 点停下.若动摩擦因数处处相同,且不考虑雪橇在路径转折处的能量损失,则( )

A .动摩擦因数为tan θ

B .动摩擦因数为h 1

s

C .倾角α一定大于θ

D .倾角α可以大于θ

解析:B [第一次停在BC 上的某点,由动能定理得 mgh 1-μmg cos θ·h 1

sin θ-μmgs ′=0

mgh 1-μmg ????h 1

tan θ+s ′=0 mgh 1-μmgs =0 μ=h 1

s

A 错误,

B 正确.在AB 段由静止下滑,说明μmg cos θ<mg sin θ,第二次滑上CE 在E 点停下,说明μmg cos α≥mg sin α,若α>θ,则雪橇不能停在E 点,所以

C 、

D 错误.]

12.(2019·天津卷,10T)完全由我国自行设计、建造的国产新型航空母舰已完成多次海试,并取得成功.航母上的舰载机采用滑跃式起飞,故甲板是由水平甲板和上翘甲板两部分构成,如图1所示.为了便于研究舰载机的起飞过程,假设上翘甲板BC 是与水平甲板AB 相切的一段圆弧,示意如图2,AB 长L 1=150 m ,BC 水平投影L 2=63 m ,图中C 点切线方向与水平方向的夹角θ=12°(sin 12°≈0.21).若舰载机从A 点由静止开始做匀加速直线运动,经t =6 s 到达B 点进入BC .已知飞行员的质量m =60 kg ,g =10 m/s 2.求

(1)舰载机水平运动的过程中,飞行员受到的水平力所做功W ; (2)舰载机刚进入BC 时,飞行员受到竖直向上的压力F N 多大.

解析:(1)舰载机由静止开始做匀加速直线运动,设其刚进入上翘甲板时的速度为v ,则有 v 2=L 1t

高考物理总复习--物理动能与动能定理及解析

高考物理总复习--物理动能与动能定理及解析 一、高中物理精讲专题测试动能与动能定理 1.滑板运动是极限运动的鼻祖,许多极限运动项目均由滑板项目延伸而来.如图所示是滑板运动的轨道,BC 和DE 是两段光滑圆弧形轨道,BC 段的圆心为O 点、圆心角 θ=60°,半径OC 与水平轨道CD 垂直,滑板与水平轨道CD 间的动摩擦因数μ=0.2.某运动员从轨道上的A 点以v 0=3m/s 的速度水平滑出,在B 点刚好沿轨道的切线方向滑入圆弧轨道BC ,经CD 轨道后冲上DE 轨道,到达E 点时速度减为零,然后返回.已知运动员和滑板的总质量为m =60kg ,B 、E 两点与水平轨道CD 的竖直高度分别为h =2m 和H =2.5m.求: (1)运动员从A 点运动到B 点过程中,到达B 点时的速度大小v B ; (2)水平轨道CD 段的长度L ; (3)通过计算说明,第一次返回时,运动员能否回到B 点?如能,请求出回到B 点时速度的大小;如不能,请求出最后停止的位置距C 点的距离. 【答案】(1)v B =6m/s (2) L =6.5m (3)停在C 点右侧6m 处 【解析】 【分析】 【详解】 (1)在B 点时有v B = cos60? v ,得v B =6m/s (2)从B 点到E 点有2 102 B mgh mgL mgH mv μ--=- ,得L =6.5m (3)设运动员能到达左侧的最大高度为h ′,从B 到第一次返回左侧最高处有 2 1'202 B mgh mgh mg L mv μ--?=-,得h ′=1.2m

动能定理及其应用

动能定理及其应用 1.动能定理 (1)三种表述 ①文字表述:所有外力对物体做的总功等于物体动能的增加量; ②数学表述:W 合=12m v 2-12 m v 02或W 合=E k -E k0; ③图象表述:如图6所示,E k -l 图象中的斜率表示合外力. 图6 (2)适用范围 ①既适用于直线运动,也适用于曲线运动; ②既适用于恒力做功,也适用于变力做功; ③力可以是各种性质的力,既可同时作用,也可分阶段作用. 2.解题的基本思路 (1)选取研究对象,明确它的运动过程; (2)分析受力情况和各力的做功情况; (3)明确研究对象在过程的初末状态的动能E k1和E k2; (4)列动能定理的方程W 合=E k2-E k1及其他必要的解题方程,进行求解. 例1 我国将于2022年举办冬奥会,跳台滑雪是其中最具观赏性的项目之一.如图1所示,质量m =60 kg 的运动员从长直助滑道AB 的A 处由静止开始以加速度a =3.6 m /s 2 匀加速滑下,到达助滑道末端B 时速度v B =24 m/s ,A 与B 的竖直高度差H =48 m ,为了改变运动员的运动方向,在助滑道与起跳台之间用一段弯曲滑道衔接,其中最低点C 处附近是一段以O 为圆心的圆弧.助滑道末端B 与滑道最低点C 的高度差h =5 m ,运动员在B 、C 间运动时阻力做功W =-1 530 J ,取g =10 m/s 2. 图1 (1)求运动员在AB 段下滑时受到阻力F f 的大小;

(2)若运动员能够承受的最大压力为其所受重力的6倍,则C 点所在圆弧的半径R 至少应为多大. 答案 (1)144 N (2)12.5 m 解析 (1)运动员在AB 上做初速度为零的匀加速运动,设AB 的长度为x ,则有v B 2=2ax ① 由牛顿第二定律有mg H x -F f =ma ② 联立①②式,代入数据解得F f =144 N ③ (2)设运动员到达C 点时的速度为v C ,在由B 到达C 的过程中,由动能定理得 mgh +W =12m v C 2-12m v B 2 ④ 设运动员在C 点所受的支持力为F N ,由牛顿第二定律有 F N -mg =m v 2 C R ⑤ 由题意和牛顿第三定律知F N =6mg ⑥ 联立④⑤⑥式,代入数据解得R =12.5 m.

最新高考物理动能与动能定理练习题及答案

最新高考物理动能与动能定理练习题及答案 一、高中物理精讲专题测试动能与动能定理 1.如图所示,质量m =3kg 的小物块以初速度秽v 0=4m/s 水平向右抛出,恰好从A 点沿着圆弧的切线方向进入圆弧轨道。圆弧轨道的半径为R = 3.75m ,B 点是圆弧轨道的最低点,圆弧轨道与水平轨道BD 平滑连接,A 与圆心D 的连线与竖直方向成37?角,MN 是一段粗糙的水平轨道,小物块与MN 间的动摩擦因数μ=0.1,轨道其他部分光滑。最右侧是一个半径为r =0.4m 的半圆弧轨道,C 点是圆弧轨道的最高点,半圆弧轨道与水平轨道BD 在D 点平滑连接。已知重力加速度g =10m/s 2,sin37°=0.6,cos37°=0.8。 (1)求小物块经过B 点时对轨道的压力大小; (2)若MN 的长度为L 0=6m ,求小物块通过C 点时对轨道的压力大小; (3)若小物块恰好能通过C 点,求MN 的长度L 。 【答案】(1)62N (2)60N (3)10m 【解析】 【详解】 (1)物块做平抛运动到A 点时,根据平抛运动的规律有:0cos37A v v ==? 解得:04 m /5m /cos370.8 A v v s s = ==? 小物块经过A 点运动到B 点,根据机械能守恒定律有: ()2211cos3722 A B mv mg R R mv +-?= 小物块经过B 点时,有:2 B NB v F mg m R -= 解得:()232cos3762N B NB v F mg m R =-?+= 根据牛顿第三定律,小物块对轨道的压力大小是62N (2)小物块由B 点运动到C 点,根据动能定理有: 22011222 C B mgL mg r mv mv μ--?= - 在C 点,由牛顿第二定律得:2 C NC v F mg m r += 代入数据解得:60N NC F = 根据牛顿第三定律,小物块通过C 点时对轨道的压力大小是60N

功、功率与动能定理(解析版)

构建知识网络: 考情分析: 功和功率、动能和动能定理、机械能守恒定律、能量守恒定律是力学的重点,也是高考考查的重点,常以选择题、计算题的形式出现,考查常与生产生活实际联系紧密,题目的综合性较强。复习中要特别注意功和功率的计算,动能定理、机械能守恒定律的应用以及与平抛运动、圆周运动知识的综合应用 重点知识梳理: 一、功 1.做功的两个要素 (1)作用在物体上的力. (2)物体在力的方向上发生的位移. 2.功的物理意义 功是能量转化的量度. 3.公式 W =Fl cos_α (1)α是力与位移方向之间的夹角,l 为物体对地的位移. (2)该公式只适用于恒力做功. 4.功的正负 (1)当0≤α<π 2 时,W >0,力对物体做正功. (2)当π 2<α≤π时,W <0,力对物体做负功,或者说物体克服这个力做了功. (3)当α=π 2时,W =0,力对物体不做功. 通晓两类力做功特点 (1)重力、弹簧弹力和电场力都属于“保守力”,做功均与路径无关,仅由作用对象的初、末位置(即位移)决定。

(2)摩擦力属于“耗散力”,做功与路径有关。 二、功率 1.物理意义:描述力对物体做功的快慢. 2.公式: (1)P =W t ,P 为时间t 内的物体做功的快慢. (2)P =Fv ①v 为平均速度,则P 为平均功率. ②v 为瞬时速度,则P 为瞬时功率. 3.对公式P =Fv 的几点认识: (1)公式P =Fv 适用于力F 的方向与速度v 的方向在一条直线上的情况. (2)功率是标量,只有大小,没有方向;只有正值,没有负值. (3)当力F 和速度v 不在同一直线上时,可以将力F 分解或者将速度v 分解. 4.额定功率:机械正常工作时的最大功率. 5.实际功率:机械实际工作时的功率,要求不能大于额定功率. 三、动能 1.定义:物体由于运动而具有的能. 2.公式:E k =1 2 mv 2. 3.物理意义:动能是状态量,是标量(选填“矢量”或“标量”),只有正值,动能与速度方向无关. 4.单位:焦耳,1J =1N·m =1kg·m 2/s 2. 5.动能的相对性:由于速度具有相对性,所以动能也具有相对性. 6.动能的变化:物体末动能与初动能之差,即ΔE k =12mv 22-1 2mv 12. 四、动能定理 1.内容:在一个过程中合外力对物体所做的功,等于物体在这个过程中动能的变化. 2.表达式:(1)W =ΔE k . (2)W =E k2-E k1. (3)W =12mv 22-1 2mv 12. 3.物理意义:合外力做的功是物体动能变化的量度. 4.适用条件 (1)动能定理既适用于直线运动,也适用于曲线运动. (2)动能定理既适用于恒力做功,也适用于变力做功.

高中物理 动能 动能定理资料

动能动能定理 动能定理是高中教学重点内容,也是高考每年必考内容,由此在高中物理教学中应提起高度重视。 一、教学目标 1.理解动能的概念: (1)知道什么是动能。 制中动能的单位是焦耳(J);动能是标量,是状态量。 (3)正确理解和运用动能公式分析、解答有关问题。 2.掌握动能定理: (1)掌握外力对物体所做的总功的计算,理解“代数和”的含义。 (2)理解和运用动能定理。 二、重点、难点分析 1.本节重点是对动能公式和动能定理的理解与应用。 2.动能定理中总功的分析与计算在初学时比较困难,应通过例题逐步提高学生解决该问题的能力。 3.通过动能定理进一步加深功与能的关系的理解,让学生对功、能关系有更全面、深刻的认识,这是本节的较高要求,也是难点。 三、主要教学过程 (一)引入新课 初中我们曾对动能这一概念有简单、定性的了解,在学习了功的概念及功和能的关系之后,我们再进一步对动能进行研究,定量、深入地理解这一概念及其与功的关系。 (二)教学过程设计 1.什么是动能?它与哪些因素有关?这主要是初中知识回顾,可请学生举例回答,然后总结作如下板书: 物体由于运动而具有的能叫动能,它与物体的质量和速度有关。 下面通过举例表明:运动物体可对外做功,质量和速度越大,动能越大,物体对外做功的能力也越强。所以说动能是表征运动物体做功的一种能力。 2.动能公式 动能与质量和速度的定量关系如何呢?我们知道,功与能密切相关。因此我们可以通过做功来研究能量。外力对物体做功使物体运动而具有动能。下面我们就通过这个途径研究一个运动物体的动能是多少。 列出问题,引导学生回答: 光滑水平面上一物体原来静止,质量为m,此时动能是多少?(因为物体没有运动,所以没有动能)。在恒定外力F作用下,物体发生一段位移s,得到速度v (如图1),这个过程中外力做功多少?物体获得了多少动能?

高考物理动能与动能定理试题经典及解析

高考物理动能与动能定理试题经典及解析 一、高中物理精讲专题测试动能与动能定理 1.如图所示,半径R =0.5 m 的光滑圆弧轨道的左端A 与圆心O 等高,B 为圆弧轨道的最低点,圆弧轨道的右端C 与一倾角θ=37°的粗糙斜面相切。一质量m =1kg 的小滑块从A 点正上方h =1 m 处的P 点由静止自由下落。已知滑块与粗糙斜面间的动摩擦因数μ=0.5,sin37°=0.6,cos37°=0.8,重力加速度g =10 m/s 2。 (1)求滑块第一次运动到B 点时对轨道的压力。 (2)求滑块在粗糙斜面上向上滑行的最大距离。 (3)通过计算判断滑块从斜面上返回后能否滑出A 点。 【答案】(1)70N ; (2)1.2m ; (3)能滑出A 【解析】 【分析】 【详解】 (1)滑块从P 到B 的运动过程只有重力做功,故机械能守恒,则有 ()21 2 B mg h R mv += 那么,对滑块在B 点应用牛顿第二定律可得,轨道对滑块的支持力竖直向上,且 ()2 N 270N B mg h R mv F mg mg R R +=+=+= 故由牛顿第三定律可得:滑块第一次运动到B 点时对轨道的压力为70N ,方向竖直向下。 (2)设滑块在粗糙斜面上向上滑行的最大距离为L ,滑块运动过程只有重力、摩擦力做功,故由动能定理可得 cos37sin37cos370mg h R R L mgL μ+-?-?-?=() 所以 1.2m L = (3)对滑块从P 到第二次经过B 点的运动过程应用动能定理可得 ()21 2cos370.542 B mv mg h R mgL mg mgR μ'=+-?=> 所以,由滑块在光滑圆弧上运动机械能守恒可知:滑块从斜面上返回后能滑出A 点。 【点睛】 经典力学问题一般先对物体进行受力分析,求得合外力及运动过程做功情况,然后根据牛顿定律、动能定理及几何关系求解。

2021届新高三物理精品专项测试题 8 功和功率、动能及动能定理 学生版

【精品原创】2021届高三特前班精准提升物理专项测试题 8 功和功率、动能及动能定理 例1.地下矿井中的矿石装在矿车中,用电机通过竖井运送至地面。某竖井中矿车提升的速 度大小v 随时间t 的变化关系如图所示,其中图线①②分别描述两次不同的提升过程,它们变速阶段加速度的大小都相同;两次提升的高度相同,提升的质量相等。不考虑摩擦阻力和空气阻力。对于第①次和第②次提升过程( ) A .矿车上升所用的时间之比为4∶5 B .电机的最大牵引力之比为2∶1 C .电机输出的最大功率之比为2∶1 D .电机所做的功之比为4∶5 【解析】根据位移相同可得两图线与时间轴围成的面积相等,21v 0×2t 0=21×21 v 0×[2t 0+t ′+(t 0 +t ′)],解得t ′=21t 0,则对于第①次和第②次提升过程中,矿车上升所用的时间之比为2t 0∶(2t 0+21 t 0)=4∶5,A 正确;加速过程中的牵引力最大,且已知两次加速时的加速度大小相等,故两次中最大牵引力相等,B 错误;由题知两次提升的过程中矿车的最大速度之比为2∶1,由功率P =Fv ,得最大功率之比为2∶1,C 正确;两次提升过程中矿车的初、末速度都为零,则电机所做的功等于克服重力做的功,重力做的功相等,故电机所做的功之比为1∶1,D 错误。 【答案】AC 例2.(2019?全国III 卷?17)从地面竖直向上抛出一物体,物体在运动过程中除受到重力外,还 受到一大小不变、方向始终与运动方向相反的外力作用。距地面高度h 在3 m 以内时,物体上升、下落过程中动能E k 随h 的变化如图所示。重力加速度取 10 m/s 2。该物体的质量为( ) A .2 kg B .1.5 kg C .1 kg D .0.5 kg 【解析】设物体的质量为m ,则物体在上升过程中,受到竖直向下的重力mg 和竖直向下的 恒定外力F ,当Δh =3 m 时,由动能定理结合题图可得-(mg +F )Δh =(36-72) J ;物体在下落过程中,受到竖直向下的重力mg 和竖直向上的恒定外力F ,当Δh =3 m 时,再由动能定理结合题图可得(mg -F )Δh =(48-24) J ,联立解得m =1 kg 、F =2 N ,选项C 正确,A 、B 、D 均错误。 【答案】C 1.(多选)如图所示,倾角为θ的光滑斜面足够长,一质量为m 的小物体,在沿斜面向上的恒 力F 作用下,由静止从斜面底端沿斜面向上做匀加速直线运动,经过时间t ,力F 做功为60 J ,此后撤去力F ,物体又经过相同的时间t 回到斜面底端,若以底端的平面为零势能参考面,重力加速度为g ,则下列说法正确的是( ) A .物体回到斜面底端的动能为60 J B .恒力F =2mg sin θ C .撤去力F 时,物体的重力势能是45 J D .动能与势能相等的时刻一定出现在撤去力F 之前 2.(多选)如图所示,半径为R 的半圆弧槽固定在水平地面上,槽口向上,槽口直径水平,一 个质量为m 的物块从P 点由静止释放刚好从槽口A 点无碰撞地进入槽中,并沿圆弧槽匀速率地滑行到最低点B 点,不计物块的大小,P 点到A 点高度为h ,重力加速度大小为g ,则下列说法正确的是( ) 此卷只装订不密封 班级 姓名 准考证号 考场号 座位号

动能定理及其应用专题

《动能定理及其应用》专题复习一.基础知识归纳: (一)动能: 1.定义:物体由于______而具有的能. 2.表达式:E k=_________. 3.物理意义:动能是状态量,是_____.(填“矢量”或“标量”) 4.单位:动能的单位是_____. (二)动能定理: 1.内容:在一个过程中合外力对物体所做的功,等于物体在这个过程中的___________. 2.表达式:W=_____________. 3.物理意义:_____________的功是物体动能变化的量度. 4.适用条件: (1)动能定理既适用于直线运动,也适用于______________. (2)既适用于恒力做功,也适用于_________. (3)力可以是各种性质的力,既可以同时作用,也可以_______________. 二.分类例析: (一)动能定理及其应用: 1.若过程有多个分过程,既可以分段考虑,也可以整个过程考虑.但求功时,必须据不同的情况分别对待求出总功,把各力的功连同正负号一同代入公式. 2.应用动能定理解题的基本思路: (1)选取研究对象,明确它的运动过程;(2)分析研究对象的受力情况和各力的做功情况: (3)明确研究对象在过程的初末状态的动能E k1和E k2; (4)列动能定理的方程W合=E k2-E k1及其他必要的解题方程,进行求解. 例1.小孩玩冰壶游戏,如图所示,将静止于O点的冰壶(视为质点)沿直线OB用水平恒力推到A点放手,此后冰壶沿直线滑行,最后停在B点.已知冰面与冰壶的动摩擦因数为μ,冰壶质量为m,OA=x,AB=L.重力加速度为g.求: (1)冰壶在A点的速率v A;(2)冰壶从O点运动到A点的过程中受到小孩施加的水平推力F. 吴涂兵

高中物理动能与动能定理题20套(带答案)

高中物理动能与动能定理题20套(带答案) 一、高中物理精讲专题测试动能与动能定理 1.如图所示,圆弧轨道AB是在竖直平面内的1 4 圆周,B点离地面的高度h=0.8m,该处切 线是水平的,一质量为m=200g的小球(可视为质点)自A点由静止开始沿轨道下滑(不计小球与轨道间的摩擦及空气阻力),小球从B点水平飞出,最后落到水平地面上的D 点.已知小物块落地点D到C点的距离为x=4m,重力加速度为g=10m/s2.求: (1)圆弧轨道的半径 (2)小球滑到B点时对轨道的压力. 【答案】(1)圆弧轨道的半径是5m. (2)小球滑到B点时对轨道的压力为6N,方向竖直向下. 【解析】 (1)小球由B到D做平抛运动,有:h=1 2 gt2 x=v B t 解得: 10 410/ 220.8 B g v x m s h ==?= ? A到B过程,由动能定理得:mgR=1 2 mv B2-0 解得轨道半径R=5m (2)在B点,由向心力公式得: 2 B v N mg m R -= 解得:N=6N 根据牛顿第三定律,小球对轨道的压力N=N=6N,方向竖直向下 点睛:解决本题的关键要分析小球的运动过程,把握每个过程和状态的物理规律,掌握圆周运动靠径向的合力提供向心力,运用运动的分解法进行研究平抛运动. 2.某校兴趣小组制作了一个游戏装置,其简化模型如图所示,在A点用一弹射装置可将静止的小滑块以v0水平速度弹射出去,沿水平直线轨道运动到B点后,进入半径R=0.3m 的光滑竖直圆形轨道,运行一周后自 B点向C点运动,C点右侧有一陷阱,C、D两点的竖直高度差h=0.2m,水平距离s=0.6m,水平轨道AB长为L1=1m,BC长为 L2 =2.6m,

2020届高考物理小题狂练8:功和功率、动能和动能定理(附解析)

2020届高考物理小题狂练8:功和功率、动能和动能定理(附解析) 一、考点内容 (1)功的理解与计算; (2)恒力及合力做功的计算、变力做功; (3)机车启动问题; (4)功、功率与其他力学知识的综合; (5)动能及动能定理; (6)应用动能定理求解多过程问题; (7)应用动能定理求解多物体的运动问题。 二、考点突破 1.(多选)如图所示,轻绳一端受到大小为F的水平恒力作用,另一端通过定滑轮与质 量为m、可视为质点的小物块相连。开始时绳与水平方向的夹角为θ。当小物块从水平 面上的A点被拖动到水平面上的B点时,位移为L,随后从B点沿斜面被拖动到定滑轮O处,BO间距离也为L。小物块与水平面及斜面间的动摩擦因数均为μ,若小物块从A ,小物块在BO段运动过程中克服摩点运动到O点的过程中,F对小物块做的功为W F ,则以下结果正确的是() 擦力做的功为W f =FL(cos θ+1) A.W B.W F=2FL cos θ C.W f=μmgL cos 2θ D.W f=FL-mgL sin 2θ

2.(多选)物体受到水平推力F的作用在粗糙水平面上做直线运动。通过力和速度传感器监测到推力F、物体速度v随时间t变化的规律分别如图甲、乙所示。取g=10 m/s2,则下列说法正确的是() A.物体的质量m=0.5 kg B.物体与水平面间的动摩擦因数μ=0.4 C.第2 s内物体克服摩擦力做的功W=2 J D.前2 s内推力F做功的平均功率P=3 W 3.(多选)质量为400 kg的赛车在平直赛道上以恒定功率加速,受到的阻力不变,其加 的关系如图所示,则赛车() 速度a和速度的倒数1 v A.速度随时间均匀增大 B.加速度随时间均匀增大 C.输出功率为160 kW D.所受阻力大小为1600 N 4.从地面竖直向上抛出一物体,物体在运动过程中除受到重力外,还受到一大小 不变、方向始终与运动方向相反的外力作用。距地面高度h在3 m以内时,物体 随h的变化如图所示。重力加速度取10 m/s2。该物体的 上升、下落过程中动能E k 质量为() A.2 kg B.1.5 kg C.1 kg D.0.5 kg 5.(多选)如图所示为一滑草场,某条滑道由上、下两段高均为h,与水平面倾角分别为45°和37°的滑道组成,滑草车与草地之间的动摩擦因数为μ。质量为m的载人滑草车从

高考物理动能与动能定理解题技巧及练习题(含答案)

高考物理动能与动能定理解题技巧及练习题(含答案) 一、高中物理精讲专题测试动能与动能定理 1.如图所示,在水平轨道右侧固定半径为R的竖直圆槽形光滑轨道,水平轨道的PQ段长度为,上面铺设特殊材料,小物块与其动摩擦因数为,轨道其它部分摩擦不计。水平轨道左侧有一轻质弹簧左端固定,弹簧处于原长状态。可视为质点的质量的小物块从轨道右侧A点以初速度冲上轨道,通过圆形轨道,水平轨道后压缩弹簧,并被弹簧以原速率弹回,取,求: (1)弹簧获得的最大弹性势能; (2)小物块被弹簧第一次弹回经过圆轨道最低点时的动能; (3)当R满足什么条件时,小物块被弹簧第一次弹回圆轨道时能沿轨道运动而不会脱离轨道。 【答案】(1)10.5J(2)3J(3)0.3m≤R≤0.42m或0≤R≤0.12m 【解析】 【详解】 (1)当弹簧被压缩到最短时,其弹性势能最大。从A到压缩弹簧至最短的过程中,由动 能定理得:?μmgl+W弹=0?m v02 由功能关系:W弹=-△E p=-E p 解得 E p=10.5J; (2)小物块从开始运动到第一次被弹回圆形轨道最低点的过程中,由动能定理得 ?2μmgl=E k?m v02 解得 E k=3J; (3)小物块第一次返回后进入圆形轨道的运动,有以下两种情况: ①小球能够绕圆轨道做完整的圆周运动,此时设小球最高点速度为v2,由动能定理得 ?2mgR=m v22?E k 小物块能够经过最高点的条件m≥mg,解得R≤0.12m ②小物块不能够绕圆轨道做圆周运动,为了不让其脱离轨道,小物块至多只能到达与圆心 等高的位置,即m v12≤mgR,解得R≥0.3m; 设第一次自A点经过圆形轨道最高点时,速度为v1,由动能定理得:

高中物理动能与动能定理解析版汇编

高中物理动能与动能定理解析版汇编 一、高中物理精讲专题测试动能与动能定理 1.某校兴趣小组制作了一个游戏装置,其简化模型如图所示,在 A 点用一弹射装置可 将静止的小滑块以 v 0水平速度弹射出去,沿水平直线轨道运动到 B 点后,进入半径 R =0.3m 的光滑竖直圆形轨道,运行一周后自 B 点向 C 点运动,C 点右侧有一陷阱,C 、D 两点的竖 直高度差 h =0.2m ,水平距离 s =0.6m ,水平轨道 AB 长为 L 1=1m ,BC 长为 L 2 =2.6m ,小滑块与 水平轨道间的动摩擦因数 μ=0.5,重力加速度 g =10m/s 2. (1)若小滑块恰能通过圆形轨道的最高点,求小滑块在 A 点弹射出的速度大小; (2)若游戏规则为小滑块沿着圆形轨道运行一周离开圆形轨道后只要不掉进陷阱即为胜出,求小滑块在 A 点弹射出的速度大小的范围. 【答案】(1)(2)5m/s≤v A ≤6m/s 和v A ≥ 【解析】 【分析】 【详解】 (1)小滑块恰能通过圆轨道最高点的速度为v ,由牛顿第二定律及机械能守恒定律 由B 到最高点2211 222 B mv mgR mv =+ 由A 到B : 解得A 点的速度为 (2)若小滑块刚好停在C 处,则: 解得A 点的速度为 若小滑块停在BC 段,应满足3/4/A m s v m s ≤≤ 若小滑块能通过C 点并恰好越过壕沟,则有2 12 h gt = c s v t = 解得

所以初速度的范围为3/4/A m s v m s ≤≤和5/A v m s ≥ 2.如图所示,光滑水平平台AB 与竖直光滑半圆轨道AC 平滑连接,C 点切线水平,长为L =4m 的粗糙水平传送带BD 与平台无缝对接。质量分别为m 1=0.3kg 和m 2=1kg 两个小物体中间有一被压缩的轻质弹簧,用细绳将它们连接。已知传送带以v 0=1.5m/s 的速度向左匀速运动,小物体与传送带间动摩擦因数为μ=0.15.某时剪断细绳,小物体m 1向左运动,m 2向右运动速度大小为v 2=3m/s ,g 取10m/s 2.求: (1)剪断细绳前弹簧的弹性势能E p (2)从小物体m 2滑上传送带到第一次滑离传送带的过程中,为了维持传送带匀速运动,电动机需对传送带多提供的电能E (3)为了让小物体m 1从C 点水平飞出后落至AB 平面的水平位移最大,竖直光滑半圆轨道AC 的半径R 和小物体m 1平抛的最大水平位移x 的大小。 【答案】(1)19.5J(2)6.75J(3)R =1.25m 时水平位移最大为x =5m 【解析】 【详解】 (1)对m 1和m 2弹开过程,取向左为正方向,由动量守恒定律有: 0=m 1v 1-m 2v 2 解得 v 1=10m/s 剪断细绳前弹簧的弹性势能为: 22112211 22 p E m v m v = + 解得 E p =19.5J (2)设m 2向右减速运动的最大距离为x ,由动能定理得: -μm 2gx =0-1 2 m 2v 22 解得 x =3m <L =4m 则m 2先向右减速至速度为零,向左加速至速度为v 0=1.5m/s ,然后向左匀速运动,直至离开传送带。 设小物体m 2滑上传送带到第一次滑离传送带的所用时间为t 。取向左为正方向。 根据动量定理得: μm 2gt =m 2v 0-(-m 2v 2)

专题06 功和功率 动能定理-2020年高考物理二轮复习热点题型与提分秘籍(解析版)

2020年高考物理二轮复习热点题型与提分秘籍 专题06 功和功率 动能定理 题型一 功和功率的理解和计算 【题型解码】 1.要注意区分是恒力做功,还是变力做功,求恒力的功常用定义式. 2.变力的功根据特点可将变力的功转化为恒力的功(如大小不变、方向变化的阻力),或用图象法、平均值法(如弹簧弹力的功),或用W =Pt 求解(如功率恒定的力),或用动能定理等求解. 【典例分析1】(2019·山东菏泽市下学期第一次模拟)如图所示,半径为R 的半圆弧槽固定在水平地面上,槽口向上,槽口直径水平,一个质量为m 的物块从P 点由静止释放刚好从槽口A 点无碰撞地进入槽中,并沿圆弧槽匀速率地滑行到最低点B 点,不计物块的大小,P 点到A 点高度为h ,重力加速度大小为g ,则下列说法正确的是( ) A .物块从P 到 B 过程克服摩擦力做的功为mg (R +h ) B .物块从A 到B 过程重力的平均功率为2mg 2gh π C .物块在B 点时对槽底的压力大小为(R +2h )mg R D .物块到B 点时重力的瞬时功率为mg 2gh 【参考答案】 BC 【名师解析】 物块从A 到B 过程做匀速圆周运动,根据动能定理有mgR -W f =0,因此克服摩擦力做功W f =mgR ,A 项错误;根据机械能守恒,物块到A 点时的速度大小由mgh =1 2mv 2得v =2gh ,从A 到B 运 动的时间t =12πR v =πR 22gh ,因此从A 到B 过程中重力的平均功率为P =W t =2mg 2gh π,B 项正确;物块在B 点时,根据牛顿第二定律F N -mg =m v 2 R ,求得F N =(R +2h )mg R ,根据牛顿第三定律可知,F N ′=F N =(R +2h )mg R , C 项正确;物块到B 点时,速度的方向与重力方向垂直,因此重力的瞬时功率为零, D 项错误. 【典例分析2】(2019·湖北武汉高三3月调研)如图所示,将完全相同的四个小球1、2、3、4分别从同一高度由静止释放或平抛(图乙),其中图丙是一倾角为45°的光滑斜面,图丁为1 4光滑圆弧,不计空气阻力,则下 列对四种情况下相关物理量的比较正确的是( )

最新高考物理动能与动能定理常见题型及答题技巧及练习题(含答案)

最新高考物理动能与动能定理常见题型及答题技巧及练习题(含答案) 一、高中物理精讲专题测试动能与动能定理 1.如图所示,在水平轨道右侧固定半径为R的竖直圆槽形光滑轨道,水平轨道的PQ段长度为,上面铺设特殊材料,小物块与其动摩擦因数为,轨道其它部分摩擦不计。水平轨道左侧有一轻质弹簧左端固定,弹簧处于原长状态。可视为质点的质量的小物块从轨道右侧A点以初速度冲上轨道,通过圆形轨道,水平轨道后压缩弹簧,并被弹簧以原速率弹回,取,求: (1)弹簧获得的最大弹性势能; (2)小物块被弹簧第一次弹回经过圆轨道最低点时的动能; (3)当R满足什么条件时,小物块被弹簧第一次弹回圆轨道时能沿轨道运动而不会脱离轨道。 【答案】(1)10.5J(2)3J(3)0.3m≤R≤0.42m或0≤R≤0.12m 【解析】 【详解】 (1)当弹簧被压缩到最短时,其弹性势能最大。从A到压缩弹簧至最短的过程中,由动 能定理得:?μmgl+W弹=0?m v02 由功能关系:W弹=-△E p=-E p 解得 E p=10.5J; (2)小物块从开始运动到第一次被弹回圆形轨道最低点的过程中,由动能定理得 ?2μmgl=E k?m v02 解得 E k=3J; (3)小物块第一次返回后进入圆形轨道的运动,有以下两种情况: ①小球能够绕圆轨道做完整的圆周运动,此时设小球最高点速度为v2,由动能定理得 ?2mgR=m v22?E k 小物块能够经过最高点的条件m≥mg,解得R≤0.12m ②小物块不能够绕圆轨道做圆周运动,为了不让其脱离轨道,小物块至多只能到达与圆心 等高的位置,即m v12≤mgR,解得R≥0.3m; 设第一次自A点经过圆形轨道最高点时,速度为v1,由动能定理得:

高考物理动能与动能定理试题(有答案和解析)含解析

高考物理动能与动能定理试题(有答案和解析)含解析 一、高中物理精讲专题测试动能与动能定理 1.如图所示,在水平轨道右侧固定半径为R的竖直圆槽形光滑轨道,水平轨道的PQ段长度为,上面铺设特殊材料,小物块与其动摩擦因数为,轨道其它部分摩擦不计。水平轨道左侧有一轻质弹簧左端固定,弹簧处于原长状态。可视为质点的质量的小物块从轨道右侧A点以初速度冲上轨道,通过圆形轨道,水平轨道后压缩弹簧,并被弹簧以原速率弹回,取,求: (1)弹簧获得的最大弹性势能; (2)小物块被弹簧第一次弹回经过圆轨道最低点时的动能; (3)当R满足什么条件时,小物块被弹簧第一次弹回圆轨道时能沿轨道运动而不会脱离轨道。 【答案】(1)10.5J(2)3J(3)0.3m≤R≤0.42m或0≤R≤0.12m 【解析】 【详解】 (1)当弹簧被压缩到最短时,其弹性势能最大。从A到压缩弹簧至最短的过程中,由动 能定理得:?μmgl+W弹=0?m v02 由功能关系:W弹=-△E p=-E p 解得 E p=10.5J; (2)小物块从开始运动到第一次被弹回圆形轨道最低点的过程中,由动能定理得 ?2μmgl=E k?m v02 解得 E k=3J; (3)小物块第一次返回后进入圆形轨道的运动,有以下两种情况: ①小球能够绕圆轨道做完整的圆周运动,此时设小球最高点速度为v2,由动能定理得 ?2mgR=m v22?E k 小物块能够经过最高点的条件m≥mg,解得R≤0.12m ②小物块不能够绕圆轨道做圆周运动,为了不让其脱离轨道,小物块至多只能到达与圆心 等高的位置,即m v12≤mgR,解得R≥0.3m; 设第一次自A点经过圆形轨道最高点时,速度为v1,由动能定理得:

功和功率,动能定理

第一部分功和功率 知识要点梳理 知识点一——功和功的计算 ▲知识梳理 1.功的定义 一个物体受到力的作用,如果在力的方向上发生一段位移,就说这个力对物体做了功。 2.做功的两个必要因素 力和物体在力的方向上发生的位移,缺一不可。 如图甲所示,举重运动员举着杠铃不动时,杠铃没有发生位 移,举杠铃的力对杠铃没有做功。如图乙所示,足球在水平地 面上滚动时,重力对球做的功为零。 3.功的物理意义:功是能量变化的量度 能量的转化跟做功密切相关,做功的过程就是能量转化的过 程,做了多少功就有多少能量发生了转化,功是能量转化的量度。 4.公式 (1)当恒力F的方向与位移l的方向一致时,力对物体所做的功为W = Fl。 (2)当恒力F的方向与位移l的方向成某一角度时,力F物体所做的功为.即力对物体所做的功,等于力的大小、位移的大小、力与位移的夹角的余弦这三者的乘积。 5.功是标量,但有正负 功的单位由力的单位和位移的单位决定。在国际单位制中,功的单位是焦耳,简称焦,符号是J。 一个力对物体做负功,往往说成物体克服这个力做功(取绝对值)。这两种说法在意义上是相同的。例如竖直向上抛出的球,在向上运动的过程中,重力对球做了-6J 的功,可以说成球克服重力做了6J的功。 由,可以看出: ①当=0时,,即,力对物体做正功; ②当时,,力对物体做正功。 ①②两种情况都是外界对物体做功。 ③当时,力与位移垂直,,即力对物体不做功,即外界和物体间无能量交换; ④当时,,力对物体做负功; ⑤当时,,此时,即力的方向与物体运动位移的方向完全相反,是物体运动的阻力。 ④⑤两种情况都是物体对外界做功。 6.合力的功 当物体在几个力的共同作用下发生一段位移时,这几个力的合力对物体所做的功,等于各个力分别对物体所做功的代数和。 求合力的功可以先求各个力所做的功,再求这些力所做功的代数和;也可先求合外力,再求合外力的功;也可用动能定理求解。 ▲疑难导析 一、功的正负的理解和判断 1.功的正负的理解 功是一个标量,只有大小没有方向。功的正负不代表方向,也不表示大小,只说明是动力做功还是阻力做功,或导致相应的能量增加或减少。 2.常用的判断力是否做功及做功正负的方法 (1)根据力和位移方向的夹角判断: ①当时,,力对物体做正功; ②当时,,力对物体做负功,也称物体克服这个力做了功; ③当时,,力对物体不做功。 (2)根据力和瞬时速度方向的夹角判断。此法常用于判断质点做曲线运动时变力做的功。 ①时,力F对物体不做功。例如,向心力对物体不做功;作用在运动电荷上的洛伦兹力对电荷不做功; ②当时,力F对物体做正功; ③当时,力F对物体做负功,即物体克服力F做功。 (3)根据质点或系统能量是否变化,彼此是否有能量转移或转化进行判断。若有能量的变化,或系统各质点间彼此有能量的转移或转化,则必定有力做功。 二、功的计算方法 1.功的公式:,是力的作用点沿力的方向上的位移,公式主要用于求恒力做功和F随l做线性变化的变力做功(此时F取平均值)。

高考物理动能定理和能量守恒专题

弄死我咯,搞了一个多钟 专题四动能定理及能量守恒(注意大点的字) 一、大纲解读 本专题涉及的考点有:功和功率、动能和动能定理、重力做功和重力势能、弹性势能、机械能守恒定律,都是历年高考的必考内容,考查的知识点覆盖面全,频率高,题型全。动能定理、机械能守恒定律是力学中的重点和难点,用能量观点解题是解决动力学问题的三大途径之一。《大纲》对本部分考点要求为Ⅱ类有五个,功能关系一直都是高考的“重中之重”,是高考的热点和难点,涉及这部分内容的考题不但题型全、分值重,而且还常有高考压轴题。考题的内容经常及牛顿运动定律、曲线运动、动量守恒定律、电磁学等方面知识综合,物理过程复杂,综合分析的能力要求较高,这部分知识能密切联系生活实际、联系现代科学技术,因此,每年高考的压轴题,高难度的综合题经常涉及本专题知识。它的特点:一般过程复杂、难度大、能力

要求高。还常考查考生将物理问题经过分析、推理转化为数学问题,然后运用数学知识解决物理问题的能力。所以复习时要重视对基本概念、规律的理解掌握,加强建立物理模型、运用数学知识解决物理问题的能力。在09年的高考中要考查学生对于生活、生产中的实际问题要建立相关物理模型,灵活运用牛顿定律、动能定理、动量定理及能量转化的方法提高解决实际问题的能力。 二、重点剖析 1、理解功的六个基本问题 (1)做功及否的判断问题:关键看功的两个必要因素,第一是力;第二是力的方向上的位移。而所谓的“力的方向上的位移”可作如下理解:当位移平行于力,则位移就是力的方向上的位的位移;当位移垂直于力,则位移垂直于力,则位移就不是力的方向上的位移;当位移及力既不垂直又不平行于力,则可对位移进行正交分解,其平行于力的方向上的分位移仍被称为力的方向上的位移。 (2)关于功的计算问题:①W=FS cos α这种方法只适用于恒力做功。②用动能定理W=ΔE k 或功能关系求功。当F 为变力时,高中阶段往往 考虑用这种方法求功。 这种方法的依据是:做功的过程就是能量转化的过程,功是能的转化的量度。如果知道某一过程中能量转化的数值,那么也就知道了该过程中对应的功的数值。 (3)关于求功率问题:①t W P = 所求出的功率是时间t 内的平均功率。②功率的计算式:θcos Fv P =,其中θ是力及速度间的夹角。一般用于求某一时刻的瞬时功率。

高考物理动能与动能定理试题(有答案和解析)

高考物理动能与动能定理试题(有答案和解析) 一、高中物理精讲专题测试动能与动能定理 1.如图所示,在水平轨道右侧固定半径为R的竖直圆槽形光滑轨道,水平轨道的PQ段长度为,上面铺设特殊材料,小物块与其动摩擦因数为,轨道其它部分摩擦不计。水平轨道左侧有一轻质弹簧左端固定,弹簧处于原长状态。可视为质点的质量的小物块从轨道右侧A点以初速度冲上轨道,通过圆形轨道,水平轨道后压缩弹簧,并被弹簧以原速率弹回,取,求: (1)弹簧获得的最大弹性势能; (2)小物块被弹簧第一次弹回经过圆轨道最低点时的动能; (3)当R满足什么条件时,小物块被弹簧第一次弹回圆轨道时能沿轨道运动而不会脱离轨道。 【答案】(1)10.5J(2)3J(3)0.3m≤R≤0.42m或0≤R≤0.12m 【解析】 【详解】 (1)当弹簧被压缩到最短时,其弹性势能最大。从A到压缩弹簧至最短的过程中,由动 能定理得:?μmgl+W弹=0?m v02 由功能关系:W弹=-△E p=-E p 解得 E p=10.5J; (2)小物块从开始运动到第一次被弹回圆形轨道最低点的过程中,由动能定理得 ?2μmgl=E k?m v02 解得 E k=3J; (3)小物块第一次返回后进入圆形轨道的运动,有以下两种情况: ①小球能够绕圆轨道做完整的圆周运动,此时设小球最高点速度为v2,由动能定理得 ?2mgR=m v22?E k 小物块能够经过最高点的条件m≥mg,解得R≤0.12m ②小物块不能够绕圆轨道做圆周运动,为了不让其脱离轨道,小物块至多只能到达与圆心 等高的位置,即m v12≤mgR,解得R≥0.3m; 设第一次自A点经过圆形轨道最高点时,速度为v1,由动能定理得:

高考物理动能定理的综合应用及其解题技巧及练习题(含答案)

高考物理动能定理的综合应用及其解题技巧及练习题(含答案) 一、高中物理精讲专题测试动能定理的综合应用 1.如图所示,倾角为37°的粗糙斜面AB 底端与半径R=0.4 m 的光滑半圆轨道BC 平滑相连,O 点为轨道圆心,BC 为圆轨道直径且处于竖直方向,A 、C 两点等高.质量m=1 kg 的滑块从A 点由静止开始下滑,恰能滑到与O 点等高的D 点,g 取10 m/s 2,sin 37°=0.6,cos 37°=0.8.求: (1)求滑块与斜面间的动摩擦因数μ; (2)要使滑块能到达C 点,求滑块从A 点沿斜面滑下时初速度v 0的最小值; (3)若滑块离开C 点的速度为4 m/s ,求滑块从C 点飞出至落到斜面上所经历的时间. 【答案】(1)0.375(2)3/m s (3)0.2s 【解析】 试题分析:⑴滑块在整个运动过程中,受重力mg 、接触面的弹力N 和斜面的摩擦力f 作用,弹力始终不做功,因此在滑块由A 运动至D 的过程中,根据动能定理有:mgR - μmgcos37° 2sin 37R ? =0-0 解得:μ=0.375 ⑵滑块要能通过最高点C ,则在C 点所受圆轨道的弹力N 需满足:N≥0 ① 在C 点时,根据牛顿第二定律有:mg +N =2C v m R ② 在滑块由A 运动至C 的过程中,根据动能定理有:-μmgcos37° 2sin 37R ?=2 12 C mv - 2 012 mv ③ 由①②③式联立解得滑块从A 点沿斜面滑下时的初速度v 0需满足:v 03gR =23 即v 0的最小值为:v 0min =3 ⑶滑块从C 点离开后将做平抛运动,根据平抛运动规律可知,在水平方向上的位移为:x =vt ④ 在竖直方向的位移为:y = 2 12 gt ⑤ 根据图中几何关系有:tan37°= 2R y x -⑥ 由④⑤⑥式联立解得:t =0.2s 考点:本题主要考查了牛顿第二定律、平抛运动规律、动能定理的应用问题,属于中档题.

相关文档
相关文档 最新文档