文档库 最新最全的文档下载
当前位置:文档库 › 二氧化碳汽提技术

二氧化碳汽提技术

二氧化碳汽提技术
二氧化碳汽提技术

二氧化碳汽提技术(改进型)

概论

尿素是目前氮肥诸品种中产量最大的化学肥料。随着工农业的高度发展,世界各国对尿素的需求量会逐步增大,由此带来的能源利用与环境保护问题也相应增加。目前,我国能源工业面临着经济增长、环境保护和社会发展的巨大压力,因此,尿素合成工艺节能新技术的开发及利用也越发引起人们的关注。历史上出现过多种尿素生产工艺,由于尿素合成反应受化学平衡的影响,反应产物中始终有未反应的氨和二氧化碳。因此尿素合成工艺的改进方向集中于如何最大限度回收未反应的氨和二氧化碳。七十年代汽提工艺的出现,使尿素合成工艺跃上一新台阶,成为尿素生产技术的主流。当今尿素生产工艺技术已趋于成熟,无论采用何种生产工艺,生产过程中主要原料消耗大体上是一致的,其先进与否主要体现在公用工程即水、电、汽的消耗,NH3和C02的回收利用、环保排放以及设备结构、设备布置等方面。

1 荷兰斯托米卡邦(tamicarbon)公司概况

斯塔米卡邦在尿素工艺的设计和创新方面有着55年多的经验,作为一个尿素专利转让商,拥有技术秘密还有开发使产能提高100%的专有改造方案的经验.这些工艺的创新是理论上的技术秘密和实践经验相结合的产物。斯塔米卡邦的母公司DSM有一个采用尿素2000plusTM池式反应器技术的现代化的尿素厂。斯塔米卡邦建了200个尿素项目,全球名牌产能份额约占45%,可谓是世界尿素市场的

领头人。它的活动包括新装置的工艺转让、改善现有装置及废水处理设施等。它通过诸如Chemoprojekt,千代田,福斯特·惠勒,KBR,泰克尼蒙特及伍德等注册公司转让其二氧化碳汽提工艺及新的尿素2000plusTM技术。斯塔米卡邦第一个二氧化碳汽提尿素厂始建于1967年,后来许多其它厂相继兴建。今天,这类工厂都实现了高度的自动化,其能力已达到日产3250吨。新尿素2000plusTM池式冷凝器技术自1994年起已在孟加拉的卡纳富利化肥公司成功地投入生产;而1998年3月,尿素2000plusTM池式反应器技术在荷兰的DSM 厂开车成功。斯塔米卡邦的工艺具有设计简单、步骤最少、设备不多以及维持低投资成本等特点。现有的尿素厂通过改造能将其生产能力比原名牌设计提高30.50%,加拿大萨斯柯费柯产品公司(Saskferco Products Inc.)的产能从日产2000吨提高到2850吨的设计能力,目前的日产量已超过3000吨。该厂在开车后没多久就能稳定和有效地投入生产且高于设计能力。萨斯柯费柯厂是世界上第一家年产百万吨产品的工厂。这不仅创造了一个世界生产纪录,而且它还证明了其工艺能够可靠和稳定地运行。

2 二氧化碳汽提技术简介

20世纪60年代末,荷兰Slamicarbon公司开发了CO2汽提法尿素工艺,其后其工艺技术不断改进。90年代初期,Stamicarbon公司在原CO2,汽提法尿素生产工艺基础上,从工艺流程、设备布置、设备结构等方面作了迸一步的改迸,至此Stamicarbon公司CO2汽提工艺发展到新一代改进型CO2汽提工艺阶段,即尿素2000+TM池式冷凝

器技术,生产能力有了新的提高,同时开发应用合成塔高效塔板,具有投资低、能耗低,易操作等特点。

3 新一代CO2气体技术(改进型)流程

改进型CO2汽提法工艺流程由以下工序组成:高压圈主要包括尿素合成塔、高压洗涤器、高压喷射器、汽提塔和甲铵冷凝器,后工序仅设置了低压分解吸收系统。并且设置了处理工艺冷凝液的工序,尿液经过真空蒸发后送入造粒工序。其特点是在最佳氨碳比的条件下,使合成压力降到最低。与此同时,在合成压力下,采用CO2进行汽提和冷凝,产生的冷凝液用来副产蒸汽为低压分解和一段蒸发做加热用,并作为蒸汽喷射器的动力蒸汽以及为系统保温。CO2汽提法工艺与氨汽提工艺相比,汽提压力较低,汽提效率高,因此该工艺流程只需低压分解而不需中压分解也能满足尿素装置生产的要求。CO2汽提法工艺技术改进后,采用高压下原料CO2气体的脱氢技术。杜绝了工艺过程的燃爆危险性,在高压洗涤器后设4x105 Pa吸收塔吸收高压工序未凝气,减少了尿素装置的消耗。采用该工艺技术的尿素装置,工艺流程短,设备少,生产稳定,消耗低。近年来,在我国新建的尿素装置和大型尿素装置的改造中,大都采用了新型的CO2汽提法新工艺。

4 新一代CO2汽提法尿素工艺工业应用评价

(1)装置的操作弹性大

(2)低压蒸汽品质高

(3)塔盘使用效率高

(4)抗腐蚀性效果好

(5)脱硫效果显著

5 尿素合成工艺的比较

5.1 氨气提法

氨汽提法在我国还没有实现国产化,目前国内装置均为国外进口。它的特点是氨的自提作用.甲铵分解率增高,因此减少了中、低压分解回收的负荷,动力消耗随之减少,高温高压下分离的甲铵,其冷凝时的热量得到有效的利用,总能耗降低,而且运转率高,操作弹性大,安装检修方便。爆炸危险性小,工艺冷凝液可以进行二次利用,没有污染。氨汽提法工艺工序组成:高压圈包括尿素合成塔、甲铵喷射器、甲铵冷凝器、甲铵分离器和汽提塔;中压分解吸收系统设置了中压分解分离器和中压分解加热器,而中压吸收系统则设置中压吸收塔、尾气吸收器、中压吸收塔外冷器和氨冷器;低压分解吸收系统包含2段冷凝器和分解器;真空蒸发系统包括了冷凝和3段真空,并设置了处理工艺冷凝液工序,经过真空蒸发后的尿液送人造粒工序,此工艺在高压回路中,用甲铵喷射器循环甲铵液,高压回路改为水平布置。与二氧化碳汽提法尿素工艺相比。氨汽提尿素工艺蒸汽消耗较低,但电耗略高,总能耗两者较接近。氨汽提尿素工艺尿素合成塔中采用了高的氨碳比和较高的合成压力及温度。另外,采用钛材或双金属管作为汽提塔的管材料,所需防腐空气量少,高压系统无爆炸危险。在热能回收上,用了一些措施回收热量,比如用中压分解气冷凝热预热原料氨,用解吸塔底部出口废液预热高压碳铵液,用汽提塔的蒸汽冷凝液

作为中压分解的热源等等。对于该技术的工艺,我国建厂较多,积累了较丰富的设计、设备制造和生产的经验。

5.2 水溶液全循环法

水溶液全循环法是我国目前大多数中小型尿素装置(4万伏—10万伏)所采用的方法。它的特点是合成塔内转化率高,未反应物采用三段减压分解,动力消耗较大,尾气压力、温度均较低.爆炸危险性小。其生产工艺比较成熟,操作可靠方便,机泵和非标设备均为国产化。各种工艺参数的比较,见下图:

(1)转化率和氨碳比。在尿素合成塔中,CO2汽提工艺的合成转化率比氨汽提工艺低,但正是因为氨汽提工艺的氨碳比较高,使其操作压力和温度都比CO2汽提工艺高,所以,氨汽提塔必须使用特殊材质。同时.因为氨汽提工艺氨碳比较高,该工艺需增加中压分解和工段,使工艺流程复杂、设备台数多,给操作管理带来许多不便。易造成事故和停车。水溶热全循环尿素法装置,合成转化率较高,尿素装置的

后工序负荷较大,但是并没有在高压圈内设置回收热能措施。所以,水溶液全循环尿素工艺消耗高。

(2)工艺布置。CO2汽提工艺因为高压圈的等压操作,物料为重力流动,其高压框架高达58ml,但是占地面积较小;而氨汽提工艺和水溶液全循环工艺则只需平面布置,优点是操作和检修方便,缺点是占地面积较大。

(3)能耗。系统正常运转时,CO2汽提工艺和氨汽提工艺的冷却水消耗、蒸汽消耗和氨耗相差不大;但是对于电耗,因为CO2汽提工艺的循环量比较小,合成操作压力较低,电耗比氨汽提工艺低。以上2种工艺由于高压圈转化率高,它们的甲铵冷凝器副产蒸汽可以用在尿素装置斡蒸发和低压分解工序,所以,CO2汽提工艺的蒸汽消耗要比水溶液全循环尿素装置低得多。

(4)加氧量。改进型CO2汽提工艺加入系统的氧的体积分数到0.6%就能保证尿素装置的正常进行:虽然氨汽提工艺的加氧的体积分数只有0.35%--0.45%,但是从实践看,氨汽提塔腐蚀严重,塔底必须增加一台空压机来补充加氧量小带来的不足,而水溶液全循环尿素工艺中的加氧的体积分数是0.5%。

(5)设备及材料的腐蚀。CO2汽提工艺中高压圈设备和水解塔最易产生腐蚀,而氨汽提工艺除了高压圈设备和水解塔外,易发生腐蚀的还有中压分解系统的设备。CO2汽提工艺的尿塔使用寿命一般在19年。25年,CO2汽提塔的使用寿命在17年-21年,而氨汽提工艺的汽提塔使用寿命在15年左右。水溶液全循环工艺除尿素合成塔外,中亚分解

系统的设备也容易发生腐蚀。

(6)燃爆可能性。改进型CO2汽提工艺由于设置了CO2脱氢工序,尿素装置的尾气中不再含有氢,这样就消除了尿素装置产生爆炸的可能性;而水溶液全循环工艺与氨汽提工艺中、低压尾气的组分类似.有可能发生爆炸。

(7)操作弹性。CO2汽提工艺的操作弹性负荷可在60%上运行,在该生产负荷下,开停车时问短、稳定工艺装置的时间短,氨汽提工艺和水溶液全循环尿素工艺的操作弹性可在40%负荷上运行,这使得尿素装置的开车平稳,但需要较长的时间,工艺操作回路多,在气温高的生产工况下,中压系统操作不稳定,易引起停车。

综上所述.上面比较的3种工艺方案各有优劣,水溶液全循环法工艺较落后,消耗较高,对新建的尿素装置来说改进型二氧化碳汽提工艺与氨汽提工艺具有一定的优势。从投资方面相比,改进型二氧化碳汽提工艺由于设备台数少,比氨汽提工艺节省投资15%左右.目前的化肥厂多采用改进型二氧化碳汽提工艺。

碳收集中的二氧化碳捕获封存技术(CCS)

碳收集中的二氧化碳捕获封存技术(CCS) CO2作为含碳能源消耗过程中产生的最主要温室气体,设法对其进行节能减排而捕捉和封存成为各国关注的焦点。本文综述了碳捕获和碳封存的技术方法,以及CCS技术在储存方面存在的问题。 CCS技术概述 二氧化碳(CO2)捕获和封存技术(Carbon Capture and Storage)简称CCS技术。CCS 技术是减少排放二氧化碳,迈向低碳,应对全球气候变暖的重要手段。 CCS技术是将工业和有关能源产业所生产的二氧化碳分离出来,再通过碳储存手段,将其输送并封存到海底或地下等与大气隔绝的地方。通过此过程,CO2将被压缩、输送并封存在地质构造、海洋、碳酸盐矿石中,或是用于工业流程。 它主要用于处理大型的CO2点源排放,例如大型化石燃料或生物能源设施,主要CO2排放型工业、天然气生产、合成燃料工厂以及基于化石燃料的制氢工厂等。 CCS技术目前仍有很多亟待解决的问题,包括: ①二氧化碳的永久安全埋存; ②二氧化碳能否对环境产生负面影响,特别是生物多样性; ③如何采取国际协商一致的程序以独立核查监测二氧化碳的相关活动; ④怎样降低碳捕集埋存的成本,以大规模实施这一技术等。

找到解决这些问题的方法需要进行相应的工业实践及理论研究。 在理论上,CO2的捕获封存技术包含了捕获和封存两个方面。碳捕获分为燃烧前捕获、富氧燃烧捕获和燃烧后捕获。碳封存方式有地质封存、工业利用、矿石碳化及生态封存等,其中地质封存是主流方式。 碳捕获 1.燃烧前捕集技术 燃烧前捕集技术的反应阶段如下: 首先化石燃料先同氧气或者蒸汽反应,产生以CO2和H2为主的混合气体(称为合成气)。 待合成气冷却后,再经过蒸汽转化反应,使合成气中的CO转化为CO2,并产生更多的H2。 最后,将H2从CO2与H2的混合气中分离,干燥的混合气中CO2的含量可达15%~60%,总压力2~7MPa。 CO2从混合气体中分离并捕获和存储,H2被用作燃气联合循环的燃料送入燃气轮机,进行燃气轮机与蒸汽轮机联合循环发电。这一过程也就是考虑了碳的捕获和存储的煤气化联合循环发电(IGCC)。 从CO2和H2的混合气中分离CO2的方法包括:变压吸附、化学吸收、物理吸收(常用于具有高的CO2分压或高的总压的混合气的分离)、膜分离(聚合物膜、陶瓷膜)等。

液体二氧化碳安全技术说明书

液体二氧化碳安全技术说明书 第一部分化学品名称 化学品中文名称:液体二氧化碳 化学品英文名称:liquid Carbon dioxide 第三部分危险性概述 危险性类别:第2. 2类不燃气体 侵入途径:吸入和皮肤接触 健康危害:本身无毒。但空气中浓度超过3%时能出现呼吸困难、头痛眩晕、呕吐等。10%以上时出现视力障碍、痉挛、呼吸加快、血压升高、意识丧失。25%以上时,出现神经抑制、昏睡、痉挛、窒息至死。接触液体二氧化碳可引起冻伤。环境危害:大气中二氧化碳增加产生温室效应 爆炸危险:盛装液体二氧化碳容器遇明火高温,器内压力升高有开裂爆炸危险。 第四部分急救措施 皮肤接触:用水冲洗,就医 眼睛接触:就医 吸入:迅速脱离现场,移至空气新鲜处,呼吸困难时输氧,如呼吸和心跳停止,立即进行人工呼吸和心脏按摩术并及时就医 第五部分消防措施 危险特性:盛装液体二氧化碳的设备与容器遇高温、明火有爆炸危险,流速过快容易产生和积聚静电。 有害燃烧物:无 灭火方法及灭火剂:用水冷却设备或容器,选用适合周围火源的灭火剂 第六部分泄漏应急处理 应急处理:迅速撤离现场保持现场通风。穿戴防护用具进入现场堵漏气瓶泄漏无法堵漏时,将其移至空旷安全处放空。液体二氧化碳泄漏要有防寒护具 第七部分操作处置与储存 操作处置注意事项:密封操作,加强通风,操作人员必须经过专门培训,严守操作规程,持证上岗。充装时按充装系数要求控制充装量严禁超装。接触二氧化碳要穿戴好护具防止冻伤。 储存注意事项:储存于通风库房,远离火种热源,保持容器密封,气瓶应有防倒措施,大于10立方米贮槽不能放在室内。

第八部分接触控制/个体防护 最高允许浓度:中国MAC(mg/m3)18000 监测方法:化学分析 工程控制:生产过程密闭,加强通风。 呼吸系统防护:空气中浓度超标时,人员撤离现场,紧急事态抢救佩戴空气呼吸器或氧气呼吸器。 眼睛防护:戴面罩。 手防护:戴防寒手套。 其它防护:工作现场禁止烟火,工作前避免饮用酒精性饮料。进行就业前和定期体检。 第九部分理化特性 外观与性状:无色无味,不燃气体 熔点:(0C)-56.6相对密度(水=1):0.9295 沸点:(0C)-78.5(升华点)相对蒸气密度(空气=1):1.53 饱和蒸汽压(Kpa):3485.6kpa(0C)临界温度:(0C)31.0 临界压力(Mpa):7.382 溶解性:能熔于水,烃类及大多数有机溶剂。 主要用途:冷却剂、焊接、铸造工业、灭火剂、化工原料 第十部分稳定性和反应性 稳定性:稳定 禁配物:活泼金属 避免接触的条件:明火高热(容器盛装时) 聚合危害:不发生 分解产物:无 第十一部分毒理学资料 急性中毒:二氧化碳没有毒性,但二氧化碳浓度高时就会改变血液的PH值,长时间吸入二氧化碳将引起代谢障碍。当空气中浓度超过3%时能出现呼吸困难、头痛眩晕、呕吐等。浓度超过10%时出现视力障碍、痉挛、呼吸加快、血压升高、意识丧失。浓度超过25%以上时,出现神经抑制、昏睡、痉挛、窒息死亡。 第十二部分生态学资料 生态降解:未查明 非生物降解:无 其它害处:对环境有影响如温室效应。 第十三部分废弃处置 废气物性质:非危险废气物 废气处置方法:排入大气。 第十四部分运输信息 危险货物编号:22019(气) 22020(液)

柴油车、(CNG)天然气车辆CO2排放减排量计算

一、柴油车辆 CO2排放计算 柴油的CO2排放因子是:74100 kg/TJ柴油的净热值是:43 TJ/Gg 故单位质量柴油完全燃烧排放的CO2质量是:74.1*43/1000 = 3.1863 即1kg柴油排放CO2: 3.1863kg 每升柴油(10号)排放CO2: 3.1863kg*0.84=2.6765kg 每升柴油排放注:柴油含碳量:20.2 kg/GJ;氧化率:100%,碳到二氧化碳的转化系数:44/12,故此:柴油的CO2排放因子计算为: 20.2*100%*44/12*1000 = 74100 kg/TJ 二、天然气车辆 CO2排放计算 天然气的主要成分是甲烷,也有少许乙烷、丙烷和丁烷,此外一般还含有硫化氢、二氧化碳、氮和水气,以及微量的惰性气体,由于天然气的成分并不是一个标准量,只能按照全部为甲烷来计算这样在充分燃烧后: CH4+2O2=CO2+2H20 正好生成一立方米的二氧化碳,质量约为1.964千克。 三、计划更新天然气车辆CO2减排量计算 以2013年为例,一年的燃料单耗天然气与柴油车相比,计算天然气车辆CO2减排量: 1、每升天然气充分燃烧后,产生1.964千克CO2,2013年天然气车辆燃料单耗为40.16立方米/百公里,那么每百公里排放CO2为: 1.964*40.16=78.8742千克/百公里 2、每升柴油(10号)排放CO2为2.6765kg,2013年柴油车辆燃

料单耗为31.63升/百公里,那么每百公里排放CO2为: 31.63*2.6765=84.6577千克/百公里 3、2013年天然气与柴油车型相比天然气车辆每百公里CO2减排量为: 84.6577-78.8742=5.7835千克/百公里 4、2013年平均每车每日行驶里程为135.4公里,即1.354百公里,那么每辆车每年CO2减排量为: 5.7835*1.354*365=2858.4千克 2015年1月1日至2017年12月31日,预投入运行400辆天然气车,400辆天然气车3年的CO2减排量为: 2858.4*3*400=3430.09吨

二氧化碳安全技术说明书标准版

二氧化碳安全技术说明书 第一部分化学品及企业标识 化学品中文名称:二氧化碳化学品英文名称:Carbon dioxide 企业名称: 企业地址: 邮编: 传真: 电子邮件地址: 企业应急咨询电话: 产品推荐用途及限制用途:金属焊接及冶炼、植物助长、电子工业等。 第二部分危险性概述 紧急情况概述:不燃气体。若遇高热,容器内压增大,有开裂和爆炸的危险。 GHS 危险性类别:根据化学品分类、警示标签和警示性说明规范系列标准(参阅第十五部分),该产品属于高压气体,类别压缩气体。 标签要素和象形图: 警示词:警告 危险信息:内装高压气体,遇热可能爆炸。 禁配物:水、碱性物质。 防范说明: 预防措施:远离火种、热源。密闭操作,提供良好的自然通风条件。得到专门指导后操作。防止气体泄漏到工作场所空气中。远离易燃、可燃物。避免高浓度吸入,高浓度接触时可佩戴空气呼吸器。

事故响应:如果吸入,迅速脱离现场至空气新鲜处。保持呼吸道通畅。如呼吸困难,给输氧。呼吸、心跳停止,立即进行心肺复苏术。就医。 安全储存:保持容器密闭。储存于阴凉、通风的库房。 废弃处置:废气直接排入大气。 物理化学危险:内装高压气体,若遇高热,容器内压增大,有开裂和爆炸的危险。 健康危害:在低浓度时,对呼吸中枢呈兴奋作用, 高浓度时则产生抑制甚至麻痹作用。中毒机制中还兼有缺氧的因素。急性中毒,轻度中毒出现头晕、头痛、疲乏、恶心等,脱离接触后较快恢复。人进入高浓度二氧化碳环境,在几秒钟内迅速昏迷倒下,反射消失、瞳孔扩大或缩小、大小便失禁、呕吐等,更严重者出现呼吸、心跳停止及休克,甚至死亡。慢性影响经常接触较高浓度的二氧化碳者,可有头晕、头痛、失眠、易兴奋、无力等神经功能紊乱等。但在生产中是否存在慢性中毒国内外均未见病例报道。 环境危害:该物质大量排放时对环境有影响 第三部分成分/组成信息 混合物□ 化学品名称:二氧化碳 有害物成分浓度 CAS No 二氧化碳≥ 99.0% 124-38-9 第四部分急救措施 皮肤接触:不会通过该途径受到伤害。 眼睛接触:不会通过该途径受到伤害。 吸入:迅速脱离现场至空气新鲜处,保持呼吸系统畅通。如呼吸困难给输氧;如呼吸停止立即进行人工呼吸,就医。 食入:无意义。 对保护施救者的忠告:无资料。 对医生的特别提示:无资料。

催化工艺流程简述

工艺流程简述 1、反应-再生部分 原料油由装置外原料油储罐进入本装置原料油罐(V2201),经原料油泵(P2201/A、B)升压与轻柴油(E2211/A、B)、循环油浆(E2207)换热,换热后温度至200℃左右,与回炼油混合后分四路经原料油雾化喷嘴进入提升管反应器(R2101A),回炼油浆经原料油喷嘴上方单独的—组喷嘴进入提升管反应器,在此与高温再生催化剂接触并迅速升温、汽化,催化剂沿提升管向上流动的同时,原料不断进行反应,生成汽油、轻柴油、液化气、干气、中段油、回炼油、油浆等气相产物,同时生成的焦炭覆盖在催化剂表面,使其裂化活性、选择性逐步降低,成为待生催化剂,反应油气与待生催化剂经提升管反应器出口粗旋迅速分离。进入沉降器(R2101)之后,夹带有少量催化剂的油气经单级旋风分离器分离催化剂后,离开沉降器进入分馏塔(T2201)。 为促进氢转移等二次反应和减少热裂化反应,降低干气、焦炭产率,提高轻质油品收率,在提升管中上部(第一反应区出口)设置有常压直馏汽油、自产粗汽油或除氧水作为反应终止剂的注入点,以增加操作灵活性和弹性。 积炭的待生催化剂自粗旋料腿及沉降器单级旋风分离器料腿进入汽提段,在此与过热蒸汽逆流接触,以置换催化剂所携带的油气,汽提后的催化剂经待生立管、待生塞阀、待生立管套筒进入再生器(R2102)的密相床,在690℃的再生温度、富氧、CO助燃剂存在的条件下进行逆流完全再生,催化剂活性得到恢复后,经再生立、斜管及再生滑阀进入提升管反应器底部,在予提升蒸汽(干气)的提升下,完成催化剂加速、分散过程,然后与雾化原料接触循环使用。

再生过程的过剩热量由内取热器取走恒定热量后,仍然过剩的热量由外取热器(R2103)取走。再生器的部分催化剂由外取热入口管进入外取热器壳程,在流化风的作用下,呈密相向下流动在流经翅片管束间降温冷却,冷却后的催化剂经外取热器返回管由提升风提升返回再生器密相床层中部,外取热器流化风、提升风由增压机(B2103/A、B)提供。 再生器烧焦所需的主风由主风机提供,主风自大气进入主风机(B2101),升压后经主风管道、辅助燃烧室(F2101)及主风分布管进入再生器。 再生烟气经四组二级旋风分离器分离催化剂后,经三旋(CY2104)分两支,一支进烟机回收系统,进入烟气轮机(BE2101)膨胀作功以驱动主风机(B2101);另一支经双动滑阀调节压力后与烟机出口烟气合并,进入余热锅炉回收烟气的热能,使烟气温度降至180℃左右,最后经烟囱排入大气。当烟机停运时,主风由备用主风机(B2102)提供,此时再生烟气经三级旋风分离器分离催化剂后由双动滑阀及降压孔板(PRO2101)降压后进入余热锅炉。 开工用的催化剂由冷催化剂罐(V2101)或热催化剂罐(V2102)用非净化压缩空气输送至再生器,正常补充催化剂可由催化剂小型加料线输送至再生器。CO助燃剂由助燃剂加料斗(V2110)、助燃剂罐(V2111)用非净化压缩空气经小型加料管线输送至再生器。 生产所用的催化剂运进装置,通过催化剂加料斗(V2104)送至冷催化剂罐(V2101),正常由小型加料线向再生器补充新鲜催化剂。停工时由大型卸料线卸出催化剂至热催化罐。三级旋风分离器回收的催化剂,由三旋回收催化剂储罐(V2112)用非净化压缩空气间断送至废催化剂罐(V2103)。

二氧化碳减排措施和技术

二氧化碳减排措施和技术 二氧化碳减排措施和技术 摘要:本文主要阐述了关于二氧化碳减排的基本技术手段和基本原理。文章从提高能源利用效率和转化效率以及二氧化碳的捕集、分离和利用等方面介绍了中国二氧化碳减排的各种技术现状,并对二氧化碳减排技术的在国外的具体发展方向作了初步探讨,。许多国外的化工公司通过提供减排产品促进汽车应用绿色化。汽车的绿色化包括用生物基材料替代石油基材料、降低轮胎滚动阻力、发展塑料

汽车、开发更多汽车用绿色产品。另一些化工公司正在开发用二氧化碳作为低成本化工原材料的新技术,包括将CO2转化为燃料、利用合成生物学开发生物燃料。这些新技术均为中国二氧化碳减排及利用前景提供了一定的参考方向。 关键词:二氧化碳减排;捕获与分离;绿色化工;二氧化碳燃料 全球每年有250多亿吨二氧化碳排放,中国已达60多亿吨,位居世界第一。大量CO2的排放所带来的全球性的极端气候问题已经引起科学界、各国政府及公众的强烈关注。为此,如何减少CO2的排放问题已经被列入各国政府、联合国会议的首要议题,放在优先考虑的地位,成为全球诸多重大问题亟待解决的战略课题。 2009年12月7-18日召开的哥本哈根会议提出,面对气候变化的严峻挑战,我们必须采取更加强有力的政策措施与行动,努力控制温室气体排放,建设资源节约型和环境友好型社会。中国政府做出承诺,到2020年我国单位国生产总值二氧化碳排放比2005年下降40% ~45%,非化石能源占一次能源消费的比重达到15%左右。 当前,减排的主要路线首先是从源头上减排,即通过调整产业、经济、能源结构,鼓励低排放、低能耗企业的建设,对高能耗的企业实行技术改造;大力发展节能技术,提高能源利用率;寻找新能源;增强公民意识,改变生活方式等;其次,对迫不得已排放的CO2通过回收分离、捕获贮存、资源化利用等技术减少或消除其排放。 1. 二氧化碳减排的基本技术手段和原理 1.1捕获分离CO2技术 1.1.1吸收法 包括物理吸收和化学吸收。物理吸收是指利用那些对CO2具有较大溶解度的有机溶剂做 吸收剂,通过对CO2的加压让其溶解到该溶剂,再通过减压让CO2释放出来,通过这样的交替方式完成CO2的捕获分离。当然溶剂的选择非常重要,一般要求其具有无腐蚀性、无毒性和良好的化学稳定性。常见吸收剂有丙烯酸酯、甲醇、乙醇、聚乙二醇等等。化学吸收是指利用碱性溶液如碳酸钾等对CO2进行溶解捕获,再通过脱析作用完成对CO2的分离和溶剂的再生。该方法适用于大流量低浓度CO2的分离回收。 1.1.2吸附法 通过吸附剂在一定条件下对CO2进行选择性吸附,再将CO2解析分离的方法。常用的吸附剂有活性炭、沸石、硅胶、分子筛等。按照改变的条件,吸附法又可分为:变电吸附(ESA)、变压吸附(PSA)、变温吸附(TSA)等。其中以变压吸附法发展较为迅速,目前在化肥、化工工业中获得了广泛应用。 1.1.3富氧燃料 该技术是利用空分系统获得富氧甚至纯氧,再与纯的CO2以一定比例混合后送入炉膛与燃料混合燃烧。这样由于除去了氮,就可以在排放气体中产生高浓度的CO2,通过烟气再循环装置去稀释纯氧,重新回注燃烧炉。采用这种富氧燃烧方法,由于助燃气体中氧气浓度较高,燃烧比较完全,不但大大降低了烟气黑度,还因为氮气量的减少,而减少了热损失,节约了能源,故而被发达国家称之为“资源创造性技术”,有着良好的应用前景。目前的oxy-fuel技术又得到了进一步的

碳捕捉与封存(CCS)技术

1.碳捕获和存储技术研究进展 一、前言 政府间气候变化专门委员会(IPCC)在第三次评估报告¨中指出,地球气候正经历一次以全球变暖为主要特征的显著变化。而这一气候变化的发生是与大气中温室气体的增加所产生的自然温室效应紧密联系的。CO2是其中对气候变化影响最大的气体,它产生的增温效应 占所有温室气体总增温效应的63%,且在大气中的留存期最长,可达到200年。 一系列的研究表明全球气候变化对自然生态系统造成重大影响,进而威胁到人类社会的生存和发展。为了应对气候变化可能带来的不利影响,20世纪80年代末以来,国际社会对气候变化问题给予了极大的关注和努力。1992年通过的《联合国气候变化框架公约》(以下简称公约)表达了国际社会应对气候变化挑战的行动意愿,是为解决气候变化问题建立的基 本国际政治和法律框架。1997年通过的《京都议定书》(以下简称议定书)规定了2008-2012年全球减少排放温室气体的具体目标,提出了发达国家减少温室气体排放的量化指标,该议定书已于2005年2月16日正式生效。 为了尽可能减少以二氧化碳(CO2)为主的温室气体排放,减缓全球气候变化趋势,人类正在通过持续不断的研究以及国家间合作,从技术、经济、政策、法律等层面探寻长期有效的解决途径。近年来兴起的二氧化碳捕获与封存(ccs)技术成为研究的热点和国际社会减少 温室气体排放的重要策略。 二、碳捕获和存储的科学和方法学问题 碳捕获和存储的种类很多,本文主要介绍地质碳捕获和存储(包括陆地地质结构和海底以下地质结构)及海洋碳捕获和存储。海洋碳捕获和存储主要有2种方式:一是将CO2通过固定管道或移动船舶注入或溶解到水柱中(通常在地下1 km);二是通过固定管道或离岸平台 将其存放于深于3 km的海底。海洋碳捕获和存储及其生态影响仍处于研究阶段,因此,国际社会推动的只是地质碳捕获和存储,本文也不对海洋碳捕获和存储的技术及影响进行研究。 另外,地质碳捕获和存储与陆地、海洋生态系统的固碳是不同的,陆地、海洋生态系统对CO2的吸收是一种自然碳捕获和存储过程。陆地和海洋植物在其生长过程中,需要利用CO2合成有机物,它们能够在一定的浓度范围内吸收CO2。 2.1 碳捕获和存储的概念

液体二氧化碳安全技术说明书

危险化学品安全技术说明书 修订日期:2015年1月8日 SDS编号:CSDS-SY001 产品名称:液体二氧化碳版本:QB0408-14-001 第一部分化学品及企业标识 化学品中文名:液体二氧化碳 化学品英文名:Carbon dioxide 企业名称: 企业地址: 邮编:传真: 联系: 电子地址: 企业应急咨询: 产品推荐及限制用途:主要用于制造碳酸钠,及生产充碳酸气的饮料。用干冰冷冻水果或肉类,不但温度低,而且无污染。二氧化碳又是有效的灭火剂,用于不能用水来扑灭的火灾,如油、电、金属钠引起的火灾。液态二氧化碳已成为高效无污染的萃取剂,所用的工艺称为超临界萃取,多用于食品等工业。 第二部分危险性概述 紧急情况概述:长时间过量吸入会引起昏迷,反射消失,瞳孔散大或缩小,大小便失禁,呕吐、呼吸停止,休克死亡。皮肤、眼睛接触干冰或液体二氧化碳会引起冻伤。 GHS危险性类别:加压气体特异性靶器官毒性-一次接触,类别3 标签要素: 象形图: 警示词:警告 危险信息:含压力下气体,如受热可爆炸; 含压力下气体,如受热可爆炸; 可能引起呼吸道刺激,可能引起昏昏欲睡或眩晕; 防说明: 远离热源/明火/热表面,禁止吸烟。 保持容器密闭。 采取防止静电措施,容器和接收设备接地/连接。

使用防爆电器/通风/照明等设备,只能使用不产生火花的工具。 得到专门指导后操作,在阅读并了解所有安全预防措施之前,切勿操作。 按要求使用个体防护装备。 操作液体二氧化碳装置时使用棉手套,防止冻伤。 操作液体二氧化碳设备时可使用防护眼镜防止飞溅冻伤眼睛。 避免接触眼睛、皮肤,避免吸入。 操作现场不得进食、饮水或吸烟。 【事故响应】 火灾时,使用泡沫灭火器,对火场中钢瓶用大量水降温,防止爆炸,并迅速将其转移至安全的空旷处。 如吸入立即转移至空气新鲜通风处,重者立即就医。 如皮肤、眼睛接触液体二氧化碳,用自来水冲洗,就医。 【安全储存】 在阴凉、通风处储存,保持容器密闭。 储存场所应保持通风和防止曝晒,库温不宜超过35℃。 使用时对气瓶应有防止倾倒的措施。 【废弃处置】 少量废气可直接排入大气中。 物理化学危险:产品系灭火剂,为防止外来火灾对压缩气体包装钢瓶造成的危险,可就近配备泡沫式灭火器。 健康危害:长时间过量吸入会引起昏迷,反射消失,瞳孔散大或缩小,大小便失禁,呕吐、呼吸停止,休克死亡。皮肤、眼睛接触干冰或液体二氧化碳会引起冻伤。 环境危害:大量二氧化碳排放大气能破坏地球臭氧层,少量二氧化碳废气可直接排放。 第三部分成分/组成信息 第四部分急救措施 急救: 皮肤接触:皮肤接触,用自来水冲洗,就医。 眼睛接触:眼睛接触,用自来水冲洗,就医。 吸入:立即转移至空气新鲜通风处,重者立即就医。 食入:无资料。 第五部分消防措施

二氧化碳的捕集与封存技术

863计划资源环境技术领域重点项目 “二氧化碳的捕集与封存技术”课题申请指南 一、指南说明 全球气候变暖已成为国际热点问题,二氧化碳因具有温室效应被普遍认为是导致全球气候变暖的重要原因之一。如何减少二氧化碳排放,降低大气中二氧化碳浓度,是人类面临的共同难题。研究开发具有我国自主知识产权的、经济高效的二氧化碳捕集与封存技术,推动二氧化碳减排,对于实现我国社会经济可持续发展和营造良好的国际环境具有重要意义。 本项目针对二氧化碳减排的迫切需求,瞄准国际技术前沿,研发吸附、吸收等二氧化碳捕集技术,探索二氧化碳封存技术,为我国二氧化碳减排提供科技支撑,项目下设3个课题。 二、指南内容 课题一、二氧化碳的吸收法捕集技术 研究目标: 研发先进实用的CO2高效吸收溶剂、吸收塔填料以及新型高效吸收分离设备和分离技术,发展CO2吸收分离过程模拟和集成优化新技术,通过关键技术的突破,着重研究解决CO2捕集的高能耗和高费用问题,进行中间试验并进行技术经济与风险评价,形成具有自主知识产权的吸收法捕集CO2的技术方案。 研究内容: (1)新型高效吸收溶剂的研制 针对燃煤电厂等工业的CO2排放源,采用分子模拟、分子设计和

实验研究相结合的方法开发高性能、低能耗和低腐蚀性的化学、物理及化学物理耦合吸收溶剂。测定其中CO2的吸收溶解度和吸收-解吸动力学,建立相应的溶解度和动力学模型,研究吸收性能和溶剂分子结构的定量关系,根据不同气体情况研制和优化溶剂体系,并进行硫、碳一体化脱除、以及膜—吸收耦合等新技术的探索性研究。 (2)特大型吸收设备强化和过程优化 通过先进的实验测量技术、计算流体力学模拟和实验相结合的方法,研究特大型分离设备强化的途径,研制高效吸收塔填料等塔内构件;发展CO2吸收分离过程模拟优化技术,研究节能降耗的新流程,继而形成吸收法捕集CO2的集成技术方案及开发平台。进行中间试验,获取工艺和能耗数据,进行技术经济与风险评价。 主要考核指标: (1)针对燃煤电厂等工业的CO2排放源,研发1~2项具有自主知识产权的、国际先进水平的高效吸收溶剂。 (2)研发1~2项具有自主知识产权的、国际先进水平的高效吸收塔填料。 (3)通过过程模拟优化和中间实验,形成1~2种具有自主知识产权的吸收法捕集CO2的新技术。 (4)中间试验规模和指标: 常压(1bar),试验规模为吸收塔径≥200mm,气体处理量≥60万标准立方米/年,对溶剂的指标要求是在气体含8-15%的CO2的情况下对CO2的循环吸收量≥50~60克/升; 中高压(≥20bar),试验规模为吸收塔径≥60mm,气体处理量≥60万标准立方米/年,对溶剂的指标要求是在气体含30~40%CO2的情况下对CO2的吸收量≥37~50克/升;

芳烃工艺流程简述

工艺流程简述 1)总工艺流程 直馏石脑油和加氢裂化石脑油混合后在石脑油加氢装置(NHT Unit)通过加氢处理及汽提脱去硫、氮、砷、铅、铜、烯烃和水等杂质。在连续重整装置中把石脑油中的烷烃和环烷烃转化成芳烃,并副产大量的富氢气体。其中一部分产氢用于异构化、歧化和预加氢装置,其余部分则送到炼厂其它加氢装置。 连续重整装置的重整油经过脱戊烷塔脱去C5-馏分进入重整油分离塔。乙烯裂解汽油从边界来后先与重芳烃塔顶物流换热后进入重整油分离塔。塔顶C6/C7送到SED装置把C6/C7馏分中的芳烃和非芳烃分开。混合芳烃和歧化汽提塔底物混合送到苯-甲苯分馏装置的苯塔。苯塔顶产生高纯度的苯产品,塔底物流送到甲苯塔。甲苯塔顶生产C7芳烃,其中一部分C7芳烃与重芳烃塔塔顶物流混合送到歧化装置,其余部分作为汽油调组分送出装置。 甲苯塔底物料与重整油塔底物料、异构化产物混合送到二甲苯塔,二甲苯塔塔顶的混合二甲苯送到吸附分离装置,在这里PX作为产品被分离出来。含有EB、MX 和OX的吸附分离抽余液去异构化装置,PX达到新的平衡。异构化脱庚烷塔底物循环回二甲苯塔。二甲苯塔底的C9+送到重芳烃塔,重芳烃塔顶物料C9组分一部分送到歧化装置,其余部分作为汽油调和组分送出装置。重芳烃塔塔底物料作为燃料油供装置内使用。 2)直馏石脑油加氢装置 直馏石脑油进入原料缓冲罐(1510-D101),由预加氢进料泵(1510-P101A/B)泵送与预加氢循环压缩机(1510-K101A/B)来的循环氢混合后进入预加氢进料换热器(1510-E101A/B/C)和预加氢进料加热炉(1510-F101),加热后进入预加氢反应器(1510-R101)和脱氯反应器(1510-R102)。 已脱除硫、氮、氯的预加氢反应产物与硫化氢、氨及含氢气体一起通过与原料换热,再注入凝结水以溶解因冷却可能在下游设备形成的氨盐。再经预加氢产物空冷器(1510-A101),预加氢产物后冷器(1510-E102)冷却后进入预加氢产物分离罐(1510-D102)。预加氢产物分离罐顶含氢气体和补充氢混合经循环压缩机入口分液罐(1510-D103)进入预加氢循环压缩机(1510-K101A/B)循环使用。 预加氢产物分离罐(1510-D102)底液体通过液位控制进入预加氢汽提塔

最新版二氧化碳安全技术说明书(2017)

化学品安全技术说明书 修订日期:2017年06月15日 SDS编号:LGHH-011 产品名称:二氧化碳气体版本:LG-MSDS-2017 第一部分化学品及企业标识 化学品中文名称:二氧化碳 化学品英文名称:Carbon dioxide 企业名称: XXXXXX化工有限公司 地址:河北省XXXXXXX 邮编: 057XXX 传真:0310-4577XXXX 联系电话:00310-8XXXXXX 电子邮件地址:XXXXXXX3@https://www.wendangku.net/doc/a715470269.html, 企业应急咨询电话:0310-XXXXXX 产品推荐及限制用途:用于制糖工业、制碱工业、制铅白等,也用于冷饮、灭火及有机合成。 第二部分危险性概述 紧急情况概述:性质稳定,不燃烧,也不助燃。在低浓度时,对呼吸中枢呈兴奋作用,高浓度时则产生抑制甚至麻痹作用。中毒机制中还兼有缺氧的因素。对环境有影响。 GHS危险性类别:根据化学品分类、警示标签和警示说明规范系列标准(参阅第十五部分),该产品属于压力下气体,类别特异性靶器官毒性-一次接触类别3。 标签要素: 象形图: 警示词:警告

危险信息:内装高压气体,如加热可爆炸;可能引起呼吸道刺激,可能引起 昏昏欲睡或眩晕。 防范说明: 预防措施:远回避热源;禁止在靠近热源或明火处使用或贮存;贮存于密封 的容器中;置于阴凉处;在运输中钢瓶上要加装安全帽和防震橡 皮圈;穿防护服和戴手套。 事故响应:万一泄露,撤离危险区,咨询专家; 万一发生吸入性事故,将患者移至新鲜空气处并保持安静;如呼 吸停止,进行人工呼吸,如果呼吸困难,供给氧气; 皮肤接触:若有冻伤,就医; 眼睛接触:若有冻伤,就医。 安全储存:避免阳光直射,置于阴凉处,禁止在靠近热源或明火处使用或贮 存;贮存于密封的容器中。 废弃处置:本品或其容器依当地法规处置。 物理化学危害:压缩气体,不支持燃烧,钢瓶容器受热易超压,有爆炸危险。 健康危害:在低浓度时,对呼吸中枢呈兴奋作用,高浓度时则产生抑制甚至麻痹作用。 中毒机制中还兼有缺氧的因素。 急性中毒:人进入高浓度二氧化碳环境,在几秒钟内迅速昏迷倒下,反射消 失、瞳孔扩大或缩小、大小便失禁、呕吐等,更严重者出现呼吸停止及休克, 甚至死亡。固态(干冰)和液态二氧化碳在常压下迅速汽化,能造成-80— —-43℃低温,引起皮肤和眼睛严重冻伤。 慢性影响:当CO2浓度为3—5%(体积)时,呼吸将加快,有气闷和头痛 感;经常接触较高浓度二氧化碳者,可有头晕、头痛、失眠、易兴奋、无力 等神经功能紊乱等症状,但在生产中是否存在慢性中毒国内外均未见病历报 道。 环境危害:对大气可造成污染。 第三部分成分/组成信息 √物质混合物 危险组分浓度或浓度范围CAS No.

二氧化碳捕集、利用与封存技术20160404

二氧化碳捕集、利用与封存技术调研报告 一、调研背景 为减缓全球气候变化趋势,人类正在通过持续不断的研究以及国家间合作,从技术、经济、政策、法律等层面探寻长期有效地减少以二氧化碳为主的温室气体排放的解决途径。中国作为一个发展中国家,在自身扔面临发展经济、改善民生等艰巨情况下仍然对世界做出了到2020年全国单位国内生产总值CO2放比2005年下降40%至45%的承诺,这将会给中国的能源结构产生深渊的影响,也将会给经济发展带来一场深刻的变革。 二、CCUS技术与CCS技术对比 CCS(Carbon Capture and Storage,碳捕获与封存)技术是指通过碳捕捉技术,将工业和有关能源产业所生产的二氧化碳分离出来,再通过碳储存手段。潜在的技术封存方式有:地质封存(在地质构造种,例如石油和天然气田、不可开采的煤田以及深盐沼池构造),海洋封存(直接释放到海洋水体中或海底)以及将CO2固化成无机碳酸盐。 CCUS(Carbon Capture,Utilization and Storage,碳捕集、利用与封存)技术是CCS技术新的发展趋势,即把生产过程中排放的二氧化碳进行提纯,继而投入到新的生产过程中,可以循环再利用,而不是简单地封存。与CCS相比,可以将二氧化碳资源化,能产生经济效益,更具有现实操作性。 中国的首要任务是保障发展,CCS技术建立在高能耗和高成本的基础上,该技术在中国的大范围推广与应用是不可取的,中国当前应当更加重视拓展二氧化碳资源性利用技术的研发。 三、二氧化碳主要捕集方法 目前主流的碳捕集工艺按操作时间可分为3类———燃烧前捕集、燃烧后捕集和富氧燃烧捕集(燃烧中捕集)。三者个有优势,却又各有技术难题尚待解决,目前呈并行发展之势。 燃烧前捕集技术以煤气化联合循环(IGCC)技术为基础,先将煤炭气化呈清洁气体能源,从而把二氧化碳在燃烧前就分离出来,捕进入燃烧过程。而且二氧化碳的浓度和压力会因此提高,分离起来较为方便,是目前运行成本最低廉的捕集技术,问题在于,传统电厂无法用这项技术,而是需要重新建造专门的OGCC电站,其建造成本是现有传统发电厂的2倍以上。 燃烧后捕集可以直接应用于传统电厂,这一技术路线对传统电厂烟气中的二氧化碳进行捕集,投入相对较少。这项技术分支较多,可分为化学吸收法、物理吸收法、膜分离法、化学链分离法等等。其中,化学吸收法被认为市场前景最好,受厂商重视程度也最高,但设备

CO2捕捉

《每日科学》网站7月25日报道称,美国劳伦斯-利弗莫尔国家实验室的研究人员利用离子液体作为二氧化碳吸收剂,开发出一种更清洁、稳定和高效的捕获二氧化碳新方法。该研究成果刊登在最新一期的《ChemSusChem》杂志上。 随着全球气候变暖的加剧,各国都在致力于减少燃烧化石燃料的二氧化碳排放量,碳捕捉技术成为研究的重点。目前的碳捕捉技术主要采用化学吸附法。二氧化碳会和胺类物质发生反应,二者在低温情况下结合,在高温中分离。一般可以使含二氧化碳的废气通过胺液,分离出其中的二氧化碳,之后在适当地方通过加热胺液再将二氧化碳释放。现今少数进行商用碳捕捉的煤电厂都使用单乙醇胺作为二氧化碳吸收剂。但单乙醇胺具有腐蚀性,这种方法也需要使用大型设备,并且只有在二氧化碳处于轻微至中等压力下才有效。因此,其成本、效率都不是很理想。 在过去几年中,该实验室的阿米泰什·梅蒂一直致力于找到新的二氧化碳吸收剂。他测试了几种可有效溶解二氧化碳的离子液体,获得大量有用数据。与典型的有机溶剂不一样,离子液体一般不会成为蒸汽,所以不易产生有害气体,使用方便。梅蒂发现,使用离子液体作为二氧化碳吸收剂,可克服单乙醇胺的诸多缺点,比现今所用之法更清洁、更易于使用。其化学稳定性好、腐蚀性低,蒸汽压几乎为零,可制成膜使用。离子液体种类繁多,有许多种具有潜在的高二氧化碳溶解度的离子可供选择。 梅蒂设计出一种基于量子化学热力学方法的计算工具,可计算出任何溶剂在任意浓度下的二氧化碳化学溶解能力,以测定包括离子液体在内的溶剂的碳捕捉效率。过去几年积累的实验数据证明,这种算法十分准确。 报道称,梅蒂使用这种方法预测出一种新型溶剂,其二氧化碳溶解度是目前实验证实的最有效溶剂的两倍。“离子液体种类繁多,目前所见仅是九牛一毛。”梅蒂希望他的这种精准算法能够帮助科学家发现更好的实用型溶剂,以进一步提高二氧化碳捕获效率。

二氧化碳的捕集、封存与综合利用

二氧化碳的捕集、封存与综合利用

前言 近年来,温室效应加剧问题使环境与经济可持续发展面临严峻的挑战。因此,引起温室效应和全球气候变化的二氧化碳的减排技术成为各国关注的焦点,如何从源头减少二氧化碳排放和降低大气中二氧化碳的含量成为挑战人类智慧的难题。中国作为一个发展中国家,主要以煤炭的消费为主,主要的CO2排放源为燃煤的发电厂。从总量上看,目前我国的二氧化碳排放量已位居世界第二,预计到2025年,我国的CO2总排放量很可能超过美国,位居世界第一。因此,我国急需对所排放的二氧化碳进行捕获研究,以缓解我国的空气污染压力。目前CO2的应用领域得到了广泛开拓,除了众所周知的碳酸饮料、消防灭火外,工业、农业、国防、医疗等部门都在使用CO2。科学研究己经证明,CO2具有较高的民用和工业价值:以CO2为原料可合成基本化工原料;以CO2为溶剂进行超临界萃取;还可应用于食物工程、激光技术、核工业等尖端高科技领域;近年来开发出的新用途如棚菜气肥、保鲜、生产可降解塑料等也展现出良好发展前景。[1]

1.CO2捕集系统 CO2捕获技术发展的方向是降低技术的投资费用和运行能耗。依据捕获系统的技术基础和适用性,通常将火电厂CO2的捕集系统分为以下4种:燃烧后脱碳、燃烧前脱碳、富氧燃烧技术以及化学链燃烧技术。 1.1 燃烧后脱碳 燃烧后脱碳是指采用适当的方法在燃烧设备后,如电厂的锅炉或者燃气轮机,从排放的烟气中脱除CO2的过程。 在燃烧后捕集技术中,由于烟气中CO2分压通常小于0. 15个大气压,因此需要与CO2结合力较强的化学吸收剂分离捕集CO2,用于CO2捕集的化学吸收剂主要是能与CO2反应生成水溶性复合物的有机醇胺类。目前在CO2捕集方面研究和采用较多是醇胺法(MEA法)。[2] 燃烧后捕集技术是一种成熟的技术,这种技术的主要优点是适用范围广,系统原理简单,对现有电站继承性好。但捕集系统因烟气体积流量大、CO2的分压小,脱碳 的捕集成本较高。 过程的能耗较大,设备的投资和运行成本较高,而造成CO 2 1.2 燃烧前脱碳 燃烧前脱碳就是在碳基原料燃烧前,采用合适的方法将化学能从碳中转移出来,然后将碳与携带能量的其他物质分离,从而达到脱碳的目的。燃烧前分离捕集CO2实质上是H2和CO2的分离,由于合成气的压力一般在2. 7MPa以上(取决于气化工艺),CO2的分压远高于化石燃料在空气燃烧后烟气中的CO2分压。典型的燃烧前CO2捕集流程分三步实施: (1)合成气的制取:将煤炭、石油焦、天然气等燃料与水蒸气、氧气进行不完全的燃烧反应,生成CO和H2的合成气。 (2)水煤气变换:将合成气的CO进一步与水蒸气发生CO变换反应,生成CO2和H2。 (3)H2/CO2分离:将不含能量的CO2同能量载体H2分离,为后续的氢能量利用和CO2封存等作准备。[3] 燃烧前捕集技术的成本比燃烧后捕集技术的成本低,具有较大的发展潜力。

涤纶长丝生产工艺简介

涤纶长丝生产工艺简介 1. 预结晶 切片干燥过程中需要加热到140℃以上,而普通切片的软化点很低,在80℃以下即软化 发粘,容易粘结成块堵塞干燥装置或输料管(俗称结块),为了提高切片的软化点,必须提高切片的结晶度,使其软化点达到200℃左右,这样干燥工序才能顺利进行。 预结晶采用120~170℃左右的热空气对切片加热,为了防止切片粘结成块(俗称结块),一般采取以下三种方式: 1.利用沸腾床等装置,将热空气从下往上吹向切片,使得切片呈现沸腾状,切片粒子之间的位置一直处 于快速波动之中,有效防止了切片之间的粘结。一般将这种方式称为BM 式。 2.利用搅拌装置,对处于预结晶过程中的切片不断搅拌,使得切片粒子之间无法粘结或者粘结后随即被打散。一般将这种方式称为KF 式。 利用震动装置,使得处于预结晶过程中的切片高频震动,粒子之间的位置快速变化,从而无法相互粘结。一般与BM 式结合使用。 熔体直纺没有预结晶流程。 2.干燥 涤纶生产过程中,PET 切片需要在290℃左右的高温下熔融,在此高温下,如果切片的含水率达到一定程度(比如100ppm 以上),熔体会发生水解现象使得熔体质量下降,从而使纺丝工序难以顺利进行甚至导致成品丝品质下降。 将经过脱湿处理的干燥空气(露点降到-20 ℃以下)加热到160℃左右,从干燥塔底部输送到干燥塔中与切片逆向接触使切片迅速脱水,干空气将水分从干燥塔顶部带出。切片一般在干燥塔中停留4~8 小时,当工艺条件(干燥温度、干空气露点、干空气流量、切片在干燥塔中的停留时间)合适时,切片的含水率可以降低到50ppm 以下,满足纺丝要求。不同的生产工艺和品种对切片的含水率要求有明显差异: UDY-DT : 目标含水率≤100ppm POY-DTY: 目标含水率≤50ppm FDY : 目标含水率≤30ppm 常规品种含水率可以偏高一点,但是异型丝和细旦、超细旦丝对含水率要求很高,一般要求含水率≤20ppm 。 切片含水率偏高时,熔融后熔体降解程度大,纺丝工段容易出现毛丝、断头、飘丝等异常现象,丝的强度会降低,断裂伸长率升高。 干燥工序分连续干燥和间歇干燥两种方式。 连续干燥采用干燥塔(一般需要加上预结晶装置),干燥介质为除湿干空气,采用电加热方式,这种方式干燥效率高,干燥效果好,操作简便可以自动控制,工艺调整方便,是目前普遍采用的干燥方式; 间歇干燥采用转鼓装置(无需额外的预结晶装置),加热方式为蒸汽,用抽真空的方式使切片脱水。这种方式干燥效率很低,干燥效果不理想,操作麻烦且多为手动控制方式,工艺调整不方便,除了在一些老式UDY 生产线上还有少量存在以外,已经基本被淘汰。 目前,随着熔体直接纺技术的成熟,越来越多的厂家采用了熔体直纺技术,采用这项技术,省去了切片造粒、切片包装、切片运输、切片筛选、切片输送、切片干燥、切片熔融等很多过程,因而使生产成本大大降低。 3.纺丝纺丝是整个化纤生产中的关键工序,纺丝状况如何,直接影响到“产、质、耗”等生产指标能否顺利完成。 纺丝就是将熔融状态下或呈溶液状态下的高聚物纺成丝束的过程。对于切片法纺丝而言还包括了将切片由颗粒状固体熔融成熔体的过程。 纺丝设备包括熔体过滤器、纺丝箱体、计量泵、组件(包括海砂或金属砂、过滤网、分配板、喷丝

催化裂化地装置简介及实用工艺流程

催化裂化的装置简介及工艺流程 概述 催化裂化技术的发展密切依赖于催化剂的发展。有了微球催化剂,才出现了流化床催化裂化装置;分子筛催化剂的出现,才发展了提升管催化裂化。选用适宜的催化剂对于催化裂化过程的产品产率、产品质量以及经济效益具有重大影响。 催化裂化装置通常由三大部分组成,即反应/再生系统、分馏系统和吸收稳定系统。其中反应––再生系统是全装置的核心,现以高低并列式提升管催化裂化为例,对几大系统分述如下: (一)反应––再生系统 新鲜原料(减压馏分油)经过一系列换热后与回炼油混合,进入加热炉预热到370℃左右,由原料油喷嘴以雾化状态喷入提升管反应器下部,油浆不经加热直接进入提升管,与来自再生器的高温(约650℃~700℃)催化剂接触并立即汽化,油气与雾化蒸汽及预提升蒸汽一起携带着催化剂以7米/秒~8米/秒的高线速通过提升管,经快速分离器分离后,大部分催化剂被分出落入沉降器下部,油气携带少量催化剂经两级旋风分离器分出夹带的催化剂后进入分馏系统。 积有焦炭的待生催化剂由沉降器进入其下面的汽提段,用过热蒸气进行汽提以脱除吸附在催化剂表面上的少量油气。待生催化剂经待生斜管、待生单动滑阀进入再生器,与来自再生器底部的空气(由主风机提供)接触形成流化床层,进行再生反应,同时放出大量燃烧热,以维持再生器足够高的床层温度(密相段温度约650℃~680℃)。再生器维持0.15MPa~0.25MPa(表)的顶部压力,床层线速约0.7米/秒~1.0米/秒。再生后的催化剂经淹流管,再生斜管及再生单动滑阀返回提升管反应器循环使用。 烧焦产生的再生烟气,经再生器稀相段进入旋风分离器,经两级旋风分离器分出携带的大部分催化剂,烟气经集气室和双动滑阀排入烟囱。再生烟气温度很高而且含有约5%~10%CO,为了利用其热量,不少装置设有CO锅炉,利用再生烟气产生水蒸汽。对于操作压力较高的装置,常设有烟气能量回收系统,利用再生烟气的热能和压力作功,驱动主风机以节约电能。 (二)分馏系统 分馏系统的作用是将反应/再生系统的产物进行分离,得到部分产品和半成

工艺阐述及流程图

工艺阐述及流程图 预处理车间工艺流程说明 米糠由提升机送入车间进行清理,清理后的米糠经提升机糠粞分离筛进行糠粞分离,然后落入比重去石机去除米粞,米粞装袋,米糠由刮板输送机送至调制锅进行调质,调质后的米糠经膨化喂料绞龙、磁选器除铁后落入膨化机,米糠膨化料落入逆流翻板烘干机进行烘干。烘干后的膨化料经刮板输送机送往浸出车间。膨化多出部分经冷却后经皮带输送机送往库房散装储存。 浸出车间工艺流程说明 浸出工序 米糠膨化料经进料刮板输送机,送入浸出器,料在浸出器中由进料口到出料口运行一周,在进料口和出料口之间用递减浓度的混合油进行喷淋,在进入沥干段前,再经新鲜溶剂喷淋,沥干后的湿粕从浸出器出料格由拨料器排出进入湿粕刮板。浓混合油由浓混合油泵打入旋液分离器后再经混合油过滤器除去粕粉后进入混合油罐。 蒸脱工序 浸出器出来的含溶湿粕由湿粕刮板经料封绞龙送入DTDC蒸脱机的预脱层,底部用间接蒸汽加热,脱去部分溶剂;经预脱后的湿粕进入蒸脱层,蒸脱层设自动控制保持一定的料层,底部通入直接蒸汽,脱去全部溶剂,同时部分蒸汽凝结在粕中,粕的水分会部分升高。脱溶粕由旋转阀定量下落到烘干层,烘干层保持一定的料位,进行去水干燥过程,接着进入冷却层冷却.最后由自动料门控制出料,再由粕刮板送入粕库。 从脱溶机顶部出来的溶剂和水蒸汽的混合汽,通入第一长管蒸发器壳程作为一蒸混合油的加热介质。 蒸发工序 混合油由一蒸喂料泵从混合油罐打入第一长管蒸发器管程,脱溶机的混合汽为一蒸的加热介质。蒸发的溶剂经分离室进入真空冷凝器,分离室下部设有液位控制装置保持液封,第一蒸发器由低真空喷射泵保持一定的残压,使一蒸混合油中的溶剂在负压下蒸发,可降低溶剂的沸点,提高工作蒸汽利用率。

相关文档
相关文档 最新文档