文档库 最新最全的文档下载
当前位置:文档库 › 以太网链路连接

以太网链路连接

以太网链路连接
以太网链路连接

单片机的以太网连接方式2009

单片机的以太网连接方式2009-08-27 10:48 本博客页内容将与设计过程同步 本设计将以VRS51L3074单片机为基础阐述一种单片机连接以太网的方式。通过这种方式,可以使单片机成为计算网络中的一个终端,从而方便地扩展、高速地通讯。 设计计划: 2009年8月25日前完成选型工作,读懂资料,并绘制出相应的电路原理图 2009年8月28日前完成网络连接模块的PCB板设计 2009年9月7日前将单片机上基础软件部分调通 2009年9月10日前完成该通讯模块的软硬件功能设计 2009年9月20日前完成整体方案的性能测试,并提交相关测试文档 本博客页内容将与设计过程同步 本设计基于CP2200单芯片以太网微控制器及VRS51L3074高速8位单片机,以实现单片机访问以太网功能。 以太网作为现代主要的数据传输方式,以其高速性和很高的数据稳定性,已经从个人计算机到智能设备深入到世界的每个角落。作为现在用量最大、普及程度最高的8位单片机,其加入以太网络进行数据传输已经是大势所趋。 现代的新型1T8051类型的单片机,如RAMTRON公司的VRS51L3074单片机,已经能够提供足够的资源和速度以应对以太网对硬件的需求,这为8位单片机参与到以太网中奠定了良好的基础。 作为本次设计的核心控制基础,先介绍下VRS51L3074高性能51系列单片机。 VRS51L3074系列单片机是RAMTRON公司推出的一款1T的8051系列单片机。该款单片机性能优越,因其每个时钟周期就是一个系统周期,故而其可以工作在40MIPS的指令速度下,从速度上说,该单片机是可以用于小规模数据处理;该款单片机有256B+4KB的RAM;值得一提的是,在单片机内还集成了8KB的FRAM(铁电存储器),这是其他系列单片机所不具备的,这能够大大提升单片机的数据静态存储效能;该款单片机拥有完整的JTAG接口,可用于在线编程和在线调试,给开发带来很大的方便;其具备SPIBUS和SMBUS(IIC)总线,可独立地进行单片机与外围设备之间的串行通信;该单片机拥有丰富的外中断接口和时钟信号接口及PWM输出,在时间精度控制方面可以做到卓越的效果;其内部集成WatchDogTimer,加上其工业级的工作温度,使其在恶劣环境下也能正常工作。从单片机的资源和性能角度来说,该单片机是同类单片机中性能极高的,完全可以满足工业应用和高速数据传输的需求。 下面再介绍一下CP2200单芯片以太网微控制器。 CP2200以太网控制器是Silicon公司推出的专门服务8位/16位单片机的一种集成以太网络协议打包的芯片,其集成IEEE 802.3 MAC 和10 BASE-T PHY,完全兼容100/1000 BASE-T网络,自适应全/半双工网络,可适应大多数以太网络组织形式;其具有碰撞自动重发、自动填充和CRC生成、支持广播和多播MAC寻址等功能,大大减轻了后向通道中MCU的负荷。

02-二层技术-以太网交换配置指导-以太网链路聚合配置

目录 1以太网链路聚合配置 ·························································································································· 1-1 1.1 以太网链路聚合简介·························································································································· 1-1 1.1.1 基本概念 ································································································································· 1-1 1.1.2 静态聚合模式 ·························································································································· 1-4 1.1.3 动态聚合模式 ·························································································································· 1-5 1.1.4 聚合负载分担类型··················································································································· 1-7 1.2 以太网链路聚合配置任务简介 ··········································································································· 1-7 1.3 配置聚合组 ········································································································································ 1-7 1.3.1 配置静态聚合组 ······················································································································ 1-8 1.3.2 配置动态聚合组 ······················································································································ 1-9 1.4 聚合接口相关配置 ··························································································································· 1-10 1.4.1 配置聚合接口描述信息 ········································································································· 1-10 1.4.2 开启聚合接口链路状态变化Trap功能···················································································· 1-10 1.4.3 关闭聚合接口 ························································································································ 1-10 1.5 配置聚合负载分担 ··························································································································· 1-11 1.5.1 配置聚合负载分担类型 ········································································································· 1-11 1.5.2 配置聚合负载分担采用本地转发优先···················································································· 1-11 1.6 配置聚合流量重定向功能 ················································································································ 1-12 1.7 以太网链路聚合显示与维护············································································································· 1-12 1.8 以太网链路聚合典型配置举例 ········································································································· 1-13 1.8.1 静态聚合配置举例················································································································· 1-13 1.8.2 动态聚合配置举例················································································································· 1-15

以太网标准和物理层及数据链路层专题

资料编码产品名称 使用对象产品版本 编写部门资料版本 以太网标准和物理层、数据链路层专题 拟制:日期: 审核:日期: 审核:日期: 批准:日期: 华为技术有限公司 版权所有侵权必究 修订记录 日期修订版本作者描述

目录 1 以太网标准 5 1.1 以太网标准 5 1.2 IEEE标准 5 1.3 物理层 8 1.3.1 以太网接口类型 8 1.3.2 电口 8 1.3.3 光口 11 1.4 FE自协商 12 1.4.1 自协商技术的功能规范 13 1.4.2 自协商技术中的信息编码 14 1.4.3 自协商功能的寄存器控制 16 1.4.4 GE自协商 18 1.5 物理层芯片和MAC层芯片接口简介 19 1.5.1 MII 19 1.5.2 MDIO管理寄存器 20 1.5.3 RMII 20

1.5.4 SMII 21 1.5.5 SS-SMII 21 1.5.6 GMII 22 1.5.7 TBI 22 2 以太网数据链路层 23 2.1 以太网的帧格式 23 2.2 以太网的MAC地址 25 2.3 CSMA/CD算法 26 2.3.1 CSMA/CD发送过程 27 2.3.2 CSMA/CD如何接收 28 2.4 半双工以太网的限制 31 2.5 以太网流量控制 34 2.5.1 反压(Backpressure) 34 2.5.2 PAUSE 流控 34 关键词: 以太网物理层数据链路局域网城域网协议标准祯结构

摘要: 本文详细地阐述了以太网的标准,以太网在各个传输层面的具体结构和工作方式以及控制方式。 缩略语清单: 无。 参考资料清单 无。 以太网标准和物理层、数据链路层专题 1 以太网标准 1.1 以太网标准 局域网(LAN)技术用于连接距离较近的计算机,如在单个建筑或类似校园的集中建筑中。城市区域网(MAN)是基于10-100Km的大范围距离设计的,因此需要增强其可靠性。但随着通信的发展,从技术上看,局域网和城域网有融合贯通的趋势。 1.2 IEEE标准 IEEE是电气和电子工程师协会(Institute of Electrical and Electronics Engineers)的简称,IEEE组织主要负责有关电子和电气产品的各种标准的制定。IEEE于1980年2月成立了IEEE 802委员会,专门研究和指定有关局域网的各种标准。IEEE 802委员会由6个分委员会组成,其编号分别为802.1

华为链路聚合典型配置指导

链路聚合典型配置指导(版本切换前) 链路聚合是将多个物理以太网端口聚合在一起形成一个逻辑上的聚合组,使用链路聚合服务 的上层实体把同一聚合组内的多条物理链路视为一条逻辑链路。 链路聚合可以实现出/入负荷在聚合组中各个成员端口之间分担,以增加带宽。同时,同一 聚合组的各个成员端口之间彼此动态备份,提高了连接可靠性。 组网图 链路聚合配置示例图 应用要求 设备Switch A用3个端口聚合接入设备Switch B,从而实现出/入负荷在各成 员端口中分担。 Switch A 的接入端口为GigabitEthernet1/0/1 ?GigabitEthernet1/0/3 。 适用产品、版本 配置过程和解释 说明: 以下只列出对Switch A的配置,对Switch B也需要作相同的配置,才能实现链路聚合。 配置聚合组,实现端口的负载分担(下面两种方式任选其一) 采用手工聚合方式 #创建手工聚合组1。 system-view [SwitchA] link-aggregation group 1 mode manual | # 将以太网端口GigabitEthernet1/0/1 至GigabitEthernet1/0/3 加入聚合组1。 [SwitchA] interface GigabitEthernet 1/0/1 [SwitchA-GigabitEthernet1/0/1] port link-aggregation group 1

[SwitchA-GigabitEthernet1/0/1] interface GigabitEthernet 1/0/2 [SwitchA-GigabitEthernet1/0/2] port link-aggregation group 1 [SwitchA-GigabitEthernet1/0/2] interface GigabitEthernet 1/0/3 [SwitchA-GigabitEthernet1/0/3] port link-aggregation group 1 采用静态LACP聚合方式 #创建静态LACP聚合组1。 system-view [SwitchA] link-aggregation group 1 mode static #将以太网端口GigabitEthernet1/0/1 至GigabitEthernet1/0/3 加入聚合组1。 [SwitchA] interface GigabitEthernet 1/0/1 [SwitchA-GigabitEthernet1/0/1] port link-aggregation group 1 [SwitchA-GigabitEthernet1/0/1] interface GigabitEthernet 1/0/2 [SwitchA-GigabitEthernet1/0/2] port link-aggregation group 1 [SwitchA-GigabitEthernet1/0/2] interface GigabitEthernet 1/0/3 [SwitchA-GigabitEthernet1/0/3] port link-aggregation group 1 完整配置 采用手工聚合方式: # link-aggregation group 1 mode manual # interface GigabitEthernet1/0/1 port link-aggregation group 1 # interface GigabitEthernet1/0/2 port link-aggregation group 1 # interface GigabitEthernet1/0/3 | port link-aggregation group 1 # 采用静态LACP聚合方式: # link-aggregation group 1 mode static interface GigabitEthernet1/0/1 port link-aggregation group 1 # interface GigabitEthernet1/0/2 port link-aggregation group 1 # interface GigabitEthernet1/0/3 port link-aggregation group 1 # 配置注意事项 不同平台软件对静态聚合方式的实现不同,所以不同平台软件的产品采用静态 聚合方式对接时,容易产生问题。有关平台软件的版本信息可以通过 display version 命令查看。

数据链路层与网络安全

课 程 设 计 任 务 书 题目:网络安全技术分析与安全方案设计 小组成员:

姓名:刘锡淼学号:540907040127 负责内容:统筹协作和运输层安全分析与解决方案 姓名:杨大为学号:540907040144 负责内容:应用层安全分析与解决方案 姓名:余飞学号:540907040145 负责内容:网络层安全分析与解决方案 姓名:周恺学号:540907040156 负责内容:物理层安全分析与解决方案 姓名:赵伟学号:540907040153 负责内容:数据链路层安全分析与解决方案 基本要求:

?设计网络安全技术实现方案。选择合适的安全协议、安全 技术、安全设备,设计安全组网方案。 ?按5人左右组合成一个小组,集中讨论,提出各小组的实现 方案,总结并写出报告。 设计目的: ?分析网络各种安全技术和安全设备 ?设计网络安全的方案 计算机网络安全技术内容: ?保密性 ?安全协议的设计 ?访问控制 网络安全分析类别: ?物理层安全分析及解决方案 ?数据链路层安全分析及解决方案 ?网络层安全分析及解决方案 ?运输层安全分析及解决方案 ?应用层安全分析及解决方案 设计内容:数据链路层与网络安全

通信的每一层中都有自己独特的安全问题。数据链路层(第二协议层)的通信连接就安全而言,是较为薄弱的环节。网络安全的问题应该在多个协议层针对不同的弱点进行解决。在本部分中,我将集中讨论与有线局域网相关的安全问题。在第二协议层的通信中,交换机是关键的部件,它们也用于第三协议层的通信。对于相同的第三协议层的许多攻击和许多独特的网络攻击,它们和路由器都会很敏感,这些攻击包括: 内容寻址存储器(CAM)表格淹没:交换机中的CAM 表格包含了诸如在指定交换机的物理端口所提供的MAC 地址和相关的VLAN 参数之类的信息。一个典型的网络侵入者会向该交换机提供大量的无效MAC 源地址,直到CAM 表格被添满。当这种情况发生的时候,交换机会将传输进来的信息向所有的端口发送,因为这时交换机不能够从CAM 表格中查找出特定的MAC 地址的端口号。CAM 表格淹没只会导致交换机在本地VLAN 范围内到处发送信息,所以侵入者只能够看到自己所连接到的本地VLAN 中的信息。 VLAN 中继:VLAN 中继是一种网络攻击,由一终端系统发出以位于不同VLAN 上的系统为目标地址的数据包,而该系统不可以采用常规的方法被连接。该信息被附加上不同于该终端系统所属网络VLAN ID 的标签。或者发出攻击的系统伪装成交换机并对中继进行处理,以便于攻击者能够收发其它VLAN 之间的通信。 操纵生成树协议:生成树协议可用于交换网络中以防止在以太网拓朴结构中产生桥接循环。通过攻击生成树协议,网络攻击者希望将自己的系统伪装成该拓朴结构中的根网桥。要达到此目的,网络攻击者需要向外广播生成树协议配置/拓朴结构改变网桥协议数据单元(BPDU),企图迫使生成树进行重新计算。网络攻击者系统发出的BPDU 声称发出攻击的网桥优先权较低。如果获得成功,该网络攻击者能够获得各种各样的数据帧。 媒体存取控制地址(MAC)欺骗:在进行MAC 欺骗攻击的过程中,已知某其它主机的MAC 地址会被用来使目标交换机向攻击者转发以该主机为目的地址的数据帧。通过发送带有该主机以太网源地址的单个数据帧的办法,网络攻击者改写了CAM 表格中的条目,使得交换机将以该主机为目的地址的数据包转发给该网络攻击者。除非该主机向外发送信息,否则它不会收到任何信息。当该主

以太网在传输网络中的应用

以太网在传输网络中的应用 摘要:随着以太网的发展,带宽从最初的2Mbps增长到目前的10Mbp,已经增长了千倍以上,对现有的SDH 网络要求越来越高,如何满足用户带宽和网络稳定性要求成为当务之急。本文阐述了基于SDH的以太网业务的传送方式、传送功能和组网方式,并且举例说明了各种组网方式。针对我公司发展现状,结合实际工作,分析了以太网业务对我们在激烈的电信市场竞争中的重要性。 关键词:以太网业务 SDH VCTRUNK 近年来,通信网络技术因与以因特网为代表的计算机网络技术相结合而飞速发展,随着因特网的发展,电子商务、视频点播、网络生活等的需求不断地增长,使得全球范围内的数据业务量迅猛增长,互联网的用户数呈现指数增长的规律,对带宽的需求永无止境。与此同时,作为基础传送网的SDH,其关键技术也在不断进步,新的SDH设备具有高集成度、对ADM 集成和灵活的业务调度能力、多业务传送能力、智能化管理的特点,它采用灵活可变的带宽来适应以太网业务的实际传送。SDH将在业务汇聚层起到协议透明传输和带宽管理的作用,很好地发挥现有网络的功能,配置和控制带宽,动态地从包交换和TDM业务中直接分配带宽,提供逐渐增长的数据带宽。 一、基于SDH的以太网业务传送 1.基于SDH的以太网业务传送方式 传统的SDH传送网络主要针对语音业务,缺乏面对指数型增长的带宽需求和以IP数据为主流的网络所需的扩展性和灵活性。同时,在可预见的未来,面向TDM业务的SDH传输体制将继续存在。但数据业务的增长使得业务提供商和运营商们正在寻求一种方案,从现有的静态TDM复用时代过渡到动态IP业务网时代。 基于下一代SDH的多业务传输平台灵活可变的带宽来适应以太网业务实际传送带宽变化范围大的需求通常采用的方式有两种:一种是采用ML-PPP,灵活捆绑多个VC-12/VC-3通道传送以太网帧;另一种方式是采用多个VC-12/VC-3、VC-4级联或虚级联通道来传送。因为虚级联可以兼容传统的SDH网络,从而得到广泛的应用。 2.基于SDH的以太网业务传送功能 1.1透明传输功能 以太网业务透明传送功能是指将来自以太网接口的信号不经过以太网交换,直接映射到SDH的虚荣器(VC)中,然后通过SDH设备进行点到点的传送。 基于SDH的具备以太网业务透明传送功能的业务传送设备必须具备以下功能: ⑴链路带宽可配置。 ⑵接收的正常数据帧必须能完整的映射到虚容器中,应保证以太网业务的透明性,包括以太网MAC帧、VLAN标记等的透明传送。 ⑶以太网数据帧的封装应采用PPP协议或者LAPS协议和GFP协议。 ⑷数据帧可以采用ML-PPP协议封装或采用VC通道的连续级联或虚级联映射来保证数据帧在传输过程中的完整性。

9种常见的INTERNET接入方式

9种常见的INTERNET接入方式 2005-07-22 13:58作者:王玉涵出处:考试吧责任编辑:王玉涵提到接入网,首先要涉及一个带宽问题,随着互联网技术的不断发展和完善,接入网的带宽被人们分为窄带和宽带,业内专家普遍认为宽带接入是未来发展方向。 宽带运营商网络结构如图1所示。整个城市网络由核心层、汇聚层、边缘汇聚层、接入层组成。社区端到末端用户接入部分就是通常所说的最后一公里,它在整个网络中所处位置如图1所示。 在接入网中,目前可供选择的接入方式主要有PSTN、ISDN、DDN、LAN、ADSL、VDSL、Cable-Modem、PON和LMDS9种,它们各有各的优缺点。 PSTN拨号: 使用最广泛 PSTN(Published Switched Telephone Network,公用电话交换网)技术是利用PSTN 通过调制解调器拨号实现用户接入的方式。这种接入方式是大家非常熟悉的一种接入方式,目前最高的速率为56kbps,已经达到仙农定理确定的信道容量极限,这种速率远远不能够满足宽带多媒体信息的传输需求; 但由于电话网非常普及,用户终端设备Modem很便宜,大约在100~500元之间,而且不用申请就可开户,只要家里有电脑,把电话线接入Modem 就可以直接上网。因此,PSTN拨号接入方式比较经济,至今仍是网络接入的主要手段。 PSTN接入方式如图2所示。随着宽带的发展和普及,这种接入方式将被淘汰。 ISDN拨号:通话上网两不误

ISDN(Integrated Service Digital Network,综合业务数字网)接入技术俗称“一线通”,它采用数字传输和数字交换技术,将电话、传真、数据、图像等多种业务综合在一个统一的数字网络中进行传输和处理。用户利用一条ISDN用户线路,可以在上网的同时拨打电话、收发传真,就像两条电话线一样。ISDN基本速率接口有两条64kbps的信息通路和一条16kbps 的信令通路,简称2B+D,当有电话拨入时,它会自动释放一个B信道来进行电话接听。 就像普通拨号上网要使用Modem一样,用户使用ISDN也需要专用的终端设备,主要由网络终端NT1和ISDN适配器组成。网络终端NT1好像有线电视上的用户接入盒一样必不可少,它为ISDN适配器提供接口和接入方式。ISDN适配器和Modem一样又分为内置和外置两类,内置的一般称为ISDN内置卡或ISDN适配卡;外置的ISDN适配器则称之为TA。ISDN内置卡价格在300~400元左右,而TA则在1000元左右。 ISDN接入技术示意如图3所示。用户采用ISDN拨号方式接入需要申请开户,初装费根据地区不同而会不同,一般开销在几百至1000元不等。ISDN的极限带宽为128kbps,各种测试数据表明,双线上网速度并不能翻番,从发展趋势来看,窄带ISDN也不能满足高质量的VOD等宽带应用。 DDN专线: 面向集团企业 DDN是英文Digital Data Network的缩写,这是随着数据通信业务发展而迅速发展起来的一种新型网络。DDN的主干网传输媒介有光纤、数字微波、卫星信道等,用户端多使用普通电缆和双绞线。DDN将数字通信技术、计算机技术、光纤通信技术以及数字交叉连接技术有机地结合在一起,提供了高速度、高质量的通信环境,可以向用户提供点对点、点对多点透明传输的数据专线出租电路,为用户传输数据、图像、声音等信息。DDN的通信速率可根据用户需要在N×64kbps(N=1~32)之间进行选择,当然速度越快租用费用也越高。 用户租用DDN业务需要申请开户。DDN的收费一般可以采用包月制和计流量制,这与一般用户拨号上网的按时计费方式不同。DDN的租用费较贵,普通个人用户负担不起,DDN主要面向集团公司等需要综合运用的单位。DDN按照不同的速率带宽收费也不同,例如在中国电信申请一条128kbps的区内DDN专线,月租费大约为1000元。因此它不适合社区住户的接入,只对社区商业用户有吸引力。 ADSL: 个人宽带流行风 ADSL(Asymmetrical Digital Subscriber Line,非对称数字用户环路)是一种能够通过普通电话线提供宽带数据业务的技术,也是目前极具发展前景的一种接入技术。ADSL素有“网络快车”之美誉,因其下行速率高、频带宽、性能优、安装方便、不需交纳电话费等特点而深受广大用户喜爱,成为继Modem、ISDN之后的又一种全新的高效接入方式。

10M以太网升级到100M和1000M所要解决的主要技术问题

10M以太网升级到100M和1000M所要解决的主要技术问题 高见 E-Mail:gaojiangigi@https://www.wendangku.net/doc/a69229750.html, 海南大学信息学院2000电本2000714050 摘要:根据以太网技术发展的情况,介绍高速以太网的几种物理层标准,比较传统局域网与高速局域网的差异,以及如何用现有的网络升级到高速甚至更高速网络。 关键字:CSMA/CD,以太网,交换机,路由器。 10M Ethernet upgrades the main technological problem that 100M and 1000M should solve gaojian gaojiangigi@https://www.wendangku.net/doc/a69229750.html, (Hainan University Information Technology College 2000 Electron Department, Haikou, 570228) Summary:According to the situation of the technical development of Ethernet, introduce several kinds of physics and one layer of standards of high-speed Ethernet, the difference of traditional LAN and high-speed LAN, and how to upgrade to the even more high-speed network of the high speed with the existing network. Keywords: CSMA/CD ,Ethernet, the exchanger , the router. 1.引言:以太网以它的设备简单,经济实惠等优点,成为中小型网络的主要结构。它占据着局域网90%的份额。是目前最流行的组网方式。随着经济的快速发展,传统的局域网已远远不能满足社会的需求。人们希望在网上可以得到更多更快的服务,不仅仅满足于以往的文本方式的浏览,这些因素促使我们将对现有局域网的改造提上日程。在部署吉比特以太网时经常要面对的问题是不得不重新布线,以便将基础设施升级为光纤。随着IEEE在1999年确定5类铜线上可以传输1GB/S以太网,这一问题得到解决。可以在经济利益和网络速率间找到平衡点。本文以下内容就传统以太网和高速以太网在技术上的异同展开讨论。 2.以太网简介:以太网技术被定义在20世纪70年代,它是根据IEEE的802.3标准来组建网的。它的主要技术规范是:CSMA/CD协议,以太网桢或数据包,全双工,流

网卡链路聚合简单设置实现双倍带宽.

网卡链路聚合简单设置实现双倍带宽 电脑爱好者 2016-02-19 09:01 如今所有主板至少自带一个千兆以太网端口,有些高档主板带有两个端口。很多用户都不知道家用环境下双网卡主板如何充分利用两个网口,其实使用链路聚合(Link aggregation)就是一个好思路。 双倍带宽的链路聚合 链路聚合是指将两条或多条物理以太网链路聚合成一条逻辑链路。所以,如果聚合两个1Gb/s端口,就能获得2GB/s的总聚合带宽(图1)。聚合带宽和物理带宽并不完全相同,它是通过一种负载均衡方式来实现的。在用户需要高性能局域网性能的时候很有帮助,而局域网内如果有NAS则更是如此。比如说我们在原本千兆(1Gb/s)网络下PC和NAS之间的数据传输只能达到100MB/s左右,在链路聚合的方式下多任务传输速度可以突破200MB/s,这其实是一个倍增。 01 链路聚合原本只是一种弹性网络,而不是改变了总的可用吞吐量。比如说如果你通过一条2Gb聚合链路将文件从一台PC传输到另一台PC,就会发现总的最高传输速率最高为1Gb/s。然而如果开始传输两个文件,会看到聚合带宽带来的好处。

简而言之链路聚合增加了带宽但并不提升最高速度,但如果你在使用有多个以太网端口的NAS,NAS就能支持链路聚合,速度的提升是显而易见的。 目前家用的局域网环境不论是线缆还是网卡多数都停留在1Gb/s的水平,如果你想要真正的更高吞吐量改用更高的带宽比如10Gb/s网卡,但对于大多数家庭用户万兆网卡是不太可能的。就算我们使用普通单千兆网卡主板,通过安装外接网卡来增添一个网络端口就能实现效果。 链路聚合准备工作 首先你的PC要有两个以太网端口,想要连接的任何设备同样要有至少两个端口。除了双千兆(或一集成一独立)网卡的主板外,我们还需要一个支持链路聚合(LACP或802.1ad等)的路由器。遗憾的是很多家用路由器不支持链路聚合,选择时要注意路由器具体参数,或者干脆选择一个支持链路聚合的交换机。 除了硬件方面的要求,还需要一款支持链路聚合的操作系统。我们目前广泛使用的Windows 7并没有内置的链路聚合功能,一般微软要求我们使用Windows Server,但其实Windows 8.1和10已经提供了支持了。其实如果操作系统不支持可以考虑使用厂商提供的具有链路聚合功能的驱动程序,比如英特尔PROSet 工具。另外操作系统Linux和OS X都有内置的链路聚合功能,满足了所有先决条件后下面介绍如何实现。 测试平台 主板华硕Rampage IV 处理器英特尔酷睿i7-3970X 内存三星DDR3 32GB 硬盘三星850Pro 1TB(RAID 0) 交换机网件ProSAFE XS708E 10GbE 网卡双端口10GBASE-T P2E10G-2-T 线缆 CAT7

第四章 以太网数据链路层

肆 以太网数据链路层 P 目标: 了解数据链路层结构。 熟悉各以太网帧格式,CSMA/CD (载波监听多路访问/冲突检测)机制, 熟悉PAUSE 帧格式,和流量控制原理 了解半双工模式下以太网端口的工作方式。 根据IEEE 的定义,以太网的数据链路层又分为2个子层:逻辑链路控制子层(LLC )和媒体访问控制子层(MAC )。 划分2个子层的原因是:数据链路层实际是与物理层直接相关的,针对不同的物理层需要有与之相配合的数据链路层,例如针对以太网、令牌环需要不同的数据链路层,而这是不符合分层原则的;于是通过划分LLC 和MAC 2个子层,尽量提高链路层的独立性,方便技术实现。 其中MAC 子层与物理层直接相关,以太网的MAC 层和物理层都是在802.3 中定义的,LLC 子层则可以完全独立,在802.2中定义,可适用于以太网、令牌环、WLAN 等各种标准。 í?1 以太网数据链路层 MAC 子层处理CSMA/CD 算法、数据出错校验、成帧等;LLC 子层定义了一些字段使上次协议能共享数据链路层。 在实际使用中,LLC 子层并非必需的。 1 以太网的帧格式 有两种主要的以太网帧类型:由RFC894定义的传统以太网(EthernetII )和802.3定义的以太网; 最常使用的封装格式是RFC 894定义的格式。 下图显示了两种不同形式的封装格式。图中每个方框下面的数字是它们的字节长度。 EthernetII (RFC894)帧结构如下,该帧包含了5个域(前导码在此不作描应用层 传输层 网络层 链路层 物理层逻辑链路控制(LLC )子层MAC 子层

述),它们分别是:目的MAC地址、源MAC地址、类型、净荷(PAD)、FCS、 ?? EthernetII(RFC894)帧结构 1)目的MAC地址( D A ) 包含6个字节。 D A标识了帧的目的地站点。 D A可以是单播地址(单个目的地)或组播地址(组目的地)。 2)源MAC地址( S A ) 包含6个字节。S A标识了发送帧的站。 S A通常是单播地址(即,第1位是0 )。 3)类型域包含 2个字节。 类型域标识了在以太网上运行的客户端协议。使用类型域,单个以太网可以向上复用(upward multiplex)不同的高层协议( I P,I P X,A p p l e Ta l k,等等)。以太网控制器一般不去解释这个,但是使用它来确定所连接计算机上的目的进程。本来类型域的值由X e r o x公司定义,但在1 9 9 7年改由I E E E负责。例如08-00 表示 IP、81-37表示 NetWare。 5)数据域 包含 4 6 ~ 1 5 0 0字节。数据域封装了通过以太网传输的高层协议信息。由于C S M A / C D算法的限制,以太网帧必须不能小于某个最小长度(46字节)。高层协议要保证这个域至少包含4 6字节。如果实际数据不足 4 6个字节,则高层协议必须填充到46字节,填充数为PAD。数据域长度的上限是任意的,但已经被设置为 1 5 0 0字节(1 5 0 0字节最大长度的真正原因是 1 9 7 9年( 1 0 M b / s以太网正在设计之中)的内存成本以及低成本的 L A N控制器的缓冲区要求)。 6)帧效验序列( F C S ) 包含4个字节。F C S是从D A开始到数据域结束这部分的校验和。校验和的算法是3 2位的循环冗余校验法( C R C )。生成多项式是: G ( x ) = x3 1+ x2 6+ x2 3+ x2 2+ x1 6+ x1 2+ x11+ x1 0+ x8+ x7+ x5+ x4+ x2+ x1+ 1 F C S域的传送方法是:第 1位是x3 1项的系数,而最后 1位是x0项的系数。因此C R C的各个位传输了:x3 1,x3 0,. . .,x1,X0。 802.3 以太网帧(RFC1042)的结构与Ethernet II 的非常类似,如下图所

目前以太网接入方式主要方式

目前以太网接入方式主要有3种:固定IP,DHCP,PPPOE,而PPPOE+VLAN是一种比较理想的宽带接入方式。 1、宽带接入网需要实现的基本功能 宽带接入网需要实现的基本功能可以归纳为以下几个方面: (1)用户管理 掌握用户的信息,在用户进行通信时对用户进行认证、授权,使合法用户方便快捷地接入网中,杜绝非法用户接入,防止非法用户占用网络资源。 (2)安全管理 合法用户在通信时要保障其数据的安全性,隔离带有用户个人信息的数据包,对于主要的网络设备防止其受到攻击而造成网络瘫痪。由于用户终端是以普通网卡与网络设备相连,在通信时会发送一些广播地址的帧(如ARP,DHCP消息等),而这些消息会携带用户的个人信息(如用户的MAC地址),如不隔离这些消息让其他用户接收到,容易发生MAC/IP地址的仿冒,影响合法用户上网。对于运营商来说,保护其系统设备的安全性,防止恶意攻击是十分重要的。 (3)业务管理 需要为保证QoS提供一定的手段。为了保证业务的QoS,网管人员根据具体情况为用户提供一定的带宽控制能力,例如保证用户的最低接入速率,限制用户的最高接入速率等。 (4)计费管理 接入网要能够对用户进行灵活的计费,根据用户类别、使用时长、用户流量等数据进行计费。 2、固定IP,DHCP,PPPOE 3种宽带接入方式的比较 2.1用户管理和开销方面 固定IP方式:对IP地址管理不易,用户恶意更改或者尝试自行设置自己的IP地址,都会造成管理上的麻烦,增加运营商的额外开销。 DHCP方式:一方面DHCP存在较多的广播开销,对于用户量较多的城域网会造成网络运行效率下降和配置困难;另一方面,仍然无法解决用户自行配置IP地址的问题。

计算机网络 数据链路层 练习题

第三章数据链路层 一、选择题 1、数据在传输过程出现差错的主要原因是(A ) A. 突发错 B. 计算错 C. CRC错 D. 随机错 2、PPP协议是哪一层的协议(B ) A. 物理层 B. 数据链路层 C. 网络层 D. 高层 3、控制相邻两个结点间链路上的流量的工作在(A )完成。 A. 链路层 B. 物理层 C. 网络层 D. 运输层 4、在OSI参与模型的各层中,(B )的数据传送单位是帧。 A.物理层B.数据链路层 C.网络层D.运输层 5、若PPP帧的数据段中出现比特串“”,则采用零比特填充后的输出为(B) 6、网桥是在(A )上实现不同网络的互连设备。 A.数据链路层 B.网络层 C.对话层 D.物理层 7、局域网的协议结构(B)。 A.包括物理层、数据链路层和网络层 B.包括物理层、LLC子层和MAC子层 C.只有LLC子层和MAC子层 D.只有物理层 18、10Base-T以太网中,以下说法不对的是:( C ) A.10指的是传输速率为10Mbps B.Base指的是基带传输 C.T指的是以太网D.10Base-T 是以太网的一种配置 9、以太网是下面哪一种协议的实现(C ): A. B. C. D. 10、Ethernet采用的媒体访问控制方式为(A ) A.CSMA/CD B.令牌环 C.令牌总线 D.无竞争协议 11、若网络形状是由站点和连接站点的链路组成的一个闭合环,则称这种拓扑结构为(C ) A.星形拓扑 B.总线拓扑 C.环形拓扑 D.树形拓扑 12、对于基带CSMA/CD而言,为了确保发送站点在传输时能检测到可能存在的冲突,数据

帧的传输时延至少要等于信号传播时延的(B ) A.1倍 B.2倍 C.4倍 D.倍 13、以太网采用的发送策略是(C ) A.站点可随时发送,仅在发送后检测冲突 B.站点在发送前需侦听信道,只在信道空闲时发送 C.站点采用带冲突检测的CSMA协议进行发送 D.站点在获得令牌后发送 14、在不同网络之间实现数据帧的存储转发,并在数据链路层进行协议转换的网络互连器称为( C ) A.转换器 B.路由器 C.网桥 D.中继器 15、100Base-T使用哪一种传输介质(C ) A. 同轴电缆 B. 光纤 C. 双绞线 D. 红外线 16、IEEE802规定了OSI模型的哪一层B A.数据链路和网络层 B.物理和数据链路层 C.物理层 D.数据链路层 17、要控制网络上的广播风暴,可以采用哪个手段A A.用路由器将网络分段 B.用网桥将网络分段 C.将网络转接成10BaseT D.用网络分析仪跟踪正在发送广播信息的计算 18、就交换技术而言,局域网中的以太网采用的是(A) A.分组交换技术 B.电路交换技术 C.报文交换技术 D.分组交换与电路交换结合技术 19、交换机工作在哪一层(A) A.数据链路层 B.物理层 C.网络层 D.传输层 20、一个快速以太网交换机的端口速率为100Mbit/s,若该端口可以支持全双工传输数据,那么该端口实际的传输带宽为(C )。 A.100Mbit/s B.150Mbit/s C.200Mbit/s D.1000Mbit/s 21、以太网协议中使用了二进制指数退避算法,这个算法的特点是__B_____。 A.容易实现,工作效率高 B.在轻负载下能提高网络的利用率 C.在重负载下能有效分解冲突 D.在任何情况下不会发生阻塞 22、关于的CSMA/CD协议,下面结论中错误的是 B 。 CD协议是一种解决访问冲突的协议 CD协议适用于所有以太网

S5500-SI链路聚合配置

第1章链路聚合配置 1.1 链路聚合简介 1.1.1 链路聚合的作用 链路聚合是将多个物理以太网端口聚合在一起形成一个逻辑上的聚合端口组, 使用链路聚合服务的上层实体把同一聚合组内的多条物理链路视为一条逻辑链 路。 链路聚合可以实现出/入负荷在聚合组中各个成员端口之间分担,以增加带宽。 同时,同一聚合组的各个成员端口之间彼此动态备份,提高了连接可靠性。1.1.2 LACP协议简介 LACP(Link Aggregation Control Protocol,链路聚合控制协议)是一种基于 IEEE802.3ad标准的、能够实现链路动态聚合与解聚合的协议。LACP协议通 过LACPDU(Link Aggregation Control Protocol Data Unit,链路聚合控制协 议数据单元)与对端交互信息。 使能某端口的LACP协议后,该端口将通过发送LACPDU向对端通告自己的 系统LACP协议优先级、系统MAC、端口的LACP协议优先级、端口号和操 作Key。对端接收到LACPDU后,将其中的信息与其它端口所收到的信息进行 比较,以选择能够聚合的端口,从而双方可以对端口加入或退出某个动态LACP 聚合组达成一致。 操作Key是在链路聚合时,聚合控制根据端口的配置(即速率、双工模式、 up/down状态、基本配置等信息)自动生成的一个配置组合。对于动态LACP 聚合组,同组成员有相同的操作Key;对于手工聚合组和静态LACP聚合组, 处于Selected状态的端口有相同的操作Key。 1.1.3 链路聚合对端口配置的要求 在同一个聚合组中,能进行出/入负荷分担的成员端口必须有一致的配置。这些 配置主要包括STP、QoS、GVRP、QinQ、BPDU TUNNEL、VLAN、端口属 性、MAC地址学习等,如表2-1所示。 表1-1链路聚合对端口配置的要求

相关文档
相关文档 最新文档