文档库 最新最全的文档下载
当前位置:文档库 › 最新有限元分析及其应用思考题附答案

最新有限元分析及其应用思考题附答案

最新有限元分析及其应用思考题附答案
最新有限元分析及其应用思考题附答案

有限元分析及其应用-2010

思考题:

有限元法的基本思想是什么?有限元法的基本步骤有那些?其中“离散”的含义是什么?是如何将无限自由度问题转化为有限自由度问题的?

答:基本思想:几何离散和分片插值。

基本步骤:结构离散、单元分析和整体分析。

离散的含义:用假想的线或面将连续物体分割成由有限个单元组成的集合,且单元之间仅在节点处连接,单元之间的作用仅由节点传递。当单元趋近无限小,节点无限多,则这种离散结构将趋近于实际的连续结构。

有限元法与经典的差分法、里兹法有何区别?

区别:差分法:均匀离散求解域,差分代替微分,要求规则边界,几何形状复杂精度较低;

里兹法:根据描述问题的微分方程和相应的定解构造等价的泛函表达式,求得近似解;

有限元:基于变分法,采用分片近似进而逼近总体的求解微分方程的数值计算方法。一根单位长度重量为q的悬挂直杆,上端固定,下端受垂直向下的外力P,试

建立其受拉伸的微分方程及边界条件;

构造其泛函形式;

基于有限元基本思想和泛函求极值构造其有限元的计算格式(即最小势能原理)。

以简单实例为对象,分别按虚功原理和变分原理导出有限元法的基本格式(单元刚度矩阵)。什么是节点力和节点载荷?两者有何区别?

答:节点力:单元与单元之间通过节点相互作用

节点载荷:作用于节点上的外载

单元刚度矩阵和整体刚度矩阵各有何特点?其中每个矩阵元素的物理意义是什么(按自由度和节点解释)?

答:单元刚度矩阵:对称性、奇异性、主对角线恒为正

整体刚度矩阵:对称性、奇异性、主对角线恒为正、稀疏性、带状性。

Kij,表示j节点产生单位位移、其他节点位移为零时作用i节点的力,节点力等于节点位移与单元刚度元素乘积之和。

单元的形函数具有什么特点?有哪些性质?

答:形函数的特点:Ni为x,y的坐标函数,与位移函数有相同的阶次。

形函数Ni在i节点的值为1,而在其他节点上的值为0;

单元内任一点的形函数之和恒等于1;

形函数的值在0~1间变化。

描述弹性体的基本变量是什么?基本方程有哪些组成?

答:基本变量:外力、应力、应变、位移

基本方程:平衡方程、几何方程、物理方程、几何条件

何谓应力、应变、位移的概念?应力与强度是什么关系?

答:应力:lim△Q/△A=S △A→0

应变:物体形状的改变

位移:弹性体内质点位置的变化

问题的微分方程提法、等效积分提法和泛函变分提法之间有何关系?何谓“强形式”?何谓“弱形式”,两者有何区别?建立弱形式的关键步骤是什么?

答:强弱的区分在于是否完全满足物理模型的条件。所谓强形式,是指由于物理模型的复杂

性,各种边界条件的限制,使得对于所提出的微分方程,对所需要求得的解的要求太强。也就是需要满足的条件太复杂。比如不连续点的跳跃等等。将微分方程转化为弱形式就是弱化对方程解的要求。不拘泥于个别特殊点的要求,而放松为一段有限段上需要满足的条件,使解能够以离散的形式存在。

以平面微元体为例,考虑弹性力学基本假设,推导微分平衡方程。

常见的弹性力学问题解法有哪几类?各有何特点或局限?简述求解思路?

何谓平面应力问题?何谓平面应变问题?应力应变状态如何?如何判断?举例说明?

答:平面应力问题:作用于很薄的板上的载荷平行于板平面且沿厚度方向均匀分布,而在两板面上无外力作用

平面应变问题:长柱体的横截面沿长度方向不变,作用于长柱体结构上的载荷平行于横截面且沿纵向方向均与分布,两端面不受力。

何谓轴对称问题?如何判断?推导极坐标下的平衡方程和几何方程。

答:轴对称:几何形状、约束情况及所受的外力都对称于空间的某一跟轴,则通过该轴的任何平面都是物体的对称面,物体内的所有应力、应变和位移都关于该轴对称。

何谓虚位移原理?推导弹性体虚功方程的矩阵形式,并写出轴对称问题的虚功方程。

什么叫外力势能?什么叫应变能?简述势能变分原理。试问势能变分原理代表了弹性力学的那些方程?同时,附加了什么条件?

在三维弹性体中,若系统势能对位移变分为零。试证明一定满足应力平衡方程和应力边界条件。

为了保证有限元解的收敛性,位移函数必须满足那些条件?为什么?

答:1.位移函数应包含刚体位移

2.位移函数应能反映单元的常应变状态

3.位移函数在单元内要连续,在单元边界上要协调。

位移函数构造为何按Pascal三角形进行?为什么?

答:选取多项式具有坐标的对称性,保证单元的位移分布不会因为人为选取的方位坐标不同而变化。

如何理解有限元解的下限性?简要说明。

何谓刚性位移?何谓常量应变?

答:刚性位移就是物体的形状不发生变化产生的位移

变形位移就是考虑物体产生的变形

在按位移法求解有限元法中,为什么说应力解的精度低于位移解的精度?

答:实际结构本来是具有无限个自由度,当用有限元求解时,结构被离散为有限个单元的集合,便只有有限个自由度了,限制了结构变形能力,从而导致结构的刚度增大、计算的位移减少,所以有限元求得的位移近似解小于精确解。

何为单元的协调性和完备性条件?为什么要满足这些条件?平面问题三节点三角形单元是如何满足这些条件?矩形四节点单元是否满足?

答:完备性准则:如果在能量泛函中所出现的位移函数的最高阶导数是m阶,则有限元解收敛的条件之一是单元函数至少是m阶的完全多项式。

何为协调单元?何为非协调单元?为什么有时非协调单元的计算精度还高于协调单元?答:协调性准则:如果在能力泛函中的位移函数出现最高阶导数是m阶,则位移函数在单元边界上必须具有m-1阶的连续导数。

网格划分不一样

何为常应变单元?其位移、应变、应力在单元内、单元边界上有何特性?

答:常应变单元:单元的应变分量均为常量。

位移函数在单元内部线性函数,内部连续。公共边界处位移协调。

单元的应力应变为常量,在相邻单元边界处,应变应力不连续,有突变。

假设平面三节点三角形单元的的位移模式为:

U=a1x2+a2xy+a3y2

V=a4x2+a5xy+a6y2

试计算该单元的形函数矩阵、单元刚度矩阵,并讨论该单元的特性。

答:

平面矩形单元的位移、应力在单元内、单元边界上有何特性?试说明矩形单元刚度矩阵的计算与坐标原点位置无关。

答:常数项和线性项的系数反映了单元的刚体位移和常应变,满足收敛性的必要条件;在单元边界上,由于u,v分别仅为x或y的线性函数,则这样的单元的位移函数是双线性函数,这说明单元边界上的两点能唯一确定变形后的边界,而对于相邻的单元公共边界,它们具有公共节点,则不论按哪个单元确定公共边界上的位移,都能保证公共边界上具有相同的位移,即单元边界处位移具有连续性,满足协调性要求。

何谓面积坐标?其特点是什么?

答:Li=Ai/A;Lj=Aj/A;Lm=Am/A特点:只有两个坐标是独立的:Ai+Aj+Am=1

试分析以下几种平面单元的位移在单元公共边界上的连续性:1)常应变三角形单元;2)四节点矩形单元;3)六节点三角形单元;4)四节点直线边界四边形等参单元;5)八节点曲线边界四边形等参单元。

答:常应变三角形单元:形函数只与节点坐标有关;单元应变分量均为常量;

收敛性:位移函数含单元常量应变;反应单元刚体位移;单元内部位移连续;相邻公共边界连续协调。

四节点矩形单元:位移函数满足收敛性条件,为协调单元;较常应变单元有更高的计算精度。

六节点三角形单元:比常应变三角形单元精度高

非节点载荷等效的基本原则是什么?

答:能量等效原则和圣维南原理。

试计算三节点三角形边界上不同线性分布载荷的等效节点载荷。(参考教材P58面)

答:1.均质材料单元所受体力等效,只需将单元外载荷均匀等分至各个节点即可

2.边界受均匀分布力等效,只需将单元边界上的分布载荷之和平均分配至受力的连个节点

3.边界受三角形分布面力等效,总力ql/2,分布力ql/6;ql/3

4.边界受梯形分布面力的等效,叠加原理,

何谓等参单元?等参单元具有哪些特点?使用等参单元应注意什么?在等参单元计算中,数值积分阶次是否越高越好呢?为什么?

答:定义:以规则形状单元的位移函数相同阶次函数为单元几何边界的变换函数,通过坐标变换所获得的单元。

特点:单元几何边界的变换函数与规则单元位移函数具有相同的节点参数。

注意:单元为凸

不是,阶次提高,单元自由度相应增加,计算更加复杂,积分更困难。

平面三角形单元能否看成等参数单元,如能,其母元(标准元)为何?按等参单元定义进行解释。

答:能;直角等腰三角形;以三角形单元的位移函数相同阶次函数为单元几何边界的变换函数,通过坐标变换所获得的单元。

杆梁单元如何区分?各有何特点?应用时如何选择?

答:杆:承受轴力和扭矩的杆件;梁:承受横向力和弯矩的杆件。

杆:节点数2,节点自由度1;梁:节点数2,节点自由度2。

根据受力情况进行选择。

abaqus有限元分析过程

一、有限单元法的基本原理 有限单元法(The Finite Element Method)简称有限元(FEM),它是利用电子计算机进行的一种数值分析方法。它在工程技术领域中的应用十分广泛,几乎所有的弹塑性结构静力学和动力学问题都可用它求得满意的数值结果。 有限元方法的基本思路是:化整为零,积零为整。即应用有限元法求解任意连续体时,应把连续的求解区域分割成有限个单元,并在每个单元上指定有限个结点,假设一个简单的函数(称插值函数)近似地表示其位移分布规律,再利用弹塑性理论中的变分原理或其他方法,建立单元结点的力和位移之间的力学特性关系,得到一组以结点位移为未知量的代数方程组,从而求解结点的位移分量. 进而利用插值函数确定单元集合体上的场函数。由位移求出应变, 由应变求出应力 二、ABAQUS有限元分析过程 有限元分析过程可以分为以下几个阶段 1.建模阶段: 建模阶段是根据结构实际形状和实际工况条件建立有限元分析的计算模型――有限元模型,从而为有限元数值计算提供必要的输入数据。有限元建模的中心任务是结构离散,即划分网格。但是还是要处理许多与之相关的工作:如结构形式处理、集合模型建立、单元特性定义、单元质量检查、编号顺序以及模型边界条件的定义等。

2.计算阶段:计算阶段的任务是完成有限元方法有关的数值计算。 由于这一步运算量非常大,所以这部分工作由有限元分析软件控制并在计算机上自动完成 3.后处理阶段: 它的任务是对计算输出的结果惊醒必要的处理, 并按一定方式显示或打印出来,以便对结构性能的好坏或设计的合理性进行评估,并作为相应的改进或优化,这是惊醒结构有限元分析的目的所在。 下列的功能模块在ABAQUS/CAE操作整个过程中常常见到,这个表简明地描述了建立模型过程中要调用的每个功能模块。 “Part(部件) 用户在Part模块里生成单个部件,可以直接在ABAQUS/CAE环境下用图形工具生成部件的几何形状,也可以从其它的图形软件输入部件。 Property(特性) 截面(Section)的定义包括了部件特性或部件区域类信息,如区域的相关材料定义和横截面形状信息。在Property模块中,用户生成截面和材料定义,并把它们赋于(Assign)部件。 Assembly(装配件) 所生成的部件存在于自己的坐标系里,独立于模型中的其它部件。用户可使用Assembly模块生成部件的副本(instance),并且在整体坐标里把各部件的副本相互定位,从而生成一个装配件。 一个ABAQUS模型只包含一个装配件。

有限元分析及应用大课后复习

有限元分析及应用作业报告

目录 有限元分析及应用作业报告....................................... I 目录 ........................................................ II 试题1 . (1) 一、问题描述 (1) 二、几何建模与分析 (2) 三、第1问的有限元建模及计算结果 (2) 四、第2问的有限元建模及计算结果 (7) 五、第3问的有限元建模及计算结果 (13) 六、总结和建议 (16) 试题5 (17) 一、问题的描述 (17) 二、几何建模与分析 (18) 三、有限元建模及计算结果分析 (18) 四、总结和建议 (26) 试题6 (27) 一、问题的描述 (27) 二、几何建模与分析 (27) 三、有限元建模及计算结果分析 (27) 五、总结和建议 (35)

试题1 一、问题描述 图示无限长刚性地基上的三角形大坝,受齐顶的水压力作用,试用三节点常应变单元和六节点三角形单元对坝体进行有限元分析,并对以下几种计算方案进行比较: 1)分别采用相同单元数目的三节点常应变单元和六节点三角形单元计算; 2)分别采用不同数量的三节点常应变单元计算; 3)当选常应变三角单元时,分别采用不同划分方案计算。 图1-1模型示意图及划分方案

二、几何建模与分析 图1-2力学模型 由于大坝长度>>横截面尺寸,且横截面沿长度方向保持不变,因此可将大坝看作无限长的实体模型,满足平面应变问题的几何条件;对截面进行受力分析,作用于大坝上的载荷平行于横截面且沿纵向方向均匀分布,两端面不受力,满足平面应变问题的载荷条件。因此该问题属于平面应变问题,大坝所受的载荷为面载荷,分布情况及方向如图1-2所示,建立几何模型,进行求解。 假设大坝的材料为钢,则其材料参数:弹性模量E=2.1e11,泊松比σ=0.3 三、第1问的有限元建模 本题将分别采用相同单元数目的三节点常应变单元和六节点三角形单元计算。1)设置计算类型:两者因几何条件和载荷条件均满足平面应变问题,故均取Preferences为Structural 2)选择单元类型:三节点常应变单元选择的类型是PLANE42(Quad 4node42),该单元属于是四节点单元类型,在网格划分时可以对节点数目控制使其蜕化为三节点单元;六节点三角形单元选择的类型是PLANE183(Quad 8node183),该单元属于是八节点单元类型,在网格划分时可以对节点数目控制使其蜕化为六节点单元。因研究的问题为平面应变问题,故对Element behavior(K3)设置为plane strain。 3)定义材料参数:按以上假设大坝材料为钢,设定:ANSYS Main Menu: Preprocessor →Material Props →Material Models →Structural →Linear →Elastic →Isotropic →input EX:2.1e11, PRXY:0.3 → OK 4)生成几何模型: a. 生成特征点:ANSYS Main Menu: Preprocessor →Modeling →Create →Keypoints→In Active CS→依次输入三个点的坐标:

精讲solidworks有限元分析步骤

2013-08-29 17:31 by:有限元来源:广州有道有限元 1. 软件形式: ㈠. SolidWorks的内置形式: ◆COSMOSXpress——只有对一些具有简单载荷和支撑类型的零件的静态分析。 ㈡. SolidWorks的插件形式: ◆COSMOSWorks Designer——对零件或装配体的静态分析。 ◆COSMOSWorks Professional——对零件或装配体的静态、热传导、扭曲、频率、掉落测试、优化、疲劳分析。 ◆COSMOSWorks Advanced Professional——在COSMOSWorks Professional的所有功能上增加了非线性和高级动力学分析。 ㈢. 单独发行形式: ◆COSMOS DesignSTAR——功能与COSMOSWorks Advanced Professional相同。 2. 使用FEA的一般步骤: FEA=Finite Element Analysis——是一种工程数值分析工具,但不是唯一的数值分析工具!其它的数值分析工具还有:有限差分法、边界元法、有限体积法… ①建立数学模型——有时,需要修改CAD几何模型以满足网格划分的需要, (即从CAD几何体→FEA几何体),共有下列三法: ▲特征消隐:指合并和消除在分析中认为不重要的几何特征,如外圆角、圆边、标志等。▲理想化:理想化是更具有积极意义的工作,如将一个薄壁模型用一个平面来代理(注:如果选中了“使用中面的壳网格”做为“网格类型”,COSMOSWorks会自动地创建曲面几何体)。 ▲清除:因为用于划分网格的几何模型必须满足比实体模型更高的要求。如模型中的细长面、多重实体、移动实体及其它质量问题会造成网格划分的困难甚至无法划分网格—这时我们可以使用CAD质量检查工具(即SW菜单: Tools→Check…)来检验问题所在,另外含有非常短的边或面、小的特征也必须清除掉(小特征是指其特征尺寸相对于整个模型尺寸非常小!但如果分析的目的是找出圆角附近的应力分布,那么此时非常小的内部圆角应该被保留)。 ②建立有限元模型——即FEA的预处理部分,包括五个步骤: ▲选择网格种类及定义分析类型(共有静态、热传导、频率…等八种类别)——这时将产生一个FEA算例,左侧浏览器中之算例名称之后的括号里是配置名称; ▲添加材料属性: 材料属性通常从材料库中选择,它不并考虑缺陷和表面条件等因素,与几何模型相比,它有更多的不确定性。

有限元分析及优化设计

《有限元分析及优化设计》实验指导书 桂林电子科技大学机电工程学院 庄未编 2012年05月

实验一:平面问题的结构分析计算 1.实验目的 ?了解ANSYS软件的基本功能与应用范围; ?熟悉在计算机上运用ANSYS软件的基本步骤和方法; ?结合具体平面问题实例,利用ANSYS软件进行计算分析; ?时间许可,可对上述实例利用有限元方法进行计算,并与ANSYS计算结 果进行分析比较. 2.实验内容 1. 结合具体平面问题实例,利用ANSYS软件进行计算分析; 2. 利用ANSYS软件进行建模,并施加约束和载荷; 3 对计算结果进行比较分析与讨论; 4. 时间许可,可对上述实例利用ANSYS的非交互模式(Batch Mode/命令流 的方式)再进行一次计算,并与用ANSYS交互模式的计算结果进行分 析比较. 3.实验预习报告内容要求 实验预习报告在实验前写好,其主要内容应包括: 复习有限元法基本原理、解题方法与步骤等,建立有限元模型应包含的内容; 提供具体平面问题的结构简图,画出计算模型; 对给定的平面问题实例的结果进行预估,以供计算后进行比较讨论用; 4.上机实践举例 一)如图1所示的6结点4单元平面应力平板问题.各三角形单元的直角边的长度为α=10mm,假设平板的厚度t=5mm,材料均匀,其弹性模量E=200GPa, 泊 松比μ=0.3.今在结点1处,竖直向下作用一个力P=1,若不计平板重量( 即设容重γ=0 ).利用ANSYS软件进行分析。

图1 二)、求解下图所示的平面问题。 图2 实验二:轴对称实体结构静力有限元分析 1. 实验目的 ? 了解ANSYS 软件的基本功能与应用范围; ? 熟悉在计算机上运用ANSYS 软件的基本步骤和方法; ? 结合具体实体问题实例,利用ANSYS 软件进行计算分析; ? 时间许可,可对上述实例利用有限元方法进行计算,并与ANSYS 计算结 果进行分析比较.

基于ansys的连杆机构的有限元分析

目录 摘要 ............................................................................................ 错误!未定义书签。Abstract (2) 第一章分析方法和研究对象 ........................................... 错误!未定义书签。 1.1 有限单元法的概述....................................................... 错误!未定义书签。 1.1.1 有限单元法的历史 (4) 1.1.2 有限单元法的基本概念 (4) 1.2 ANSYS软件简介 (4) 1.2.1 ANSYS主要应用领域 (4) 1.2.2 ANSYS操作界面 (5) 1.2.3 ANSYS的主要功能 (6) 1.2.4 ANSYS主要特点 (7) 1.3 曲柄滑块机构简介 (7) 1.3.1 曲柄滑块定义 (8) 1.3.2 曲柄滑块机构特性应用以及分类 (8) 第二章曲柄滑块机构的求解 (10) 2.1 曲柄滑块机构的问题描述 (10) 2.2 曲柄滑块机构问题的图解法 (10) 2.2.1 图解法准备工作 (11) 2.2.2 图解法操作步骤 (11) 第三章有限元瞬态动力学概述 (14) 3.1 有限元瞬态动力学定义 (14) 3.2 瞬态动力学问题求解方法........................................... 错误!未定义书签。 3.2.1 完全法 (14) 3.2.2 模态分析法 (14) 3.2.2 缩减法 (15) 3.1 有限元结构静力学分析基本概念 (15) 3.1 有限元结构静力学分析步骤 (16) 第四章曲柄滑块的有限元瞬态动力学分析 (17) 4.1 曲柄滑块机构瞬态简要概述 (17) 4.2曲柄滑块有限元瞬态动力学分析步骤 (18)

有限元法的基本思想及计算 步骤

有限元法的基本思想及计算步骤 有限元法是把要分析的连续体假想地分割成有限个单元所组成的组合体,简称离散化。这些单元仅在顶角处相互联接,称这些联接点为结点。离散化的组合体与真实弹性体的区别在于:组合体中单元与单元之间的联接除了结点之外再无任何关联。但是这种联接要满足变形协调条件,即不能出现裂缝,也不允许发生重叠。显然,单元之间只能通过结点来传递内力。通过结点来传递的内力称为结点力,作用在结点上的荷载称为结点荷载。当连续体受到外力作用发生变形时,组成它的各个单元也将发生变形,因而各个结点要产生不同程度的位移,这种位移称为结点位移。在有限元中,常以结点位移作为基本未知量。并对每个单元根据分块近似的思想,假设一个简单的函数近似地表示单元内位移的分布规律,再利用力学理论中的变分原理或其他方法,建立结点力与位移之间的力学特性关系,得到一组以结点位移为未知量的代数方程,从而求解结点的位移分量。然后利用插值函数确定单元集合体上的场函数。显然,如果单元满足问题的收敛性要求,那么随着缩小单元的尺寸,增加求解区域内单元的数目,解的近似程度将不断改进,近似解最终将收敛于精确解。 用有限元法求解问题的计算步骤比较繁多,其中最主要的计算步骤为: 1)连续体离散化。首先,应根据连续体的形状选择最能完满地描述连续体形状的单元。常见的单元有:杆单元,梁单元,三角形单元,矩形单元,四边形单元,曲边四边形单元,四面体单元,六面体单元以及曲面六面体单元等等。其次,进行单元划分,单元划分完毕后,要将全部单元和结点按一定顺序编号,每个单元所受的荷载均按静力等效原理移植到结点上,并在位移受约束的结点上根据实际情况设置约束条件。 2)单元分析。所谓单元分析,就是建立各个单元的结点位移和结点力之间的关系式。现以三角形单元为例说明单元分析的过程。如图1所示,三角形有三个结点i,j,m。在平面问题中每个结点有两个位移分量u,v和两个结点力分量F x,F y。三个结点共六个结点位移分量可用列

优化设计有限元分析总结

目录 目录 (1) 1. 优化设计基础 (2) 1.1 优化设计概述 (2) 1.2 优化设计作用 (3) 1.3 优化设计流程 (3) 2. 问题描述 (4) 3. 问题分析 (5) 4. 结构静力学分析 (6) 4.1 创建有限元模型 (6) 4.2 创建仿真模型并修改理想化模型 (7) 4.3 定义约束及载荷 (7) 4.4 求解 (8) 5. 结构优化分析 (9) 5.1 建立优化解算方案 (9) 5.2 优化求解及其结果查看 (11) 6. 结果分析 (13) 7. 案例小结 (14)

1.优化设计基础 1.1优化设计概述 优化设计是将产品/零部件设计问题的物理模型转化为数学模型,运用最优化数学规划理论,采用适当的优化算法,并借助计算机和运用软件求解该数学

模型,从而得出最佳设计方案的一种先进设计方法,有限元被广泛应用于结构设计中,采用这种方法任意复杂工程问题,都可以通过它们的响应进行分析。 如何将实际的工程问题转化为数学模型,这是优化设计首先要解决的关键问题,解决这个问题必须要考虑哪些是设计变量,这些设计变量是否受到约束,这个问题所追求的结果是在优化设计过程要确定目标函数或者设计目标,因此,设计变量、约束条件和目标函数是优化设计的3个基本要素。 因此概括来说,优化设计就是:在满足设计要求的前提下,自动修正被分析模型的有关参数,以到达期望的目标。 1.2优化设计作用 以有限元法为基础的结构优化设计方法在产品设计和开发中的主要作用如下: 1)对结构设计进行改进,包括尺寸优化、形状优化和几何拓扑优化。2)从不合理的设计方案中产生出优化、合理的设计方案,包括静力响应优化、正则模态优化、屈曲响应优化和其他动力响应优化等。 3)进行模型匹配,产生相似的结构响应。 4)对系统参数进行设别,还可以保证分析模型与试验结果相关联。 5)灵敏度分析,求解设计目标对每个设计变量的灵敏度大小。 1.3优化设计流程 不同的优化软件其操作要求及操作步骤大同小异。一般为开始、创建有限元模型、创建仿真模型、定义约束及载荷,然后进行结构分析,判断是否收

solidworks进行有限元分析的一般步骤

1.软件形式: ㈠. SolidWorks的内置形式: ◆COSMOSXpress——只有对一些具有简单载荷和支撑类型的零件的静态分析。 ㈡. SolidWorks的插件形式: ◆COSMOSWorks Designer——对零件或装配体的静态分析。 ◆COSMOSWorks Professional——对零件或装配体的静态、热传导、扭曲、频率、掉落测试、优化、疲劳分析。 ◆COSMOSWorks Advanced Professional——在COSMOSWorks Professional的所有功能上增加了非线性和高级动力学分析。 ㈢. 单独发行形式: ◆COSMOS DesignSTAR——功能与COSMOSWorks Advanced Professional相同。 2.使用FEA的一般步骤: FEA=Finite Element Analysis——是一种工程数值分析工具,但不是唯一的数值分析工具!其它的数值分析工具还有:有限差分法、边界元法、有限体积法… ①建立数学模型——有时,需要修改CAD几何模型以满足网格划分的需要, (即从CAD几何体→FEA几何体),共有下列三法: ▲特征消隐:指合并和消除在分析中认为不重要的几何特征,如外圆角、圆边、标志等。▲理想化:理想化是更具有积极意义的工作,如将一个薄壁模型用一个平面来代理(注:如果选中了“使用中面的壳网格”做为“网格类型”,COSMOSWorks会自动地创建曲面几何体)。▲清除:因为用于划分网格的几何模型必须满足比实体模型更高的要求。如模型中的细长面、多重实体、移动实体及其它质量问题会造成网格划分的困难甚至无法划分网格—这时我们可以使用CAD质量检查工具(即SW菜单: Tools→Check…)来检验问题所在,另外含有非常短的边或面、小的特征也必须清除掉(小特征是指其特征尺寸相对于整个模型尺寸非常小!但如果分析的目的是找出圆角附近的应力分布,那么此时非常小的内部圆角应该被保留)。 ②建立有限元模型——即FEA的预处理部分,包括五个步骤: ▲选择网格种类及定义分析类型(共有静态、热传导、频率…等八种类别)——这时将产生一个FEA算例,左侧浏览器中之算例名称之后的括号里是配置名称; ▲添加材料属性: 材料属性通常从材料库中选择,它不并考虑缺陷和表面条件等因素,与几何模型相比,它有更多的不确定性。 ◇右键单击“实体文件夹”并选择“应用材料到所有”——所有零部件将被赋予相同的材料属性。 ◇右键单击“实体文件夹”下的某个具体零件文件夹并选择“应用材料到所有实体”——某个零件的所有实体(多实体)将被赋予指定的材料属性。 ◇右键单击“实体文件夹”下具体零件的某个“Body”并选择“应用材料到实体”——只有

车架的有限元分析及优化

车架的有限元分析及优化 作者:马迅盛…文章来源:湖北汽车工业学院点击数:1687 更新时间:2008-8-5 有限元法将设计人员丰富的实践经验与计算机高速精确的计算完美地结合在一起,大大提高了设计计算精度,缩短了产品开发时间。 概念设计阶段车架的结构方案 参考某一同类型车架,考虑到车身安装和其他总成的布置,将概念设计阶段的车架大致结构拟定如下:选用框架式平行梯形车架结构,由2根左右分开的纵梁和8根横梁组成,全长6.3m,宽0.8m,轴距3.65m。各梁的大致形状尺寸及板材厚度如表1所示。 除第3、4根横梁外,其他各横梁的尺寸与参考的同类型车架几乎相同。由于参考车架的第3、4根横梁为上下两片形状复杂的钢板组合而成,无法用梁单元模拟,在概念车架中将之改用两根方型截面的等直梁代替。第1、6横梁为非等截面梁,其宽和高分别由两个尺寸表示。参考车架纵梁的前后两段和中间段的连接采用的是线性渐变的截面,在概念车架中用一等直梁来代替,等直梁的高度等于渐变梁的中间高度。纵横梁上所有的孔及连接板都不予以考虑。 车架的有限元模型 为了后续的优化设计,必须对车架进行参数化建模。选择表1中车架纵横梁的截面尺寸为模型参数,先建立左半个车架的几何模型,选用ANSYS中的二节点12自由度梁单元BEAM188号单元采用不同的梁单

元截面形式对其进行网格剖分;再将左边的几何模型和网格模型进行映射得到右边车架模型,最终合并对称面上的节点使左右车架模型“牢固的”“粘结起来”。 在ANSYS中用BEAM188单元实施网格剖分时,为了保证单元的正确方向,应事先定义该单元的方向点并检查所要剖分的线的法向。单元截面形状和偏置量需用命令SECTYPE、SECOFFSET和SECDATA设定。单元总数为312,节点总数为626。网格剖分并映射后车架模型如图1所示。图中显示出了梁单元的截面形状。 图1 车架的有限元模型 边界条件 车架刚度有多种,其中最重要的是车架的弯曲刚度和扭转刚度。参照车架的刚度试验方法确定车架弯扭刚度的边界条件。 1.弯曲工况的边界条件 计算时约束前后桥在车架纵梁上的竖直投影点的垂直位移,让车架形成一简支梁结构,并在前后支承点中点处加一垂直向下的力,让车架产生纯弯曲变形,如图2所示。

用ANSYS进行四连杆机构的有限元分析

用ANSYS进行四连杆机构的有限元分析 作者:谭辉 日期:08年3月6日 分析目的 1、利用ANSYS对典型的四连杆机构进行分析,主要包含各点的轨迹分 析,例如X和Y方向的位移等。 2、为五连杆和六连杆机构的分析提供可行的分析方法以及原型代码。 问题简述 分析主动杆1绕节点1旋转一周时节点4的运动轨迹,杆2和杆3为从动杆,具体问题见下图:

分析思路 1、根据分析目的,在ANSYS选用link1单元进行单元建模,主要考虑 是link1单元具有X和Y方向的自由度,可以获得各个节点的位移轨迹。 之后可以用梁单元等实现更高级的分析目的,例如获得杆上的力,位移, 加速度等相关信息。 2、该模型结构简单,可以利用直接建模方法进行有限元系统建模,主 要命令:N,E。 3、利用自由度耦合对重合节点进行建模,例如节点2和节点3、节点4 和节点5进行建模,主要命令:cpintf,利用该命令可以一次性将重合节 点生成自由度耦合。 4、利用表数组对于杆1(主动杆)的节点2进行瞬态边界条件的载荷施 加,分析类型为瞬态分析,主要命令:*dim,d等。 5、生成节点位移的对应变量,从而获得节点4的随时间的位移曲线, 主要命令:nsol,plvar等。 命令流如下 行号命令符号注释 结束上一次的分析 1finish ! 清除数据库,并读取启动配置文件2/clear,start ! 3 ! 设置图形显示的背景颜色 4/color,pbak,on,1,5 ! 5 !

6/units,si ! 设置单位制:国际单位制 7*afun,deg ! 设置三角函数运算采用度为单位 8 ! 9/prep7 ! 进入前处理模块 10et,1,link1 ! 设置单元类型:link1 11mp,ex,1,2.07e11 ! 设置材料的弹性模量 12r,1,1 ! 设置单元的实常数,面积为1 13n,1,0,0,0 ! 在(0,0,0)处建立节点1 14n,2,3,0,0 ! 在(3,0,0)处建立节点2 15n,3,3,0,0 !在(3,0,0)处建立节点3,和节点2重合 16n,4,8,7,0 ! 在(8,7,0)处建立节点4 17n,5,8,7,0 !在(8,7,0)处建立节点4,和节点4重合 18n,6,10,0,0 ! 在(10,0,0)处建立节点6 19e,1,2 ! 建立单元1(连接节点1和2) 20e,3,4 ! 建立单元2(连接节点3和4) 21e,5,6 ! 建立单元3(连接节点5和6) 22 ! 23cpintf,all,1e-3 !对于重合节点一次性的建立耦合自由度,容差1e-3 24 ! 25/pnum,node,1 ! 显示节点编号 26/pnum,elem,1 ! 显示单元编号 27eplot ! 显示单元

有限元分析软件及应用

3.5 ANSYS软件加载、求解、后处理技术 3.5.1 ANSYS 3.5.1 ANSYS 荷载概述荷载概述 在这一节中将讨论: 有限元分析软件及应用 8 有限元分析软件及应用 8 A. 载荷分类 3.5 ANSYS 软件加载、求解、后处理技术 3.5 ANSYS 软件加载、求解、后处理技术 B. 加载 C. 节点坐标系 D. 校验载荷 孙瑛 孙瑛 E. 删除载荷 哈哈尔尔滨滨工工业业大学空大学空间结间结构研构研究中心究中心 2010秋 2010秋 SSRC SSRC 1/ 76 S Space pace S Stru truc ctu ture re R Res esear earc ch h C Center enter, H , HI IT, T, CH CHIN INA A

理技术 A. 载荷分类 B. 加载 A. 载荷分类 B. 加载 ANSYS中的载荷可分为: 可在实体模型或 FEA 模型节点和单元上加载自由度DOF - 定义节点的自由度( DOF )值结构分析_ 沿单元边界均布的压力 沿线均布的压力 位移集中载荷 - 点载荷结构分析_力面载荷 - 作用在表面的分布载荷结构分析_压力 在关键点处 在节点处约 约束体积载荷 - 作用在体积或场域内热分析_ 体积膨胀、内生 束 成热、电磁分析_ magnetic current density等实体模型 FEA 模型惯性载荷 - 结构质量或惯性引起的载荷重力、角速度等 在关键点加集中力在节点加集中力 SSR SSRC C SSR SSRC C 2/ 76 3/ 76 S Space pace S Stru truc ctu ture re R Res esear earc ch h C Center enter, H , HI IT, T, CH CHIN INA A S Space pace S Stru truc ctu ture re R Res esear earc ch h C Center enter, H , HI IT, T, CH CHIN INA A

有限元分析及应用大作业

有限元分析及应用大作业 作业要求: 1)个人按上机指南步骤至少选择习题中3个习题独立完成,并将计算结果上交; 也可根据自己科研工作给出计算实例。 2)以小组为单位完成有限元分析计算; 3)以小组为单位编写计算分析报告; 4)计算分析报告应包括以下部分: A、问题描述及数学建模; B、有限元建模(单元选择、结点布置及规模、网格划分方案、载荷及边界 条件处理、求解控制) C、计算结果及结果分析(位移分析、应力分析、正确性分析评判) D、多方案计算比较(结点规模增减对精度的影响分析、单元改变对精度的 影响分析、不同网格划分方案对结果的影响分析等) 题一:图示无限长刚性地基上的三角形大坝,受齐顶的水压力作用,试用三节点常应变单元和六节点三角形单元对坝体进行有限元分析,并对以下几种计算方案进行比较: 1)分别采用相同单元数目的三节点常应变单元和六节点三角形单元计算;(注意ANSYS中用四边形单元退化为三节点三角形单元) 2)分别采用不同数量的三节点常应变单元计算; 3)当选常应变三角单元时,分别采用不同划分方案计算。 解:1.建模: 由于大坝长度>>横截面尺寸,且横截面沿长度方向保持不变,因此可将大坝看作无限长的实体模型,满足平面应变问题的几何条件;对截面进行受力分析,作

用于大坝上的载荷平行于横截面且沿纵向方向均匀分布,两端面不受力,满足平面应变问题的载荷条件。因此该问题属于平面应变问题,大坝所受的载荷为面载荷,分布情况P=98000-9800*Y;建立几何模型,进行求解;假设大坝的材料为钢,则其材料参数:弹性模量E=2.1e11,泊松比σ=0.3; 2:有限元建模过程: 2.1 进入ANSYS : 程序→ANSYS APDL 15.0 2.2设置计算类型: ANSYS Main Menu: Preferences →select Structural →OK 2.3选择单元类型: ANSYS Main Menu: Preprocessor →Element Type→Add/Edit/Delete →Add →select Solid Quad 4node 182(三节点常应变单元选择Solid Quad 4node 182,六节点三角形单元选择Solid Quad 8node 183)→OK (back to Element Types window) →Option →select K3: Plane Strain →OK→Close (the Element Type window) 2.4定义材料参数: ANSYS Main Menu: Preprocessor →Material Props →Material Models →Structural →Linear →Elastic →Isotropic →input EX:2.1e11, PRXY:0.3 →OK 2.5生成几何模型: 生成特征点: ANSYS Main Menu: Preprocessor →Modeling →Create →Keypoints→In Active CS →依次输入四个点的坐标:input:1(0,0),2(10,0),3(1,5),4(0.45,5) →OK 生成坝体截面: ANSYS Main Menu: Preprocessor →Modeling →Create →Areas →Arbitrary →Through KPS →依次连接四个特征点,1(0,0),2(6,0),3(0,10) →OK 2.6 网格划分: ANSYS Main Menu: Preprocessor →Meshing →Mesh Tool→(Size Controls) lines: Set →依次拾取两条直角边:OK→input NDIV: 15 →Apply→依次拾取斜边:OK →input NDIV: 20 →OK →(back to the mesh tool window)Mesh:Areas, Shape: tri, Mapped →Mesh →Pick All (in Picking Menu) →Close( the Mesh Tool window) 2.7 模型施加约束: 给底边施加x和y方向的约束: ANSYS Main Menu: Solution →Define Loads →Apply →Structural →Displacement →On lines →pick the lines →OK →select Lab2:UX, UY →OK 给竖直边施加y方向的分布载荷: ANSYS 命令菜单栏: Parameters →Functions →Define/Edit →1) 在下方的下拉列表框内选择x ,作为设置的变量;2) 在Result窗口中出现{X},写入所施加的载荷函数: 98000-9800*{Y};3) File>Save(文件扩展名:func) →返回:Parameters →Functions →Read from file:将需要的.func文件打开,参数名取meng,它表示随之将施加的载荷→OK →ANSYS Main Menu: Solution →Define Loads →Apply →Structural →Pressure →On Lines →拾取竖直边;OK →在下拉列表框中,选择:Existing table →OK →选择需要的载荷为meng参数名→OK 2.8 分析计算: ANSYS Main Menu: Solution →Solve →Current LS →OK(to close the solve Current Load

ANSYS 有限元分析基本流程

第一章实体建模 第一节基本知识 建模在ANSYS系统中包括广义与狭义两层含义,广义模型包括实体模型和在载荷与边界条件下的有限元模型,狭义则仅仅指建立的实体模型与有限元模型。建模的最终目的是获得正确的有限元网格模型,保证网格具有合理的单元形状,单元大小密度分布合理,以便施加边界条件和载荷,保证变形后仍具有合理的单元形状,场量分布描述清晰等。 一、实体造型简介 1.建立实体模型的两种途径 ①利用ANSYS自带的实体建模功能创建实体建模: ②利用ANSYS与其他软件接口导入其他二维或三维软件所建立的实体模型。 2.实体建模的三种方式 (1)自底向上的实体建模 由建立最低图元对象的点到最高图元对象的体,即先定义实体各顶点的关键点,再通过关键点连成线,然后由线组合成面,最后由面组合成体。 (2)自顶向下的实体建模 直接建立最高图元对象,其对应的较低图元面、线和关键点同时被创建。 (3)混合法自底向上和自顶向下的实体建模 可根据个人习惯采用混合法建模,但应该考虑要获得什么样的有限元模型,即在网格划分时采用自由网格划分或映射网格划分。自由网格划分时,实体模型的建立比较1e单,只要所有的面或体能接合成一体就可以:映射网格划分时,平面结构一定要四边形或三边形的面相接而成。 二、ANSYS的坐标系 ANSYS为用户提供了以下几种坐标系,每种都有其特定的用途。 ①全局坐标系与局部坐标系:用于定位几何对象(如节点、关键点等)的空间位置。 ②显示坐标系:定义了列出或显示几何对象的系统。 ③节点坐标系:定义每个节点的自由度方向和节点结果数据的方向。 ④单元坐标系:确定材料特性主轴和单元结果数据的方向。 1.全局坐标系 全局坐标系和局部坐标系是用来定位几何体。在默认状态下,建模操作时使用的坐标系是全局坐标系即笛卡尔坐标系。总体坐标系是一个绝对的参考系。ANSYS提供了4种全局坐标系:笛卡尔坐标系、柱坐标系、球坐标系、Y-柱坐标系。4种全局坐标系有相同的原点,且遵循右手定则,它们的坐标系识别号分别为:0是笛卡尔坐标系(cartesian),1是柱坐标系 (Cyliadrical),2是球坐标系(Spherical),5是Y-柱坐标系(Y-aylindrical),如图2-1所示。

基于ANSYS Workbench的定位卡锁机构有限元分析

基于ANSYS Workbench的定位卡锁机构有限元分析 摘要本文首先在Pro/E中建立了定位卡锁机构受最大外力时的简化模型,然后将该模型导入到ANSYS Workbench 13平台中进行了有限元模型的分析求解,最后结合求解结果用第四强度理论对定位卡锁机构各零件进行了强度校核,同时对该定位卡锁机构的改进提出了建议。 关键词定位卡锁机构;有限元分析 在某工程项目中应用的定位卡锁机构承担着为某输送设备准确定位的作用。由于该输送设备运行一个周期位就要启停一次,启停工作由定位卡锁机构配合实现。定位卡锁机构收回,输送设备开始运转,一个周期位后电机停转,定位卡锁机构伸出,进入与之配合的凹槽使输送设备完全停位。因此,定位卡锁机构成为该输送设备的关键部件,是保证输送设备正常工作的必备条件。所以,对定位卡锁机构的研究与分析有着重要的意义。 定位卡锁机构在伸出状态受最大外力时,其所受最大应力不应超过材料的许用应力是保证定位卡锁机构实现其功能的充分条件。为了保证定位卡锁机构的工作可靠性,本文利用ANSYS Workbench对该机构进行有限元分析,研究在定位卡锁机构受最大外力时的受力及变形情况,并依据理论知识对其强度进行校核。 1 定位卡锁机构模型的建立与导入 在对定位卡锁机构进行有限元分析之前,首先应建好定位卡锁机构的三维模型。一般在整个有限元分析的过程中,几何建模的工作量占据了非常多的时间,同时也是非常重要的过程[2]。ANSYS Workbench 13中,建模工作主要由ANSYS Workbench 自带的几何建模工具Design Modeler模块完成。对于小型或简单模型的建立可以直接在Design Modeler模块中建模,这样避免了从CAD系统中导入ANSYS的模型可能不能直接进行网格划分,需进行大量修补完善工作的麻烦。对于零部件较多的装配体的建模,通常先利用专业的三维建模软件完成模型的建立,然后再把它导入到ANSYS中进行分析。这样,工程技术人员就可以使用自己擅长的CAD软件建好模型,从而避免了重复现有CAD模型的劳动。 本文采用PTC公司的Pro/Engineer对定位卡锁机构进行三维建模。定位卡锁机构简化模型由液压缸、卡锁活塞杆、端盖、螺塞、螺钉组成,建好的三维模型如图1所示。建好后的三维模型可以在Pro/E中直接导入到ANSYS Workbench 13 中进行有限元分析。 图1 定位卡锁机构的三维模型 2 定位卡锁机构的有限元分析 2.1 定义模型材料属性

有限元分析及应用例子FEM14

第9章受内外压筒体的有限元建模与应力变形分析(Project 2) 计算分析模型如图9-1 所示, 习题文件名: cylinder。 X (a) σO=100N/mm2 σI =200N/mm2 γ =7.85g/cm3 μ =0.3 E =210000N/mm2 (b) 图9-1 计算分析模型 9.1进入ANSYS 程序→ANSYSED 6.1ed →Interactive →change the working directory into yours→input Initial jobname: cylinder→Run 9.2 设置计算类型 ANSYS Main Menu: Preferences…→select Structural →OK 9.3 选择单元类型 ANSYS Main Menu: Preprocessor → Element Type →Add/Edit/Delete… → Add… →select Solid Quad 4node 42 →Apply →select Solid Brick 8node 45 → OK → Close (the Element

Types window) 9.4定义材料参数 ANSYS Main Menu: Preprocessor →Material Props →Materials Models →Structural→Lineal →Elastic→Isotropic…→input EX:2.1e5, PRXY:0.3→ OK 关闭材料定义窗口 9.5构造筒体模型 ?生成模型截平面 ANSYS Main Menu: Preprocessor →Modeling→Create →Keypoints →In Active CS… →按次序输入横截平面的十个特征点和旋转对称轴上两点坐标(十个特征点:(300,0,0), (480,0,0), (480,100,0), (400,100,0), (400,700,0), (480,700,0), (480,800,0), (300,800,0), (300,650,0), (300,150,0),对称轴上两点:(0,0,0), (0,800,0))(每次输入完毕,用Apply结束,0可以不输入) →Cancel (back to Create window) →-Areas- Arbitrary → Through KPs →依次连接截面边线上的十个特征点(注意在选完第10点后结束,不要再选第1点)→ OK ?对平面进行网格划分 ANSYS Main Menu: Preprocessor →Meshing→Mesh Tool →(Size Controls) Globl: Set →input SIZE (element edge length): 50 →OK (back to MeshTool window)→Mesh → Pick All (in Picking Menu) → Close( the MeshTool window) ?用旋转法生成筒体模型 ANSYS Main Menu: Preprocessor →Modeling→Operate →Extrude→Elem Ext Opts→select TYPE:SOLID 45→Element sizing options for extrusion No. Elem divs: 1→OK (back to Extrude window)→Areas →About Axis →Pick All(in Picking Menu)→OK→Pick the two keypoints (11,12) of the Symmetrical Axis → OK→input ARC: 90; NSEG: 3→ OK 9.6 模型加位移约束 ANSYS Main Menu: Solution→Define Loads →Apply→Structural→Displacement ?两截面分别加Z, X方向的约束 ANSYS Utility Menu: Select → Entities…→Nodes → By Location →select X coordinates →input 0→ OK (back to Displacement window)→On Nodes → Pick All(in Picking Menu) → select Lab2:UX →OK →ANSYS Utility Menu: Select → Everything ANSYS Utility Menu: Select → Entities…→ Nodes → By Location →select Z coordinates →input 0→ OK (back to Displacement window)→On Nodes →Pick All(in Picking Menu) → select Lab2:UZ →OK →ANSYS Utility Menu: Select →Everything ?底面加Y方向的约束 ANSYS Utility Menu: Select → Entities… → Nodes → By Location →select Y coordinates →input 0→ OK (back to Displacement window)→On Nodes →Pick All(in Picking Menu) →

《有限元分析及应用》配书盘说明

《有限元分析及应用》配书盘 曾攀 (清华大学机械工程系) 说明 该配书盘针对《有限元分析及应用》一书中有关有限元分析的自主程序开发、与ANSYS平台的衔接、基于ANSYS的有限元建模、基于MARC的有限元建模的章节,提供相应的电子材料及文档,以便在进行实际编程和应用国际著名商业软件进行建模和分析时参考。电子文档材料包括三大部分:(1)有限元分析源程序(f,c,ANSYS衔接);(2) 四类问题有限元分析的操作指南(ANSYS,MARC);(3) ANSYS一般性帮助文件。具体的文件目录和清单如下。 在目录/有限元分析源程序(f,c,ANSYS衔接)/中有以下内容 (1) 使用说明文件 自主程序开发使用说明(fortran,C,ANSYS平台衔接).pdf (2 ) 在子目录/fortran源程序及与ANSYS衔接(FEM2D)/中有以下文件 源程序文件: FEM2D.FOR 程序需读入的数据文件: BASIC.IN(模型的基本信息文件,需手工生成) NODE_ANSYS.IN (节点信息文件,可由ANSYS前处理导出,或手工生成) ELEMENT_ANSYS.IN(单元信息文件,可由ANSYS前处理导出,或手工生成)程序输出的数据文件: DATA.OUT (一般结果文件) FOR_POST.DAT(专供ANSYS进行后处理的结果数据文件) 与ANSYS后处理衔接的接口程序: USER_POST.LOG(在ANSYS中进行后处理的命令流文件) (3 ) 在子目录/c源程序及与ANSYS衔接(JIEKOU)/中有以下文件 源程序文件: JIEKOU.CPP 程序需读入的数据文件: NODE_ANSYS.IN(从ANSYS前处理导出的节点信息文件) ELEMENT_ANSYS.IN(从ANSYS前处理导出的单元信息文件) INPUT.DAT(包含除网格划分信息之外的所有前处理信息) 程序输出的数据文件:

相关文档